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The Schrödinger equation of the spherical symmetry quantum models such as the hydrogen
atom problem seems to be analytically non-solvable in higher dimensions. When we try to
compactifying one or several dimensions this question can maybe solved. This paper stands
for the study of the spherical symmetry quantum models on noncommutative spacetime with
compactified extra dimensions. We provide analytically the resulting spectrum of the hydrogen
atom and Yukawa problem in 4 + 1 dimensional noncommutative spacetime in the first order
approximation of noncommutative parameter. The case of higher dimensions D ≥ 4 is also discussed.
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I. INTRODUCTION

One of the recently discovered concepts that has im-
pacted the theoretical physics community in a major way
is most likely the idea of a noncommutative (NC) space-
time which led to a NC generalization of quantum me-
chanics and field theory. The idea of noncommutativity
of spacetime was first discussed in the work by Snyder
[1] and Connes [2]-[3]. The above concept (NC) space-
time allows to find possible solution to ultraviolet diver-
gencies in quantum field theory [4]-[5]. The NC physics
also arises as a possible scenario for the short-distance
behaviour of physical theories (the Planck scale). At
this scale, the universal constants c, ~ and G appear
naturally equivalent. Under the Planck length, the dis-
tance loses its meaning [4]-[6] and the physical phenom-
ena are believed to be nonlocal. NC geometry could be
realized by introducing the noncommutativity through
the coordinates which satisfy the commutation relations
[xµ, xν ] = iθµν , where θµν is a skew-symmetric matrix
characterizing the deformation of the spacetime. This
leads to a new Heisenberg uncertainty relation, given on
the spacetime coordinates by ∆xµ∆xν ≥ θµν , and makes
this spacetime a quantum space [6]-[7]. The important
implications of noncommutativity is the loss of Lorentz
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invariant in the dispersion relations and the loss of causal-
ity [8]-[13]. Intuitive arguments involving quantum me-
chanics in NC space is realized by imposing the commuta-
tion relations, now between coordinates and momentums
as

[xµ, xν ] = iθµν , [pµ, pν ] = iγµν , [xµ, pν ] = i~κµν (1)

where γµν is also skew symmetric matices. In this paper
we restrict ourself to the case where γµν = 0, this im-
plies that κµν = δµν , the Kronecker symbole. We also
assume that the tensor θµν is chosen to have the dimen-
sion of length · time i.e. θ0j = θj ∈ R, θij = 0, i, j =
1, 2, · · · , D. The noncommutative variables can be ex-
pressed in terms of commutative coordinates as xj = xjc−
iθj∂0 = (x), and pj = pjc, p

0 = i~∂0 = E, where the in-
dex “c” is used to specify the commutative variables and
where E is the energy of the system. The Hamiltonian of
quantum system on NC space can be expressed with the
commutative coordinates H(x, p) ≡ Hc(xc, pc, θ), where
the parameter θ = θj is showed to have the fundamental
limit θ � 1.6 · 10−27m · s ≈ 0.3(keV )−2 which is smaller
than the one obtained by the theory of quantum gravity
[14]-[15].

The compactified extra dimension is motivated by
string theory, which predicts the existence of extra di-
mensions and noncommutativity beetween coordinates.
Our idea is to understand how the eigenvalue prob-
lem changes if we periodically identify one of the NC
coordinates xj = (x1, x2, x3, x4) in the target space,
say [−πR, πR] 3 w, such that x4 = w − 2πRk, k ∈ Z
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and R is the radius of the circle. The wave function
ψ(x0, x

¯̀
, x4), ¯̀ = 1, 2, 3, can be expanded in the Fourier

mode as [20]

ψ(x0, x
¯̀
, x4) =

1√
2πR

∞∑
n=−∞

ψn(x0, x
¯̀
) exp

( in x4

R

)
. (2)

Note that the orthonormalized functions
(2πR)−1/2 exp

(
ix4n/R

)
are eigenfunctions of the

operator ∇2
x4 with eigenvalues En0 = −n2/R2. This

means that the spectrum of quantum systhem de-
fined with one dimension compactify is in the form
Enl = En0 + E′nl, where l is a positive integer, E′nl
depends on the potential associated to the system which
requires to be computed. In the following paper we
investigate the spectrum of the Coulomb and Yukawa
Hamiltonian on (4 + 1)-dimensional NC spacetime.
Using the first order approximation of the deformation
parameter θ and by compactifying one extra dimension
x4 resulting topology R3+1 × S1 (see [18] and [19]
for the essential reviews), the spectrum may be given
exactly. We prove that in the case of “space · time ”
noncommutativity, the correction of the energy spectrum
does not depend on the NC deformation parameter θ
but rather on the dimension compactified parameter.

