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Abstract. We revisit the problem of preparing a mechanical oscillator in the
vicinity of its quantum-mechanical ground state by means of feedback cooling
based on continuous optical detection of the oscillator position. In the parameter
regime relevant to ground state cooling, the optical back-action and imprecision
noise set the bottleneck of achievable cooling and must be carefully balanced. This
can be achieved by adapting the phase of the local oscillator in the homodyne
detection realizing a so-called variational measurement. The trade-off between
accurate position measurement and minimal disturbance can be understood in
terms of Heisenberg’s microscope and becomes particularly relevant when the
measurement and feedback processes happen to be fast within the quantum
coherence time of the system to be cooled. This corresponds to the regime of
large quantum cooperativity Cq 2 1, which was achieved in recent experiments
on feedback cooling. Our method provides a simple path to further pushing the
limits of current state-of-the-art experiments in quantum optomechanics.



1. Introduction

The task of exerting quantum-level control over the
motion of mechanically compliant elements has be-
come a central challenge in several fields of physics
ranging from quantum-limited measurement of the mo-
tion of kilogram-scale mirrors in laser-interferometric
gravitational wave detectors [T} 2] to experiments with
nano- and micromechanical oscillators in optomechan-
ics |3, [4]. A paradigmatic example of such a system is
an optical cavity mode coupling via radiation pressure
to a mechanical mode whose motion modulates the op-
tical resonance frequency (see Fig. . Current experi-
ments in this direction involving meso- and microscopic
oscillators include implementations of state-transfer
[5, 6], frequency conversion [7},[8, [9], impulse force mea-
surement [I0], dynamical back-action cooling to near
the quantum mechanical ground state [11], 12 [I3] [14],
ponderomotive squeezing of light [I5] [I6], [17], and the
generation of nonclassical [I8], squeezed [19] and entan-
gled states [20] of mechanical oscillators. Of these, the
capability to perform ground-state cooling is the most
straightforward benchmark of a quantum-enabled sys-
tem, and it is this task that we will consider in the
present paper.

Generally, two main approaches to optomechani-
cal cooling have been considered in the literature, be-
ing of respectively passive and active nature: Dynami-
cal back-action cooling and feedback cooling [2I]. The
former relies on overcoupling the mechanical mode to
a “cold” reservoir (e.g. optical vacuum) to which it
will equilibrate. Meanwhile, feedback cooling works
by continuously measuring the oscillator motion and,
conditioned on the result, applying a force to the os-
cillator by some auxiliary means. In either scheme the
cooling can be understood as an attempt to map the
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Figure 1. Optomechanical system with feedback. The

mechanical motion of the end-mirror in a Fabry-Pérot cavity
mirror of position Xy, and momentum Py, is radiation-pressure
coupled to a single cavity mode described by amplitude and
phase quadratures Xc,Y.. The light serves as a meter field,
which is continually read out from the cavity, and a particular
quadrature Rg“t is obtained by homodyne measurement at local
oscillator phase 6. Based on the measurement record, that is
determined by a spectral gain function p(t) programmed into the
feedback circuit, a feedback force is applied to the mechanically
compliant mirror ideally steering it into its ground state.
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Figure 2. Heisenberg’s microscope modified by using a vari-
ational measurement that simultaneously obtains information
about position and momentum: A particle (black dot) is con-
fined to the focal plane of the lens (turquoise ellipse). A photon
incident from the left scatters off the particle giving it a momen-
tum kick. Photons within the angle £ are collected by the lens
and refocused at the image plane (eye, dashed). In this config-
uration, the image resolution is set by the diffraction limit of
light, 6X o 1/sin(e/2), whereas the uncertainty in momentum
introduced by the scattering is 6P « sin(e/2). Moving the ob-
servation plane a distance A out of focus decreases the position
resolution (o< 1/p) but allow the observer (eye, solid) to partially
resolve where in the plane the scattered photon arrived.

state of the quiet meter field onto the mechanical mode
faster than the thermal decoherence rate of the lat-
ter. Roughly speaking, these approaches are preferred
in the resolved- and unresolved-sideband regimes, re-
spectively [2I]. Whereas dynamical back-action cool-
ing to the vicinity of the ground state has already
been successfully demonstrated in numerous experi-
ments [IT), [12] 13}, [14], it is only recently that active
feedback cooling has started to approach the quantum
regime [22] 23]. Reflecting this circumstance, the the-
ory of quantum feedback cooling has not been explored
to the same extent as that of the passive approach, and
it is here the present work seeks to contribute.

In feedback cooling schemes, a balance must
be sought between the level of precision at which
the system of interest is monitored and the level
of disturbance introduced to it. In the context of
optomechanics, the measurement imprecision is set
by the vacuum fluctuations of the measured field
quadrature while measurement back action is due to
vacuum fluctuations in the amplitude quadrature. The
trade-off between measurement error and disturbance
is a familiar theme within the realm of quantum
mechanics which is well illustrated by the famous
Gedankenexperiment on the Heisenberg microscope
(Fig. and is expressed quantitatively in quantum
measurement theory in terms of the standard quantum
limit for continuous measurements [I] and error-
disturbance relations [24]. In the context of feedback
cooling, it will be vital to choose the right trade-
off between measurement precision and disturbance
of the system in order to minimize the effective
mechanical temperature. This issue becomes relevant



when the measurement and feedback processes happen
to be fast compared to the quantum coherence time
of the system to be cooled as demonstrated in the
recent experiment by Wilson et al. [22, 23]. We
note that this is equivalent to the regime of so-
called strong optomechanical cooperativity which has
been achieved, albeit in other contexts, in several
of the experiments cited above. In view of this
recent experimental progress we will address here
one particular easily-implementable method to balance
error and disturbance, namely the adjustment of the
local oscillator phase in the homodyne detection of
light. This method has been suggested first in the
context of gravitational-wave detectors by Vyatchanin
[25] and Kimble [26]. It has also been suggested in
our specific context of quantum feedback cooling in
Refs. [27, 28], where it was shown theoretically to
give an advantage over the conventional phase choice
for the local oscillator. Here, we will provide a
systematic optimization of the scheme, which has not
been given so far and, moreover, we put the method in
the appropriate conceptual framework of measurement
error and disturbance.

In the next section we will introduce a model
system for feedback cooling in optomechanics after
which we will present its solution in Sec. Before
proceeding with the rigorous analysis, we provide
in Sec. [ an intuitive explanation of the error-
disturbance balance in feedback cooling and the
role of using variational measurements. Then in
Secs. [l and [ we calculate and minimize the effective
mechanical temperature in the presence of variational
measurements.  Finally, we conclude and give an
outlook in Sec.

