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1 Introduction

The invariants for conformal gravity naturally arise in the study of conformal field theories
on curved manifolds. Deser and Schwimmer divided the possible conformal anomalies
into two families, type A and type B [1]. Type A anomalies are topological and always
involve the Euler term, while type B anomalies are Weyl invariants built (in the purely
gravitational case) from the Riemann tensor and its derivatives. In six dimensions, there
are three independent conformal gravity invariants parametrizing the type B anomalies.



Their Lagrangians are
L1 = CopeaC*C Ly = CypCy® C

L3 = Caped <5gm — 4R+ 25273) Cebed | (1.1)

where Cgpeq is the Weyl tensor and R,y is the Ricci tensor.

When superconformal field theories are under consideration, the type B anomalies
should correspond to conformal supergravity invariants and generally the number of such
invariants decreases with more supersymmetry. In six dimensions, superconformal alge-
bras only exist for N' = (n,0) (or N' = (0,n)) [2], while the requirement that conformal
supergravity does not contain higher spin fields limits n < 3. Besides general interest in
superconformal field theories, N' = (2,0) models have been the focus of much interest due
to their somewhat mysterious nature. Their existence was actually inferred by various
arguments in string theory and they are believed to provide a description of the low-energy
dynamics of multiple coincident M5-branes in M-theory.

In regards to the type B anomalies, there are two obvious questions. First, how many
supersymmetric invariants are permitted and what linear combinations of (1.1) do they
correspond to? Second, what are their fully supersymmetric forms when couplings to the
rest of the Weyl multiplet of conformal supergravity are included? While very strong
evidence exists for the purely gravitational form of these anomalies in the supersymmetric
cases — namely the existence of two invariants in (1,0) and only one for (2,0), which
we discuss below — very little was known about their supersymmetric completions. In
principle the answer to both questions could be investigated via indirect means by e.g.
computing the conformal anomaly of various (1,0) or (2,0) matter multiplets coupled to
(super)gravity, as advocated in [3].! So far only the purely gravitational part of these
computations have been performed in 6D, see e.g. [6-8]. Alternatively, one could construct
the full supersymmetric invariants directly.

Recently, the direct path was pursued in [9], where two (1,0) Weyl invariants were
built using superspace techniques, and a separate supercurrent analysis was given that
established that there were at most two such invariants. One of them was observed to
contain only C? terms in the particular combination

1 / / g/ 72
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while the other was observed to contain L3 at the quadratic order. As we will see, it
actually contains additional cubic terms in the Weyl tensor in the particular combination

401 — Lo+ L3 . (1.3)

We will refer to these two particular combinations as the C® and COC invariants from
now on.

1Such an approach was advocated for constructing the 4D A =4 conformal supergravity action [4] prior
to its recent direct construction [5].



The approach of [9] involved the direct construction of the two invariants from certain
conformal primary superfields. These were composites built from the super-Weyl tensor
and its derivatives within a novel superspace formulation of 6D A = (1,0) conformal
supergravity, called conformal superspace. Inspired by earlier formulations in three, four,
and five dimensions [10-13], it is obtained by gauging the 6D N = (1,0) superconformal
algebra in superspace. As in those cases, the superspace torsion and curvature tensors turn
out to be built solely in terms of the super-Weyl tensor, which simplifies computations
significantly.? Conformal superspace has proven useful in the context of general higher-
derivative supergravity actions, such as the A -extended conformal supergravity actions
in three dimensions for 3 < A < 6 [27] and a new set of curvature-squared invariants
in 4D N = 2 supergravity [28, 29|, which arise from dimensional reduction of the 5D
mixed gauge-gravity Chern-Simons term. A major advantage of conformal superspace
is that at the component level, it recovers the Weyl multiplet and transformation rules of
conformal supergravity as formulated within superconformal tensor calculus, first developed
in six dimensions by Bergshoeff, Sezgin and Van Proeyen [30], building off earlier work in
4D [31, 32] (see also the textbook [33]). The 6D superconformal tensor calculus has proven
useful in the construction of the supersymmetric extension of a Riemann curvature squared
term [34-36] and, more recently, in the complete off-shell action for minimal Poincaré
supergravity [37]. Gauged minimal supergravity [38] has also been worked out by coupling
the minimal Poincaré supergravity to an off-shell vector multiplet.

Our primary aims in this paper are to describe the connection between superspace and
components for 6D (1,0) conformal superspace, and to convert the superspace invariants
given in [9] to component form in the language of superconformal tensor calculus [30].
In particular, we will focus on the full set of (bosonic) terms that supersymmetrize (1.2)
and (1.3). These are given respectively in (3.9) and (4.15). As another application, we
present the component structure of an FOF invariant coupled to (1,0) conformal super-
gravity with F' the field strength of a Yang-Mills multiplet. Its bosonic terms are given
in (4.29) and coincide with the flat space construction of [39].

Although our main interest is in (1,0) supersymmetry, it turns out one can deduce a
great deal about the (2,0) invariant once the structure of the (1,0) invariants is known.
Already quite a lot of evidence (see e.g. [6, 8, 40]) suggests that there should only be one
type B anomaly with (2,0) supersymmetry. Its purely gravitational part is

1
4L + Lo + gﬁg R (1.4)

and should be extendable to some (2,0) conformal supergravity invariant containing addi-
tional terms involving other fields of the Weyl multiplet. To our knowledge, no analysis of
the off-shell supersymmetric extension of this term has been performed. Another goal of
this paper is to make a major step towards solving this problem. By analyzing the struc-
ture of the two (1,0) conformal supergravity invariants, we will show that only a certain
combination can be lifted to (2,0) conformal supergravity; this combination has (1.4) as

2In conventional superspace approaches, see e. g. [14-26], the structure group contains only the Lorentz
and R-symmetry groups, and additional torsion superfields appear.



its purely gravitational part. We exploit the uplift to (2,0) to give for the first time a large
part of the bosonic sector of the off-shell (2,0) conformal supergravity invariant.

This paper is organized as follows. In section 2 we show how to recover the Weyl multi-
plet from conformal superspace and derive the associated supersymmetry transformations.
In section 3 we describe the component structure of the C? invariant, explicitly giving its
bosonic sector. In section 4 we consider the COC' and FOF invariants. We devote sec-
tion 5 to a discussion of the off-shell N' = (2,0) conformal supergravity invariant. Finally,
we discuss our results and present some concluding remarks in section 6.

We have also included a few technical appendices. In appendix A we provide the
salient details of conformal superspace and describe how the covariant derivative algebra is
deformed under a certain redefinition of the vector covariant derivative, which we will use in
the main body of the paper. Appendix B provides a brief prescription for how to relate our
notation and conventions to those already appearing in the literature. Along with the arXiv
submission, we have included a separate supplementary file containing the building blocks
(including all fermionic terms) for the (1,0) invariants constructed in sections 3 and 4.

