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1 Introduction

The invariants for conformal gravity naturally arise in the study of conformal field the-

ories on curved manifolds. Deser and Schwimmer divided the possible conformal anomalies

into two families, type A and type B [1]. Type A anomalies are topological and always

involve the Euler term, while type B anomalies are Weyl invariants built (in the purely

gravitational case) from the Riemann tensor and its derivatives. In six dimensions, there

are three independent conformal gravity invariants parametrizing the type B anomalies.

Their Lagrangians are

L1 = CabcdC
aefdCe

bc
f , L2 = Cab

cdCcd
efCef

ab ,
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L3 = Cabcd(δ
a
e✷− 4Re

a + 6
5δ

a
eR)Cebcd , (1.1)

where Cabcd is the Weyl tensor and Rab is the Ricci tensor.

When superconformal field theories are under consideration, the type B anomalies

should correspond to conformal supergravity invariants and generally the number of such

invariants decreases with more supersymmetry. In six dimensions, superconformal alge-

bras only exist for N = (n, 0) (or N = (0, n)) [2], while the requirement that conformal

supergravity does not contain higher spin fields limits n < 3. Besides general interest in

superconformal field theories, N = (2, 0) models have been the focus of much interest due

to their somewhat mysterious nature. Their existence was actually inferred by various

arguments in string theory and they are believed to provide a description of the low-energy

dynamics of multiple coincident M5-branes in M-theory.

In regards to the type B anomalies, there are two obvious questions. First, how many

supersymmetric invariants are permitted and what linear combinations of (1.1) do they

correspond to? Second, what are their fully supersymmetric forms when couplings to the

rest of the Weyl multiplet of conformal supergravity are included? While very strong

evidence exists for the purely gravitational form of these anomalies in the supersymmetric

cases – namely the existence of two invariants in (1,0) and only one for (2,0), which we

discuss below – very little was known about their supersymmetric completions. In principle

the answer to both questions could be investigated via indirect means by e.g. computing the

conformal anomaly of various (1,0) or (2,0) matter multiplets coupled to (super)gravity.1

So far only the purely gravitational part of these computations have been performed in

6D, see e.g. [5–7]. Alternatively, one could construct the full supersymmetric invariants

directly.

Recently, the direct path was pursued in [8], where two (1,0) Weyl invariants were

built using superspace techniques, and a separate supercurrent analysis was given that

established that there were at most two such invariants. One of them was observed to

contain only C3 terms in the particular combination

−
1

8
εabcdefεa′b′c′d′e′f ′Cab

a′b′Ccd
c′d′Cef

e′f ′

= 8L1 + 4L2 , (1.2)

while the other was observed to contain L3 at the quadratic order. As we will see, it

actually contains additional cubic terms in the Weyl tensor in the particular combination

4L1 − L2 + L3 . (1.3)

We will refer to these two particular combinations as the C3 and C✷C invariants from now

on.

The approach of [8] involved the direct construction of the two invariants from certain

conformal primary superfields. These were composites built from the super-Weyl tensor

and its derivatives within a novel superspace formulation of 6D N = (1, 0) conformal

supergravity, called conformal superspace. Inspired by earlier formulations in three, four,

1Such an approach was advocated for constructing the 4D N =4 conformal supergravity action [3] prior

to its recent direct construction [4].
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and five dimensions [9–12], it is obtained by gauging the 6D N = (1, 0) superconformal

algebra in superspace. As in those cases, the superspace torsion and curvature tensors turn

out to be built solely in terms of the super-Weyl tensor, which simplifies computations

significantly.2 Conformal superspace has proven useful in the context of general higher-

derivative supergravity actions, such as the N -extended conformal supergravity actions in

three dimensions for 3 ≤ N ≤ 6 [19] and a new set of curvature-squared invariants in

4D N = 2 supergravity [20, 21], which arise from dimensional reduction of the 5D mixed

gauge-gravity Chern-Simons term. A major advantage of conformal superspace is that at

the component level, it recovers the Weyl multiplet and transformation rules of conformal

supergravity as formulated within superconformal tensor calculus, first developed in six

dimensions by Bergshoeff, Sezgin and Van Proeyen [22], building off earlier work in 4D

[23, 24] (see also the textbook [25]). The 6D superconformal tensor calculus has proven

useful in the construction of the supersymmetric extension of a Riemann curvature squared

term [26–28] and, more recently, in the complete off-shell action for minimal Poincaré

supergravity [29]. Gauged minimal supergravity [30] has also been worked out by coupling

the minimal Poincaré supergravity to an off-shell vector multiplet.

Our primary aims in this paper are to describe the connection between superspace and

components for 6D (1,0) conformal superspace, and to convert the superspace invariants

given in [8] to component form in the language of superconformal tensor calculus [22]. In

particular, we will focus on the full set of (bosonic) terms that supersymmetrize (1.2) and

(1.3). These are given respectively in (3.9) and (4.15). As another application, we present

the component structure of an F✷F invariant coupled to (1,0) conformal supergravity with

F the field strength of a Yang-Mills multiplet. Its bosonic terms are given in (4.29) and

coincide with the flat space construction of [31].

Although our main interest is in (1,0) supersymmetry, it turns out one can deduce a

great deal about the (2,0) invariant once the structure of the (1,0) invariants is known.

Already quite a lot of evidence (see e.g. [5, 7, 32]) suggests that there should only be one

type B anomaly with (2,0) supersymmetry. Its purely gravitational part is

4L1 + L2 +
1

3
L3 , (1.4)

and should be extendable to some (2, 0) conformal supergravity invariant containing addi-

tional terms involving other fields of the Weyl multiplet. To our knowledge, no analysis of

the off-shell supersymmetric extension of this term has been performed. Another goal of

this paper is to make a major step towards solving this problem. By analyzing the struc-

ture of the two (1, 0) conformal supergravity invariants, we will show that only a certain

combination can be lifted to (2, 0) conformal supergravity; this combination has (1.4) as

its purely gravitational part. We exploit the uplift to (2, 0) to give for the first time a large

part of the bosonic sector of the off-shell (2, 0) conformal supergravity invariant.

This paper is organized as follows. In section 2 we show how to recover the Weyl multi-

plet from conformal superspace and derive the associated supersymmetry transformations.

2This is in contrast to conventional superspace approaches, [13–18], where the structure group contains

only the Lorentz and R-symmetry groups, and additional torsion superfields appear.
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In section 3 we describe the component structure of the C3 invariant, explicitly giving its

bosonic sector. In section 4 we consider the C✷C and F✷F invariants. We devote section

5 to a discussion of the off-shell N = (2, 0) conformal supergravity invariant. Finally, we

discuss our results and present some concluding remarks in section 6.

We have also included a few technical appendices. In Appendix A we provide the

salient details of conformal superspace and describe how the covariant derivative algebra

is deformed under a certain redefinition of the vector covariant derivative, which we will

use in the main body of the paper. Appendix B provides a brief prescription for how to

relate our notation and conventions to those already appearing in the literature. Along

with the arXiv submission, we have included a separate file containing the building blocks

(including all fermionic terms) for the (1, 0) invariants constructed in sections 3 and 4.

2 The 6D N = (1, 0) Weyl multiplet from superspace

In this section, we will show how to reduce the superspace formulation of conformal

supergravity in [8] to components. Let us first elaborate on the component structure of the

Weyl multiplet of 6D N = (1, 0) conformal supergravity, first developed in [22]. Within

the superconformal tensor calculus framework [22], one gauges the superconformal algebra

in spacetime. Associated respectively with local translations, Q-supersymmetry, SU(2) R-

symmetry, and dilatations are the vielbein em
a, the gravitino ψm

α
i , the SU(2) gauge field

Vm
ij, and a dilatation gauge field bm. The remaining gauge symmetries are associated

with composite connections: these are the spin connection ωm
cd, the S-supersymmetry

connection φm
i
α, and the special conformal connection fma. To ensure that the last three

connections are composite, one imposes conventional constraints (which are in general

not unique) on the vielbein curvature R(P )mn
a, the gravitino curvature R(Q)mn

α
i , and

the conformal Lorentz curvature R(M)mn
ab. However, the independent one-forms cannot

furnish an off-shell representation of a conformal supersymmetry algebra as the bosonic

and fermionic degrees of freedom do not match. An off-shell representation is achieved by

introducing three covariant fields: a real anti-self-dual tensor T−
abc, a chiral fermion χαi,

and a real scalar field D which deform the supersymmetry algebra, the curvatures and the

constraints imposed on the curvatures in a consistent way [22]. This procedure can be

considered as a bottom-up approach where step-by-step one builds up a consistent off-shell

multiplet for conformal supergravity.

In conformal superspace the superconformal algebra is manifestly gauged off-shell from

the very beginning. Rather than construct a multiplet of gauge fields and covariant matter

fields which must possess the same supersymmetry algebra (usually with modifications

due to the curvature tensors and covariant fields), one must completely determine the

supersymmetry algebra directly by solving superspace Bianchi identities. Typically these

identities are solved by a single superfield, which encodes all component curvature tensors

along with the covariant fields necessary for off-shell closure. Once the solution is found,

the component fields and their supersymmetry transformations can be obtained directly

by projecting to spacetime; the resulting component structure turns out to match that
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constructed in components directly. This method therefore can be viewed as a top-down

approach.

2.1 Component fields and curvatures from superspace

We begin by identifying the various component fields of the 6D N = (1, 0) Weyl

multiplet [22] within the geometry of conformal superspace [8]. For the one-forms, this

identification is particularly easy as each component one-form is in direct correspondence

with some superspace one-form and these can be connected in a straightforward way.

Let us start with the vielbein (em
a) and gravitino (ψm

α
i ). These appear as the θ = 0

projections of the coefficients of dxm in the supervielbein EA = (Ea, Eα
i ) = dzM EM

A,3

em
a(x) := Em

a(z)| , ψm
α
i (x) := 2Em

α
i (z)| , (2.1)

where a single vertical line next to a superfield denotes setting θ = 0. This operation can be

written in a coordinate-independent way using the so-called double-bar projection [33, 34]

ea = dxmem
a = Ea|| , ψα

i = dxmψm
α
i = 2Eα

i || , (2.2)

where the double bar denotes setting θ = dθ = 0.4 In like fashion, the remaining fundamen-

tal and composite one-forms correspond to double-bar projections of superspace one-forms,

Vkl := Φkl|| , b := B|| , ωcd := Ωcd|| , φkγ := 2Fk
γ || , fc := Fc|| . (2.3)

The covariant matter fields are contained within the super-Weyl tensor Wabc and its

independent descendants. We define the three covariant component fields as5

T−
abc := −2Wabc| , (2.4a)

χαi :=
15

2
Xαi| = −

3i

4
∇i

βW
αβ| , (2.4b)

D :=
15

2
Y | = −

3i

16
∇k

α∇βkW
αβ| . (2.4c)

There are three additional independent descendant fields: the dimension-3/2 fermionic field

X i
α
βγ := Xi

α
βγ |, and the dimension-2 bosonic fields Yα

βkl := Yα
βkl| and Yαβ

γδ := Yαβ
γδ|.6

These will turn out to be composite and expressible directly in terms of the component

curvatures. The differential constraints on the superfield Wabc forbid any independent

component fields at higher dimension [8].

It should be mentioned that one can impose a Wess-Zumino gauge to fix the θ ex-

pansions of the superspace gauge one-forms, so that they are completely determined by

3Recall that zM = (xm, θµı ) are coordinates for a local parametrization of 6D N = (1, 0) conformal

superspace, see [8] and Appendix A.
4In more mathematical language, the double-bar projection is the pullback of the inclusion map embed-

ding spacetime into superspace.
5We have chosen the coefficients such that T−

abc, χ
αi and D exactly correspond to the covariant matter

fields of the Weyl multiplet introduced in [22]. We always denote the anti-self-dual covariant field as T−

abc

to avoid confusion with the superspace torsion tensor Tab
c.

6The descendant fields of Wabc are defined in Appendix A.
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the above component fields. This ensures that the entire content of the superspace geom-

etry is encoded in the independent physical fields. In practice, using the above definitions

eliminates the need to do this explicitly.

In conformal superspace the covariant exterior derivative is defined as

∇ = EA∇A = d−
1

2
ΩcdMcd −BD− ΦklJkl − Fi

αS
α
i − FaK

a , (2.5)

with ∇A the covariant derivatives. By taking the double bar projection of ∇, we can define

the component ∇a to coincide with the projection of the superspace derivative ∇a|,

em
a∇a = ∂m −

1

2
ψm

α
i ∇

i
α| −

1

2
ωm

cdMcd − bmD− Vm
klJkl −

1

2
φm

i
αS

α
i − fmaK

a . (2.6)

The projected spinor covariant derivative∇i
α| corresponds to the generator ofQ-supersymmetry,

and is defined so that if U = U |, then ∇i
α|U := (∇i

αU)|. Note that there is no ambigu-

ity for the other generators as e.g. McdU = (McdU)|, and so local diffeomorphisms, Q-

supersymmetry transformations, and so forth descend naturally from their corresponding

rule in superspace (A.11), which can be written

δU = ξa∇aU + ξαi ∇
i
α|U +

1

2
λcdMcdU + λklJklU + σDU + ηkγS

γ
kU + λcK

cU . (2.7)

Note that in spacetime we can choose to parametrize local superconformal transformations

either with a covariant diffeomorphism, generated by ξa∇a, or as a normal diffeomorphism,

generated by ξm∂m. For Q-supersymmetry on the other hand, the natural choice in space-

time involves the covariant spinorial derivative ∇i
α| rather than the θ-derivative.

The algebraic structure of these operators descends straightforwardly from superspace.

For example, the component supercovariant curvature tensors arise by projecting (A.21c),

[∇a,∇b] = −R(P )ab
c∇c −R(Q)ab

γ
k∇

k
γ | −

1

2
R(M)ab

cdMcd −R(J)ab
klJkl

−R(D)abD−R(S)ab
k
γS

γ
k −R(K)abcK

c , (2.8)

where we have introduced the expressions R(P )ab
c = Tab

c| and R(Q)ab
γ
k = Tab

γ
k| for the

lowest components of the superspace torsion tensors to match the usual component nomen-

clature, whileR(M)ab
cd, R(J)ab

kl, R(D)ab, R(S)ab
k
γ andR(K)abc are the lowest components

of the corresponding superspace curvatures.