2. Optomechanical equations of motion with
feedback

We will now present the model system to be
analyzed. As schematically shown in Fig. [I we
study the standard optomechanical setup consisting
of a Fabry-Pérot cavity with a resonating mirror,
but the treatment is applicable to other types of
optomechanical setups. The optical output from
the cavity is sent to a balanced homodyne detector,
measuring the optical quadrature RJ" parametrized
by the local oscillator (LO) phase 6. The feedback
circuit processes the measured signal according to a
specified gain function u(t) and applies a feedback
force (ox p (t) * R9™ (t), where * denotes a convolution)
on the mechanical oscillator accordingly. We restrict
ourselves to feedback that depends linearly on the
measurement record, so as to obtain linear effective
equations of motion. In particular this accommodates
the simulation of a viscous force and hence cooling of

the mechanical motion can be engineered.

We seek an effective description of the aforemen-
tioned setup including the feedback mechanism. In the
limiting case of Markovian feedback (u(t) o< 6(t)) the
dynamics can be described by means of the well devel-
oped formalism of feedback master equations [29, [30].
Using these methods, Markovian feedback cooling in
the regime of strong quantum cooperativity of optome-
chanics using variational measurement has been ex-
plored in [28]. The experimentally more relevant case
of Non-Markovian feedback in linear system dynamics
is commonly described in the formalism of Heisenberg-
Langevin equations which has been fruitfully applied in
the context of optomechanics [31), 2I]. We will follow
this path in the present article. The basic treatment
given in this and the next section will largely reproduce
the approach of Genes et al. [21].

For our specific purposes of efficient optical read-
out of the mechanical motion, linear interaction is in
fact well suited. The derivation of linear optomechanics
from the radiation-pressure Hamiltonian is well-known
in the community and here we will largely take the
linearized equations as our starting point (see, e.g.,
Ref. [4] for further details). Essentially, this approach
relies on the assumption that the applied laser drive
will induce a large intra-cavity field amplitude. Hence-
forth, we consider the dynamics of the optical and me-
chanical excursions relative to the corresponding classi-
cal steady-state response. We denote these relative co-
ordinates Xy, Py, for the mechanical position and mo-
mentum, and da for the cavity mode amplitude. The
linear coupling between these shifted variables of me-
chanical motion and light field will be enhanced due to
the drive, which is essential for performing an efficient
optical position measurement. Working in terms of the
relative dynamical variables and neglecting nonlinear
terms, as they are not enhanced by the strong driv-
ing field, the linear Heisenberg-Langevin equations for
the fluctuations emerge. Considering resonant read-
out, where the drive field frequency wq is aligned
with the steady-state cavity resonance, wq = we, the
Heisenberg-Langevin equations for linear optomechan-
ics including feedback are,

Xm = Wm P, (1)

Pm - - wrﬂXm - 'Yum + gomXc + f + Ffb; (2)
. K .

Xc = - EXC + \/E én’ (3)
. K .

Yc = - 55/0 + gome + \/Ei/cmv (4)

where the optical annihilation operator da is replaced
by cavity amplitude and phase quadratures in
an appropriate rotating frame, X. = (e™“<tda +
e~ wetsah) /2 and Y. = (e™tda — e wt§al)/iv/2.
Eqgs. (142) represent the mechanical oscillator of
resonance frequency wy, and intrinsic damping rate



Ym, Whereas Eqs. describe an optical cavity mode
which is read out at a rate k (intrinsic cavity damping
is equivalent to an imperfect detection efficiency, which
will be introduced later). The coupling between these
two subsystems is characterized by the optomechanical
coupling rate gom = +/A/Mmwm(dwe/dzm)\/2Pin/k,
where ®;,, is the photon flux impinging on the cavity,
m is the effective mass of the mechanical mode and
(dw./dzy,) is the optical frequency shift per mechanical
displacement. Hence, the coupling rate g,, can be
tuned via ®;,, by changing the laser drive power. Note
that the Egs. for the optical quadratures are
decoupled from one another due to the choice of on-
resonant driving, wq = we. In this case the mechanical
motion is seen to be read out exclusively into the
phase quadrature, Y., while the back-action force on
the mechanical mode, go, X, comes entirely from the
amplitude fluctuations, X", as follows from Eq. .
We now comment on the source terms in
Eqgs. driving the mechanical and optical modes.
The feedback force on the mechanical oscillator is
represented by the operator Fy, appearing in Eq. ,
and we will return to this below. Meanwhile, the
thermal noise due to intrinsic mechanical damping,
represented by the Langevin operator &, can for our
purposes be characterized in the high-temperature
limit kgT > hw by the following correlation function,

(EMEW) = ym2n+1)d (t—1) ()
n =~ kgT/hwmn, (6)
where 7 is the mean number of phonons in the
mechanical oscillator in thermal equilibrium (see
Ref. [32] for a discussion of the limitations of this
approximation). Turning to the optical subsystem,
we assume the optical amplitude and phase inputs

Xin yin to represent vacuum fluctuations, i.e., that
these operators have the thermal expectation values

(X&) XE () = (Y (1) Y (1) (7)
=(1/2)5(t—t').

To describe the optical readout, we must consider
the input-output relations of the cavity output field,

Xout fX X::n

RN A 6 (5)
By adjusting the phase of the local oscillator 6 we
will be able to combine the amplitude and phase
quadratures in different ratios with the aim of better
balancing measurement error and disturbance. By
considering a general quadrature,

Rzut(in) = cos oXé)ut(in) + sin eifcout(in)’

the corresponding input-output relation reads

R3" = \/n(v/kRg — Ry") — /1 =Ry, 9)

4

where we are accounting for internal cavity loss
and measurement imperfection by a net measurement
efficiency 7, assumed to admix a vacuum field R
that is uncorrelated with R*. Solving Egs. in
the Fourier domain by using the convention F (t) =

= TS W)

VE Rin sin € gom
k)2 —iw O K/2 —iw
so that by substituting this into Eq. @, the general
output quadrature reads

\/ﬁsingﬁigfm}X

/2 — iw
/1/2—|—2w in .

+fﬂ/2 Ry —v1—-nRy

making manifest the readout of the position of
resonator X,,, whereas the other terms show the
contribution due to measurement noise. Ignoring
the dependence on the parameters of the homodyne
measurement 6 and 7, the maximal rate at which the
mechanical motion X, can be mapped to the optical
quadrature R$"® is given by the ideal measurement
rate,

e~ tdw, we obtain

Ry (w) = (w) + m (@),  (10)

R (w) = m (W)

2
Pieas = 4gom’ (12)
K

which in the bad-cavity limit is the square of the
coefficient mapping the mechanical oscillator position
into the optical readout in (11]) for n =1 and 6 = 7/2.
For other values of 7,0, the effectlve readout rate is
reduced by a factor of 7sin’ 6.