Our paper is organized as follows. In section 2, we
focus on the hydrogen atom in (D+ 1)-dimensional non-
commutative space with non-compactified extra dimen-
sion. We discuss the particular case where D = 4 in
which the solution of the spectral problem can be solved.
The Yukawa potential is also discussed in this section. In
section 3 the same problem is solved with now compacti-
fied extra dimensions. The discussion and conclusion are
given in section 4.

II. HYDROGEN ATOM IN
NONCOMMUTATIVE SPACE WITH

NON-COMPACTIFIED EXTRA DIMENSION

In this section we focus on the hydrogen atom problem
defined in (D+1) dimensional NC spacetime (we consider
the particular case where D = 4). To be specific, the
model is given with the spherical potential of the form

V (~rnc) = − q2
e

|~rnc|D−2
, (3)

where qe is related to the atomic charge and where we

use the following notation ~rnc = ~r − i~θ∂0, i.e, (the NC
coordinates are ~rnc = (x)) and (the commutative coor-
dinates are ~r = (xc)). It would be advisable to work in
spherical coordinates system ~r = (r, α1, α2, α3) such that
r ∈ R+, 0 < α¯̀ < π, ¯̀ = 1, 2 and 0 < α3 < 2π. It thus
follows that the Hamiltonian of the system is

H = − ~2

2m

[ ∂2

∂r2
+
D − 1

r

∂

∂r
− L

2(D − 1)

r2

]
+ V (~rnc),(4)

where L2(D−1) is the Laplace-Beltrami operator on the
(D − 1)-sphere. Hence the potential (3), using the first

order Taylor expansion on ~θ is

V (~rnc) = − q2
e

|~r − i~θ∂0|D−2

≈ − q2
e

rD−2

(
1 + i(D − 2)

~r.~θ

r2
∂0

)
. (5)

We consider the adequate choice, such that the vec-

tor ~θ is transform in the spherical coordinates as

~r.~θ ≡ rθ [14]. Furthermore, the spherical function

Y(D−1)
` (α1, α2, · · · , αD−1), which are the eigenfunctions

of the operator L(D − 1) is considered:

L2(D − 1)Y(D−1)
` = `(`+D − 2)Y(D−1)

` = λDY(D−1)
` ,(6)

where ` is the orbital angular momentum quantum num-
ber.

Note that the Hamiltonian (4) depend on the partial
derivative with respect to the time t, due to the relation
(5). But one can show that, the wave function ψ(~r, t),
namely the solution of the Schrödinger equation is ex-

pressed as ψ(~r, t) = Y(D−1)
` ψ(r)f(t), where the time de-

pendent function is f(t) = exp
(
− i

~Et
)

and where ψ(r)
satisfied the radial equation[

d2

dr2 + D−1
r

d
dr −

(
λD
r2 −

ν2

rD−2 − µD
rD−1 − α2

)]
ψ(r)

= 0, (7)

with α2 = 2mE
~2 , ν2 =

2mq2e
~2 , µD = (D− 2)ν2θ E/~. Now

for D = 4, this equation turns to be:[ d2

dr2
+

3

r

d

dr
−
(λ4 − ν2

r2
− µ4

r3
− α2

)]
ψ(r) = 0. (8)

However in this case, (unlike for the commutative case
discussed in [18]-[19]), such equation seems to be non-
solvable. We provide an algebraic method, which will al-
low us to derive the solution of this equation. For this, let
us reparameterized the function ψ(r) as ψ(r) := ψ(r, θ ).
Then ψ(r, 0) corresponds to the solution of the equation
(8) in the case where θ = 0. The first order Taylor ex-
pansion on θ of the function ψ(r, θ) takes the form

ψ(r, θ ) = ψ(r, 0) + θ
dψ(r, θ )

dθ

∣∣∣
θ=0

+O(θ 2). (9)