The constraints on the superspace curvatures determine how the covariant fields of

the Weyl multiplet should appear within these curvatures; in other words, the superspace

geometry dictates how to supercovariantize a given component curvature. Let us illustrate

this by deriving the explicit form of R(P )ab
c := Tab

c|. Consider the double bar projection

of the torsion two-form T c, eq. (A.7a). This can be evaluated either in terms of its explicit

definition,

T c|| := DEc|| = Dec = dxn ∧ dxmD[men]
c , (2.9)

where we have introduced the spin, dilatation, and SU(2) covariant derivative

Dm := ∂m −
1

2
ωm

cdMcd − bmD− Vm
klJkl , Da := ea

mDm , (2.10)
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or in terms of its tangent space decomposition

T c|| =
1

2
EA ∧ EBTBA

c||

=
1

2
dxn ∧ dxm

(
em

aen
bTab

c|+ em
aψn

β
j Ta

j
β
c| −

1

4
ψm

α
i ψn

β
j T

i
α
j
β
c|
)
. (2.11)

Equating (2.9) and (2.11) and solving for R(P )ab
c leads to

R(P )ab
c = 2ea

meb
nD[men]

c + ψ[a
β
j Tb]

j
β
c|+

1

4
ψ[a

α
i ψb]

β
j T

i
α
j
β
c| . (2.12a)

Proceeding in the same way for the other curvature two-forms gives

R(Q)ab
γ
k =

1

2
Ψab

γ
k + i (γ̃[a)

γδφb]δk + ψ[a
β
j Tb]

j
β
γ
k|+

1

4
ψa

α
i ψb

β
j T

i
α
j
β
γ
k| , (2.12b)

R(D)ab = 2ea
meb

n∂[mbn] + 4f[ab] − ψ[a
α
i φb]

i
α + ψ[a

β
jR(D)b]

j
β|

+
1

4
ψ[a

α
i ψb]

β
jR(D)

i
α
j
β| , (2.12c)

R(M)ab
cd = Rab

cd + 8δ
[c
[afb]

d] − ψ[a
α
j φb]

j
β(γ

cd)α
β + ψ[a

β
jR(M)b]

j
β
cd|

+
1

4
ψa

α
i ψb

β
jR(M)iα

j
β
cd| , (2.12d)

R(J)ab
kl = Rab

kl + 4ψ[a
γ(kφb]

l)
γ + ψ[a

β
jR(J)b]

j
β
kl|+

1

4
ψa

α
i ψb

β
jR(J)

i
α
j
β
kl| , (2.12e)

where

Ψab
γ
k := 2ea

meb
nD[mψn]

γ
k , (2.13a)

Rab
cd := Rab

cd(ω) = ea
meb

n
(
2∂[mωn]

cd − 2ω[m
ceωn]e

d
)
, (2.13b)

Rab
kl := Rab

kl(V) = ea
meb

n
(
2∂[mVn]

cd + 2V[m
p(kVn]p

l)
)
. (2.13c)

The last two terms in each of the curvatures (2.12) involve the covariant fields of the

Weyl multiplet and from a component perspective are necessary for off-shell superconfor-

mal covariance. From a superspace perspective, their structure is instead dictated by the

superspace geometry. Using the torsion and curvatures of [8], their explicit forms are

R(P )ab
c = 2ea

meb
nD[men]

c +
i

2
ψ[aiγ

cψb]
i , (2.14a)

R(Q)abk =
1

2
Ψabk + i γ̃[aφb]k +

1

12
T−
cdeγ̃

cdeγ[aψb]k , (2.14b)

R(D)ab = 2ea
meb

n∂[mbn] + 4f[ab] − ψ[aiφb]
i −

i

6
ψ[ajγb]χ

j , (2.14c)

R(M)ab
cd = Rab

cd + 8δ
[c
[afb]

d] − ψ[ajγ
cdφb]

j + 2iψ[ajγb]R(Q)cdj −
i

6
ψ[ajγb]γ̃

cdχj , (2.14d)

R(J)ab
kl = Rab

kl + 4ψ[a
(kφb]

l) +
2i

3
ψ[a

(kγb]χ
l) . (2.14e)

Here we have suppressed spinor indices for legibility. Note that in (2.14d) we have used

the fact that the component field X k
α
βγ turns out to be composite

(γab)β
αX k

α
βγ = R(Q)ab

γk −
1

10
(γ̃ab)

γ
βχ

βk . (2.15)

For the sake of brevity, we do not present here the expressions for R(S)ab
k and R(K)abc.
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2.2 Analysis of the curvature constraints

It has already been mentioned that the component spin, S-supersymmetry, and special

conformal connections turn out to be composite. This property arises here just as in the

purely component framework [22] because of constraints on some of the curvature tensors.

In our framework, these constraints are already imposed at the superfield level and lead to

R(P )ab
c = 2T−

ab
c , (2.16a)

γbR(Q)abk =
1

2
γaχk , (2.16b)

R(M)ab
cb = −

1

3
δcaD +∇bT−

ba
c , (2.16c)

where

∇dT
−
abc = DdT

−
abc +

i

15
(γabc)αβψd

α
kχ

βk +
i

2
(γabc)αβψd

γ
kX

k
γ
αβ . (2.17)

The first constraint (2.16a) determines the spin connection to be

ωabc = ω(e)abc − 2ηa[bbc] −
i

4
ψb

kγaψck −
i

2
ψa

kγ[bψc]k + T−
abc , (2.18)

where ω(e)abc = −1
2(Cabc + Ccab − Cbca) is the usual torsion-free spin connection given in

terms of the anholonomy coefficient Cmn
a := 2 ∂[men]

a. It is important to note that the

spin connection ωabc possesses not only the usual fermionic torsion, due to the gravitino

terms, but also bosonic torsion from the covariant field T−
abc. In particular, this means that

there is non-trivial dependence on T−
abc nested in every covariant derivative ∇a and Da.

The second constraint (2.16b) is solved by

φm
k =

i

16

(
γbcγm −

3

5
γmγ̃

bc
)(

Ψbc
k +

1

6
T−
def γ̃

defγ[bψc]
k
)
−

i

10
γmχ

k . (2.19)

Reinserting this into the original expression for R(Q) gives

R(Q)abk =
1

2
Πab

cd
(
Ψcdk +

1

6
T−
efg γ̃

efgγ[cψd]k

)
+

1

10
γ̃abχk , (2.20)

where Πab
cd is the projection operator onto gamma-traceless spinor-valued two-forms,

Πab
cd :=

3

5
δ[ca δ

d]
b +

3

10
δ
[c
[aγ̃b]

d] +
1

40
εab

cdef γ̃ef ,

γaΠab
cd = Πab

cdγ̃c = 0 , Πab
efΠef

cd = Πab
cd . (2.21)

Note that eq. (2.15) can then be expressed as

Xab
γk :=

1

2
(γab)β

αX k
α
βγ =

1

2
(Πab

cd)γδR(Q)cd
δk . (2.22)

This relates the field X k
α
βγ to the γ-traceless part of the gravitino field strength.

The third constraint (2.16c) is solved by

fa
b = −

1

8
Ra

b(ω) +
1

80
δbaR(ω)−

1

60
δbaD +

1

8
∇cT−

ca
b
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+
i

8
ψcjγaR(Q)bcj +

1

8
ψ[ajγ

bcφc]
j −

1

80
δbaψcjγ

cdφd
j

−
i

96
ψcjγa

bcχj −
i

48
ψajγ

bχj +
i

80
δbaψcjγ

cχj , (2.23)

where we have defined Ra
b(ω) := Rac

bc(ω) and R(ω) := Ra
a(ω). Inserting this back into

R(M)ab
cd leads to a quite involved expression; its bosonic part is

R(M)ab
cd = C(ω)ab

cd −
2

15
δ[ca δ

d]
b D +DeT−

e[a
[cδ

d]
b] + (explicit gravitino terms) . (2.24)

Here C(ω)ab
cd := R(ω)ab

cd − δ
[c
[aR(ω)b]

d] + 1
10δ

[c
[aδ

d]
b]R(ω) is the traceless part of the tensor

R(ω)ab
cd. It is important to observe that C(ω)ab

cd is not quite the usual component Weyl

tensor due to the presence of the bosonic torsion in the spin connection.

We have already mentioned that the super-Weyl tensor superfield includes, besides

the covariant matter fields, three other independent descendants, which turn out to be

composite. The dimension-3/2 fermionic field X i
α
βγ was already analyzed, see eq. (2.22),

and is related to the gamma-traceless part of R(Q)ab
αi. The dimension-2 bosonic fields

Yab
cd := 1

4(γab)γ
α(γcd)δ

βYαβ
γδ and Yab

kl := 1
2(γab)β

αYα
βkl are given respectively by the

traceless part of R(M)ab
cd and the SU(2) curvature R(J)ab

ij,

Yab
cd = R(M)ab

cd +
2

15
δ[ca δ

d]
b D − 2∇[aT

−
b]

cd − 2∇eT−
e[a

[cδ
d]
b] , (2.25a)

Yab
kl = R(J)ab

kl . (2.25b)

It should be mentioned that the constraint R(D)ab = ∇cT−
abc, derived from superspace,

actually holds identically after substituting the expression for fmc into R(D). Although

we do not provide the analysis here, the same is true for the R(S) and R(K) curvatures,

which are determined in terms of the other curvatures due to Bianchi identities. We will

return to this point at the end of the next subsection.

Now let us note an interesting feature of the expressions (2.16). In contrast to the

constraints employed in [22], these are S-invariant. The reason is that the superspace

constraints of [8] were chosen so that the superspace derivatives ∇i
α and ∇a have the same

algebra with Sα
i and Ka as in the 6D N = (1, 0) superconformal algebra. This simplicity

comes with the price that the composite connections have nontrivial dependence on the

fields T−
abc, χ

i and D. This renders component expressions more involved than one might

desire. Therefore, instead of completing the analysis here and deriving the supersymmetry

transformations etc., we will make a different choice of conventional constraints to remove

the dependence on the covariant fields from the connections.

2.3 Different choices of conventional constraints

Let us consider the following redefinitions of the composite connections,

ω̂m
bc = ωm

bc −
1

2
λ1em

aT−
a

bc , (2.26a)

φ̂m
j
β = φm

j
β −

4i

15
λ2(γm)βγχ

γj , (2.26b)
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f̂mb = fmb + em
a
( 2

15
λ3ηabD −

1

2
λ4∇

cT−
acb +

1

4
λ5T

−
a

cdT−
cdb

)
, (2.26c)

where λ1, λ2, λ3, λ4 and λ5 are real constant parameters. A specific choice can eliminate

the covariant matter fields from the connections, but let us remain more general for the

moment. These redefinitions can be interpreted as a change of frame in superspace by

redefining the vector covariant derivative

∇̂a = ∇a −
1

2
λ1Wa

bcMbc − iλ2(γa)αβX
αjSβ

j − λ3Y Ka

−λ4∇
bWabcK

c − λ5Wa
efWefcK

c , (2.27)

while keeping the spinor covariant derivative the same ∇̂i
α = ∇i

α. A detailed analysis of

the modifications to the conformal superspace geometry associated with ∇̂A is relegated

to Appendix A. Here we focus on the implications for the component structures.

First of all, by comparing (2.18) and (2.26a), it is clear that the dependence on T−
abc

in the spin connection can be eliminated by choosing

λ1 = 2 =⇒ R̂(P )ab
c = 0 , (2.28)

eliminating the bosonic torsion. In terms of this new spin connection,

fa
b = −

1

8
Ra

b(ω̂) +
1

80
δbaR(ω̂) +

1

4
∇cT−

ca
b −

1

8
T−
acdT

−cdb −
1

60
δbaD + · · · , (2.29)

where Ra
b(ω̂) and R(ω̂) are defined in terms of the tensor Rab

cd(ω̂) as in eq. (2.13b). Now

shifting fmc → f̂mc as in (2.26c) with λ4 = −1
2 , we can get rid of the term ∇cT−

ca
b. In what

follows, we will keep the choices λ1 = 2 and λ4 = −1
2 fixed.

It is now straightforward to reapply the same component reduction procedure of the

previous subsection but in the “hat” frame. Using (2.12a)–(2.12e) together with (A.28)–

(A.30) leads to7

R̂(P )ab
c = 0 , (2.30a)

R̂(Q)abk =
1

2
Ψ̂abk + iγ̃[aφ̂b]k +

1

24
T−
cdeγ̃

cdeγ[aψb]k , (2.30b)

R̂(D)ab = 2ea
meb

n∂[mbn] + 4̂f[ab] + ψ[a
iφ̂b]i +

4i

15

(5
8
+ λ2

)
ψ[a

jγb]χj , (2.30c)

R̂(M)ab
cd = Rab

cd(ω̂) + 8δ
[c
[a f̂b]

d] + iψ[ajγb]R̂(Q)cdj + 2iψ[ajγ
[cR̂(Q)b]

d]j

−ψ[ajγ
cdφ̂b]

j −
8i

15

(5
8
+ λ2

)
δ
[c
[aψb]jγ

d]χj +
i

2
ψ[a

jγeψb]j T
−
e

cd , (2.30d)

R̂(J)ab
kl = Rab

kl(V) + 4ψ[a
(kφ̂b]

l) +
16i

15

(5
8
+ λ2

)
ψ[a

(kγb]χ
l) , (2.30e)

where we have introduced the derivatives

D̂m = ∂m −
1

2
ω̂m

bcMbc − bmD− Vm
ijJij , D̂a = ea

mD̂m , (2.31)

7As discussed in Appendix A, the structure functions f̂ab
c may induce nontrivial corrections to the

new curvatures. In our case, the [Sα
i , ∇̂a] commutator is deformed, but induces modifications only in the

expressions for the R̂(S) and R̂(K) curvatures. Up to hats, eqs. (2.12a)–(2.12e) are formally unchanged

and apply also to the general frame.
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together with the gravitini field strength, Ψ̂ab
γ
k = ea

meb
nD̂[mψn]

γ
k as in (2.13a). The new

superspace curvature constraints now lead to

R̂(P )ab
c = 0 , (2.32a)

γbR̂(Q)abk =
4

3

(
λ2 +

3

8

)
γaχk , (2.32b)

R̂(M)ac
bc =

8

3

(
λ3 −

1

8

)
δbaD + 2

(
λ5 −

1

2

)
T−
acdT

−bcd . (2.32c)

These constraints are no longer S-invariant. This is a consequence of the redefinition of

the composite connections, which deforms their S-supersymmetry transformations. It is

interesting to observe that for all values of λ2, λ3 and λ5, the new dilatation curvature is

zero while the SU(2) curvature is unchanged,

R̂(D)ab = 0 , R̂(J)ab
kl = R(J)ab

kl =
1

2
(γab)β

αYα
βkl . (2.33)

The constraints (2.32) are solved by

ω̂abc = ω(e)abc − 2ηa[bbc] −
i

4
ψb

kγaψck −
i

2
ψa

kγ[bψc]k , (2.34a)

φ̂m
k =

i

16

(
γbcγm −

3

5
γmγ̃

bc
)(

Ψ̂bc
k +

1

12
T−
def γ̃

defγ[bψc]
k
)
−

4i

15

(3
8
+ λ2

)
γmχ

k , (2.34b)

f̂a
b = −

1

8
Ra

b(ω̂) +
1

80
δbaR(ω̂) +

2

15

(
λ3 −

1

8

)
δbaD +

1

4

(
λ5 −

1

2

)
T−
aefT

−bef +
1

8
ψ[ajγ

bcφ̂c]
j

−
1

80
δbaψcjγ

cdφ̂d
j +

i

16
ψcjγaR̂(Q)bcj +

i

8
ψcjγ

[bR̂(Q)a
c]j −

i

10

( 5

24
+ λ2

)
ψajγ

bχj

+
i

30

(3
8
+ λ2

)
δbaψcjγ

cχj +
i

16
ψa

jγcψdj T
−bcd −

i

160
δbaψc

jγdψej T
−cde . (2.34c)

One may confirm that these are equivalent to (2.26) with λ1 = 2 and λ4 = −1
2 .