2 The 6D N = (1,0) Weyl multiplet from superspace

In this section, we will show how to reduce the superspace formulation of conformal su-
pergravity in [9] to components. Let us first elaborate on the component structure of the
Weyl multiplet of 6D N = (1,0) conformal supergravity, first developed in [30]. Within
the superconformal tensor calculus framework [30], one gauges the superconformal algebra
in spacetime. Associated respectively with local translations, @-supersymmetry, SU(2) R-
symmetry, and dilatations are the vielbein ey, the gravitino ¢,,, the SU(2) gauge field
VY, and a dilatation gauge field b,,. The remaining gauge symmetries are associated
with composite connections: these are the spin connection w,,®, the S-supersymmetry
connection ¢,,%, and the special conformal connection f,,,. To ensure that the last three
connections are composite, one imposes conventional constraints (which are in general not
unique) on the vielbein curvature R(P),,»,%, the gravitino curvature R(Q)mn{', and the
conformal Lorentz curvature R(M),,,. However, the independent one-forms cannot fur-
nish an off-shell representation of a conformal supersymmetry algebra as the bosonic and
fermionic degrees of freedom do not match. An off-shell representation is achieved by
introducing three covariant fields: a real anti-self-dual tensor 7, , a chiral fermion X,
and a real scalar field D which deform the supersymmetry algebra, the curvatures and the
constraints imposed on the curvatures in a consistent way [30]. This procedure can be
considered as a bottom-up approach where step-by-step one builds up a consistent off-shell
multiplet for conformal supergravity.

In conformal superspace the superconformal algebra is manifestly gauged off-shell from
the very beginning. Rather than construct a multiplet of gauge fields and covariant matter
fields which must possess the same supersymmetry algebra (usually with modifications
due to the curvature tensors and covariant fields), one must completely determine the
supersymmetry algebra directly by solving superspace Bianchi identities. Typically these
identities are solved by a single superfield, which encodes all component curvature tensors



along with the covariant fields necessary for off-shell closure. Once the solution is found,
the component fields and their supersymmetry transformations can be obtained directly
by projecting to spacetime; the resulting component structure turns out to match that
constructed in components directly. This method therefore can be viewed as a top-down
approach.

2.1 Component fields and curvatures from superspace

We begin by identifying the various component fields of the 6D N = (1,0) Weyl multi-
plet [30] within the geometry of conformal superspace [9]. For the one-forms, this identi-
fication is particularly easy as each component one-form is in direct correspondence with
some superspace one-form and these can be connected in a straightforward way.

Let us start with the vielbein (e,,*) and gravitino (1,,$"). These appear as the § =0
projections of the coefficients of dz™ in the supervielbein E4 = (E¢, EM) = dzM EpA3

em” () = En®(2),  ¥mi(2) :=2Eni(2)], (2.1)

where a single vertical line next to a superfield denotes setting 6§ = 0. This operation can be
written in a coordinate-independent way using the so-called double-bar projection [41, 42]

e’ =da"en" = EY|, P = da™n, = 2B, (2.2)

where the double bar denotes setting # = df = 0.* In like fashion, the remaining fundamen-
tal and composite one-forms correspond to double-bar projections of superspace one-forms,

V=M, b:=B|, W=, ¢ =28, fo:=3Fl. (2.3)

The covariant matter fields are contained within the super-Weyl tensor W, and its
independent descendants. We define the three covariant component fields as®

T = —2Wape! (2.4a)
.15 3i_,
= DX = _Zlvgwaﬁy, (2.4b)
15 3i
D:=Y|= _Ev’;vﬁkwaﬂ . (2.4c)

There are three additional independent descendant fields: the dimension-3/2 fermionic field
X2P7 .= XP7| and the dimension-2 bosonic fields V,** := Y, /¥ | and V.57 := Y,57°|.6
These will turn out to be composite and expressible directly in terms of the component

*Recall that z™ = (z™,0/) are coordinates for a local parametrization of 6D A = (1,0) conformal
superspace, see [9] and appendix A.

4In more mathematical language, the double-bar projection is the pullback of the inclusion map embed-
ding spacetime into superspace.

5We have chosen the coefficients such that T e x** and D exactly correspond to the covariant matter

fields of the Weyl multiplet introduced in [30]. We always denote the anti-self-dual covariant field as T,

abe
to avoid confusion with the superspace torsion tensor Tgp°.
5The descendant fields of Wy, are defined in appendix A.



curvatures. The differential constraints on the superfield W, forbid any independent
component fields at higher dimension [9].

It should be mentioned that one can impose a Wess-Zumino gauge to fix the 6 ex-
pansions of the superspace gauge one-forms, so that they are completely determined by
the above component fields. This ensures that the entire content of the superspace geom-
etry is encoded in the independent physical fields. In practice, using the above definitions
eliminates the need to do this explicitly.

In conformal superspace the covariant exterior derivative is defined as

1 .
V=EAV,=d- 5chMcd — BD — My — F 8¢ — §. K, (2.5)

with V4 the covariant derivatives. By taking the double bar projection of V, we can define
the component V, to coincide with the projection of the superspace derivative V,|,

em Vo = Om — 1 VIV | — lwm Mg — by D — Vi Ty — quma ¢ faa K. (2.6)
The projected spinor covariant derivative V| corresponds to the generator of Q-
supersymmetry, and is defined so that if & = U|, then V| := (VL,U)|. Note that
there is no ambiguity for the other generators as e.g. M.qU = (Mq4U)|, and so local diffeo-
morphisms, Q)-supersymmetry transformations, and so forth descend naturally from their
corresponding rule in superspace (A.11), which can be written

: 1
OU = WV U + EMVE U + §ACnddu + ATl + oDU + 0 STU+ AKU (2.7)

Note that in spacetime we can choose to parametrize local superconformal transformations
either with a covariant diffeomorphism, generated by £*V,, or as a normal diffeomorphism,
generated by £™0,,. For Q-supersymmetry on the other hand, the natural choice in space-
time involves the covariant spinorial derivative V¢ | rather than the §-derivative.

The algebraic structure of these operators descends straightforwardly from superspace.
For example, the component supercovariant curvature tensors arise by projecting (A.21c),

[Va: Vi) = =R(P)ayVe — R(Q)an) V| — —R(M) “Meg — R(T)ap"™ it
— R(D)wD — R(S)atS] — R(K)ape K©, (2.8)

where we have introduced the expressions R(P)q° = Ty°| and R(Q)abz = abk‘ for the
lowest components of the superspace torsion tensors to match the usual component nomen-
clature, while R(M) %, R(J)a™, R(D)yp, R(S)abﬁ and R(K)gpc are the lowest components
of the corresponding superspace curvatures.