Finally, we address the relationship between
the feedback force Fp, and the optical homodyne
measurement of RJ". The feedback circuit integrates
the measured quadrature signal up to the present time
t. Since we are interested in preserving the linearity
of the equations of motion, , we take the feedback

force to be given by a temporal convolution

Fan(t) = — / dspu(t — s)RSH(s),

(13)

where p(r) = F Y{u(w)} is the inverse Fourier
transform of the spectral gain function, pu(w), and

Rout 1
Rcst = 6 — t 9X0ut Yout 14
(7 Tnsin@ ﬁlﬁn(co c + c ) ( )
is the rescaled measurement quadrature. The local

oscillator phase 6 in the homodyne measurement
selects which light quadrature to condition the
feedback force on, as was mentioned above. That we
convolve with R§* in Eq. rather than with the
original R$" of Eq. @ amounts to a scaling convention
for the gain function u(¢). The convention used here
is designed to remove the terms which are related
to the measurement apparatus (,/7sinf) from the



proportionality factor in the relationship R"™ o X,
in Eq. . To be clear, u(t) is the gain applied after
having corrected for the measurement inefficiency 7
and the quadrature angle entering as sin 8. This choice
allows us to vary 6 while keeping fixed the net gain of
the position component of the measurement, in turn,
keeping the feedback-induced damping fixed as we will
see below.

3. Mechanical response and effective
susceptibility

Having established the equations of motion (1}4)
and the relevant optical input-output relation (11)),
we turn to solving this set of equations for the
mechanical response. Since the system is linear, this is
straightforwardly done in the Fourier domain. A useful
way of expressing the solution for the mechanical mode
is the response relation (suppressing the w dependence
of the source terms for brevity)

Xm(w):Xeﬂ(w)[§+fba+ffb+fv]7 (15)
where the effective mechanical susceptibility is
_ 1 JomW
1 2 2 . omWm
= — — — e 1
Xeft (W) Wm [wm w YmW + /L(UJ) K}/Q o iw]’ ( 6)

and the four stochastic forces driving the oscillator are
the thermal Langevin operator £ and the fluctuation
associated with back-action, feedback, and extraneous
vacuum:

_ \/Egom in
foa(w) = mxc (w), (17)
frolw) = — L2 oo xin) 4 vin(w)] (18)

K[2 —iw Kk

fo(w) = /i\(/(«%)
The back-action force f, arises from the optical
amplitude fluctuations X!, whereas the noise of
the meter field fr, introduced via the feedback
force contains both optical amplitude and phase
fluctuations, X and Y, whereby f,, and fp, are
correlated (for general 6). f, is the part of the
feedback force fluctuations coming from extraneous
vacuum noise due to optical losses.

We see that the feedback gain function u(w), i.e.
the Fourier transform of u(7), enters in the effective
mechanical susceptibility x.g as well as fi, and f,,
Eqgs. (T6]I8]19). The choice of the function p(w) can
hence be thought of as influencing both the response
characteristics and the spectral mapping of imprecision
noise into the oscillator. Following Ref. [21I] we choose
the gain function

(1) = i[O e,

Nl —1lcot X (w) + Y (w)]. (19)

(20)

which in the frequency domain becomes

Wi

Wb

(21)

where pug, is the dimensionless feedback gain, wy, is a
low-pass cut-off frequency, and O(t) is the Heaviside
function. Considering Eq. in the limit wg, — oo,
we see that it corresponds to a time derivative of
the measurement current. The rationale behind this
choice is to achieve an effective friction force (Fyp o
—P,, x —Xm) which is attained through the time
derivative of the photocurrent given the fact that light
reads out the position of the mechanical oscillator. For
finite wg,, we can then think of the feedback filter as
performing a derivative combined with a low-pass filter.
Note, however, that the value of wg, not only controls
the frequency-cutoff of |u(w)|, but also influences the
feedback phase function Arg[u(w)]. By considering
Eq. for this choice of feedback function, Eq. (21,
we can extract the effective mechanical resonance
frequency and dissipation rate. In the bad-cavity limit
we find

OYmWipw?
Wett,m(w) = | wi, PR (22)
2
owp,
) =om (14 327505 ). )
_ 1 )
Xett (0) = —[wipm(@) =@ = e m(@)e],  (24)
where
2 om*“im
o = ZHbJomWm (25)
RYm
is the rescaled dimensionless feedback gain. More

precisely, then, we define the bad-cavity limit as
k — oo while keeping o and T'yess finite. Practical
considerations may limit the available range of the
absolute feedback gain & = o/(\/Ansind), cf.
Egs. (I314). Deviation from = 1 and 6 = 7/2
requires larger absolute gain ¢ in order to maintain
a certain value of o, the gain parameter entering
Xeft(w). The stability of the optomechanical system
in the presence of feedback can be determined from
the complex poles of yef(w) using the Routh-Hurwitz
criterion [33]. Here it suffices to remark that in the
idealized bad-cavity limit considered here, x — oo, the
stability criterion is fulfilled for all values of o. (We

give the stability criterion for arbitrary values of  in
Appendix Al)

4. Variational measurements and Heisenberg’s
microscope

Before calculating the mechanical steady-state occupa-
tion from the solution found in the preceding section,



it is appropriate to pause for a more qualitative discus-
sion of the physics that will emerge from the analysis.
At a very basic level, the idea of feedback cooling of a
mechanical oscillator is simply that if we monitor its
motion (by means of some meter degree of freedom),
we may, based on this information, apply an effectively
viscous force, that will dampen the motion. The ex-
tent to which we are able to bring the motion to a
halt by this technique will be determined by the in-
terplay of (at least) four effects as seen from Eq. (15)):
Firstly, the thermal noise, £, driving the motion due to
the internal friction mechanisms of the mechanical ele-
ment. Secondly, the disturbing back-action force, fa,
of the meter system on the mechanical motion, e.g., the
radiation-pressure shot noise arising from the random
timing of the momentum kicks imparted on the me-
chanical oscillator by the impinging photons. Thirdly,
the imprecision noise, ff,, of the position measurement,
which limits the ability to apply the right amount of
force required to halt the motion. Fourthly, the feed-
back modification of the mechanical response function,
Xeft, by inducing an increased damping.

In considering how to balance these effects, it is
important to acknowledge the time-continuous nature
of the scheme: For instance, if we were to attempt a
perfectly precise instantaneous position measurement,
the back-action force would introduce a large uncer-
tainty in the mechanical momentum, as per Heisen-
berg’s uncertainty relation, rendering the position a
short while later completely unpredictable. If, on the
other hand, we were to measure very weakly to avoid
disturbing the system, the imprecision noise would
dominate and very little information would be gained.
Both outcomes are clearly at odds with the desired goal
of cooling and we are therefore led to strike a balance
between the influences of back-action and imprecision
noise. In terms of the Gedankenexperiment of Heisen-
berg’s microscope, this trade-off would correspond to
sacrificing (instantaneous) position resolution to gain
increased information about the direction of the scat-
tered photon (see Fig. . The possibility of further
optimizing feedback cooling in this way has previously
been pointed out in Ref. [27], although without exten-
sive analysis or discussion. In the remainder of this
section, we will provide intuition as to why variational
measurements can be advantageous.