Reinserting the composite S-supersymmetry connection (2.34b) into eq. (2.30b) gives

R̂(Q)abk =
1

2
Πab

cd
(
Ψ̂cdk +

1

12
T−
efg γ̃

efgγ[cψd]k

)
+

4

15

(3
8
+ λ2

)
γ̃abχk . (2.35)

In the new frame the component field Xab
γk := 1

2(γab)β
αX k

α
βγ becomes

Xab
k =

1

2
R̂(Q)ab

k −
2

15

(3
8
+ λ2

)
γ̃abχ

k

=
1

2
Πab

cdR̂(Q)cd
k =

1

4
Πab

cd
(
Ψ̂cd

k +
1

12
T−
efgγ̃

efgγ[cψd]
k
)
. (2.36)

It is important to note that the component field X k
α
βγ is unchanged in going to the new

frame; that is, the equations (2.22) and (2.36) are completely equivalent – only the definition

of R̂(Q) has changed. Other useful relations, which follow from the constraint (2.32b), are

γ̃abR̂(Q)abk = −8
(
λ2 +

3

8

)
χk , (2.37a)

γcdeR̂(Q)be
k = 2γ[cR̂(Q)b

d]k +
4

3

(
λ2 +

3

8

)
γcdγbχ

k , (2.37b)
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γefγabcR̂(Q)ef
k = −24γ[aR̂(Q)bc]

k + 8
(
λ2 +

3

8

)
γabcχ

k , (2.37c)

γ[aR̂(Q)bc]
k = −

1

6
εabcdefγ

[dR̂(Q)ef ]k . (2.37d)

It is clear that a particularly simple choice of frame is

λ2 = −
3

8
=⇒ R̂(Q)abk =

1

2
Πab

cd
(
Ψ̂cdk +

1

12
T−
efgγ̃

efgγ[cψd]k

)
. (2.38)

In this case the R̂(Q)abk curvature is γ-traceless. On the other hand, it can be proven

that the choice λ2 = − 5
16 corresponds to the conventional constraint for R̂(Q) that was

employed in [22]; we refer the reader to Appendix B for more details.

In principle, one can also reinsert the expression (2.34c) for f̂mc into R̂(M)ab
cd; in

practice, we are mainly interested in the bosonic terms. These are

R̂(M)ab
cd = C(ω̂)ab

cd +
16

15

(
λ3 −

1

8

)
δ[ca δ

d]
b D + 2

(
λ5 −

1

2

)
δ
[c
[aT

−
b]efT

−d]ef

+(explicit gravitino terms) , (2.39)

where C(ω̂)ab
cd := R(ω̂)ab

cd − δ
[c
[aR(ω̂)b]

d] + 1
10δ

[c
[aδ

d]
b]R(ω̂) coincides with the usual Weyl

tensor when ψm
i and bm vanish. This implies that

Yab
cd = R̂(M)ab

cd −
16

15

(
λ3 −

1

8

)
δ[ca δ

d]
b D − 2

(
λ5 −

1

2

)
T−
abeT

−ecd

= C(ω̂)ab
cd + (explicit gravitino terms) . (2.40)

A special choice of λ3 and λ5 makes the Lorentz curvature traceless,

λ3 =
1

8
, λ5 =

1

2
=⇒ R̂(M)ab

cd = Yab
cd = C(ω̂)ab

cd + · · · . (2.41)

The particular choices of λ2, λ3 and λ5 we have discussed maximally simplify the

component curvatures and connections. We will refer to this choice as the “traceless”

frame. It is associated with the following conventional constraints

R̂(P )ab
c = 0 , γbR̂(Q)abk = 0 , R̂(M)ac

bc = 0 . (2.42)

Note that an alternative choice recovers the conventional constraints employed by Bergshoeff

et al. [22], up to changes in notation described in Appendix B. We summarize these two

particular choices in Table 1.

So far we have not considered the curvatures R̂(S) and R̂(K) in detail. In principle,

one could find explicit expressions for them in terms of φ̂m
i
α and f̂mc. In practice, such ex-

pressions are not particularly useful since these connections and their curvatures are always

composite quantities. Instead, it is more convenient to follow the component technique of

analyzing the component Bianchi identities, which in our case is equivalent to performing

the component projection of the corresponding superspace curvatures. Projecting (A.30d)

and using (2.36) gives

R̂(S)ab
k = −

i

2
/̂∇R̂(Q)ab

k −
i

3
γ[a∇̂

cR̂(Q)b]c
k +

i

3
T−
cd[aγ

cR̂(Q)b]
dk
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Traceless Bergshoeff et al.

λ1 2 2

λ2 −3
8 − 5

16

λ3
1
8

5
32

λ4 −1
2 −1

2

λ5
1
2 1

Table 1: Choice of parameters

+
2i

9

(
λ2 +

3

8

)
γcγ̃ab∇̂

cχk +
2i

9

(
λ2 +

3

8

)
T−
abcγ

cχk . (2.43)

In a general frame, the special conformal curvature R̂(K) is still rather complicated, which

is apparent from its superspace expression (A.30e). In the traceless frame, it simplifies

dramatically, and using (2.36) and (2.40) one obtains

R̂(K)abc =
1

4
∇̂dR̂(M)abcd −

i

24
R̂(Q)dekγabcR̂(Q)dek −

i

2
R̂(Q)a

dkγcR̂(Q)bdk

+
i

30
χkγcR̂(Q)abk . (2.44)

There are actually other component Bianchi identities that we have not analyzed so far.

These are differential conditions among the various superconformal component curvatures.

In superspace, they are given by the differential equations (A.34). Their component forms

can be derived by straightforward component projection.

2.4 The supersymmetry transformations

The supersymmetry transformations of the fundamental gauge connections of the Weyl

multiplet can be derived directly from the transformations of their corresponding super-

space one-forms, using either (A.5) or (A.35). We are mainly interested in their form in

the traceless frame, but for comparison with [22] we give the results for arbitrary λ2, λ3
and λ5, keeping λ1 = 2 and λ4 = −1

2 :

δem
a = −iξkγ

aψm
k , (2.45a)

δψmi = 2D̂mξi +
1

12
T−abcγ̃abcγmξi + 2iγ̃mηi , (2.45b)

δVm
kl = −4ξ(kφ̂m

l) −
16i

15

(
λ2 +

5

8

)
ξ(kγmχ

l) + 4ψm
(kηl) , (2.45c)

δbm = ξiφ̂m
i +

4i

15

(
λ2 +

5

8

)
ξiγmχ

i + ψm
iηi − 2em

aλa . (2.45d)

Here we have restricted to the Q, S, and K transformations. In the same way, one can

derive the transformations δω̂m
cd, δφ̂iα and δf̂ma, which we omit. For the covariant fields,
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the transformations are directly given by (2.7), which leads to

δT−
abc = −

i

8
ξkγdeγabcR̂(Q)dek −

i

5

(
λ2 +

25

24

)
ξkγabcχ

k , (2.45e)

δχi =
1

2
Dξi −

3

4
R̂(J)ab

ij γ̃abξj +
1

4
∇̂aT

−
bcdγ̃

bcdγaξi − iT−
abcγ̃

abcηi , (2.45f)

δD = −2i ξj /̂∇χ
j − 4χkηk . (2.45g)

Upon making the appropriate choice of parameters λi, these transformations match those

of Bergshoeff et al. [22] up to differences in notation and conventions given in Appendix B.

3 The supersymmetric C3 invariant

In [8] it was shown that there were two invariants for conformal supergravity, contain-

ing C3 and C✷C terms at the component level, where C schematically represents the Weyl

tensor. Moreover, the construction of each of these invariants employed the use of two

different action principles formulated in terms of superforms. Each of these action princi-

ples was built out of a constrained primary superfield, which, when further chosen to be

composed of the super-Weyl tensor and its covariant derivatives, yields the two conformal

supergravity invariants.

In this section, we will focus on one of these action principles, which we will call the A

action principle. It was first constructed using superforms in [35]; see [8] for its construction

in conformal superspace. Here we will present its component form as a general density

formula built upon a certain composite multiplet. Afterwards, we will give the specific

choice for the multiplet that generates the C3 invariant.

3.1 The A action principle

The A action principle is based on a primary dimension 9/2 superfield Aα
ijk = Aα

(ijk)

obeying the reality condition Aα
ijk = Aα ijk and satisfying the differential constraint

∇
(i
(αAβ)

jkl) = 0 . (3.1)

While a superfield obeying this constraint cannot itself be directly identified as a Lagrangian

for some subspace of the full (1, 0) superspace, it does possess an important geometric

significance. Within the context of the 6D abelian tensor hierarchy, the multiplet generated

by Aα
ijk provides the minimal version of a five-form gauge multiplet, whose six-form field

strength obstructs the closure of the linear multiplet’s five-form field strength [35]. The

same observation explains why it also appears naturally as the anomaly current multiplet

for 6D gauge theories (see e.g. [36] for a recent discussion), as the anomalous current is

encoded in a linear multiplet.

In accordance with the superform approach to the construction of supersymmetric in-

variants [37–39] and following very similar cases in four dimensions [40, 41], it was proposed

in [35] to use a closed six-form J built out of the superfield Aα
ijk as an action principle.
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The original action principle was given in the context of SU(2) superspace [18] and later ex-

tended to conformal superspace [8]. In this latter form, it can be straightforwardly reduced

to components and written

I =

∫
d6x eL , e = det(em

a) , (3.2a)

where L is a scalar Lagrangian constructed as L = 1
6!ε

mnpqrsJmnpqrs|, that is as the Hodge

dual of the six-form J restricted to spacetime. It is explicitly given by

L = F −
i

4
(ψaiΩ

′ai)−
i

144
(ψdiγ

deγabcψej)S
+
abc

ij

−
i

12
(ψaiγ

abcψbj)Ec
ij +

1

16
(ψaiγ

abcψbj) (ψckA
ijk) . (3.2b)

Here we have introduced the following component fields of Aα
ijk:8

S+
abc

ij :=
3

32
(γ̃abc)

αβ∇αkAβ
ijk| , Ea

ij :=
3

16
(γ̃a)

αβ∇αkAβ
ijk| , (3.3a)

Ω′
aα

i :=
i

32
(γ̃a)

βγ(∇βj∇γkAα
ijk|+∇αj∇βkAγ

ijk|) , (3.3b)

F :=
i

244!
εαβγδ∇αi∇βj∇γkAδ

ijk| . (3.3c)

When it is clear from context, we will use the same symbol Aα
ijk for both the superfield

and its lowest component.

The invariance of this general density formula under special conformal transformations

is obvious once one verifies that the fields S+
abc

ij , Ea
ij, Ω′

aα
i and F are each annihilated by

Ka. Invariance under S-supersymmetry can be proven by using the S-transformation of

the gravitino (2.45b) together with S-transformations of the components of Aα
ijk:

δSAα
ijk = 0 , δSS

+
abc

ij = 3 ηkγ̃abcA
ijk , δSEa

ij =
9

2
ηkγ̃aA

ijk , (3.4a)

δSΩ
′
aα

i = −
8i

3
(γabηj)αE

bij + i(γbcηj)αSabc
ij , (3.4b)

δSF = ηkγ̃
aΩ′

a
k . (3.4c)

These transformation laws follow from the definitions of the component fields (3.3).

The invariance of the A action principle under Q-supersymmetry follows from its de-

scription as a closed superform. Demonstrating closure of the superform is equivalent (al-

though generally more efficient) than demonstrating invariance under Q-supersymmetry

directly from the spacetime Lagrangian. Let us briefly sketch how the latter procedure

goes. The field Aα
ijk transforms under supersymmetry as

δQAα
ijk = −(γaξl)αAa

ijkl −
1

6
(γabcξ(i)α S

+
abc

jk) + (γaξ(i)αEa
jk) . (3.5)

The constraint (3.1) is encoded in the absence of a term involving S+
abc

ijkl := (γ̃abc)
αβ∇

(i
αAβ

jkl)|

on the right-hand side. Now the term Aa
ijkl does not appear in the action and so its δQ

8Here we introduce Ω′

aα
i which differs from Ωaα

i used in [8].
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transformation does not need to be computed directly. This can be verified by computing

δQ of the terms involving Aα
ijk in the action and integrating by parts any expressions with

Dmξ
α
i to give a covariant result. The term involving Ab

ijkl turns out to be multiplied by

a ψ3ξ term, and the various contractions of Lorentz and SU(2) indices project this term

out. The advantage of the superform method is that this sequence of steps is encoded

automatically.