The constraints on the superspace curvatures determine how the covariant fields of
the Weyl multiplet should appear within these curvatures; in other words, the superspace
geometry dictates how to supercovariantize a given component curvature. Let us illustrate
this by deriving the explicit form of R(P).° := Tap°|. Consider the double bar projection
of the torsion two-form 7, eq. (A.7a). This can be evaluated either in terms of its explicit
definition,

T¢| := DE®| = De’ = dz" A dx™ Djpen©, (2.9)



where we have introduced the spin, dilatation, and SU(2) covariant derivative
L ki m

D,, := 8m_§wm Meg — b, D — Vi, " Jiy Dy :=¢€3"" Dy,
or in terms of its tangent space decomposition

1

T°| = 5EA A EBTp |
1 A 1 .
= 5(1.%'” A dx™ (emaeanabc‘ + emawn]@Ta] C’ - Zwm?wnngé%C > .
Equating (2.9) and (2.11) and solving for R(P)q° leads to
R(P)as® = 2¢a™ e Dymen® + Y Tyit| + ~ St T
ab a €b Ymbn] [aj+0]B 4 [ai ¥b]jLap | -

Proceeding in the same way for the other curvature two-forms gives

1 s~ g ] 1 a iJ
R(Q)abz = §\I/abz +1 (V[a)’y (bb](sk + w[a]@Tb]JBZ‘ + Zwai wb?Ta%Z’ )
R(D)ab - 2€am€bna[mbn] + 4f[ab] - w[aggbb}?x + w[a]ﬂR(D)bﬁ?’
1 a8 iJ
+Z¢[ai wb]jR(D)aM )

R(M)a™ = Ra™ + 80055y = viafdughy (1) 7+ wiaf RO, 5|

1 .
i ] RO

(2.10)

(2.11)

(2.12a)

(2.12D)

(2.12¢)

(2.12d)

. 1, y
R()ap™ = Rap™ + 4401 % yl) + 10 f RO+ J0afun] RGN, (2120)

where
Wapy, = 2e4" e Dty

R i= R (V) = ea™ ey (20 Vg™ + 24" V,,0 )

(2.13a)
(2.13b)

(2.13¢)

The last two terms in each of the curvatures (2.12) involve the covariant fields of the

Weyl multiplet and from a component perspective are necessary for off-shell superconfor-

mal covariance. From a superspace perspective, their structure is instead dictated by the

superspace geometry. Using the torsion and curvatures of [9], their explicit forms are

i .
R(P)ab” = 2¢a" ey Dymen) + 501y vy’
1 .- 1, .
R(Q)abk = i\ljabk + 17[a¢b]k + ETcd€76d67[awb}k y

g .
R(D)ap = 2€4™ ey Opnbn) + Hiap) — Vaitn)” — glﬁ[aﬂb}xj ;

(2.14a)
(2.14b)

(2.14c)

¢ e i i i o
R(M) g™ = Rap™ + 86[[afb]d] — Pl by + i R(Q)Y — glb[aﬂb]’y 7, (2.14d)

2i
R(J)ap®" = Rap™ + 4y, F oy + gib[a(k’vb}xl) :

(2.14e)



Here we have suppressed spinor indices for legibility. Note that in (2.14d) we have used
the fact that the component field Xéjﬁ'y turns out to be composite

()" A5 = RQu™ = 5 G sx™ (215)

For the sake of brevity, we do not present here the expressions for R(S)q" and R(K)gpe.

2.2 Analysis of the curvature constraints

It has already been mentioned that the component spin, S-supersymmetry, and special
conformal connections turn out to be composite. This property arises here just as in the
purely component framework [30] because of constraints on some of the curvature tensors.
In our framework, these constraints are already imposed at the superfield level and lead to

R(P)y° = 2T°, (2.16a)
1

’YbR(Q)abk = 5’7an7 (2.16b)
R(M) g = —g(sg D+ VT, ©, (2.16¢)

where .
VT, = DT, + 2 (et X 4 2 (adastba X5 (217)

d abc d abc 15 Yabe)aBWdE X 2 Yabe)aBWd .
The first constraint (2.16a) determines the spin connection to be

Wabe = W(€)abe — 2Mafpbe] — ¢b YaWek — %kwbwc k+ T, (2.18)
where w(e)qpe = _%(Cabc + Ceab — Cheq) is the usual torsion-free spin connection given in
terms of the anholonomy coefficient Cpp® := 29),e,)*. It is important to note that the

spin connection wgp. possesses not only the usual fermionic torsion, due to the gravitino

terms, but also bosonic torsion from the covariant field 77, . In particular, this means that

there is non-trivial dependence on T,  nested in every covariant derivative V, and D,.
The second constraint (2.16b) is solved by

1 3 1 .
om" =16 <7 Y = £ ) (\Ia,c’“ + 5 Taes 7" m%ﬂ“) — TOVmX (2.19)

Reinserting this into the original expression for R(Q) gives

1 1
R(Q)apk = QHade (\Ifcdk + 6T 1o7° 7[c¢d]k> 10 JabXk (2.20)
where II,,°? is the projection operator onto gamma-traceless spinor-valued two-forms,”
3
d._ d 4 ez d d
o™ = 55551, 105[a’Yb] ]+ 105 b e
rYaHade = Hadeﬁ/c = 07 Hab fHef = Habc . (221)

"For the projection operator I1,,°? in other dimensions, see also e. g. [13, 43].



Note that eq. (2.15) can then be expressed as

1 1 gl
Xa™ i= 5 ) €7 = 5 () sR(Qed™ (2:22)

This relates the field X*57 to the y-traceless part of the gravitino field strength.
The third constraint (2.16c¢) is solved by

f,0 = —372(/’( )+ 75’773( )——5bD+ VCTc;b

8 80 ¢ 60 ¢ 8
i bej | L be b edy g
+§¢cj%R(Q) ! +§1/J[aj7 ¢c} - %%wcﬂ ba’
L ~ be i L AP T 2.93
og Veita X! = g% X + o5 awcﬂ X, (2.23)

where we have defined R,%(w) := Rac?(w) and R(w) := Ro*(w). Inserting this back into
R(M )b’ leads to a quite involved expression; its bosonic part is

R(M) g = C(w)ap® — 55[05d]D + DT oo leg ]] + (explicit gravitino terms). (2.24)

1

Here C(w)qp := R(w)ap™ — 5[[2R(w)b]d] + 105[[05;)1]]7%( ) is the traceless part of the tensor
R(w)ap. Tt is important to observe that C(w).*? is not quite the usual component Weyl
tensor due to the presence of the bosonic torsion in the spin connection.

We have already mentioned that the super-Weyl tensor superfield includes, besides
the covariant matter fields, three other independent descendants, which turn out to be
composite. The dimension-3/2 fermionic field X277 was already analyzed, see eq. (2.22),
and is related to the gamma-traceless part of R(Q)s®. The dimension-2 bosonic fields
Vap = (’Yab) Uy ) 5P Vpp?? and Ykt = %(yab)gayaﬁkl are given respectively by the

traceless part of R(M )y and the SU(2) curvature R(J)qp",

2
Yar™ = RO + 12050, D = 2V, Ty ! = 2V°T, 5y, (2.252)

[
Yo = R(J)a"™ . (2.25Db)

It should be mentioned that the constraint R(D)q, = VT, ., derived from superspace,
actually holds identically after substituting the expression for f,,. into R(D). Although
we do not provide the analysis here, the same is true for the R(S) and R(K) curvatures,
which are determined in terms of the other curvatures due to Bianchi identities. We will
return to this point at the end of the next subsection.