While we must generally include the thermal
influence of intrinsic mechanical damping in the
analysis (and will do so below), the main interest
of this work is the regime of quantum operation,
where this thermal load is perturbative. To establish
intuition that will be useful in interpreting the results
of the rigorous analysis to be presented in subsequent
sections, we therefore proceed now to consider the
trade-off between back-action and imprecision noise.

6

This simpler scenario, in which we only consider
the fundamental fluctuations required by quantum
mechanics, is only adequate to the extent that
the measurement and feedback processes occur fast
compared to the thermal coherence time ~ 1/yyf.
This is the limit of very large quantum cooperativity,

IMueas _ 49§m
Ym T EYm™
and fast feedback o o T'jpeas/Ym (Whereas in current
state-of-the-art experiments, Cq 2 1). In this limit
we may for the purposes of the present discussion take
the mechanical response, , to be (in the bad-cavity
limit and assuming perfect detection, n = 1)

Cq = > 1,

Xun() = Xerr(@)F(w) (26)
F(w) = fraw) + fm(w)

= | VT peas — M\(}? cot 6 Xé“(w)

— Myin(w), (27)

\/E C
where the expression for the force F(w) is organized
according to its contributions from amplitude and
phase fluctuations. Eq. emphasizes the fact
that for general 6 the amplitude fluctuations drive
the mechanical motion both directly, via the back-
action force fya, and indirectly, via the fluctuations
fm injected by the feedback mechanism. As these
contributions add coherently in determining the
mechanical response, the possibility of destructive
interference arises. Moreover, Eq. shows that
the interference varies with w. This dependence
must be considered over the effective mechanical
bandwidth, which is typically set by the feedback-
induced broadening, Eq. . This observation
hints at a trade-off between, on the one hand,
achieving favorable interference over the entire effective
bandwidth and, on the other hand, suppressing
thermal noise by applying a large feedback gain.

Having established the interference effect between
back-action and feedback forces, we now turn to the
question of what constitutes favorable interference and,
in particular, how 6 and p(w) should be chosen to
attain this. In the classical regime, where thermal
noise dominates, back-action noise can be neglected
and the optimal measurement quadrature is the phase
quadrature (0 = 7/2), into which the position
measurement is read out (as described in Sec. . In
the quantum regime this is no longer the case as can
be demonstrated by a simple geometrical argument,
that we will now turn to. Since the purpose of the
scheme is to map the vacuum state of light onto
the mechanical mode, as mentioned previously, the
scheme can only be successful if the (orthogonal) noise
quadratures of light X, YI* are mapped to orthogonal



mechanical quadratures with equal strength. If this
were not the case, it would violate equipartition
between the mechanical quadratures and thus the
resulting mechanical state could impossibly be the
ground state. = To understand the mapping into
X and P,, we note that the Fourier transform of
Eq. is Pp(w) = —i(w/wm)Xm(w). The relative
phase of (—i) between the position and momentum
response entails that the real and imaginary parts of
Xm(w) = Xt (w) F(w), which are X,,,(w) + X/ (w) and
[Xm(w)— X[ (w)]/i, will map to orthogonal mechanical
quadratures as seen from the time-domain response (in
a narrow-band approximation for simplicity)

X (t) o (e7™mt X, (wm) + H.oc.)
= co8(wmt) [Xm(wm) + X, (wm)]

+ sin(wmt) [Xm(wm) — X (wm)] /i (28)
P (t) o (e7™™! Py (wm) + Hec.)
~ coS(wmt) [Xm(wm) — X;L(wm)] /i
— sin(wmt) [Xm(wm) + XL(wm)] . (29)

Thus, the above equipartition argument requires
X (wm) + X! (wm) and [Xp(wm) — X1 (wm)]/i to
represent orthogonal quadratures of light with equal
weight.

Let us now apply this mapping condition to
Egs. near resonance w &~ wpy. We introduce
the simplified symbols @ = VTeas, b = |(wm)/ V5],
and ¢ = Arg[—u(wm)/v/x], whereby the force, (27),
can be expressed as

F(w) = (a+ be™ cot 0) XI™ (w) + be Y™ (w). (30)

We now fix a and consider two characteristic values
of ¢ (see Fig. [3): For ¢ = 7/2, fra and fg, add in
quadrature and we see from that matching can
only be achieved for § = 7/2 and b = a as illustrated
in Fig. . Consider now the case of ¢ = 3m/4,
whereby part of fg, is anti-correlated with f,,, and
matching can be achieved by choosing § = 7/4 and
b = a/v?2 (Fig. ) In the second scenario, part
of the direct back action is cancelled by partially
measuring the amplitude fluctuations in the light field
and feeding them back into the mechanical mode
via the feedback force, while operating at the same
absolute feedback gain o b/ sin @ as in the first scenario
(with & = 7/2). Hence the second scenario leads to
less fluctuations in the mechanical mode and thus the
resulting state will be closer to the ground state as will
in fact be found in the rigorous analysis below. These
simple considerations indicate that in the quantum
regime it is important to properly choose both the
homodyne measurement quadrature, via 6, and the
feedback gain p(w). Note however, as remarked below
Eq. , that the matching consideration illustrated
in Fig. [3] should be applied to all frequencies within

7

the effective mechanical bandwidth. Since our chosen
value of 6 is a constant, whereas the feedback gain
(w) is frequency dependent, it will in general not be
possible to achieve advantageous interference over the
entire bandwidth. In the next section we resume the
quantitative mathematical analysis.

a) Im b) Im

bem—/z
b i3w/4 b i3w/4
ﬁe a+ﬁe
N
.
> N
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Figure 3. Geometrical considerations regarding the choice

of homodyne quadrature angle 6. Depicted are the mapping
coefficients of X!"(w),Y " (w) in (30) as solid arrows in the
complex plane. Two cases are considered: a) ¢ = 7/2,0 =

7/2,b=a;b) ¢ = 37/4,0 = 7/4,b = a/V/2.