It is clear that the constraint (3.1) is rather weak and describes a multiplet that is

rather long, only a few components of which have been mentioned above. Nevertheless,

the supersymmetry transformations of all components are dictated by closure of the su-

persymmetry algebra, making use of the constraint (3.1). For example,

δQAa
ijkl =

1

2
ξpγaΞ

ijklp − ξ(iΞa
jkl) , (3.6)

for some spinor Ξα
ijklp and some vector-spinor Ξaα

ijk. While the multiplet is rather long,

only a small number of the component fields appear in the action, so that in practice one

only needs some of the supersymmetry transformations. These are given below in the

traceless frame:

δQEa
ij =

i

2
ξkγ

bγ̃a∇̂bA
ijk −

i

12
ξkγaγ̃

bcdAijkT−
bcd −

1

4
ξkγabΞ

bijk

− 4iξ(iΩ′
a
j) − iξ(iγaγ̃

bΩ′
b
j) , (3.7a)

δQS
+
abc

ij =
i

4
ξkγ

dγ̃abc∇̂dA
ijk −

1

8
ξkγ

dγ̃abcΞd
ijk + iξ(iγdγ̃abcΩ

′
d
j) , (3.7b)

δQΩ
′
aα

i = (γaξ
i)αF +

1

3
(γabcξj)α∇̂

bEcij +
1

72
(γabγ

cdeξj − γcdeγ̃abξj)α∇̂
bS+

cde
ij

+ (γbξj)αCba
(ij) + (γabcξ

i)αC
[bc] −

3i

5
Aα

ijk(ξjγaχk) +
3i

5
(ξjA

ijk)(γaχk)α

+
1

288
S+
bcd

ijT−
efg (γaγ̃

efgγbcdξj − γbcdγ̃efgγaξj)α

+
1

36
Eb

ijT−
cde (γaγ̃

cdeγbξj + γbγ̃cdeγaξj)α , (3.7c)

δQF = −i ξi∇̂aΩ
′ai −

i

24
T−abcξkγ

dγ̃abcΩ
′
d
k −

i

72
ξiγ

abγcdeR̂(Q)abjS
+
cde

ij . (3.7d)

Using the above supersymmetry transformations one can check that the invariant (3.2) is

indeed supersymmetric. Note that the transformation of the vector-spinor Ω′
aα

i involves

two additional fields that do not appear in the action: an antisymmetric tensor C[ab] and

a rank-two tensor Cab
(ij) symmetric in its SU(2) indices.

We underline here that these supersymmetry transformations are sufficient to prove

invariance of the action. They arise as a consequence of closure of the algebra provided the

constraint (3.1) holds; therefore, there is no need to analyze the transformation properties

of the entire multiplet.

3.2 The supersymmetric C3 invariant in components

Having elaborated the component structure of the A action principle we now provide an

immediate application: the derivation of the supersymmetricC3 invariant at the component
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level. The suitable superfield Aα
ijk was constructed in [8]. At the component level, it

corresponds to9

Aα
ijk = −

64i

15
(γaχ

(i)α

( 4

45
χjγaχk) + R̂(Q)bc

jγaR̂(Q)bc k) − 3i R̂(J)bc
jkT−abc

)

− 128 (γaR̂(Q)bc
(i)α

(
R̂(J)d

c jk) T−abd +
2i

3
R̂(Q)adjγcR̂(Q)d

b k)
)
. (3.8)

One may verify that it is S-invariant and transforms under supersymmetry so that the

constraint (3.1) is satisfied. The remaining composites S+
abc

ij , Ea
ij, Ω′

aα
i and F appear-

ing in (3.2b) can be computed directly from the supersymmetry transformations (3.7) or

equivalently from the superspace definitions (3.3). This is a straightforward task but the

explicit calculation becomes technically quite involved, so we made use of the computer

algebra program Cadabra [42, 43]. In a separate supplementary file, we give the explicit

expressions for each of these components. The bosonic part of the Lagrangian is given by

L =
8

3
CabcdC

abefCcd
ef −

16

3
CabcdC

aecfCb
e
d
f − 2CabcdR

ab ijRcd
ij + 4Rab

ijRac
i
kRb

c jk

−
32

225
D3 −

4

15
DCabcdC

abcd +
8i

5
DRab

ijRab
ij +

128

15
T−
abcT

−adeDCb
d
c
e

+
64

15
T−
abcD∇̂a∇̂dT

−bcd −
4

5
DD̂aT−

abc D̂dT
−bcd +

4

15
DD̂aT

−
bcd D̂

aT−bcd

−
4

3
DD̂aT

−
bcd D̂

bT−acd −
16

5
T−
abcT

−abdT−cefT−
defD

−
32

3
T−
abcC

abdeD̂fCc
def +

16

3
CabcdC

abef D̂cT−d
ef

−16T−
abcD̂dT

−abe ∇̂e∇̂fT
−cdf − 16T−

abcD̂dT
−ade ∇̂e∇̂fT

−bcf

−48T−
abcD̂dT

−ade ∇̂b∇̂fT−c
ef + 16 D̂eT−

eab D̂
fT−

fcd D̂
aT−bcd

−40T−
abeT

−cdeD̂fT
−fab D̂gT−

gcd + 16T−
abcC

abde∇̂c∇̂fT−
def

−16T−
abcC

abde∇̂d∇̂
fT−c

ef − 4CabcdD̂eT
−abeD̂fT

−cdf

+8CabcdD̂eT
−abf D̂fT

−cde −
64

3
T−fb

d D̂
eCeabc D̂fT

−acd

+32T−ab
d D̂

eCeabc D̂fT
−fcd − 32T−

fgcT
−fgdD̂cT−

dab D̂eT
−eab

−8 D̂eT
−
bad D̂

eT−cad T−fgbT−
fgc − 8T−

abcT
−abdCcefgD̂eT

−
dfg

−
8

3
T−
abcR

ab ijD̂dR
cd

ij +
28

3
T−
abcR

ad ijD̂dR
bc

ij −
32

9
Rab

ijRcd ijD̂
aT−bcd

+4T−
efbT

−efcT−
ghaT

−gh
c D̂dT

−dab − 8T−
abcT

−abdT−
efgT

−efhCcg
dh

+12T−
abcT

−adeRbc ijRde ij + fermion terms . (3.9)

Note that in the previous result there is some hidden dependence on the special conformal

connection f̂ab, which can be made explicit by using

∇̂a∇̂bT
−
cde = D̂aD̂bT

−
cde − f̂af [K

f , ∇̂b]T
−
cde + fermion terms

= D̂aD̂bT
−
cde − 2̂fabT

−
cde − 6̂fa[cT

−
de]b + 6̂fa

fT−
f [cdηe]b + fermion terms , (3.10)

9Relative to [8], we have renormalized the choice for Aα
ijk by a factor of −64.
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and the results in section 2.

We conclude this section by mentioning one useful consistency check of the previous

result. By computing the variation of the action with respect to the D field one should

obtain the component projection of the supercurrent for the supersymmetric C3 invariant.

Upon doing this, one finds a supercurrent in the two parameter family described in [8] with

c1 = 0.

4 The supersymmetric C✷C invariant

Another conformal supergravity invariant was constructed in [8], corresponding to

the supersymmetrization of Cabcd✷C
abcd. It makes use of a different superform based

on another constrained primary superfield. Curiously, this approach, which we denote

the B action principle, is not based on an S-invariant superform, which leads to explicit

dependence on the S-supersymmetry and special conformal connections in the component

action. As discussed in [8], another choice for the basic primary superfield leads to the

supersymmetric F✷F invariant minimally coupled to conformal supergravity. Both results

are given below.

4.1 The B action principle

Let us begin by describing the B action principle in components. Its building block

is a primary dimension 3 superfield Ba
ij = Ba

(ij), which is pseudoreal, Ba
ij = Baij, and

satisfies the differential constraint

∇(i
αB

βγjk) = −
2

3
δ[βα ∇

(i
δ B

γ]jk) . (4.1)

Its corresponding superform action principle was given in [8]. Its reduction to components,

following (3.2a), is straightforward and leads to

L = F ′ + (ψmiγ
mΩ′i) +

i

12
(ψaiγ

abcψbj)Ec
ij +

1

16
(ψmiγ

mnpψnj)(ψpkρ
ijk)

− 16 fabCab − 8i (ψmiγ
mnΛi

a) fn
a + 8i (ψmiγ

mnpψnj) fp
aBa

ij

+ 2 (φajρ
aj) +

1

3
(ψmjγ

mnγaγ̃bφnk)Cab
jk +

3i

2
(ψmiγ

mnpψnj)(φpkΛ
ijk) . (4.2)

The various component fields are defined by successive application of superspace spinor

derivatives,

Λαijk :=
i

3
∇β

(iBβαjk)| , Λαb
i :=

2i

3
∇αjBb

ij | , (4.3a)

Cijkl :=
1

4
∇(i

αΛ
αjkl)| , Cab

ij :=
1

8

(
3 (γab)β

α + ηabδβ
α
)
∇αkΛ

βijk| , (4.3b)

Cab :=
1

8
(γ̃a)

αβ∇αkΛβb
k| , (4.3c)

ρα
ijk := −

4i

5
∇αlC

ijkl| , ρa
γi := −

i

6
(γ̃a)

αβ∇αjCβ
γij | , (4.3d)

Ea
ij :=

3

16
(γ̃a)

αβ∇αkρβ
ijk| , (4.3e)

– 18 –



Ωαi :=
i

18
∇βjE

βα ij| , F =
1

8
∇αjΩ

αj | , (4.3f)

where we abuse notation somewhat by denoting e.g. Λα ijk both as a superfield and as

its lowest component. In the Lagrangian (4.2), we have written F ′ and Ω′αi for the terms

involving zero and one gravitini, respectively. These are given in terms of F and Ωαi as

Ω′αi = Ωαi +
32

3
Ba

ij ∇bR(Q)ab αj +
3

4
Λβijk (γab)β

αR(J)ab jk , (4.4a)

F ′ = F −
16i

3
Λαb

i∇cR(Q)bc αi + 4Ba ij∇bR(J)
ab ij +

2

3
Cab ijR(J)

ab ij , (4.4b)

where we have written the vector derivative and gravitino curvature in the original frame

to maintain contact with [8].

As already alluded to, the connections fm
a and φmα

i appear explicitly within the

Lagrangian (4.2), so invariance under both special conformal and S-supersymmetry trans-

formations holds only up to total derivatives. It does not seem possible to eliminate this

explicit dependence in the density formula, although we will find that at least for the

bosonic action, we can eliminate most of the explicit fm
a connections by judiciously adding

a certain total derivative.

As we are primarily working with the traceless connections when in components, it is

useful to give the density formula in that case as well. Its form is slightly modified,

L = F̂ + (ψaiΩ̂
a i) +

i

12
(ψaiγ

abcψbj)Êc
ij +

1

16
(ψmiγ

mnpψnj)(ψpkρ
ijk)

− 16 f̂abCab − 8i (ψmiγ
mnΛi

a) f̂n
a + 8i (ψmiγ

mnpψnj) f̂p
aBa

ij

+ 2 (φ̂ajρ
aj) +

1

3
(ψmjγ

mnγaγ̃bφ̂nk)Cab
jk +

3i

2
(ψmiγ

mnpψnj)(φ̂pkΛ
ijk) , (4.5)

with the hatted fields defined by

F̂ = F ′ + 2Cab
( 2

15
ηabD − 2∇cT−

cab + T−
a

cdT−
bcd

)
+

i

5
(χjγaρ

aj) , (4.6a)

Ω̂a
i = γaΩ

′i + i γabΛ
i
c

( 2

15
ηbcD − 2∇dT

−dbc + T−bdeT−
de

c
)
−

i

30
γabγcγ̃dγ

bχj C
cd ij , (4.6b)

Êa
ij = Ea

ij − 12Bb
ij
( 2

15
δabD − 2∇cT−

cab + T−
a

cdT−
bcd

)
+

9i

5
(χkγaΛ

ijk) . (4.6c)

The explicit supersymmetry relations between the various component fields in this action

principle are quite complicated and not very enlightening, so we do not give them here.

For the actions that we will be considering, we will mainly be interested in their bosonic

Lagrangians, and these amount to

L = F̂ − 16 f̂abCab . (4.7)

It turns out that at least for the bosonic parts, it is possible to eliminate the explicit

appearance of the K-connection within the bosonic action and render a K-invariant result.

Adding a total derivative

Ladd = −∇̂a

(
4∇̂bC

(ab) − ∇̂aCc
c
)
+ 16 f̂abC

(ab) (4.8)
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has the effect of removing the symmetric part of Cab from the K-connection term, giving

L′ = L+ Ladd = F̂ − ∇̂a

(
4∇̂bC

(ab) − ∇̂aCc
c
)
− 16 f̂[ab]C

[ab] . (4.9)

Henceforth, we will drop the prime on the Lagrangian.

The advantage of this modification is that the antisymmetric (and bosonic) part of f̂ab
is just the curl of the dilatation gauge field bm. In the circumstances we will be interested

in, C [ab] will be divergenceless and so this term can be dropped. Equivalently, the K-

transformation of the other terms in (4.9) is proportional to ∇̂aC[ab], and so becomes K-

invariant when this quantity vanishes; therefore, the explicit K-connection must also vanish

up to a total derivative. This is the case when Ba
ij describes a four-form field strength

multiplet (with C[ab] the Hodge dual of the supercovariant field strength) as studied e.g.

in [35]. There, in addition to the constraint (4.1), the authors found that

Ca
a ij = −4∇̂aB

a ij . (4.10)

Both the models we construct in this paper using the B-action principle will actually satisfy

this extra condition. It is possible that for this restricted class, the B-action principle might

be significantly simplified by eliminating a number of theK and S connections, but it seems

impossible to remove all of them simultaneously, so we have not attempted to massage its

form any further.

4.2 The supersymmetric C✷C invariant in components

Using the B action principle, one can directly construct the C✷C invariant. The

appropriate superfield Ba
ij should be a composite built out of the standard Weyl multiplet

fields and was given in superspace (up to a change in normalization) as [8]

Bαβ ij = −4W γ[αYγ
β]ij − 32iXγ

αδ(iXδ
βγj) + 10iXα(iXβj) . (4.11)

Its lowest component corresponds to

Ba
ij = T−

abcR(J)
bc ij + i (R̂(Q)bc

iγaR̂(Q)bcj) +
2i

45
(χiγaχ

j) . (4.12)

The Lagrangian can then be built out of successive applications of superspace spinor deriva-

tives or, equivalently, supersymmetry transformations to give the various composite objects.