We get simply

ψ(r, 0) =
c

r
Jν(αr) +

c′

r
Yν(αr), c, c′ ∈ R, (10)

where Jν(αr) and Yν(αr) are respectively the first and
second kind Bessel functions (see [19] for more detail).
By replacing the solution (9) in the partial differential
equation (8), we get[ d2

dr2
+

3

r

d

dr
+
(
α2 − λ4 − ν2

r2

)]
χ̃(r) = −2ν2E

~r3
ψ(r, 0),(11)

where χ̃(r) = dψ(r,θ )
dθ

∣∣∣
θ=0

. This equation corresponds

to a nonhomogeneous differential equation, which can
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be solved easly. For ε = (1 + λ4 − ν2)1/2 and g(r) =
−2ν2Eψ(r, 0)/~r3, by using the Wronskian method, the
solution of the equation (11) takes the form

χ̃(r) = cJε(αr) + c′Yε(αr)

− π

2r
Jε(αr)

∫ r

1

x2Yε(αx)g(x)dx

+
π

2r
Yε(αr)

∫ r

1

x2Jε(αx)g(x)dx, c, c′ ∈ R.(12)

Remark that there are some difficulties however. One de-
fect of this method (in the commutative and NC case) is
that the energy spectrum can only be determined numeri-
cally, and we do not deal here with a numerical method to
provide this spectrum. In more than (4 + 1) dimensions,
the differential equations (7) are much more complicated
to be solve.

Now let us discuss the case of Yukawa potential :

V (~rnc) = −V0
e−ηrnc

|~rnc|D−2
, (13)

where V0 and η depend on the constant of the neutral
atom. In order to probe this potential, we write the ex-
pression (13) at the first order on θ as

V (~rnc, t) = −V0e
−ηr

rD−2

[
1 + i

(
ηr +D − 2

)θ
r
∂0

]
. (14)

After separation variables in the Schrödinger equation, it
become easy to show that the radial equation is given by
the following:[ ∂2

∂r2
+
D − 1

r

∂

∂r
+ sD(r)

]
ψ(r) = 0. (15)

where

sD(r) =
2mV0e

−ηr

~3rD−2

(
D − 2 + ηr

)Eθ
r

+
2mE

~2
− λD

r2
+

2mV0e
−ηr

~2rD−2
,

In the particular case where D = 4, this equation is re-
duced to

d2ψ(r)

dr2
+

3

r

dψ(r)

dr
+ s4(r)ψ(r) = 0. (16)

This equation, (including now the occurrence of the ex-
ponential factor e−ηr), has the same shape as (8), and
therefore the same conclusion with (12) will be made.

III. HYDROGEN ATOM IN
NONCOMMUTATIVE SPACE WITH

COMPACTIFIED EXTRA DIMENSION

In this section we consider (D + 1) NC spacetime ,
where one dimension xD is compactified on a circle of
radius R. This means that RD+1 is reduced to RD−1+1×
[−πR, πR] and xD = ω − 2πnR, n ∈ Z. The interaction
potential (5) written now with the required coordinates

~r = (r, α1, · · · , αD−2) and the compactify coordinate w
is

V (~r, w) = −q2
e

∞∑
n=−∞

{
1(

r2 + (w − 2πnR)2
)D−2

2

+
i(D − 2)rθ(

r2 + (w − 2πnR)2
)D

2

∂0

}
, (17)

where r is now the radial coordinates in (D − 1)-
dimensional space, and the extra dimension xD satisfy
the condition |xD − 2πnR| ≤ πR. For D = 4, we get

V (~r, w) = −q2
e

∑
n∈Z

{ 1

r2 + (w − 2πnR)2
+

2irθ(
r2 + (w − 2πnR)2

)2 ∂0

}
. (18)

Then we can compute the followings identities:∑
n∈Z

1

r2 + (w − 2πnR)2
=

1

2Rr

sinh(r/R)

cosh(r/R)− cos(w/R)
,(19)

and ∑
n∈Z

2r(
r2 + (w − 2πnR)2

)2 = G(r) + F (r) (20)

where

G(r) = − 1

2Rr2

sinh(r/R)

cosh(r/R)− cos(w/R)
(21)

F (r) =
1

2R2r

1− cosh(r/R) cos(w/R)(
cosh(r/R)− cos(w/R)

)2 . (22)

The potential V (~r, w) is periodic with respect to the w-
direction, and it can be expanded to a Fourier series as