5. Steady-state occupation in the bad-cavity
regime

Given the solution for the spectral response of the
mechanical mode, we are now in a position to calculate
the average number of phonons n.; it contains in the
steady state of the feedback scheme. This quantity
will serve as our figure of merit, with ny,s < 1 being
the regime of interest. By considering the Hamiltonian
of the free mechanical oscillator,

hom
2

R 1
H= (X2 + P2) = hwy, (mm + 2) , (31)
which is stated in terms of the variance of the
dimensionless operators X, and P,,, we can extract
the mean number of phonons ny.; = (figor) as an

integral over spectral density of each quadrature,

1 [~ d 1
mo =3 [ G (Sx @) +5p @) -3

where we have introduced the position and momentum
fluctuation spectra

(32)

Sx (w) = /:’0 dw' (Xm (W) X (W), (33)
Sp(w) = /_OO dw' (P (w) Py (W')) . (34)

Using Eq. the position spectrum reads

sx @) = [ avhatP (e
+ <fba(w)fba(w/)> + <ffb(w)ffb(w/)>
T aol@) feole)) + (o) o)) ) (35)

where

(feo (@) feo (@) = (fn (@) foa (@) + fou (w) fr (w)) (36)



is the correlation between back-action noise and
feedback force. As discussed in Sec. [4] the indirect
back action, coming through the feedback force, is
responsible for this cross correlation. As one can easily
find by using the Fourier transform of Eq. , we use
the relation Sp = w?Sx / w?n to simplify the calculation
of Eq. . The correlation functions appearing on the
right-hand side of Eq. (35| can be determined from the
definitions in Eqgs. by using appropriate Fourier
domain equivalents of Egs. (5{8)). By performing the
integral (32) (using the analytical procedure given in
Appendix C]) we obtain an expression of the form

Mot = Nth + Nba + N + Neo + Ny — (37)

2 )
where the various contributions correspond to the
respective terms in Eq. . The clear physical origin
of these terms aids the interpretation of their impact
on the total occupation number. The cross-correlation
between direct back-action and the feedback noise is
represented by n.,, which for parameters of interest is
negative.

Since feedback cooling is typically applied in the
bad-cavity regime, K > wy,ws, we will henceforth
focus on this parameter regime for simplicity of
analysis (see the for a general expression
for ngo valid for all values of k). We parametrize
the feedback cut-off frequency wy, by its ratio to the
mechanical resonance frequency

(38)

and note that « is typically within an order of
magnitude of unity. Introducing the mechanical
quality factor Qu = wm/Ym, for which values on the
order of 10° and beyond are routinely achieved in
optomechanical experiments, we can therefore safely
make the additional assumption that Qun > a,a™'.
Under these assumptions the various contributions to
Ntot are evaluated to

o = Wi /W,

. 1 /_ 1 9 1 o
nth—D<n+2> (1+O[ +a2¢2m>, (39)
o cl —2 - g
Nha 4D (1 + « + 2Qm) ) (40)
o? o 9
® = 60D ( + aQQm) csc” (0) (41)
o o
_ _— 42
Neo 2aD< +042Qm>cot(9), (42)
n, =ng(nt-1), (43)
D =l+o0+a? (44)
where
Ca= 49§m//€’7m (45)

is the classical cooperativity.
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These results are relatively simple and we will now
discuss their behavior. We start by noting that the
feedback-induced mechanical broadening is given
by Y eff (Wm) —Ym = o/[1+a 2], within a narrow-band
approximation w & w,,. This increased broadening
will tend to decouple the mechanical mode from its
thermal bath while adding low-temperature noise from
the optical bath resulting in net cooling, as is seen by
considering the behavior of ngy, with increasing o.
However, this only holds insofar as the scaled cut-off
feedback frequency « is large enough for the feedback
mechanism to be able to react on the appropriate
timescale. Moreover, there is a limit to how much ng,
can be suppressed in this way which manifests itself
when the effective mechanical quality factor becomes
too small, Qm eff = Wmn/Ym,eff K @, o', as can be seen
by taking the limit ¢ — oco. Since we treat both the
thermal noise and the back-action as white noise (given
the lack of cavity filtering in the bad cavity regime),
Eqgs. are seen to be very similar, with Cg /4
simply playing the role of 7 + 1/2, i.e. an equivalent
back-action noise flux per unit bandwidth.

We now turn to the imprecision noise contribution
ng, (41). The increase in ng, seen when 6 moves
away from 7/2 occurs because this degrades the
signal-to-noise ratio of the homodyne measurement.
Unsurprisingly, ng, increases with scaled effective gain
o, in fact it diverges as expected from amplifying
a noisy measurement excessively. Interestingly, ng,
also diverges for « — o0, i.e., when taking the
feedback frequency cut-off wy, to infinity which yields
a derivative filter, see Eq. . While this is ideal
from the point of view of estimating the instantaneous
mechanical velocity, it simultaneously feeds amplified
imprecision noise into the oscillator from an unbounded
spectral range resulting in ng, — oo (as a — o0).
This observation prompts us to choose values of «
which are not too large, which runs counter to the
demand of having a large a to be able to cool out the
mechanical noise. Hence the finite optimal value for
« somehow balances these considerations. Imperfect
homodyne detection or optical losses inject additional
(uncorrelated) vacuum noise into the measurement
current as accounted for by n,, Eq. (43).

The novel aspect of the present work hinges on
the fact that for a general homodyne quadrature
0, the imprecision shot noise of the measurement is
correlated with the back-action noise on the mechanical
mode as discussed previously. If we have anti-
correlations, n¢, < 0, destructive interference lessens
the total mechanical occupancy not potentially leading
to an advantage over the conventional choice of 6 =
7/2 that maximizes the signal-to-noise ratio of the
measurement. Since the dependence of n¢ot on 6 is just
that of Egs. , the value of 6, which minimizes



Ntot 18 straightforwardly found to be

Oopt = Arccot (G;m) .

oo

Substituting 8 = 6. back into Egs. (4142) and
37

summing all contributions according to (37)), we find,

(46)

1 _
mot|90pt =75 + (1 +o+a_2) ' x

— 1 Ccl —92 1 ag
T I ] i,
("+2+4>(+O‘ * 220,

(e _Can (0
4Can a2 “%0n) I

The optimal values opt and nio, (46) and (47), are
given as functions of C¢j, o, and «. These remaining
parameters will be optimized in the next section.

(47)

6. Optimized cooling

Having derived relatively simple expressions for the
mechanical steady-state occupancy, we will now plot
these functions for optimized parameter values. We
assume here that the classical cooperativity Cg
is fixed (at the maximal value permitted by the
given experimental circumstances). For purposes of
demonstrating the benefit of varying # in the quantum
regime of feedback cooling, we consider the limit of
large quantum cooperativity,

Cy=Ca/i 2 1. (48)

This is the regime where the optical readout rate
I'neas of the mechanical position exceeds the thermal
decoherence rate yy,n. We focus here on the limit of
ideal detection n = 1.

In Fig. we plot ny; and its components, Eqs.
, as a function of the feedback parameter o. We
do so using the analytically optimized values fopi(0),
Eq. (46)), and agpi(o) which is found by minimizing
Eq. (47)), as the roots of higher order polynomials. This
gives a sense of how the achievable performance varies
as the feedback gain is increased. As expected from the
discussion above, the ratio of thermal noise to back
action remains constant as o is varied and is solely
determined by the quantum cooperativity. For weak
feedback o a large cut-off frequency can be afforded
(see Fig. 4| inset). Therefore an increase in o leads to
further suppression of thermal and back-action noise.
However, as ¢ increases beyond its optimal value, the
influence of the imprecision noise must be curbed by
a ~ 1 for which no further suppression of the thermal
and back-action noise is possible without paying an
even larger penalty from the other sources. This trade-
off determines the minimum achievable value of ntqt.
We note the following approximate scaling copt o o1

9

from Fig. |4 (inset), which explains, in view of Eq. (47),
why the ratio ng, /neo is seen to be constant in Fi
The scaling also explains, in view of Eq. , why
the optimal angle is approximately independed on the
value of o.