Now let us note an interesting feature of the expressions (2.16). In contrast to the
constraints employed in [30], these are S-invariant. The reason is that the superspace
constraints of [9] were chosen so that the superspace derivatives V?, and V, have the same
algebra with S and K* as in the 6D N = (1,0) superconformal algebra. This simplicity
comes with the price that the composite connections have nontrivial dependence on the
fields T, ., x* and D. This renders component expressions more involved than one might
desire. Therefore, instead of completing the analysis here and deriving the supersymmetry
transformations etc., we will make a different choice of conventional constraints to remove
the dependence on the covariant fields from the connections.



2.3 Different choices of conventional constraints

Let us consider the following redefinitions of the composite connections,

1

Om% = Wb — §Alem“Ta_bc, (2.26a)
S A4 )

(z)mjg = ¢m/]3 - TBAQ(Vm)ﬁVXW ) (2'26b)

2

1
A3NapD — =\ VT~
15 \87ab 24V

ach

. 1 —cdr—
Frb = T + €m” ( + T CdTCdb> : (2.26¢)

where A1, Ao, A3, Ay and A5 are real constant parameters. A specific choice can eliminate
the covariant matter fields from the connections, but let us remain more general for the
moment. These redefinitions can be interpreted as a change of frame in superspace by
redefining the vector covariant derivative

. 1 _ wi
Va = Va = g MWa"Mic — Do(a)ap XS] — XY Ko
MV W K€ — AsWo W, 1 K€ (2.27)

while keeping the spinor covariant derivative the same @fl = Vi. A detailed analysis of
the modifications to the conformal superspace geometry associated with V 4 is relegated
to appendix A. Here we focus on the implications for the component structures.

First of all, by comparing (2.18) and (2.26a), it is clear that the dependence on T,
in the spin connection can be eliminated by choosing

M=2 = RP)a=0, (2.28)

eliminating the bosonic torsion. In terms of this new spin connection,

f,0 = —lRab(@) + iabn(w) + %vm;b

1 1
T 77 _ —§bp4... 2.2
8 80 a + b ( 9)

- gl 60 “

where R,°(@) and R(w) are defined in terms of the tensor Ry, Y (@) as in eq. (2.13b). Now
shifting f,,. — fmc as in (2.26¢) with Ay = —%, we can get rid of the term V°T,;°. In what
follows, we will keep the choices A\ = 2 and Ay = —% fixed.

It is now straightforward to reapply the same component reduction procedure of the

previous subsection but in the “hat” frame. Using (2.12a)-(2.12e) together with (A.28)-

~10 -



(A.30) leads to®

R(P)p® =0, (2.30a)

R(Q)abk = %‘T’ bl + G + 214Tcde*y “VaVulk > (2.30b)

R(D)ay = 2¢0™ " Opnby) + Aty + Vo' di + % (2 + /\2) Do’ WX (2.30c)
R(M)wp® = Rap™ (@) + 85[2%]6[] + 111 R(Q) Y + 21ty 7 R(Q) W

— (T Pp — ﬁ (: + >\2> 6[[Z¢b]ﬂdlxj + %7/}[aj761/}b]j T, (2.30d)

R = RaM(0) + 49,4y + 2 (5 + A2> ) (2.30¢)

where we have introduced the derivatives
Dyp = O — %wmbCMbc —buD =V, Dy = e Dy, (2.31)

together with the gravitini field strength, W] = eameb”ﬁ[mwn]z as in (2.13a). The new
superspace curvature constraints now lead to

A~

R(P)a® =0, (2.32a)
) 4 3
V' R(Q)abk = 3 Az + g ) VaXk (2.32b)
; be _ 8 L\ s N 1 —bed
R(M)ae™ = 3 ( As =g | 0D +2( s = 5 ) Ty T (2.32¢)

These constraints are no longer S-invariant. This is a consequence of the redefinition of
the composite connections, which deforms their S-supersymmetry transformations. It is
interesting to observe that for all values of Ay, A3 and A5, the new dilatation curvature is
zero while the SU(2) curvature is unchanged,

R . 1
R(D)ab = 07 R(J)abkl = R(J)abkl = 5(’7ab)6ayaﬁkl . (2'33)
The constraints (2.32) are solved by
Wape = W(e)abc 277a[bb 77/}b YaWPek — *wak’Y[bd}c]kv (2.34&)
R i . 3 e A 4 /3
om' = 1¢ (vb Y = £ Vm ) (\Ifbc’“ + 12Tdef'y Ty ) o (8 + Ag) Ymx", (2.34b)
£ 1 2 — q—be 1 cl g
f.b = _gnab( &)+ %5373( &) + 15()\3 - >5b </\5 - 2)TaefT "t e 0
c cj 1 > clj 1 5 j
ey e+ el QY + e PR 5 (3522 var
i 3 ;
J bed - sb g . m—cde
30 (8 + )\2> T/Jcﬂ X + wa 'chd] T 1605511/}0 f)/df‘/}e] T . (2340)

One may confirm that these are equivalent to (2.26) with \; =2 and \y = —

D=

8As discussed in appendix A, the structure functions fng may induce nontrivial corrections to the
new curvatures. In our case, the [Sf, @a} commutator is deformed, but induces modifications only in the
expressions for the R(S) and R(K) curvatures. Up to hats, eqs. (2.12a)-(2.12¢) are formally unchanged
and apply also to the general frame.
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Reinserting the composite S-supersymmetry connection (2.34b) into eq. (2.30b) gives
- 1 1 4 (3 -
R(Q)abk = 5T <‘Ifcdk + 5 Tepg 1 7[c¢d]k> T <8 + /\2> YabX - (2.35)

In the new frame the component field X% := %('yab) BO‘XZSBW becomes

1. 2 (3
Xa k _ R b L Y ~a k
b= (Q)ab G <8 + 2> YabX
- 1HadeR(Q> = 1Hab6d(\ljcd + ! —T '7 ’Y wd k) . (2'36)
2 4 12" ¢f9 ]

It is important to note that the component field X*#7 is unchanged in going to the
new frame; that is, the equations (2.22) and (2.36) are completely equivalent — only
the definition of R(Q) has changed. Other useful relations, which follow from the con-
straint (2.32b), are

FPR(Q)abk = —8 <)\2 + :) Xk » (2.37a)
YER(Q)pr = 29 R(Q)W* + % <)\2 + 2) oy x| (2.37b)
Ve RQ)ert = =20 QU +8 (3 + § ) e (2370
NaR(Q)py" = —éEadeeﬂ[dR(Q)eﬂk : (2.37d)

It is clear that a particularly simple choice of frame is

) T 1
Ay = 3 = R(Q)abk = 1lab (‘I’cdk + 151 17 7[c¢d]k> : (2.38)

In this case the R(Q)abk curvature is ~y-traceless. On the other hand, it can be proven
that the choice Ay = —1—56 corresponds to the conventional constraint for R(Q) that was
employed in [30]; we refer the reader to appendix B for more details.