V (~r, w) =
∑
n∈Z

an(r)einw/R + iθ
∑
n∈Z

bn(r)einw/R∂0, (23)

where

an(r) = − q2
e

2rR
e−|n|r/R,

bn(r) = − q2
e

2Rr2

[
1 + |n|

]
e−|n|r/R, (24)

and such that

V (~r, w) =

− q2
e

2rR

∑
n∈Z

[
1 + iθ

(1

r
+
|n|
R

)
∂0

]
e−(|n|r−inw)/R.(25)

The separation of the variables in the Schrödinger equa-
tion shows that the radial function ψ(r) satisfies

( d2

dr2
+

2

r

d

dr
− n2

R2
+ α2 +

ζ

r
− ν2

θ

r2

)
ψn(r) = 0, (26)
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with α2 = 2mE
~2 , ν2

θ = λ4 − ζEθ/~, ζ = ν2/(2R), ν2 =
2mq2e
~2 .
The solution of the above equation is expressed as

ψn(r) =
[ (2ζ)a+2 l!

(2l + 1 + a)a+3Γ(l + 1 + a)

] 1
2

r
1
2 (a−1)e−

ζr
2l+a+1

×Lal
( 2ζr

2l + a+ 1

)
, a =

√
4ν2
θ + 1, (27)

where we have used the normalisation condition∫∞
0
e−zza+1[Lal (z)]2dz = (2l+1+a)Γ(l+1+a)

l! , and where Lal
stands for the generalized Laguerre polynomial. The
quantum number l is a positive integer, which correspond
to the physical situation. This integer is given by

l = −1

2
− 1

2

√
4ν2
θ + 1 +

ζR

2
√
n2 − α2R2

. (28)

Two energies contribution appear from the relation (28).

E
(1)
nl =

~2

2m

( n2

R2
− ζ2

(2l + 1 +
√

1 + 4λ4)2

)
(29)

and

E
(2)
nl =

~2

2m

ζ2

(2l + 1 +
√

1 + 4λ4)2

+
~
√

1 + 4λ4

4θζ
(2l + 1 +

√
1 + 4λ4). (30)

Let us discuss the energy spectrum (30). In the limit

where θ → 0, E
(2)
nl is not well defined. Also as expected

in our introduction the eigenfunctions of the operator
∇2
x4 with eigenvalues En0 = −n2/R2 is not recovered.

Finally this expression can not be taking into account as
solution of eigenvalues problem. Then the energy spec-
trum becomes

Enl =
~2

2m

( n2

R2
− ζ2

(2l + 1 +
√

1 + 4λ4)2

)
. (31)

Remark 1. • Our result shows that the energy spec-
trum (31) does not depend on the NC parameter θ
if we consider the first order approximation of this
parameter. The solution of eigenvalue problem of
the hydrogen atom with compactified one dimension
is solved numerically in [18]-[19] (see also [16]-[17]
in the case where no dimensions are compactified).
Due to the fact that limθ→0Enl = Enl, the expres-
sion (31) can be condered as the solution of Hydro-
gen atom in 4 + 1-dimensional spacetime for both
NC[21] and commutative case, where one dimen-
sion is compactified.

• The quantity

E′nl = − ~2ζ2

2m(2l + 1 +
√

1 + 4λ4)2
. (32)

correspond to the reduce dimension energy spectrum
and is discussed in the introduction of our paper.

We consider now the case of Yukawa potential (13) for
D = 4. On shell, and compactified the x4 direction on
the circle we get the reduce potential

V (~r, w) = iV0θ
[
− 1

2Rr2

sinh(r/R)

cosh(r/R)− cos(w/R)

+
1

2R2r

1− cosh(r/R) cos(w/R)(
cosh(r/R)− cos(w/R)

)2

]
∂0

− V0

2Rr

sinh(r/R)

cosh(r/R)− cos(w/R)
. (33)

Let us briefly give the proof of this relation. The goal of
this prove is to compute the integral

∫
Γ
f(z)dz, where Γ

is a closed contour on the complex plane and f(z) is a
holomorphic function given by

f(z) =
cot(πz) exp

[
− c
(
(a− z)2 + b2

)1/2]
(a− z)2 + b2

, (34)

where a, b, c are three real numbers. The pole of f(z) are
zn = n, n ∈ Z, zI = a + ib and zII = a − ib. Using the
residue theorem:∫