Having determined the individual contributions to
ntot and their behavior in the “graphical minimization”
with respect to the feedback strength o, we plot the
achievable minimum occupancy ni, as a function
of ¢y in Fig. Subfigures a and b together
clearly demonstrate the necessity of adapting the
measurement quadrature via 6 in order to get as close
to the ground state as possible. For small values of
Cq S 1 we find 0o ~ 7/2, whereas O,y — /4 as
Cy increases, which is consistent with the intuitive
discussion in Sec. Note however that nge(Cq)
in Fig. Bk exhibits a finite global minimum for both
the special case of 8 = 7/2 and using the optimized
0 = Oopt (Cq). For values of C exceeding the minimum
point, Oypt drops below 7/4 to compensate for the
unnecessarily large (direct) back action. We ascribe
the appearance of the minimum in n(Cq) to our
suboptimal choice for the feedback gain function,
w(w). This can be understood in terms of suboptimal
mapping of the light quadratures to the mechanical
mode as discussed in Sec.[d] Fig. 5k shows the optimal
value of the feedback frequency cut-off aopy(Cy), which
approaches order unity from above as C increases
towards the optimum. Similar to the situation in
Fig. 4] the decreasing behavior of ap(Cy) reflects the
need to suppress the bandwidth of the feedback noise
when the feedback gain increases.

From Fig. |5| we conclude that it becomes relevant
to choose a homodyne quadrature angle 6 # /2 in the
regime of very large quantum cooperativty, Cq > 1.
While the reduction in n¢t gained in this way will be
small in absolute numbers, it can be significant relative
to the value of nt achieved with 6 = 7/2.

7. Conclusion and outlook

Simultaneous optimization of the feedback gain p(w)
and the homodyne quadrature angle 6 are crucial
elements of realizing the full potential of feedback
cooling in the quantum regime.

As an outlook, we will point out two intriguing
theoretical challenges on the subject of feedback
cooling in the quantum regime. The analysis and
optimization presented here was based on a particular
choice for the feedback filter function u(w), as stated
in Eq. , implementing a derivative-type feedback
combined with a low-pass filter. While this choice of
1(w) has desirable features for purposes of cooling there
is no reason to believe that the form of pu(w) assumed
here is optimal from a theoretical perspective. Hence,



this work does not establish the ultimate limit of
performance for the scheme. This is an open question
within quantum control theory (to the knowledge of
the authors) and merits further investigation. The
authors of Ref. [22] made progress in this direction
by deriving the optimal filter minimizing the position
fluctuations for feedback based on measurements of
the phase quadrature. As the authors emphasize,
this filter includes spectrally sharp features, which
will require very fast electronics to implement and
may not be feasible in practice. Accordingly, the
employed feedback filter was a delay line combined
with a low-pass filter [22] [23]. This choice is simpler to
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implement in practice, but is in fact mathematically
more cumbersome to treat than the form of u(w)
assumed here.

Another important remark should be made on the
generality of the analysis presented here. As mentioned
in Sec. [2] we adopted here a prescription for including
feedback in the Heisenberg-Langevin equations as done
in several previous studies found in the literature.
While this approach can be justified rigorously for
Markovian feedback, no such derivation is available
for Non-Markovian feedback. Rigorous descriptions of
Non-Markovian feedback exist based on the stochastic
Schrodinger equation, cf. [29] [34]. However, it appears

20.0
m— Ntot
10.0 20/~ - — 0=n/2 ]
— Nyt (n/2)
50+ ]
-—-n
g 20 th
.0 R R @ |
g 1x10° 5x10° 2x10° e = f’ -,
c ~§ o @
s 10r J s 7
.% ~~§ N¢p
a al
3 05F - ~ ]
8 S N - -7 | nco-(_l)
0.2+ T _ - i
01 R i
.—"// |

|
5x 10°
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| |
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Figure 4. Mechanical steady-state occupancy ntot and its individual contributions as functions of the feedback strength o, ,
evaluated for the optimized values opt (), dopt (o). The parameter set used here is Qm = 108,72 = 2.1 x 10%, which is close to the
parameters of [22], and Cq = 20. We neglect losses, n = 1. In addition, ntot(6 = m/2) is plotted for comparison, where we have

evaluated it at the optimal value of « given the suboptimal choice § = 7/2, agg{m

in the main text, approximately constant over the plotted range of o, Oopt(0) =~ 52°, and is set by the value of the cooperativity.

(m/2)

opt

(o). The optimal angle is, for the reasons explained

(Inset) Plot of the functions aopt(o) and « (o) that minimize niot and niot (0 = 7/2), respectively.
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Figure 5. Optimized cooling for the same parameters as in Fig. [4] but with Cq as an independent variable. (a) ntot as a function of
Cq evaluated at the optimal values 0opt(Cq), opt (Cq), 0(Cq). For comparison, we also plot the curve resulting from the suboptimal
choice # = 7/2 evaluating at optimal parameter values given this choice, oagg{Q)(Cq),a(”/Q)(Cq). Both functions have a local
minimum, which can likely be ascribed to the suboptimal functional form of the feedback gain pu(w) considered throughout this
analysis. (b, ¢) Optimal quadrature angle 6opt(Cq) and feedback cut-off parameter aopt(Cq).



that a derivation of the corresponding Heisenberg-
Langevin description has not been reported in the

literature so far.

It is therefore possible that this

and previous studies neglect corrections due to the
non-commutativity of Heisenberg operators at unequal
times which may become significant in the quantum

regime of operation.

Only when these theoretical

challenges have been addressed, the ultimate quantum
limits of feedback cooling can be established.

8. References

(1]

2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Stefan L. Danilishin and Farid Ya. Khalili. Quantum
measurement theory in gravitational-wave detectors.
Living Reviews in Relativity, 15, 2012.

Yanbei Chen. Macroscopic quantum mechanics: theory
and experimental concepts of optomechanics. Journal
of Physics B: Atomic, Molecular and Optical Physics,
46(10):104001, may 2013.

M. Aspelmeyer, S. Groblacher, K. Hammerer, and
N. Kiesel. Quantum optomechanics—throwing a glance
[invited]. J. Opt. Soc. Am. B, 27(6):A189-A197, Jun
2010.

Markus Aspelmeyer, Tobias J. Kippenberg, and Florian
Marquardt. Cavity optomechanics. Rev. Mod. Phys.,
86:1391-1452, Dec 2014.