In principle, one can also reinsert the expression (2.34c) for fpme into R(M ),

;in
practice, we are mainly interested in the bosonic terms. These are
» cd A cd 16 [esd] 1 [ dlef
R(M) " = C(D)ap 15 A3 — = 040, D+2{ A5 — 5[aTb]efT
+(explicit gravitino terms) , (2.39)

where C(Q0)gp% = R(D) a0 — 5{; (w )b]d] + 2 5%6561}]7?,( ) coincides with the usual Weyl

tensor when v,,," and b,, vanish. This implies that

15 8
= C(0)ap™ + (explicit gravitino terms) . (2.40)

A 1 1 1
Var™ = R(M) g™ — 6 <)\3 - ) 55055”1) -2 <)\5 - > T, T~
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Traceless Bergshoeff et al.
A1 2 2
o -
wood 5
Moo -}
As : 1

Table 1. Choice of parameters.

A special choice of A3 and A5 makes the Lorentz curvature traceless,

1 1 .
)\3 = é y /\5 = 5 — R(M)ade = yade = C(w)ade +ee (2'41)
The particular choices of Ao, A3 and A5 we have discussed maximally simplify the
component curvatures and connections. We will refer to this choice as the “traceless”

frame. It is associated with the following conventional constraints
R(PP)’=0, ARQur=0, R(M),=0. (2.42)

Note that an alternative choice recovers the conventional constraints employed by
Bergshoeff et al. [30], up to changes in notation described in appendix B. We summa-
rize these two particular choices in table 1.

So far we have not considered the curvatures R(S) and R(K) in detail. In principle,
one could find explicit expressions for them in terms of qgm’a and fmc. In practice, such ex-
pressions are not particularly useful since these connections and their curvatures are always
composite quantities. Instead, it is more convenient to follow the component technique of
analyzing the component Bianchi identities, which in our case is equivalent to performing
the component projection of the corresponding superspace curvatures. Projecting (A.30d)
and using (2.36) gives

~

is - i cen i, .5
R(S)a" = =5 VRQ)a" = 37V R(Que" + 3T, RQ)y™

2i 3 RS 2i 3 _
5 (A2t 5 )93V + T (At 2 ) T (2.43)
9 8 9 8

In a general frame, the special conformal curvature R(K ) is still rather complicated, which
is apparent from its superspace expression (A.30e). In the traceless frame, it simplifies
dramatically, and using (2.36) and (2.40) one obtains

R(K)ape = iﬁd}?(M)abcd — z%lR(Q)dek’yabcR(Q)dek - %R(Q)adk'YcR(Q)bdk

i
35X Ve R (Q)abk (2.44)

~13 -



There are actually other component Bianchi identities that we have not analyzed so far.
These are differential conditions among the various superconformal component curvatures.
In superspace, they are given by the differential equations (A.34). Their component forms
can be derived by straightforward component projection.

2.4 The supersymmetry transformations

The supersymmetry transformations of the fundamental gauge connections of the Weyl
multiplet can be derived directly from the transformations of their corresponding super-
space one-forms, using either (A.5) or (A.35). We are mainly interested in their form in
the traceless frame, but for comparison with [30] we give the results for arbitrary Ao, A3

and A5, keeping A\ = 2 and \y = —%:

Sep® = —ifk’yawmk, (2.45&)
. 1
5¢mz = 2Dm€i + ET_abc:Yachmfi + 2ﬁ/m77i ’ (2'45b)
A 16i
SV = —aekg,,D — 1%1 (Az + Z) EFymx? + 4 FV (2.45¢)
Lo, 4 5 i i a
0bm = &idom' + 15 <)\2 + 8) EvmX" + Vm'ni — 2em" Aa (2.45d)

Here we have restricted to the @, S, and K transformations. In the same way, one can
derive the transformations 0, ?, 6@3 and 6fma, which we omit. For the covariant fields,
the transformations are directly given by (2.7), which leads to

_ i N i 25
0T, = _gfk'Yde%bcR(Q)dek: G <)\2 + 24> fk’yabcxk, (2.45€)
1. 3. i 1. i abe i
ox' = §D§ - ZR(J)ab T3¢ + ZVaTbcdvdevaﬁ —iT, 3%t (2.45f)
6D = =21V x? — dx*n . (2.45g)

Upon making the appropriate choice of parameters A;, these transformations match those
of Bergshoeff et al. [30] up to differences in notation and conventions given in appendix B.

3 The supersymmetric C? invariant

In [9] it was shown that there were two invariants for conformal supergravity, containing C®
and C'OC terms at the component level, where C' schematically represents the Weyl tensor.
Moreover, the construction of each of these invariants employed the use of two different
action principles formulated in terms of superforms. Each of these action principles was
built out of a constrained primary superfield, which, when further chosen to be composed of
the super-Weyl tensor and its covariant derivatives, yields the two conformal supergravity
invariants.

In this section, we will focus on one of these action principles, which we will call the A
action principle. It was first constructed using superforms in [44]; see [9] for its construction
in conformal superspace. Here we will present its component form as a general density
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formula built upon a certain composite multiplet. Afterwards, we will give the specific
choice for the multiplet that generates the C? invariant.

3.1 The A action principle

The A action principle is based on a primary dimension 9/2 superfield A,Y* = A, 19k)

obeying the reality condition A,%* = A,;;; and satisfying the differential constraintcon-
straint”

Vi A =0 (3.1)

While a superfield obeying this constraint cannot itself be directly identified as a Lagrangian
for some subspace of the full (1,0) superspace, it does possess an important geometric
significance. Within the context of the 6D abelian tensor hierarchy, the multiplet generated
by A,"* provides the minimal version of a five-form gauge multiplet, whose six-form field
strength obstructs the closure of the linear multiplet’s five-form field strength [44]. The
same observation explains why it also appears naturally as the anomaly current multiplet
for 6D gauge theories (see e.g. [45] for a recent discussion), as the anomalous current is
encoded in a linear multiplet.

In accordance with the superform approach to the construction of supersymmetric in-
variants [46—49] and following very similar cases in four dimensions [50, 51], it was proposed
in [44] to use a closed six-form J built out of the superfield A,“* as an action principle.
The original action principle was given in the context of SU(2) superspace [26] and later ex-
tended to conformal superspace [9]. In this latter form, it can be straightforwardly reduced

to components and written
I= /dG:UeE, e = det(en?), (3.2a)
where L is a scalar Lagrangian constructed as £ = éam"pqrs Jmnpgrs|, that is as the Hodge

dual of the six-form J restricted to spacetime. It is explicitly given by

i ai 1 e abc i
L=F— Z (@Z)aiQ/ )—7 (@Z)diryd Y b wej) S;;)c]

_ 144
- ﬁ <¢ai’7abc¢bj) EM + Tlﬁ (%z"yabcwbj) (iﬁckz‘lij k) : (3.2b)
Here we have introduced the following component fields of A,%*:10
ot i . i<~ )Y e AT JoR - 3( )PV i Ag K| (3.3a)
abe 39 Yabc akAp ) a 16\ 7a akAg >
Q= é(’ya)m (Vﬁjv’ykAaijk| + VajvﬁkA'yijko ’ (3.3b)
F = ﬁsaﬁwvmvﬁjvvmgiﬂw : (3.3¢)

9The names “A action principle” and “B action principle” (discussed later) have no correlation with
type A or type B anomalies.
0Here we introduce Q¢ which differs from Qqo° used in [9].
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When it is clear from context, we will use the same symbol A,“* for both the superfield
and its lowest component.