Γ

f(z)dz = 2iπ
∑
Res[f(z)] = 0, (35)

with

Res[f(z)]
zn

=
exp

[
− c
(
(a− n)2 + b2

) 1
2
]

π[(a− n)2 + b2]
,

Res[f(z)]
zI

= − i

2b
cot[π(a+ ib)], and

Res[f(z)]
zII

=
i

2b
cot[π(a− ib)] (36)

Hence,

∑
n∈Z

exp
[
− c
(
(a− n)2 + b2

)1/2]
(a− n)2 + b2

=
π

b

sinh(2πb)

cosh(2πb)− cos(2πa)
. (37)

The first term on the right hand side of (33)is

∑
n∈Z

exp
[
− ζ
(
r2 + (w − 2πnR)2

)1/2]
r2 + (w − 2πnR)2

=
1

2Rr

sinh(r/R)

cosh(r/R)− cos(w/R)
. (38)

The second term on the right hand side of expression (33)
is the first order derivative of equation (38) respect to r.
Then the relation (33) is straightforward obtained.

Now using the fact that the fonction V (~r, w) is peri-
odic, the Fourier serie can be given by

V (~r, w) =
∑
n∈Z

(
an(r) + iθbn(r)∂0

)
einw/R, (39)

4



where the Fourier coefficients are:

an(r) = − V0

2rR
e−|n|r/R,

bn(r) = −V0

[ 1

2Rr2
+
|n|

2R2r

]
e−|n|r/R (40)

Finally we come to

V (~r, w) = − V0

2rR

∑
n∈Z

[
1 + iθ

(1

r
+
|n|
R

)
∂0

]
× e−(|n|r−inw)/R. (41)

the relation (33) can also be expand using the Fourier
serie as

V (~r, w) = − V0

2rR

∑
n∈Z

[
1 + iθ

(1

r
+
|n|
R

)
∂0

]
× e−(|n|r−inw)/R (42)

and the radial equation takes the form[ d2

dr2
+

2

r

d

dr
− n2

R2
+ α2 +

u

r
− v

r2

]
ψn(r) = 0, (43)

where α2 = 2mE
~2 ; v = λ4−mV0Eθ

~3R , u = mV0

~2R . The solution
of this equation leads to the same results given in (27)
and (31).

IV. DISCUSSION AND CONCLUSION

In this paper we have found that the noncommutativ-
ity of spacetime can help to compute the exact expression
of the energy spectrum of the hydrogen atom in (4 + 1)
dimensions with compactified one extra dimension. Un-
fortunately, it’s clear that this method can not be used
in higher dimensions. To be more precise, let us consider
the particular case where D = 6, the compactified one
dimension x6 gives the potential

V (~r, w) = − q2
e

(2Rr)2

(R
r

sinh(r/R)

cosh(r/R)− cos(w/R)

+
cosh(r/R) cos(w/R)− 1

[cosh(r/R)− cos(w/R)]2

)
+

iθ q2
e

8r4R3
(

cos(w/R)− cosh(r/R)
)3

×
[
(r2 + 3R2) sinh(r/R) cos(2w/R)

+ cos(w/R)
(

(r2 − 6R2) sinh(2r/R)

+ 3rR(cosh(2r/R) + 3)
)

+ 3 sinh(r/R)
(
R2 cosh(2r/R) + 2R2 − r2

)
− 3rR cosh(r/R)

(
cos(2w/R) + 3

)]
∂0. (44)

This relation can be expanded in a Fourier series as

V (~r, w) = − q2
e

(2Rr)2

∑
n∈Z

[(R
r

+ |n|
)

+iθ
(3R

r2
+

3|n|
r

+
n2

R

)
∂0

]
e−|n|r/Reinw/R, (45)

in which the radial part of the Schrödinger equation be-
come(

d2

dr2 + 2
r
d
dr −

λ4

r2 −
n2

R2 + α2 +
2mq2e

4~2r3R +
3mq2eEθ
2~3r4R

)
ψn(r)

= 0. (46)

The solution of this equation is not yet understood. Sur-
prisingly, we have also show that, despite from this non-
commutativity, the energy spectrum do not depend on
the deformation parameter θ and therefore might be con-
sidered as the energy solution of commutative space, with
compactified one extra dimension, solved in [18] and [19].
Finally let us mention that in the case of higher dimen-
sions more than 4 + 1 the compactified several extra di-
mensions may be considered.