A D O’Connell, M Hofheinz, M Ansmann, Radoslaw C
Bialczak, M Lenander, Erik Lucero, M Neeley, D Sank,
H Wang, M Weides, J Wenner, John M Martinis,
and A N Cleland. Quantum ground state and single-
phonon control of a mechanical resonator. Nature,
464(7289):697-703, apr 2010.

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W.
Simmonds, and K. W. Lehnert. Coherent state transfer
between itinerant microwave fields and a mechanical
oscillator. Nature, 495(7440):210-214, 03 2013.

Joerg Bochmann, Amit Vainsencher, David D. Awschalom,
and Andrew N. Cleland. Nanomechanical coupling
between microwave and optical photons. Nat Phys,
9(11):712-716, 11 2013.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva,
E. Zeuthen, J. Appel, J. M. Taylor, A. Sgrensen,
K. Usami, A. Schliesser, and E. S. Polzik. Optical
detection of radio waves through a nanomechanical
transducer. Nature, 507(7490):81-85, 03 2014.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak,
R. W. Simmonds, C. A. Regal, and K. W. Lehnert.
Bidirectional and efficient conversion between microwave
and optical light. Nat Phys, 10(4):321-326, 04 2014.

Mahdi Hosseini, Giovanni Guccione, Harry J. Slatyer,
Ben C. Buchler, and Ping Koy Lam. Multimode laser
cooling and ultra-high sensitivity force sensing with
nanowires. Nat Commun, 5:—, August 2014.

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg,
A. A. Clerk, and K. C. Schwab. Preparation and
detection of a mechanical resonator near the ground state
of motion. Nature, 463(7277):72-75, 01 2010.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S.
Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W.
Lehnert, and R. W. Simmonds. Sideband cooling of
micromechanical motion to the quantum ground state.
Nature, 475(7356):359-363, 07 2011.

Jasper Chan, T. P. Mayer Alegre, Amir H. Safavi-Naeini,
Jeff T. Hill, Alex Krause, Simon Groblacher, Markus
Aspelmeyer, and Oskar Painter. Laser cooling of a
nanomechanical oscillator into its quantum ground state.
Nature, 478(7367):89-92, 10 2011.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]
(30]

(31]

11

E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, and
T. J. Kippenberg. Quantum-coherent coupling of a
mechanical oscillator to an optical cavity mode. Nature,
482(7383):63-67, 02 2012.

Daniel W C Brooks, Thierry Botter, Sydney Schreppler,
Thomas P Purdy, Nathan Brahms, and Dan M Stamper-
Kurn. Non-classical light generated by quantum-noise-
driven cavity optomechanics. Nature, 488(7412):476-80,
aug 2012.

Amir H. Safavi-Naeini, Simon Groeblacher, Jeff T.
Hill, Jasper Chan, Markus Aspelmeyer, and Oskar
Painter. Squeezing of light via reflection from a silicon
micromechanical resonator. Nature, page 24, feb 2013.

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and
C. A. Regal. Strong optomechanical squeezing of light.
Phys. Rev. X, 3:031012, Sep 2013.

Ralf Riedinger, Sungkun Hong, Richard A. Norte,
Joshua A. Slater, Juying Shang, Alexander G.
Krause, Vikas Anant, Markus Aspelmeyer, and Simon
Groblacher. Non-classical correlations between single
photons and phonons from a mechanical oscillator. Na-
ture, 530(7590):313-316, February 2016.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Subh,
A. Kronwald, F. Marquardt, A. A. Clerk, and K. C.
Schwab. Quantum squeezing of motion in a mechanical
resonator. Science, 349(6251):952-955, 2015.

T A Palomaki, J D Teufel, R W Simmonds, and K W
Lehnert. Entangling mechanical motion with microwave
fields. Science (New York, N.Y.), 342(6159):710-3, nov
2013.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. As-
pelmeyer. Ground-state cooling of a micromechanical
oscillator: Comparing cold damping and cavity-assisted
cooling schemes. Phys. Rev. A, 77:033804, Mar 2008.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi,
and T. J. Kippenberg. Measurement-based control of
a mechanical oscillator at its thermal decoherence rate.
Nature, 524(7565):325-329, August 2015.

V. Sudhir, D. J. Wilson, R. Schilling, H. Schiitz,
A. Ghadimi, A. Nunnenkamp, and T. J. Kippenberg.
Appearance and disappearance of quantum correlations
in measurement-based feedback control of a mechanical
oscillator. ArXiv e-prints, February 2016.

Paul Busch, Pekka Lahti, and Reinhard F. Werner.
Colloquium : Quantum root-mean-square error and
measurement uncertainty relations. Rev. Mod. Phys.,
86:1261-1281, Dec 2014.

S. P. Vyatchanin and A. B. Matsko. Quantum limit on force
measurements. Journal of Experimental and Theoretical
Physics, 77(2):218, 1993.

H. J. Kimble, Yuri Levin, Andrey B. Matsko, Kip S.
Thorne, and Sergey P. Vyatchanin. Conversion
of conventional gravitational-wave interferometers into
quantum nondemolition interferometers by modifying

their input and/or output optics. Phys. Rev. D,
65:022002, Dec 2001.
C. Genes, A. Mari, D. Vitali, and P. Tombesi. Chapter 2

quantum effects in optomechanical systems. In Advances
in Atomic Molecular and Optical Physics, volume 57 of
Advances In Atomic, Molecular, and Optical Physics,
pages 33 — 86. Academic Press, 2009.

Sebastian ~G.  Hofer and  Klemens Hammerer.
Entanglement-enhanced  time-continuous  quantum
control in optomechanics. Phys. Rev. A, 91:033822,
Mar 2015.

H. M. Wiseman. Quantum theory of continuous feedback.
Phys. Rev. A, 49:2133-2150, Mar 1994.

Kurt Jacobs. Quantum Measurement Theory and its
Applications. Cambridge University Press, 2014.

Stefano Mancini, David Vitali, and Paolo Tombesi.



Optomechanical cooling of a macroscopic oscillator by
homodyne feedback. Phys. Rev. Lett., 80:688—691, Jan
1998.

[32] Vittorio Giovannetti and David Vitali.  Phase-noise

measurement in a cavity with a movable mirror

undergoing quantum brownian motion. Phys. Rev. A,

63:023812, Jan 2001.

X. Dejesus and C. Kaufman. Routh-Hurwitz criterion

in the examination of eigenvalues of a system of

nonlinear ordinary differential equations. Phys. Rev.

Lett., 35:5288-5290, June 1987.

[34] V. Giovannetti, P. Tombesi, and D. Vitali. Non-markovian
quantum feedback from homodyne measurements: The
effect of a nonzero feedback delay time. Phys. Rev. A,
60:1549-1561, Aug 1999.

[35] I. S. Gradshteyn and I. M. Ryzhik (Seventh Edition). 3.-4
- definite integrals of elementary functions. In Table of
Integrals, Series, and Products (Corrected and Enlarged
Edition), pages 211 — 625. Academic Press, corrected and
enlarged edition edition, 1980.