These are quite intricate and we made use of the computer algebra program Cadabra to

help in their construction. Their full expressions are given in a supplementary file. Right

now, an important feature is that (4.10) holds, and so this describes a four-form field

strength multiplet. Indeed, the bosonic part of C[ab] can be written

C[ab] =
1

8
εab

cdef
(
R̂(M)cd

ghR̂(M)efgh − R̂(J)cd
ijR̂(J)ef ij

)
+ ∇̂cBabc , (4.13)

Babc = −
4

15
DT−

abc −
3

2
T−
[a

deR̂(M)bc]de + 3T−
de[aR̂(M)b

de
c]

+ 6T−
de[a∇̂

dT−
bc]

e − 4T−
ad

eT−
be

fT−
cf

d , (4.14)
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and so the bosonic Lagrangian can be compactly written as (4.9) without the final term.

Even with all these manipulations, the bosonic Lagrangian is fairly involved and it

turns out to be useful to perform yet another set of integrations by parts to place it into a

final form that will be useful later on. Up to a total derivative, we find

L = 1
3 Cabcd∇̂

2Cabcd − 1
3Cab

cdCcd
efCef

ab − 4
3CabcdC

aecfCb
e
d
f

−Rbc
ij∇̂2Rbc ij − 2Rab i

jRac j
kRbc k

i + 2CabcdRab
ijRcd ij

+ f̂a
b(323 C

acdeCbcde − 8Rbc
ijRac

ij)− 4 f̂a
a(CbcdeC

bcde −Rbc
ijRbc

ij)

+ 4
45 D∇̂2D + 8

225 D
3 + 2

15DCabcdC
abcd − 14

15DRab
ijRab

ij

+ 20
3 T

−abeCab
cd∇̂fCfecd + 4T−abe∇̂fCab

cdCfecd

+ 2T−
abc∇̂dR

ab ij Rcd
ij + 4T−

abc∇̂dR
ad ij Rbc

ij

− 4T−
abc∆

4T−abc − 16
3 CabcdT

−abe∇̂e∇̂fT
−cdf − 8

3CabcdT
−abe∇̂f∇̂eT

−cdf

+ 16
3 Cab

cdT−aef ∇̂b∇̂cT
−
def − 4Cab

cd∇̂aT−bef ∇̂cT
−
def − 6Cab

cd∇̂eT
−abf ∇̂fT

−cde

− 16
15 DT−

abc∇̂
a∇̂dT

−bcd + 8
15D ∇̂aT−

abc ∇̂dT
−bcd

− 2T−
abcT

−adeRbc
ijRde

ij − 4
3 CabefC

cdefT−
abgT

−cdg

− 1
2 ∇̂

a1T−
a1ab

∇̂a2T−
a2cd

∇̂a3T−
a3ef

εabcdef − 6T−
ab

g∇̂a1T−
a1gc ∇̂d∇̂

a2T−
a2ef

εabcdef

+ 8CabcdT
−ecdT−

efg∇̂
aT−bfg + 10

3 T
−
abcT

−aedT−bf
d∇̂

2T−c
ef

− 2T−
abcT

−abd∇̂cT−
def ∇̂gT

−efg + 4T−
abcT

−a
de∇̂

fT−bdg ∇̂fT
−ce

g

+ 2CabcdT
−abeT−cfgT−d

fhT
−
eg

h + 8
15DT−

abcT
−abdT−cefT−

def + fermion terms , (4.15)

where we have introduced the K-invariant fourth order operator

T−abc∆4T−
abc := T−abc

(
∇̂a∇̂

d∇̂2T−
bcd + ∇̂2∇̂a∇̂

dT−
bcd

+ 1
3 ∇̂a∇̂

2∇̂dT−
bcd −

4
3 ∇̂e∇̂a∇̂

d∇̂eT−
bcd

)
. (4.16)

In order to extract the K-connections, which encode the Ricci tensor contributions, it

is useful to have the following results, which hold up to fermionic terms:

∇̂a∇̂bD = D̂aD̂bD − 4f̂abD , (4.17a)

∇̂a∇̂bRcd
ij = D̂aD̂bRcd

ij − 4f̂abRcd
ij + 4f̂a[cRd]b

ij − 4f̂a
eRe[c

ijηd]b , (4.17b)

∇̂a∇̂bCcdef = D̂aD̂bCcdef − 4f̂abCcdef + 4f̂a[cCd]bef − 4f̂a
gηb[cCd]gef

+4f̂a[eCf ]bcd − 4f̂a
gηb[eCf ]gcd , (4.17c)

∇̂a∇̂b∇̂cT
−def = D̂a∇̂b∇̂cT

−def − 8f̂a(bD̂c)T
−def + 2ηbcf̂a

gD̂gT
−def

−12f̂a
[dD̂(bT

−
c)

ef ] + 12f̂a
gδ

[d
(bD̂c)T

−
g

ef ] , (4.17d)

∇̂a∇̂b∇̂
c∇̂cT

−def = D̂a∇̂b∇̂
c∇̂cT

−def − 6f̂ab∇̂
c∇̂cT

−def − 6∇̂c∇̂cT
−
b

[def̂a
f ]

+6f̂a
g∇̂c∇̂cT

−
g

[deδ
f ]
b + 4f̂a

c∇̂b∇̂cT
−def − 12f̂a

[d∇̂b∇̂cT
−ef ]c

+12f̂ac∇̂b∇̂
[dT−ef ]c . (4.17e)
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4.3 The supersymmetric F✷F invariant in components

The supersymmetrization of the F✷F action follows a similar path as C✷C, although

in this case the calculations involved are significantly simpler. We will need the description

of an off-shell Yang-Mills multiplet coupled to conformal supergravity. This was given in

conformal superspace in Appendix C of [8] where we refer the reader for more details.

Let us first briefly review and elaborate on the basic ingredients that we need for

our analysis. The non-abelian vector multiplet is described by a dimension 3/2 conformal

primary spinor field strength superfield, Λαi I , satisfying the constraints [8, 18, 44]:

Sα
i Λ

γk I = 0 , DΛγk I =
3

2
Λγk I , ∇k

γΛ
γ
k
I = 0 , ∇(i

αΛ
βj) I =

1

4
δβα∇

(i
γΛ

γj) I . (4.18)

The index I is in the adjoint, and associated with Λαi I is a matrix valued in the Lie algebra

of the gauge group via Λαi = Λαi ItI with tI the Hermitian generators of the unitary gauge

group, obeying [tI , tJ ] = −i fIJ
KtK . (The generalization to non-unitary gauge groups is

obvious.) Here the covariant derivatives ∇̂A = (∇̂a,∇
i
α) = EA − ω̂A

bXb − iV A carry the

additional Yang-Mills connections V := EAV A = EAVA
ItI . Their algebra is

[∇̂A, ∇̂B} = −T̂AB
C∇̂C − R̂AB

cXc − iFAB , (4.19)

where the torsion and curvatures are those of conformal superspace and FAB
I is the field

strength two-form. In terms of the primary superfield Λαi I the components of FAB
I are

F i
α
j
β
I = 0 , Fa

j
β = (γa)αβΛ

βi I , Fab
I = −

i

8
(γab)β

α∇k
αΛ

β
k
I . (4.20)

The various component fields are defined as follows. The gaugino of the vector multiplet

is given by the projection ΛαiI |. The component one-form vm
I and its field strength Fmn

I

are given by by Vm
I | and Fmn

I |, respectively. The supercovariant field strength Fab
I is

given simply by Fab
I |, and as usual one finds that Fab

I and Fmn
I differ by gravitino terms,

Fab
I = ea

meb
nFmn

I + ψ[akγb]Λ
kI . (4.21)

The last physical field of the vector multiplet is a Lorentz scalar and SU(2) triplet associated

with the bar-projection of the following descendant superfield

Xij I :=
i

4
∇(i

γ Λ
γj)I . (4.22)

In this subsection, we will denote the covariant components with exactly the same name

as the associated superfield and avoid the explicit bar-projection.

The superfields Λαi I , Xij I , together with Fα
βI = −1

4(γ
ab)α

βFab
I , are all annihilated

by Ka and satisfy the following useful identities:

∇i
αΛ

βjI = −iδβαXijI − 2iεijFα
βI , ∇i

αX
jkI = 2εi(j∇̂αβΛ

βk)I , (4.23a)

∇i
αFβ

γI = −∇̂αβΛ
γiI − δγα∇̂βδΛ

δiI + 1
2δ

γ
β∇̂αδΛ

δiI − εαβρτW
γρΛτiI , (4.23b)

Sγ
kFα

βI = −4iδγαΛ
β
k
I + iδβαΛ

γ
k
I , Sγ

kX
ijI = −4iδ

(i
k Λ

γj)I . (4.23c)
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These imply that the δ = δQ + δS + δK transformations of the component fields are

δΛjI = −i ξiX
ijI +

i

2
γ̃abξjFab

I , (4.24a)

δXjkI = −2 ξ(j /̂∇Λk)I − 4i η(jΛk)I , (4.24b)

δFab
I = 2 ξiγ[a∇̂b]Λ

iI + T−
abc ξiγ

cΛiI + 2i ηiγ̃abΛi
I , (4.24c)

where

∇̂aΛ
iI = D̂aΛ

iI + i
2X

ijIψaj −
i
4 γ̃

bcψa
iFbc

I , (4.25a)

D̂a := ea
m∂m − 1

2 ω̂a
cdMcd − baD− Va

klJkl − iva . (4.25b)

The transformation rule of the component connection vm
I can be derived from the super-

gravity gauge transformation of V I , δGV
I = EBξCFCB

I , leading to

δvm
I = −ξkγmΛkI . (4.26)

Up to differences in conventions, these match the results of [22].

To construct the F✷F action, we again exploit the B-action principle. Here the

relevant composite superfield is

Ba
ij =

i

4
Tr(ΛiγaΛ

j) =
i

4
ΛiIγaΛ

jJ gIJ , (4.27)

where gIJ is the Cartan-Killing metric, which we employ to raise and lower adjoint indices.

This superfield again describes a composite four-form field strength multiplet, with the

bosonic part of C[ab] given by

C[ab] = −
1

8
εabcdefF

cd IF ef
I , (4.28)

which is indeed the dual of a closed four-form. The full expressions for the various pieces

of the B action principle are given in a supplementary file.

Building the bosonic Lagrangian as in (4.9) and dropping a total derivative leads to

L = −Fab
I∇̂2F ab

I +XijK∇̂2XijK − 2
15DFab

IFab I +
2
5 DXijKXijK

+ 4Fab
IF cd

IT
−abeT−

cde + Cabcd Fab
IFcd I + 8T−abcFab

I∇̂dFcd I + 4T−acdFab
I∇̂bFcd I

+ 2F ab IXij
IR̂(J)ab ij − 2Fa

b IFb
c JFc

a K fIJK +Xi
jIXj

kJXk
iK fIJK

+ 4 f̂a
aFbc

IF bc
I − 8 f̂a

bFbc
IF ac

I . (4.29)

Some useful results, which hold up to fermions, are

∇̂a∇̂bX
ijI = D̂aD̂bX

ijI − 4f̂abX
ijI , (4.30a)

∇̂a∇̂bFcd
I = D̂aD̂bFcd

I − 4f̂abFcd
I + 4f̂a[cFd]b

I − 4f̂a
eFe[c

Iηd]b . (4.30b)
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5 The N = (2, 0) conformal supergravity invariant

As mentioned in the introduction, it is expected that there should be only one type

B anomaly for N = (2, 0) superconformal field theories with a specific relative coefficient

between the bosonic C✷C and curvature cubed terms. The type B anomaly should corre-

spond to some N = (2, 0) conformal supergravity invariant. In this section, assuming such

an invariant exists, we provide an alternative argument for its uniqueness (and, therefore,

of the type B anomaly) and significantly extend its known bosonic terms.

The Weyl multiplet for N = (2, 0) conformal supergravity was constructed in [45].

There it was noted that many of the formulae involving the N = (2, 0) Weyl multiplet

can actually be obtained by considering their truncations to the N = (1, 0) case. It turns

out that most of the bosonic part of the N = (2, 0) conformal supergravity invariant can

be reverse-engineered in a similar way by considering its potential N = (1, 0) reduction.

A key issue is that while there exist two (1, 0) conformal supergravity invariants, only

one (2, 0) invariant is expected. It is immediately apparent that neither of the two (1, 0)

invariants described in the previous sections can alone originate from the truncation of a

(2, 0) invariant. The reason for this derives from the presence of e.g. the term DCabcdCabcd

appearing in these actions, which cannot arise from the truncation of a scalar term in the

N = (2, 0) case; the covariant scalar field in the (2, 0) Weyl multiplet is Dij
kl, which lies

in the 14 of the USp(4) R-symmetry group, and so no such term can be built as a USp(4)

singlet. However, there exists a certain linear combination of the two (1, 0) invariants for

which all such terms cancel and it is this combination which could come from a potential

truncation. It is worth emphasizing that since any potential (2, 0) conformal supergravity

invariant has a (1, 0) truncation, this leads to a proof that there can be at most one (2, 0)

conformal supergravity invariant. In order to see this in more detail and uncover many

of the bosonic terms in the (2, 0) conformal supergravity invariant it is necessary to first

briefly review the salient details of the (1, 0) truncation of the (2, 0) Weyl multiplet (slightly

adapted to our notation and conventions).

To begin with let us recall the component structure of the Weyl multiplet of N = (2, 0)

conformal supergravity [45]. The superconformal tensor calculus of [45] is based on an

off-shell gauging of the N = (2, 0) superconformal group. One associates the following

independent fields with the local translations, Q-supersymmetry, USp(4) R-symmetry, and

the dilatations: the vielbein em
a, the gravitino ψm

i, the USp(4) gauge field Vm
ij, and the

dilatation gauge field bm. The remaining gauge symmetries are associated with composite

connections, which include the spin connection ωm
cd, the S-supersymmetry connection

φm
i and the special conformal connection fma. An off-shell representation of the conformal

supersymmetry algebra is achieved by introducing three covariant matter fields: Tabc
ij =

T[abc]
[ij], χi,jk = χi,[jk] and Dij

kl = D[ij]
[kl] = Dkl

ij . Here Tabc
ij is anti-self-dual with

respect to its Lorentz vector indices and all covariant matter fields of the Weyl multiplet are

traceless with respect to the invariant antisymmetric tensor Ωij of USp(4). These covariant

fields are used to build the full covariant curvatures given in [45]. In this section we have

endeavored to match the conventions of [45], but the reader should keep in mind some minor

differences explained later. Here we do not provide details such as the supersymmetry
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transformations and expressions for the composite fields since these are given in [45].