Let us examinated the case of the Klein-Gordon (KG)
equation: (

i~∂0 − V (~rnc)
)2

ψ(~rnc, t)

= m2c4ψ(~rnc, t)− ~2c2∆ψ(~rnc, t),
(47)

where the potential V (~rnc) is

V (~rnc) = −℘ ~c
|~rnc|D−2

. (48)

℘ is related to the fine structure constant and c is the
light speed. For D = 4, by taking into account the fact

that ~rnc = ~r − i~θ∂0, and writing the extra-dimension
x4 = w − 2πRk, k ∈ Z, we get

V (r, w) = −℘~c
∞∑

n=−∞

{ 1

r2 + (w − 2πnR)2

+
2irθ(

r2 + (w − 2πnR)2
)2 ∂0

}
. (49)

The left hand side of the equation (47), using (49) gives(
i~
∂

∂t
− V (r, w)

)2

ψ(~r, t) =[
− ~2∂2

0 + ℘~2c
(

2iA(r, w)∂0 + 3θ
∂A(r, w)

∂r
∂2

0

)
+℘2~2c2

(
A2(r, w)− iθ ∂A

2(r, w)

∂r
∂0

)]
ψ(~r, t) (50)

where A(r, w) is written as

A(r, w) =
1

2Rr

sinh(r/R)

cosh(r/R)− cos(w/R)
, (51)

with the Fourier serie

A(r, w) =
1

2rR

∑
n∈Z

einw/Reinw/R. (52)

After some technical handling, we can show that the
quantity A2(r, w) is expanded as

A2(r, w) =
1

(2Rr)2

∑
n∈Z

[
|n|+ coth

( r
R

)]
e−
|n|r
R e

inw
R .(53)
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FIG. 1: Plot of the potential Veff(r), with R = 0.01, θ = 0.01,
~ = c = 1, ℘ = 1/137, E = 1, ` = 1.

By replacing (52) and (53) in (50) and separating vari-

ables as ψ(~r, t) = Ψ(~r)e−iEt/~ and Ψ(~r) = Ψ(r)Y(3)
` such

that l̂2Y`(3) = `(` + 2)Y`(3) = λ4Y`(3) we find the radial
equation:[

1
r2

d
dr

(
r2 d
dr

)
+ Veff(r) + E2

~2c2 −
m2c2

~2 − n2

R2

]
Ψn(r) = 0,

(54)

where the effective potential Veff(r) is

Veff(r) = −λ4

r2
+

3θ℘E2

2r2R~2c
+

℘E

rR~c
+

℘2

(2Rr)2
coth(r/R)

+
θ℘2E

(2Rr)2~

(
2

r
coth(r/R) +

r

sinh2(r/R)

)
(55)

The equation (54) can be solved numerically using the
approximation method. Consider the Taylor expansion
of Veff by using the fact that:

coth(r/R) =
R

r
+

r

3R
+ ...

sinh(r/R) =
r

R
+ ... (56)

Then (54) becomes

d2Ψn(r)

dr2
+

2

r

dΨn(r)

dr
+

4∑
j=0

bj
rj

Ψn(r) = 0. (57)

with b4 = θ℘2E
2R~ , b3 = θ℘2E

4~ + ℘2

4R , b2 = θ℘2E
6R3~ + 3θ℘E2

2R~2c −
λ4, b1 = ℘2

12R3 + ℘E
R~c , b0 = E2

~2c2 −
m2c2

~2 − n2

R2 .
We first examinated the wave functions Ψn(r) in the

asymptotic range r → ∞. The potential Veff(r) vanish,
in this limit, i.e.

Veff(r∞)→ 0. (58)

In the region r∞ the equation (57) gives the solution of
the form

Ψ∞n (r) = U
e−
√
−b0r

r
, U ∈ R. (59)

The general solution of the equation (57) takes the form

Ψn(r) = U(r)
e−
√
−b0r

r
, (60)

where U(r) satisfy the differential equation

U ′′(r)− 2
√
−b0U ′(r) +

4∑
j=1

bj
rj
U(r) = 0 (61)

The investigation of the numerical solution of this equa-
tion can be made in forthcoming work.
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