[33] E.

Appendix A. Stability condition

In this Appendix we derive the stability condition
for the optomechanical system subject to feedback.
The validity of the linearized equations of motion
given in the main text hinges on the fulfillment of
this condition. Stability is ensured if the real part
of all poles of the effective mechanical susceptibility
Xefi (w) are negative. The character of the poles can
be determined using the Routh-Hurwitz criterion [33],
which in the present case leads to a single non-trivial
stability condition,

1 o
l+o+— *oa Oua (A.1)
+ﬁ3{le+ +a}
) 11 2 a
+ 8 {1+Q2+ toaton
+0<1+1+a)}
Qm \@m
+ﬁ{a+ao+ 2 ! —|—1+L
O | Qua? Qb

o ()|

2
- <052+50+65m0‘)>0

where we have introduced the optomechanical sideband
resolution factor 8 = 2wy, /k, the mechanical quality
factor Qm = wm/Ym, and (as in the main text)
the rescaled dimensionless feedback gain is o =
2ptbJomWm /K Ym. The feedback gain only enters the
stability criterion via the rescaled definition
o, which is why no explicit dependence on the
measurement quadrature angle 6 enters. (If desired,
Eq. can be restated in terms of 6 and the absolute
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gain & as pointed out in the main text below Eq. )
Note that in the main text we primarily focus on
the idealized bad-cavity limit, x — oo, in which the
stability criterion is trivially fulfilled.

Appendix B. Mechanical steady-state
occupation ny, for arbitrary

In the main text we focus on the idealized bad-cavity
limit, K — oo, for simplicity of analysis. Here we will
give the exact expression for the mechanical steady-
state occupation number, niy, valid for arbitrary
values of k (insofar as the stability criterion of
is fulfilled). Retracing the steps taken in
Sec. [5] of the main text, we decompose the mechanical
occupancy into contributions according to physical
origin

nx +np 1

2 2
where nx and np are the contributions from the posi-
tion and momentum variances, respectively. As will be
clear from the expressions below, the steady state of
the mechanical mode in the presence of feedback gen-
erally does not obey equipartition of energy, i.e., we
will have nx # np. To display the position and mo-
mentum contributions separately, we will decompose
the various noise contributions as n; = (n; x +n; p)/2
below. These will be expressed in terms of the follow-
ing dimensionless parameters: The classical optome-
chanical cooperativity Cej = 4g¢2,,/KVm, the rescaled
feedback gain 0 = 2, GomWm/KYm, the optomechani-
cal sideband resolution parameter 8 = 2wy, /k, the me-
chanical quality factor Qu = wm/Ym, and the feedback
frequency cut-off parameter o = wg, /wy,. All expres-
sions below are organized according to the parameters
B and 1/Qy,, which are small in the typical parameter
regime of interest.

The exact value of the mechanical steady-state
occupancy mniot, valid for all stable values of k, is
given by the following contributions in Eq. : The
thermal heating from intrinsic mechanical damping,

Ntot = = Nth+Nba+Nb+Nco+My—

%,(B.l)

Nth,X + Nth,P

Nith =
2

(B.2)

11
1+ +
«

1 B 1
sm("*2> aQm
1 1 1
+B{ +a+Qm<2+(12_J>+ann}
1 1 2 1
rorlivmrgn (e d) v )

3 1 1
+ 4 {1+oﬂ+Qm}]

Nth,X = (B.3)




the direct back-action heating,

Nba,X T Nba,P

Npa — D) (B.5)
1 Cy 1 1
aX = 5 1+ =+ —— B.
Nba,X S +a2+an (B.6)
+ B S 2+ +—
« “ Gm 277 aQz,
1 1
2
1 Cq 1 1
= 14—+ —— .
Nba, P S + o2 + a0 (1+0) (B.7)
1 1
+ { +a+ }
0t
the imprecision noise heating,
ny, = (X TIRE (B.8)
1 o 1
1 —_— B.9
X = G50 +ﬁ{a+Qm} (B.9)
+ 62 {1 + Qi (1+ J)} + B3| csc?(6),
o2
= 1+ —(1 B.1
e =gt | g 1) (B-10)

+,6’{a—|-Qm(1+a +a’o) + Q2 1 +a)}

+ 2 {1+Qm(2+0)+Q2(1+0)}

2
+ 33 {a + Qn}} csc?(6).
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the correction term due to correlations between the
direct back-action and the measurement imprecision
fluctuations (n., < 0 for parameter choices of interest)

~ TNeoX + Neo,P

B.11
Neco 9 ( )
Lol iplaar 1 (B.12)
Mo, X Sm Ao « Qm .
+ 52 {a2 + e } cot(6
o Qm )| 1O
SN PO (B.13)
TNco,P S 1a O g .

m

+p {204 + 632 1+ a)} + 620?] cot(h),

and finally the excess imprecision noise due to optical
losses and imperfect detection (n < 1)

171)’

where the denominator of these expressions is

ny =ngw (1~ (B.14)

1
S _1+a+—+T(1+a)

+5{ (1—0)+<a+al2> (1+0)

m

le <2+1+002>}

1 1 /1
+62{1+a +Qm(Qm+a) (140)

(B.15)

+(2+0)}

Qm
+ o+ 1}
Qm

+63{1

These formulas generalize the expressions given in
Ref. [2I] in which the special case § = 7/2 was
considered.

Appendix C. Integrals over rational functions

We consider integrals over rational functions of the
form
—o0 P (W) By (—w)

where g,, and h,, are polynomials of the following form
gn ((.J) = b0w2n_2 + b1w2"_4 +- 4 bn,2w2 + bn,1(01)

Iy (W) = agw™ + 1w+ ap_ 1w Fap (C.2)

and we assume that ag # 0 and that all the roots of
hy, (w) lie in the upper half plane. The solution to the



integral can be stated in terms of the determinants of
two square matrices A,,, M,, of dimension n. Setting
ar = 0 for any k ¢ {0,...,n} the (¢, j)'th entries of the
matrices can be stated as

(An)ij = azj— (C.3)
(My)i; = 01,ibj—1 + (1 — 615)azj—i, (C.4)
where §;; is the Kronecker delta function. The

matrices differ only by their first rows as is clear from
their explicit form,

ay a3 as ... 0
apg a2 Q4 0

A, = 0 a; a3 0 , (C.5)
0O 0 O an,
bo b1 bo bn—1
apg Qa2 Qa4 0

M,=| 0 a1 a3 0 . (C.6)
0 0 0 an,

The value of the integral can now be stated as

g @) e w detM,
/—oo hn(W)hn(*w)dw_Z( 2 ao det A, (C.7)

This formula was used to evaluate ni,; in terms of
integrals over spectral densities as presented in the
main text. The formula appears in Ref. [35]
on Page 253, however, there the factor (—1)""1 was
omitted.
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