The invariance of this general density formula under special conformal transformations
is obvious once one verifies that the fields S+ U E,Y, Q¢ and F are each annihilated by
K®. Invariance under S-supersymmetry can be proven by using the S-transformation of

the gravitino (2.45b) together with S-transformations of the components of A,“*:

05Aa ™ =0, 0550, = 3mTue AT, 0sBa¥ = S mFa AT, (3.4a)
8 o

050" = =3 (abj), B +i (ybcnj) St i (3.4D)

s F = mA Q. (3.4¢)

These transformation laws follow from the definitions of the component fields (3.3).

The invariance of the A action principle under Q-supersymmetry follows from its de-
scription as a closed superform. Demonstrating closure of the superform is equivalent (al-
though generally more efficient) than demonstrating invariance under Q-supersymmetry
directly from the spacetime Lagrangian. Let us briefly sketch how the latter procedure
goes. The field A,"* transforms under supersymmetry as

5QAaijk — —(1%€))a A,k %(,yabcg(i)a S;%C_]k) < ag(z) E,% (3.5)

The constraint (3.1) is encoded in the absence of a term involving S:b U Kl

(%bc)aﬁvngﬁjkl)‘ on the right-hand side. Now the term A,”* does not appear in the
action and so its d¢g transformation does not need to be computed directly. This can be
verified by computing d¢ of the terms involving 4,% ¥ in the action and integrating by parts
any expressions with D,,£% to give a covariant result. The term involving A4,“* turns out
to be multiplied by a ¢3¢ term, and the various contractions of Lorentz and SU(2) indices
project this term out. The advantage of the superform method is that this sequence of

steps is encoded automatically.

It is clear that the constraint (3.1) is rather weak and describes a multiplet that is
rather long, only a few components of which have been mentioned above. Nevertheless,
the supersymmetry transformations of all components are dictated by closure of the su-
persymmetry algebra, making use of the constraint (3.1). For example,

SoAa ! = 5 N Bkl _ liz kD) (3.6)

for some spinor =% and some vector-spinor Z,,“*. While the multiplet is rather long,
only a small number of the component fields appear in the action, so that in practice one

only needs some of the supersymmetry transformations. These are given below in the
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traceless frame:

o e i ~ o 1 Iy
0gEa" = S67 3 VoA — 61T AT Ty — 167"

. 415(1‘951]‘) _ iﬁ(ivaﬁb%” , (3.7a)
i ar e ik Lo di ik s elods :
00 Sahe” = 787 Fabe VaA"" = 267 FancZa " + €0y Fane %y (3.7b)
, , 1 b iy | L 5 y J
Saf%a’ = (1E) o F + 5 (aei)a V' B 4 o5 (76 = 7St ) V'S5

y . 3. 3 )
+ (16) o™ + (ranct’), O = T4 (E70x0) + 5 (647%) (axw)a

1 o 5 N
+ 5o Sa” Topy (%ﬂef goybedg, _ ybedzef g’Yafj)a

288
1 T - -
+ %EbUTcde (’Ya’YCde’Ybfj + ’Yb'YCdeWafj)a , (3.70)
S F = —i @ Qe _ iT—abc dzx Q/k o L ~ab cdeR gt ij 3.7d
QF = —i&Va sal G AabeSly” — 5 &Y T R(Q)aby Scge” - (3.7d)

Using the above supersymmetry transformations one can check that the invariant (3.2) is
indeed supersymmetric. Note that the transformation of the vector-spinor Q/ ! involves
two additional fields that do not appear in the action: an antisymmetric tensor Cj,;) and
a rank-two tensor Cop(¥) symmetric in its SU(2) indices.

We underline here that these supersymmetry transformations are sufficient to prove
invariance of the action. They arise as a consequence of closure of the algebra provided the
constraint (3.1) holds; therefore, there is no need to analyze the transformation properties

of the entire multiplet.

3.2 The supersymmetric C3 invariant in components

Having elaborated the component structure of the A action principle we now provide an
immediate application: the derivation of the supersymmetric C? invariant at the component
level. The suitable superfield A,%* was constructed in [9]. At the component level, it
corresponds to'!

. 41 . 4 . R . A N .
Aaz]k — _E (,Yax(z) 7XJ7an) + R(Q)ch’YaR(Q)bCk) — 3 R(J)bcjk)Tfabc
15 a \ 45

—128(7uR(Q)s.") <R<J>d”k>T—“bd+?R@)“WR(QM”“). (38)

8%
One may verify that it is S-invariant and transforms under supersymmetry so that the
constraint (3.1) is satisfied. The remaining composites S:[b Cij , BoY, Q" and F appear-
ing in (3.2b) can be computed directly from the supersymmetry transformations (3.7) or
equivalently from the superspace definitions (3.3). This is a straightforward task but the
explicit calculation becomes technically quite involved, so we made use of the computer
algebra program Cadabra [52, 53]. In a separate supplementary file, we give the explicit

"Relative to [9], we have renormalized the choice for A,** by a factor of —64.
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expressions for each of these components. The bosonic part of the Lagrangian is given by

8 16 y y
L= g abcdcabefccdef _ ? abcdcaecfcbedf —9 CabcdRab z]Rcd i + 4Rab ijRac ikacjk
32 . 4 bt Si 128
_%D - TE) DCapeaC* " + gDRab YR ij T T5 TabcT “CDC %
4 PR 4 . - 4 . R
+(1i5 T DV T 00— = DT, DT~ + 7 DDl par—bed
4 . . 16
—3 DDy, Db = Ty T~ T~ T D
32 A 16 R
_g T;bccabdepfccdef + ? CabcdcabechT—def

~16 T, DyT ="V VT4 — 16T, DyT "4V NV 17707
—487T,, DT~ " V'V T + 16 DT, DT}, DT
—40T,, T~*D;T~ 1 DIT,  + 16T, C™VVIT,
16T, CN NI T p — A Copea DT~ Dy T~V

+8 Capeg DT~ Dy —cde — % T~ D°Crogpe Dy T~
+32T 7% D Clgpe DT/ — 32 TJ:gCT—f siper, DT
—8 DTy, DT T 19T} — 8T, T~C9D, T,

fgc
8 28

. L 32 g .

_ § Ta_bcRab i DdRcd i + 3 Ta—bcRad mdebc - 6 Rab l]Rcd ijDanbcd

HAT T T, T DyT = — 8T, T~ T~I"CYy,

+12 T;bCT_adeRbc R ge ij + fermion terms . (3.9)

Note that in the previous result there is some hidden dependence on the special conformal
connection f,p, which can be made explicit by using
ﬁa@bT_

cde

= ba@bT;ie — )Eaf [Kf, @b]chie + fermion terms
= DDyT,y, — 2fapTge — 6fa[CTa;]b + 6fafT;[Cdne]b + fermion terms, (3.10)
and the results in section 2.