We now wish to outline how to perform the truncation. The (2, 0) Weyl multiplet

should decompose into the following (1, 0) multiplets: a Weyl multiplet on which half of

the supersymmetry is manifest, two gravitini multiplets associated with the extra spin-3/2

gauge fields, and a Yang-Mills multiplet associated with the extra R-symmetry connec-

tions. The structure of the additional gravitino multiplets and their couplings will be quite

complicated from a (1, 0) perspective, so we will switch them off. However, we will elect to

keep the additional (1, 0) Yang-Mills multiplet, which takes its values in an SU(2) gauge

group, rather than turning it off (as in the analysis of [45]). This means that the truncation

of the N = (2, 0) conformal supergravity action should also generate the F✷F invariant in

a linear combination with the N = (1, 0) conformal supergravity invariants. This will in

turn provide a useful consistency check on our results.

The truncation follows [45] very closely. We split the USp(4) indices i = 1, · · · , 4 to

(i = 1, 2, i′ = 1, 2) and switch off the third and fourth gravitini ψm
i′ = 0. To preserve this

last condition, we must restrict USp(4) transformations to the block diagonal form

Λi
j =

(
Λi

j 0

0 Λi′
j′

)
, (5.1)

where we have chosen a basis for Ωij so that10

Ωij =

(
εij 0

0 εi
′j′

)
, Ωij =

(
εij 0

0 εi′j′

)
. (5.2)

The above conditions ensure that Λi
j and Λi′

j′ parametrize SU(2) × SU(2) local gauge

transformations. Considering the supersymmetry transformation of the gravitini one must

also impose Vm
ij′ = 0. We keep separately the SU(2) gauge fields Vm

ij = V̂m
ij and Vm

i′j′

in what follows. Since we have turned off the extra gravitini, it is necessary to constrain

some of the covariant fields so that the Q- and S-supersymmetry transformations are

consistent.11 The non-vanishing covariant fields are

Tabc
ij = εijT−

abc , Tabc
i′j′ = −εi

′j′T−
abc , (5.3a)

χi
jk = εjkχi , χi

j′k′ = −εj
′k′χi , χi′

j′k = −
15

4
(Ωk)i′

j′ +
1

2
δj

′

i′ χ
k , (5.3b)

Dij
kl = −εijεklD , Dij

k′l′ = εijεk′l′D , Di′j′
k′l′ = −εi

′j′εk′l′D , (5.3c)

Dij′
kl′ = −

1

2
δikδ

j′

l′ D +
15

2
(Y i

k)
j′
l′ , (5.3d)

where (Ωk)i
′j′ , (Y ij)i

′j′ are the covariant component fields of the additional SU(2) Yang-

Mills multiplet.

It is important to keep in mind that the conventional constraints chosen for the (2,0)

Weyl multiplet in [45] are not “traceless”, because there is a contribution of the form

10 Our conventions for εij and Ωij differ by a sign from the ones of [45]. However, our conventions for

lowering a USp(4) index also differ by a sign so lowering a USp(4) index as λi = Ωijλ
j is actually equivalent

to lowering the index in the conventions of [45].
11We take as in [45] the truncated supersymmetry parameters ǫi → (ǫi, 0) and ηi

→ (ηi, 0).
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Tacd
ijT bcd

ij to the (2,0) special conformal gauge field fa
b. Thus upon truncating, one

would have to switch to the “traceless” frame by extracting the term quadratic in T−
abc in

order to match formulae. We will deal with this by writing all (2,0) formula below in terms

of a “traceless” (2,0) gauge field f̂a
b := fa

b − 1
32TacdijT

bcdij.

Now by considering the truncation of various terms built out of the N = (2, 0) Weyl

multiplet, one can identify the linear combination of the supersymmetric C3, C✷C and

F✷F invariants that permits an uplift to (2, 0). This combination is

IC✷C +
1

2
IC3 + IF✷F , (5.4)

where the additional SU(2) generators are taken in the fundamental so that iVm
I(tI)

i′
j′ =

Vm
i′
j′ . As already described, this linear combination of C✷C and C3 is the only choice that

eliminates the DCabcdCabcd term appearing in both the (1,0) invariants. The additional

contribution IF✷F can be determined by uplifting the first two invariants to (2,0) and then

reducing back to (1,0); this actually provides an independent check of the entire IF✷F

invariant. The result of the uplift gives most of the bosonic terms in the corresponding

N = (2, 0) conformal supergravity invariant:

L =
1

3
Cabcd∇̂

2Cabcd + Cab
cdCabefCcdef − 4CabcdC

aecfCb
e
d
f

−R(V )bc
ij∇̂2R(V )bc ij − 2R(V )ab i

jR(V )ac j
kR(V )bc k

i + CabcdR(V )ab
ijR(V )cd ij

+ f̂a
b
(32
3
CacdeCbcde − 8R(V )bc

ijR(V )ac ij

)
− 4 f̂a

a(CbcdeC
bcde −R(V )bc

ijR(V )bc ij)

+
1

225
Dij

kl∇̂
2Dkl

ij −
2

3375
Dij

klD
kl
pqD

pq
ij −

2

15
Dij

klR(V )ab
k
iR(V )abjl

+ 4Tabc
ij∇̂dR(V )abjkR(V )cdki + 8Tabc

ij∇̂dR(V )adjkR(V )bcki

− Tabc
ij∆4T abc

ij +
8

3
CabcdT

abe
ij∇̂e∇̂fT

cdf ij +
4

3
CabcdT

abe
ij∇̂f∇̂eT

cdf ij

−
8

3
CabcdTaef ij∇̂b∇̂cTd

ef ij + 2Cab
cd∇̂aT bef

ij ∇̂cTdef
ij + 3Cab

cd∇̂eT
abf

ij ∇̂fT
cdeij

−
4

3
CabefC

cdefTabg
ijT cdg

ij + 4αTabc
ijT ade klR(V )bcikR(V )dejl

+ 2(1 − α)Tabc
ijT ade

ijR(V )bcklR(V )de
kl

+
2

15
Dij

kl

(
Tabc

kl∇̂a∇̂dT
bcd

ij −
1

2
∇̂aTabc

kl∇̂dT
bcd

ij

)

−
1

60
Dij

klTabc
klT abd

ijT
cef

pqTdef
pq +O(T 4) , (5.5)

where we have introduced ∇̂a := Da − f̂a
bKb, and the K-invariant operator ∆4 is defined

formally the same as (4.16). This action is exactly determined up to linear order in the

covariant field Tabc
ij, while one combination of two terms quadratic in Tabc

ij is left undeter-

mined by the uplift and parametrized by an unknown real constant α. No terms cubic in

Tabc
ij may appear for group-theoretic reasons, and indeed one finds that in the correspond-

ing (1, 0) invariant (5.4), all terms cubic in T−
abc cancel. There is only one possible term

involving four Tabc
ij and a single Dij

kl, which we have given here explicitly since it can
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be determined by its (1, 0) descendant. All other terms involving four Tabc
ij are denoted

here O(T 4): these involve terms with four Tabc
ij and two derivatives (or a Weyl tensor or

a USp(4) curvature tensor) and cannot be uniquely determined by matching to (1,0).

Note that our (2, 0) conventions differ from [45] in the same way as our (1, 0) con-

ventions differ from [22], see Appendix B. In particular, one should keep in mind a sign

difference in the Lorentz curvature tensor from the one in [45], as well as the redefinition of

the special conformal gauge field. Finally, the USp(4) gauge field and curvature are scaled

by a factor of 2 so that

R(V )ab
kl = 2 ea

meb
n(∂[mVn]

kl + V[m
j(kVn]

l)
j) . (5.6)

6 Discussion

In this paper we have described the component actions for the two conformal super-

gravity invariants constructed in [8]. As shown by a supercurrent analysis [8], all conformal

supergravity invariants must be given by the linear combination I = aIC3 + bIC✷C , where

a and b are some constants, and IC3 and IC✷C are the supersymmetric C3 and C✷C in-

variants. As discussed in the previous section, amongst the invariants there exists a special

choice which corresponds to the N = (1, 0) truncation of the N = (2, 0) conformal super-

gravity invariant. Identifying the choice of coefficients as the one-parameter family that

permits an uplift to N = (2, 0) supergravity allowed us to prove uniqueness of the (2, 0)

conformal supergravity invariant and construct many of its terms. It would be interesting

to develop an alternative method to construct this invariant and recover all terms. This

would be interesting not only in the context of Weyl anomalies, but also in the context of

higher-derivative gravity theories [46–48], where the combination (1.4) of Weyl invariants

particular to (2,0) theories was observed to correspond to 6D critical gravity. It would be

interesting to understand how the covariant matter fields of the standard Weyl multiplet

affect the dynamics of these models when extended to supergravity. We expect that the

development of (2, 0) conformal superspace in six dimensions together with the ideas advo-

cated in [8] for the (1, 0) case will provide a viable means to complete the construction of

the (2, 0) invariant. We hope the results in this paper will be useful for these applications.

While the supersymmetric C3 and C✷C invariants have been constructed in the stan-

dard Weyl multiplet, it is interesting to note that one could construct these invariants with

a variant Weyl multiplet, known as the dilaton-Weyl multiplet (or type II formulation)

[22].12 The dilaton-Weyl multiplet is obtained by coupling the standard Weyl multiplet

to a tensor multiplet [49, 50] and exchanging the covariant matter fields of the standard

Weyl multiplet with those of the tensor multiplet, which include a scalar field σ, a gauge

2-form Bab, and a negative chirality spinor χi
α. This procedure can directly be performed

for the supersymmetric C3 and C✷C invariants and would lead to new higher-derivative

invariants in the dilaton-Weyl multiplet.

Because the dilaton-Weyl multiplet possesses a built-in Weyl compensator in the form

of the scalar field σ, it is evident that there are many other curvature invariants one

12 See e.g. [29, 30] for a recent discussion.
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can construct that have no analogues in the standard Weyl multiplet. For example, one

can construct a supersymmetric Rabcd✷R
abcd action in addition to Cabcd✷C

abcd. To see

this, it is important to realize that the supersymmetry transformations of certain fields

built out of the dilaton-Weyl multiplet can be formally mapped to those of a Yang-Mills

multiplet taking values in the 6D Lorentz algebra [28]. This property leads to a natural

correspondence between an action based on a Yang-Mills multiplet and an action in terms

of the dilaton-Weyl multiplet. Using this correspondence (given in component form in

[28]), the supersymmetric F✷F action can be converted into Rabcd✷R
abcd.

It is worth mentioning that the YM correspondence can also be exhibited in super-

space. First, one must adapt superspace to the dilaton-Weyl multiplet by introducing a

compensating tensor multiplet Φ (with lowest component σ), which satisfies ∇
(i
α∇

j)
β Φ = 0,

and then make use of the modified derivatives D i
α and the associated torsion components

that were introduced in section 3.4 of [8] (with X = Φ).13 One can then construct a

primary superfield Λαi
β
γ satisfying the following constraints (which are formally the same

constraints as those of a vector multiplet valued in the Lorentz group):14

Λαi
β
β = 0 , D

(i
α Λ

βj)
γ
δ −

1

4
δβαD

(i
ρ Λ

ρj)
γ
δ = 0 , DαiΛ

αi
β
γ = 0 . (6.1)

The appropriate primary superfield Λαi
β
γ is given by

Λαi := Λαi
β
γMγ

β = Φ3/4
(
D

i
βW

αγ −
2

3
εαγδρDk

δ Nρβ −
1

3
δαβD

i
δW

γδ
)
Mγ

β . (6.2)

We can now describe a supersymmetric Rabcd✷R
abcd invariant in the dilaton-Weyl mul-

tiplet in a completely analogous way as the supersymmetric F✷F action by using the B

action principle with Bαβij = iTr
(
Λα(iΛβj)

)
. It would be interesting to carry out a de-

tailed analysis of this supersymmetric invariant elsewhere. As a side note, the primary

superfield (6.2) may be used to construct other invariants. For instance, one can describe

a topological invariant containing the 6D Euler term using the A action principle with

Aα
ijk = εαβγδ Tr

(
Λβ(iΛγjΛδk)

)
.

A natural question to ask is whether other curvature invariants with fewer than six

derivatives may be built when compensating superfields, such as the tensor superfield of

the dilaton-Weyl multiplet, are present. It turns out that it is possible to construct all of

the curvature-squared invariants using either tensor or linear multiplet compensators, just

as in five dimensions [51]. In six dimensions, there is a topological action, corresponding

to the supersymmetrization of B2 ∧ H4, that couples a tensor multiplet (with two-form

potential B2) to a four-form field strength multiplet (containing a closed four-form H4). It

can be built by starting with the A action principle with the specific choice15

Aα
ijk = εαβγδV

β(iBγδjk) , (6.3)

13The resulting superspace geometry is equivalent to using the SU(2) superspace formulation of conformal

supergravity in [18] with the torsion component Ca
ij switched off. This is also equivalent to the superspace

of [28].
14The superspace results given here are similar to the 5D N = 1 description of the Riemann curvature

squared invariant in the dilaton-Weyl multiplet given in [12].
15We refer the reader to [8] for details about the gauge invariance of this action.
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where V αi is the prepotential for the tensor multiplet (see [18, 52] for details) with the

superfield Bαβij satisfying the constraints (4.1) and (4.10) corresponding to a four-form

field strength multiplet [35]. A special form of this action was already constructed in [22],

for the case where H4 = Tr(F ∧ F ) is built out of a non-abelian vector multiplet. Its

component action contains the terms σTr(F abF
ab) and σTr(X ijX

ij). Employing the YM

correspondence, the first of these terms gives a curvature-squared invariant in the gauge

σ = 1 via Tr(F abF
ab) → RabcdR

abcd, as shown in [28] (see also [26, 27]). This construction

corresponds to choosing the superfield Bαβij = iTr
(
Λα(iΛβj)

)
within (6.3) and imposing

the gauge Φ = 1.