We conclude this section by mentioning one useful consistency check of the previous
result. By computing the variation of the action with respect to the D field one should
obtain the component projection of the supercurrent for the supersymmetric C* invariant.
Upon doing this, one finds a supercurrent in the two parameter family described in [9] with
c1 =0.

4 The supersymmetric COC invariant

Another conformal supergravity invariant was constructed in [9], corresponding to the su-
persymmetrization of Cypeq0C*. Tt makes use of a different superform based on another
constrained primary superfield. Curiously, this construction, which we denote the B action
principle, is not based on an S-invariant superform, which leads to explicit dependence on
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the S-supersymmetry and special conformal connections in the component action. As dis-
cussed in [9], another choice for the basic primary superfield leads to the supersymmetric
FOF invariant minimally coupled to conformal supergravity. Both results are given below.

4.1 The B action principle
Let us begin by describing the B action principle in components. Its building block is

a primary dimension 3 superfield B, = B,(¥), which is pseudoreal, B, = B,;;, and
satisfies the differential constraint

A . 92 ; ,
ViBAIk) = —gégﬂvg Bik) | (4.1)

Its corresponding superform action principle was given in [9]. Its reduction to components,
following (3.2a), is straightforward and leads to

) i - 1 -
L= F/ + (wmi'me/Z) + E <¢ai7abcwbj> ECZ] 4 E (wmi,ymnpwnj) (wpkpl]k:)
— 167 Clap — 81 (Ymiy™™AL) Fo® + 81 (Yiniy ™™ s " Ba”
+2(6007) + 5 (Vmi?™ 17 bk ) Cat?™ + 5 (i ™ tong) (8puh ) . (42)

The various component fields are defined by successive application of superspace spinor

derivatives,
Ak = év(ﬁiBﬁaM , Aoy’ = %vaijiﬂ, (4.3a)
ikl = ivngaﬂ‘km , Cp' = é(:a () + Md3” ) Ve AP95| - (4.3D)
Cav = 3 (3)"*Vaich*] (4.3¢)
pullt 1= ~ 2V O], pa 1= 2 (30) PV 0y O], (43)
Ball = - (30) Vi, (4:3¢)
QY = %vﬁjEﬂam : F = évajmq : (4.3f)

where we abuse notation somewhat by denoting e.g. A%“* both as a superfield and as its
lowest component. In the Lagrangian (4.2), we have written F’ and Q' for the terms
involving zero and one gravitini, respectively. These are given in terms of F and Q% as

, .32 3\ gii
Q=0 + 2B VpR(Q)™ ) + LA (v) 5% R(J)ab i (4.4a)
/ 161, bea abij | 2 abij
F'=F = == Aoy VeR(Q)"% + 4Bai; VoR(J) ™Y + S Capig R(T)™Y, (4.4b)

where we have written the vector derivative and gravitino curvature in the original frame
to maintain contact with [9].

As already alluded to, the connections f,,* and ¢,,' appear explicitly within the
Lagrangian (4.2), so invariance under both special conformal and S-supersymmetry trans-
formations holds only up to total derivatives. It does not seem possible to eliminate this
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explicit dependence in the density formula, although we will find that at least for the
bosonic action, we can eliminate most of the explicit §,,* connections by judiciously adding
a certain total derivative.

As we are primarily working with the traceless connections when in components, it is
useful to give the density formula in that case as well. Its form is slightly modified,

N Dai L abe, \ 1 ij i AP ijk
L=F+ (¢azQ ) + 12 (¢az’7 ¢b]) Ec + 16 (%m 1/’nj)<¢pkp )
—16 fabCab — 8 (wmi'YmnAZ) fna + 8 (wmi'}/mnp¢nj) fpaBa”
- ; 1 N . 31 N .
L aj - ~mn_azb Jk e Aomnp . ijk
+2 (‘bajp ) + 3 (wm]’)/ vy ¢nk) Cab + 2 (wmz’}’ wn])(qspkA > ’ (45)
with the hatted fields defined by

i

5 (xj7ap™) (4.6a)

-~ 2
F=F +20% <nabD — VT

—cdr—
15 cab + Ta ¢ Tbcd) +

~ . . 2 . _ _ i B .
Qaz _ 'YQQIZ + l,yabA(z: <15,'7bcD o 2vdT dbc +7T bderec> _ %'YabfYc'Yd'bej Crcdz] ’
(4.6b)

. g (9 i g
B, = B, — 12 Bt (15%1,1) —ovVeT, + Ta—chb;d> + 31 (Xmawk) . (4.6¢)

The explicit supersymmetry relations between the various component fields in this action
principle are quite complicated and not very enlightening, so we do not give them here.

For the actions that we will be considering, we will mainly be interested in their bosonic
Lagrangians, and these amount to

L=F—16§"C,, . (4.7)

It turns out that at least for the bosonic parts, it is possible to eliminate the explicit
appearance of the K-connection within the bosonic action and render a K-invariant result.
Adding a total derivative

Lodqd = —@a (4@50(“) — @QCCC) + 16fab0(“b) (4.8)
has the effect of removing the symmetric part of C, from the K-connection term, giving
L =L+ Loqqa = F— ?a (4@1,0(‘11)) — @GCCC) — 16 f[ab]C[“b] . (4.9)

Henceforth, we will drop the prime on the Lagrangian.

The advantage of this modification is that the antisymmetric (and bosonic) part of fgp
is just the curl of the dilatation gauge field b,,. In the circumstances we will be interested
in, Clo will be divergenceless and so this term can be dropped. Equivalently, the K-
transformation of the other terms in (4.9) is proportional to @“C[ab}, and so becomes K-
invariant when this quantity vanishes; therefore, the explicit K-connection must also vanish
up to a total derivative. This is the case when B,” describes a four-form field strength
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multiplet (with Ci, the Hodge dual of the supercovariant field strength) as studied e.g.
in [44]. There, in addition to the constraint (4.1), the authors found that

% = —4V,B*Y (4.10)

Both the models we construct in this paper using the B-action principle will actually satisfy
this extra condition. It is possible that for this restricted class, the B-action principle might
be significantly simplified by eliminating a number of the K and S connections, but it seems
impossible to remove all of them simultaneously, so we have not attempted to massage its
form any further.