A second curvature squared invariant can be built by choosing a composite abelian

vector multiplet built out of a linear multiplet Gij [53]. In superspace, this corresponds to

taking Bαβij = iWα(i
W

βj), with W
αi built from the superfield Gij as

W
αi =

1

G
∇αβΥi

β +
4

G

(
WαβΥi

β + 10iXα
j G

ji
)
−

1

2G3
Gjk(∇

αβGij)Υk
β +

1

2G3
GijFαβΥβj

+
i

16G5
εαβγδΥβjΥγkΥδlG

ijGkl , (6.4)

where Υi
α := 2

3∇αjG
ij and Fαβ := i

4∇
k
[αΥβ]k. Provided Gij satisfies the linear multi-

plet constraint ∇
(i
αGjk) = 0, Wαi describes a composite abelian vector multiplet.16 The

isotriplet Xij turns out to include a term RGij/G, and the term XijX
ij within the compo-

nent action generates R2.

A third curvature-squared invariant is possible but unlike the previous two examples, it

actually requires the supersymmetric version of B2∧H4 where the four-form field strength

is not a product of Yang-Mills curvature two-forms. One must take the four-form multiplet

built from the superfield Bαβ ij given in (4.11). It is not hard to see that the component

action must contain a term CabcdC
abcd, which then completes the set of curvature-squared

invariants. Because the four-form field strength multiplet has to our knowledge not been

much explored, the last curvature-squared invariant remained undiscovered until now. The

three curvature squared invariants described here, corresponding to supersymmetric exten-

sions of RabcdR
abcd, R2, and CabcdC

abcd, extend the analogous 5D examples constructed

in components [51] and superspace [12], and span the supersymmetric extensions of all

possible curvature squared terms. Another curvature-squared invariant was partially con-

structed in [26, 27] and may correspond to a linear combination of these. It would also

be interesting to find a connection with the curvature-squared invariants of [55] involv-

ing supergravity coupled to matter. We leave a further discussion and analysis of these

invariants, including the component expression for CabcdC
abcd, for future work.
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A 6D N = (1, 0) conformal superspace

In this appendix we review and expound on the 6D N = (1, 0) conformal superspace

of [8] focusing on the ingredients relevant to our presentation in this paper.

A.1 The superconformal algebra

The 6D N = (1, 0) superconformal algebra contains the generators of translation (Pa),

Lorentz (Mab), special conformal (Ka), dilatation (D), SU(2) (Jij), Q-supersymmetry (Qi
α)

and S-supersymmetry (Sα
i ) transformations.17 Their (anti)commutation algebra is

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c , [J ij , Jkl] = εk(iJ j)l + εl(iJ j)k , (A.1a)

[Mab, Pc] = 2ηc[aPb] , [Mab,Kc] = 2ηc[aKb] , [D, Pa] = Pa , [D,Ka] = −Ka , (A.1b)

[Mab, Q
k
γ ] = −1

2(γab)γ
δQk

δ , [D, Qi
α] =

1
2Q

i
α , [J ij , Qk

α] = εk(iQ
j)
α , (A.1c)

[Mab, S
γ
k ] = −1

2(γ̃ab)
γ
δS

δ
k , [D, Sα

i ] = −1
2S

α
i , [J ij , Sα

k ] = δ
(i
k S

αj) , (A.1d)

{Qi
α, Q

j
β} = −2iεij(γc)αβPc , {Sα

i , S
β
j } = −2iεij(γ̃

c)αβKc , (A.1e)

{Sα
i , Q

j
β} = 2δαβ δ

j
iD− 4δjiMβ

α + 8δαβJi
j , [Ka, Pb] = 2ηabD+ 2Mab , (A.1f)

[Ka, Q
i
α] = −i(γa)αβS

βi , [Sα
i , Pa] = −i(γ̃a)

αβQβi , (A.1g)

with all other (anti)commutators vanishing. Note that the generatorMα
β = −1

4(γ
ab)α

βMab

acts on Qk
γ and Sγ

k as follows

[Mα
β, Qk

γ ] = −δβγQk
α + 1

4δ
β
αQk

γ , [Mα
β, Sγ

k ] = δγαS
β
k − 1

4δ
β
αS

γ
k . (A.2)

We can group together the translation and Q-supersymmetry as generators of su-

pertranslations, PA = (Qi
α, Pa). Similarly we group together the special conformal and

S-supersymmetry transformations by denoting KA = (Sα
i ,K

a) and the closed subset of

17 For our spinor conventions and notation we refer the reader to Appendix A of [8].
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generators that do not contain PA by Xa = (Mab, Jij ,D,K
A). The superconformal algebra

takes the form

[Xa,Xb} = −fab
cXc , [Xa, PB} = −faB

CPC − faB
cXc , [PA, PB} = −fAB

CPC . (A.3)

The group associated with the subalgebra generated by Xa is denoted by H.

A.2 Gauging the superconformal algebra in conformal superspace

The 6D N = (1, 0) conformal superspace is parametrized by local bosonic (x) and

fermionic coordinates (θi), z
M = (xm, θµi ), where m = 0, 1, 2, 3, 4, 5, µ = 1, 2, 3, 4 and i =

1, 2. In gauging the superconformal group we associate to each generator a connection one-

form. In particular, we associate with the supertranslation PA a vielbein one-form EA =

(Eα
i , E

a) = dzMEM
A, while to the generators Xa = (Mab, Jij ,D, S

α
i ,K

a) we associate the

connection one-forms ωa = (Ωab,Φij, B,Fi
α,Fa) = dzMωM

a = EAωA
a. These are used to

construct the covariant derivatives, which have the form

∇A := EA − ωA
cXc = EA −

1

2
ΩA

cdMcd − ΦA
klJkl −BAD− FABK

B , (A.4)

with EA = EA
M∂M the inverse vielbein.

The superconformal algebra is gauged in superspace by the following local transforma-

tions of the vielbein and the connections

δKEM
A = ∂Mξ

A +EM
CξBTBC

A + ωM
cξBfBc

A + EM
CΛbfbC

A , (A.5a)

δKωM
a = ∂MΛa + EM

CξBRBC
a + ωM

cξBfBc
a + EM

CΛbfbC
a + ωM

cΛbfbc
a . (A.5b)

Here ξA = ξA(z) parametrizes the covariant general coordinate transformations and Λa =

Λa(z) = (Λab,Λij , σ,Λi
α,Λ

a) are the gauge parameters associated with the structure group

H. It is important to observe that in (A.5) fbc
a, fbC

a, and fbC
A are components of the

structure constants of the superconformal algebra (A.1) and (A.3). The superfields TBC
A

and RBC
a are respectively the torsion and curvature tensors that appear as components

of the two-forms

TC :=
1

2
EB ∧ EATAB

C = dEC − EB ∧ ωa faB
C , (A.6a)

Rc :=
1

2
EB ∧ EARAB

c = dωc − EB ∧ ωa faB
c −

1

2
ωb ∧ ωa fab

c . (A.6b)

From the explicit structure constants of the superconformal algebra, these tensors become

T a = dEa + Eb ∧ Ωb
a + Ea ∧B , (A.7a)

Tα
i = dEα

i + Eβ
i ∧ Ωβ

α +
1

2
Eα

i ∧B − Eαj ∧ Φji − iEc ∧ Fβi(γ̃c)
αβ , (A.7b)

R(D) = dB + 2Ea ∧ Fa + 2Eα
i ∧ Fi

α , (A.7c)

R(M)ab = dΩab +Ωac ∧ Ωc
b − 4E[a ∧ Fb] + 2Eα

j ∧ F
j
β(γ

ab)α
β , (A.7d)

R(J)ij = dΦij − Φk(i ∧ Φj)
k − 8Eα(i ∧ Fj)

α , (A.7e)

R(K)a = dFa + Fb ∧ Ωb
a − Fa ∧B − iFk

α ∧ Fβk(γ̃
a)αβ , (A.7f)
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R(S)iα = dFi
α − Fi

β ∧ Ωα
β −

1

2
Fi
α ∧B − Fj

α ∧Φj
i − iEβi ∧ Fc(γc)αβ . (A.7g)

This gauging leads to a consistent modification of the superconformal algebra (A.3) de-

scribed by the (anti)commutation relations

[Xa,Xb} = −fab
cXc , (A.8a)

[Xa,∇B} = −faB
C∇C − faB

cXc , (A.8b)

[∇A,∇B} = −TAB
C∇C −RAB

cXc , (A.8c)

where the generators of the supertranslations, PA, are replaced by the covariant derivatives

∇A. The K transformations, (A.5), can be then described by the following variation of the

covariant derivatives

δK∇A = [K,∇A] , K := ξC∇C+ΛcXc = ξC∇C+
1

2
ΛcdMcd+ΛklJkl+σD+ΛAK

A , (A.9)

provided that one interprets the action of the covariant derivatives on the parameters as

∇Aξ
B := EAξ

B + ωA
cξDfDc

B , ∇AΛ
b := EAΛ

b + ωA
cξDfDc

b + ωA
cΛdfdc

b . (A.10)

A covariant superfield Φ is such that under K transformations it varies with no deriva-

tives on the parameters and can be represented as

δKΦ = KΦ . (A.11)

Due to (A.9), covariant derivatives of Φ transform covariantly δK(∇AΦ) = K∇AΦ. The

torsion and curvatures superfields, TAB
C and RAB

c, are necessarily covariant. A superfield

Φ is said to be primary if it is annihilated by the special conformal generators, KAΦ = 0.

Due to (A.1), Sα
i Φ = 0 is a sufficient condition for Φ to be primary.

In [8] it was proven that a consistent description of the 6D N = (1, 0) Weyl multiplet

in conformal superspace can be achieved by:

i) choosing the gauging in conformal superspace described before that leads to the

algebraic structures in (A.8);

ii) requiring the covariant derivative algebra to resemble the one of 6D N = (1, 0) super

Yang-Mills theory [56–59], which takes the form

{∇i
α,∇

j
β} = −2iεij(γa)αβ∇a , (A.12a)

[
∇a,∇

i
α

]
= (γa)αβW

βi , (A.12b)

[∇a,∇b] = −
i

8
(γab)α

β{∇k
β ,W

α
k } , (A.12c)

where Wαi is a primary dimension 3/2 operator such that

[KA,Wαi} = 0 , {∇(i
α ,W

βj)} =
1

4
δβα{∇

(i
γ ,W

γj)} , {∇k
γ ,W

γ
k } = 0 ; (A.13)
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iii) constraining the operator Wαi to be of the form

Wαi =Wαβ∇i
β+

1

2
W(M)αiabMab+W(J)αijkJjk+W(D)αiD+W(K)αiBK

B , (A.14)

where Wαβ = 1
3!(γ̃

abc)αβWabc is the super-Weyl tensor [18] such that

Sγ
kW

αβ = 0 , DWαβ =Wαβ . (A.15)

It turns out that, under the previous assumptions, the super-Jacobi identities for the

algebra (A.3) uniquely fix all the superfields W(M)αiab, W(J)αijk, W(D)αi, W(K)αiB
together with the torsion and curvatures in terms of Wαβ and its covariant derivatives.

Moreover, Wαβ satisfies the Bianchi identities

∇
(i
α∇

j)
β W

γδ = −δ
(γ
[α∇

(i
β]∇

j)
ρ W δ)ρ , (A.16a)

∇k
α∇γkW

βγ − 1
4δ

β
α∇k

γ∇δkW
γδ = 8i∇αγW

γβ . (A.16b)

We refer the reader to [8] for more details.

A.3 Different superspace frames

It is worth underlining that the action of the generators Xa on ∇A, eq. (A.8b), was

chosen in [8] to be identical to the action on PA, eq. (A.3). This condition leads for

example to a simple choice (A.12a) for the form of the supersymmetry algebra, but gives

more complicated constraints on the vector curvatures (2.16), which contribute a number

of covariant fields into the composite connections. As described in the main body of the

paper, for components applications, different choices of conventional constraints can be

more convenient. In conformal superspace this results in a framework where the structure

constants faB
c are replaced by structure functions f̂aB

c.18

For applications in this paper we use a change of frame where only the vector covariant

derivatives are modified. In particular, we introduce the ∇̂A derivatives as19

∇̂i
α := ∇i

α , (A.17a)

∇̂a := ∇a −
1

2
λ1Wa

bcMbc − iλ2(γa)αβX
αjSβ

j

−
(
λ3Y ηac + λ4∇

bWabc + λ5Wa
efWefc

)
Kc , (A.17b)

where λ1, λ2, λ3, λ4, λ5 are arbitrary real constant parameters and the dimension 3/2 co-

variant superfield Xα
i is defined as

Xαi := −
i

10
∇i

βW
αβ . (A.18)

The new ∇̂A derivatives have the same vielbein of ∇A, EM
A, but have modified con-

nections

∇̂A := EA
M
(
∂M − ω̂M

aXa

)
, ω̂M

a = ωM
a + EM

BMB
a . (A.19)

18The reader can find a pedagogical discussion of structure functions in the textbook [25].
19Note that, due to Wa[b

eWcd]e = 0 the useful relation ∇aWbcd = ∇̂aWbcd holds.
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For the change of frame (A.17), MA
c is given by

Ma
cd = λ1Wa

cd , (A.20a)

Ma
k
γ = −iλ2(γa)γδX

δk , (A.20b)

Mac = λ3Y ηac + λ4∇
bWabc + λ5Wa

efWefc , (A.20c)

with all the other components identically zero.

Given the algebra (A.8) of (Xa,∇A) and the relations (A.17), it is straightforward to

show that the (anti)commutation relations satisfied by Xa and ∇̂A have the following form

[Xa,Xb} = −fab
cXc , (A.21a)

[Xa, ∇̂B} = −faB
C∇̂C − f̂aB

cXc , (A.21b)

[∇̂A, ∇̂B} = −T̂AB
C∇̂C − R̂AB

cXc . (A.21c)

Here fab
c, faB

C match the structure constants of the superconformal group, but faA
c be-

comes a nontrivial structure function f̂aA
c that has dependence onWabc and its descendant

superfields. In the new frame, the torsion and curvatures, T̂AB
C and R̂AB

c, have the same

form as their unhatted partners in (A.6), with ωa → ω̂a and faB
c → f̂aB

c.

It turns out that by properly tuning the parameters λ1 and λ4 as

λ1 = 2 , λ4 = −
1

2
, (A.22)

we can set to zero the torsion T̂ab
c and the dilatation curvature

T̂ab
c = 0 , R̂(D)ab = 0 . (A.23)

Moreover, the choice of parameters (A.22) remove from R̂ab
cd(M) terms of the form ∇̂cWabc

and ensures that f̂ab
c = fab

c, so that

[Ka, ∇̂b] = 2ηabD+ 2Mab . (A.24)

The choice (A.22) simplifies the component analysis and we will assume it from now on.

We leave λ2, λ3 and λ5 unfixed for the moment although two sets of choices, highlighted

in table 1, are particularly interesting. The first, that we denoted as “Traceless,” gives

rise to a superspace geometry whose projection to components, as described in section 2.3,

leads to convenient constraints on the component curvatures. The second choice leads to

a superspace whose component constraints are identical to the ones originally used in [22].

With the choice (A.22), the structure constants f̂aA
c turn out to have the following

nontrivial components

f̂αi b
k
γ =

(
1

2
+

8

5
λ2

)
Wbcd δ

k
i (γ̃

cd)αγ , (A.25a)

f̂αi bc = −2(λ2 + 2λ3)X
α
i ηbc − (1 + 2λ2) (γ̃bc)

α
βX

β
i −

1

2
(γbc)β

γXγi
βα , (A.25b)
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while all the other components of f̂ab
c are identical to the ones of the superconformal

algebra. Here the dimension 3/2 covariant superfield Xk
γ
βα is [8]

Xk
γ
αβ = −

i

4
∇k

γW
αβ − δ(αγ X

β)k , Xk
γ
αβ = Xk

γ
βα , Xk

γ
αγ = 0 . (A.26)

Note that for the choice of frame we are considering, the commutator [Sα
i , ∇̂b] is

[Sα
i , ∇̂b] = −i(γ̃b)

αβ∇̂βi −

(
1

2
+

8

5
λ2

)
Wbcd(γ̃

cd)αγS
γ
i + 2(λ2 + 2λ3)X

α
i Kb

+
[
(1 + 2λ2) (γ̃bc)

α
βX

β
i +

1

2
(γbc)β

γXγi
βα
]
Kc . (A.27)

The torsion T̂AB
C and curvatures R̂AB

c in the new frame can be computed by using

the (anti)commutation relations of the ∇A derivatives derived in [8] together with (A.17).

The anticommutator of two spinor derivatives, {∇̂i
α, ∇̂

j
β}, has the following torsion and

curvatures

T̂ i
α
j
β
c = 2iεij(γa)αβ , (A.28a)

R̂(M)iα
j
β
cd = 4iεij(γa)αβW

acd , (A.28b)

R̂(S)iα
j
β
k
γ = 4λ2ε

ijεαβγδX
δk , (A.28c)

R̂(K)iα
j
βc = 2iεij(γa)αβ

(
λ3ηacY + λ4∇̂

bWabc + λ5Wa
efWcef

)
, (A.28d)

where the omitted components vanish. The non-zero torsion and curvatures in the com-

mutator [∇̂a, ∇̂
j
β ] are:

T̂a
j
β
γ
k = −

1

2
(γa)βδW

δγδjk , (A.29a)

R̂(D)a
j
β = −2i

(
λ2 +

5

8

)
(γa)βγX

γj , (A.29b)

R̂(M)a
j
β
cd = −2i

(
λ2 +

3

8

)
(γa

cd)βγX
γj − 4i

(
λ2 +

1

8

)
δ[ca (γ

d])βγX
γj

−i(γa
cd)γδX

j
β
γδ + 2i(γa)βγ(γ

cd)δ
ρXj

ρ
γδ , (A.29c)

R̂(J)a
j
β
kl = 8i

(
λ2 +

5

8

)
(γa)βγX

γ(kεl)j , (A.29d)

R̂(S)a
j
β
k
γ = i

(
5

16
+

1

2
λ2 − λ3

)
(γa)βγε

jkY −
i

4
(γa)βδ Yγ

δjk −
2i

5
λ2(γa)γδYβ

δjk

−
i

8
(γa)βδ∇̂γρW

δρεjk − i

(
1

8
+

2

5
λ2

)
(γa)γδ∇̂βρW

δρεjk

−
i

4
λ5(γa)δǫ εβρτγ W

δρW ǫτεjk , (A.29e)

R̂(K)a
j
βc =

i

4
(γc)βγ∇̂aX

γj + 2i

(
λ3 −

1

8

)
ηac∇̂βγX

γj −
i

4
(γacd)γδ∇̂

dXj
β
γδ

+
i

3
(γa)βδ(γcd)ρ

γ∇̂dXj
γ
δρ + i

(
λ2 +

1

2
λ5 +

1

8

)
(γa)δρ(γc)βγW

γδXρj
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+i

(
λ2 +

1

2
λ5

)
(γa)βγ(γc)δρW

γδXρj +
5i

12
(γa)βρ(γc)γǫW

γδXj
δ
ρǫ

+
i

4
(γa)γρ(γc)βǫW

γδXj
δ
ρǫ − iλ5(γa)γρ(γc)δǫW

γδXj
β
ρǫ . (A.29f)

In the new frame, the commutator of two vector derivatives, [∇̂a, ∇̂b], has the following

non-vanishing torsion and curvatures:

T̂ab
γ
k = (γab)β

α
[
Xαk

βγ − 2

(
λ2 +

3

8

)
δγαX

β
k

]
, (A.30a)

R̂(M)ab
cd = Yab

cd + 8

(
λ3 −

1

8

)
Y δ[ca δ

d]
b + 8

(
λ5 −

1

2

)
WabfW

fcd , (A.30b)

R̂(J)ab
kl =

1

2
(γab)δ

γYγ
δkl = Yab

kl , (A.30c)

R̂(S)ab
k
γ = −

i

3
(γab)δ

α∇̂γβX
k
α
βδ −

i

6
(γabc)αβ∇̂

cXk
γ
αβ −

i

6
εγβǫρ(γab)δ

ρWαβXk
α
δǫ

+i

(
2λ2 +

3

4

)
∇̂[aX

αk(γb])αγ −
i

2

(
λ2 +

3

8

)
εγβδǫ(γab)α

ǫWαβXδk , (A.30d)

R̂(K)abc =
1

4
∇̂dYabcd +

i

3
Xk

α
βγXβk

αδ(γabc)γδ + i(γab)ǫ
α(γc)γδX

k
α
βγXβk

δǫ

+
5i

3

(
λ2 +

3

8

)
XγkXγk

αβ(γabc)αβ − 4i

(
λ2 +

5

16

)
XαkXβk

γδ(γab)γ
β(γc)αδ

+2i

(
λ2 +

3

8

)(
λ2 +

5

8

)
XαkXβ

k (γabc)αβ + 2

(
λ3 −

1

8

)
∇̂[aY ηb]c

+
1

2

(
λ5 −

1

2

)
Wαβ∇̂[aW

γδ(γb])αγ(γc)βδ . (A.30e)

Note that we have introduced the following higher dimension descendant superfields con-

structed from spinor derivatives of Wαβ:

Yα
βij := −

5

2

(
∇(i

αX
βj) −

1

4
δβα∇

(i
γX

γj)

)
, (A.31a)

Y :=
1

4
∇k

γX
γ
k , (A.31b)

Yαβ
γδ := ∇k

(αXβ)k
γδ −

1

3
∇k

ρX(αk
ρ(γδ

δ)
β) . (A.31c)

By using (A.16) and the previous definitions, one can derive the following relations for the

descendant superfields:

∇i
αX

βj = −
2

5
Yα

βij −
2

5
εij∇̂αγW

γβ −
1

2
εijδβαY , (A.32a)

∇i
αX

j
β
γδ =

1

2
δ(γα Yβ

δ)ij −
1

10
δ
(γ
β Yα

δ)ij −
1

2
εijYαβ

γδ −
1

4
εij∇̂αβW

γδ

+
3

20
εijδ

(γ
β ∇̂αρW

δ)ρ −
1

4
εijδ(γα ∇̂βρW

δ)ρ , (A.32b)

∇i
αY = −2i∇̂αβX

βi , (A.32c)

∇k
γYα

βij =
2

3
εk(i
(
− 8i ∇̂γδX

j)
α

βδ − 4i ∇̂αδX
j)
γ

βδ + 3i ∇̂γαX
βj) + 3i δβγ ∇̂αδX

δj)
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−
3i

2
δβα ∇̂γδX

δj) − 3i εαγδǫW
βδXǫj) + 4i εαγǫρW

δǫX
j)
δ

βρ
)
, (A.32d)

∇l
ǫYαβ

γδ = −4i ∇̂ǫ(αX
l
β)

γδ +
4i

3
δ
(γ
(α∇̂β)ρX

l
ǫ
δ)ρ +

8i

3
δ
(γ
(α∇̂|ǫρ|X

l
β)

δ)ρ + 8i δ(γǫ ∇̂ρ(αX
l
β)

δ)ρ

−
4i

3
W ρσ δ

(γ
(αεβ)ǫστX

l
ρ
δ)τ − 8i εǫρσ(αW

ρ(γX l
β)

δ)σ . (A.32e)

These relations define the Q-supersymmetry transformations of the descendant superfields

of the super-Weyl tensor. Their S-supersymmetry transformations are instead given by

the following relations [8]:

Sα
i X

βj =
8i

5
δjiW

αβ , Sα
i X

j
β
γδ = −iδji δ

α
βW

γδ +
2i

5
δji δ

(γ
β W

δ)α , (A.33a)

Sγ
kYα

βij = −δ
(i
k

(
16Xj)

α
γβ − 2δβαX

γj) + 8δγαX
βj)
)
, (A.33b)

Sρ
j Yαβ

γδ = 24

(
δρ(αXβ)j

γδ −
1

3
δ
(γ
(αXβ)j

δ)ρ

)
, Sα

i Y = −4Xα
i . (A.33c)

Note that the Bianchi identities for the ∇̂A derivatives are identically satisfied due to

(A.16), (A.32) and the following useful relations

∇̂γ(αYβ)
γij = 0 , ∇̂γ(αYγ

β)ij = 4i (5 + 8λ2)X
γ(iXj)

γ
αβ , (A.34a)

∇̂δ(αXi
δ
βγ) = W δ(αXi

δ
βγ) + 6

(
λ2 +

3
8

)
W (αβXγ)i , (A.34b)

∇̂δ(αYβγ)
δǫ = 0 , (A.34c)

∇̂δ(αYδǫ
βγ) = 24iXk

ǫ
δ(αXδk

βγ) − 8iXk
ρ
δ(αδβǫXδk

γ)ρ + 96i
(
λ2 +

3
8

)
X(αkXǫk

βγ)

−16i
(
λ2 +

3
8

)
XδkXδk

(βγδα)ǫ . (A.34d)

We conclude this appendix by mentioning that in the new frame the supergravity

gauge transformations of, respectively, the vielbein, the connections and of a covariant

tensor superfield Φ are (compare with (A.5) and (A.11))

δKEM
A = ∂Mξ

A + EM
CξBT̂BC

A + ω̂M
cξBfBc

A + EM
C Λ̂bfbC

A , (A.35a)

δKω̂M
a = ∂M Λ̂a + EM

CξBR̂BC
a + ω̂M

cξB f̂Bc
a + EM

C Λ̂bf̂bC
a + ω̂M

cΛ̂bfbc
a , (A.35b)

δKΦ = KΦ , (A.35c)

where the operator K is K = (ξA∇̂A + Λ̂aXa) and the gauge parameters Λ̂a and Λa are

related to each other by

Λ̂a = Λa + ξAMA
a . (A.36)

B Relating notation and conventions

As underlined in Section 2 and Appendix A, the “hat” frame described in section 2.3

is equivalent to the one employed originally in [22] by choosing the parameters as follows

λ1 = 2 , λ2 = −
5

16
, λ3 =

5

32
, λ4 = −

1

2
, λ5 = 1 . (B.1)
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Our notation Bergshoeff et al. [22]

ηab, εabcdef , Γa, Γa1···an , · · · ηab, εabcdef , −iγa, (−i)nγa1···an , · · ·

Pa, K
a, Qi, Si Pa, K

a, −2Qi, 2Si

Mab, Jij , D −2Mab, 2Uij , D

em
a, f̂m

â, ψm
i, φ̂m

i eµ
a, fµ

a, ψµ
i, φµ

i

ω̂m
ab, Vm

ij , bm −ωµ
ab, 1

2Vµ
ij, bµ

R̂(P )ab
c, R̂(K)abc, R̂(Q)ab

i, R̂(S)abi R̂(P )ab
c, R̂(K)abc,

1
2R̂(Q)ab

i, 1
2R̂(S)abi

R̂(M)ab
cd, R̂(J)ab

ij , R̂(D)ab, −R̂(M)ab
cd, 1

2R̂(U)ab
ij , R̂(D)ab

ξa, λa, ξi, η
i ξa, Λa

K , 1
2εi,

1
2η

i

λab, λij, σ −εab, 1
2Λ

ij , ΛD

Table 2: Translation of notation and conventions

This is true up to a choice of notation and conventions. In this appendix we describe the

relevant notational differences and show how to obtain the results of [22] from the ones in

section 2.3.

First of all, note that throughout our paper we have used chiral four-component spinor

notation while in [22] eight-component spinor notation is used. To match the results, one

should first reinterpret our formulae using eight component spinors. This is straightforward

by using Appendix A of [8] where we refer the reader for more details. Our 8 × 8 Dirac

spinors Ψ and matrices Γa are

Ψ =

(
ψα

χα

)
, Γa =

(
0 (γ̃a)αβ

(γa)αβ 0

)
, Γ∗ =

(
δαβ 0

0 −δβα

)
, (B.2)

where Γ∗ obeys Γ[aΓbΓcΓdΓeΓf ] = εabcdefΓ∗. Similarly, there is a direct relation between

γa1···an , γ̃a1···an and Γa1···an := Γ[a1Γa2 · · ·Γan] since a product of chiral γs are straightfor-

wardly lifted to a product of Dirac Γs. The eight component spinor generators of the 6D

N = (1, 0) superconformal algebra are

Qi =

(
0

Qi
α

)
, Si =

(
Sα
i

0

)
. (B.3)

Similarly, all the (anti)chiral spinor fields are straightforwardly lifted to eight components,

such that, e.g. ψm
α
i Q

i
α → ψ̄miQ

i, φ̂m
i
αS

α
i →

¯̂
φm

iSi. The results of [22] for the 6D N =

(1, 0) Weyl multiplet may be obtained from the results of section 2 by lifting to eight-

component spinors, fixing the parameters as in (B.1) and renaming the fields in accordance

with Table 2. We have normalized the covariant fields T−
abc, χ

i and D to match those of

[22].
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