4.2 The supersymmetric COC invariant in components

Using the B action principle, one can directly construct the COC invariant. The appropri-
ate superfield B,%” should be a composite built out of the standard Weyl multiplet fields
and was given in superspace (up to a change in normalization) as [9]

B — —qwley, Pl 39i x @0l X 557) 4103 XU XPD) (4.11)

Its lowest component corresponds to

2i

Vi (X"vax?) - (4.12)

By = T, RO +i (R(Qua Q)" ) +

The Lagrangian can then be built out of successive applications of superspace spinor deriva-
tives or, equivalently, supersymmetry transformations to give the various composite objects.
These are quite intricate and we made use of the computer algebra program Cadabra to
help in their construction. Their full expressions are given in a supplementary file. Right
now, an important feature is that (4.10) holds, and so this describes a four-form field
strength multiplet. Indeed, the bosonic part of Cj can be written

1 A A o N o
C[ab] = gEadeef (R(M)cdghR(M)efgh - R(J)cd”R(J)ef ij) + VCBabc, (4.13)
4 — 3 —de p - D de
Bape = _ED Tabc - §T[a R(M)bc}de +3 Tde[aR(M)b c]
- vdp—e —eqp—f—d
+ 6Tde[av Tbc] o 4Tad Tbechf ’ (414)

and so the bosonic Lagrangian can be compactly written as (4.9) without the final term.

Even with all these manipulations, the bosonic Lagrangian is fairly involved and it
turns out to be useful to perform yet another set of integrations by parts to place it into a
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final form that will be useful later on. Up to a total derivative, we find

1 - 1 4
L= g CabchZCabcd o gCadeCcdefCefab o g abcdcaecfcbedf

. Rab ij@ZRab - 2 Rab inac ijbc ki +2 Cabcd Rab incd i
A 32 . R .
+Fa’ <3 C*UChege — 8 Rpe TR ij) — 47, (CbcderCde — Ripe TR ij)

4 8 2
— DV*D+ —D3*+ =
+ 45 VD 225 + 15
20 - N
+ ?T_abecadefofecd +4 T—abevfcabcdcfecd

+ 2 Ta_bcﬁdRab i Red ij +4 Ta_bc@dRad i Rbe ij
_ _ 16 abed & 8 —abed & A
AT A4T abe ? abch abeveva cdf g abch abevaeT cdf

abc

14 .
D Cabcdcade _ ED Rab 1) Rab i

16 aef by e e bef < e o abf <
+?CadeT I Ty —4C VTV T — 6 C ™V T~ VT~
16

~ Sad, e 8 Sa— & e
— 1z DT VOVl bed 4 ED VT Vil bed
. 4 o
_ 2TabcT adeRbc inde ij g CabefCCdefTabgT cdg

aiab azcd azef € aigc

_ %@(MT— @azT— @agT— abedef 6Ta—b9@a1T— @d@aQTa—zef é_abcdef

- 10 .
+ 8 Cabch—ECdT;fgvaT—bfg + ? T T_aedT_bde2T_cef

abc

— m—abdep— & — — m—a & fp—bdg & -
— 2T T~ N T VT ™9 + AT T~ VI T T,

abc

8
+2 CadeT_abeT_Cng_dthe;h +—=DT, T_ade_CefTJef + fermion terms,

15 abc
(4.15)
where we have introduced the K-invariant fourth order operator
T AN, =T (vavdVQTb;d + VIV VTt 5 VaVIVIT = 2 VEVanVeTb;d> :
(4.16)

In order to extract the K-connections, which encode the Ricci tensor contributions, it
is useful to have the following results, which hold up to fermionic terms:

VoVyD = DyDyD — 4fuD, (4.17a)
@a@bncdi]’ = ﬁaﬁbRCdij - 4fabRcdij + 4fa[cRd]bij - 4faeRe[cijnd}b ) (417b)
ﬁa@bccdef = ﬁaﬁbccdef - 4fachdef + 4fa[ccd]bef - 4fag77b[ccd}gef

+4FafeCpped — A M1 Cprgea (4.17¢)
VaVeVeT ™% = DV T~ — 8 f Doy T~ + 2y fo9 DT~ %1
£ |dp —e 7 d. A —e
~12£, 11D T + 12£,953 D Ty <11 (4.17d)

VoV VNV T4 = D,V VeV, T-% — 6f, VeV T4 — 6vev, T, 14 f, /)
+6 £,V T, s 4 af, vy v T 12,00, v el
F12f,. VAT —edle | (4.17e)
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4.3 The supersymmetric FOF invariant in components

The supersymmetrization of the FOF action follows a similar path as COC, although in
this case the calculations involved are significantly simpler. We will need the description
of an off-shell Yang-Mills multiplet coupled to conformal supergravity. This was given in
conformal superspace in appendix C of [9] where we refer the reader for more details.

Let us first briefly review and elaborate on the basic ingredients that we need for
our analysis. The non-abelian vector multiplet is described by a dimension 3/2 conformal
primary spinor field strength superfield, A/ satisfying the constraints [9, 26, 54]:

o 1 o
SEATRI —(, DA = gm“, VEAT =0, VEAPDT = LVEN T (41)

The index I is in the adjoint, and associated with A®! is a matrix valued in the Lie algebra
of the gauge group via A% = A*!t; with t; the Hermitian generators of the unitary gauge
group, obeying [t;,t;] = —i f1;%txk. (The generalization to non-unitary gauge groups is
obvious.) Here the covariant derivatives V= (@a, Vi)=E4 — wabXy, — iV 4 carry the
additional Yang-Mills connections V := EAV 4 = EAV4 t;. Their algebra is

[Va,Vp}t=-Tap“Ve — Rap®X, —iF ap, (4.19)
where the torsion and curvatures are those of conformal superspace and Fap! is the field
strength two-form. In terms of the primary superfield A%/ the components of Fap! are

. . ; 1 o
.7:04%3[ =0, .Fajﬁ = (’Ya)aﬁAﬁ 17 ]:abl = _g('}/ab)b’ vlgcAgl : (4'20)

The various component fields are defined as follows. The gaugino of the vector multiplet
is given by the projection A“/|. The component one-form v,,’ and its field strength F,,,’
are given by V;,,/| and Fy,.,,!|, respectively. The supercovariant field strength F,! is given
simply by Fur |, and as usual one finds that Fu!l and Fy,,! differ by gravitino terms,

]:abI = eameanmnI + 1[J[ak’yb]AkI . (4.21)

The last physical field of the vector multiplet is a Lorentz scalar and SU(2) triplet associated
with the bar-projection of the following descendant superfield

ij 1 i v
Xul.— ngmﬂ)l . (4.22)

In this subsection, we will denote the covariant components with exactly the same name
as the associated superfield and avoid the explicit bar-projection.

The superfields A%!, X4 1 together with F,?! = —i('y“b)aﬁ Fup!, are all annihilated
by K, and satisfy the following useful identities:

ViASIT — _igB x T _0ici F AT v XK = 9ty s PRI (4.23a)
) . ) . ) 1 . ) )
ViFT = —VagA — 51V 55 A% 4 55gvm;AM — CapprWPATT | (4.23b)

STFLT = —4ig NPT 4isfA)T, X = —ais{ AT (4.23¢)
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These imply that the § = g + dg + 0x transformations of the component fields are

SN = —ig x4 %aabgﬂ‘fab% (4.24a)
SXIRT = _9 clUWART _ 45U AR (4.24b)
§Fa’ = 2&a VAT + T &y AT + 2in'FaAT (4.24c)
where
VoA = DoAY + %XW aj — ifybczpai]:bcl : (4.25a)
Dy = g0 — %wachcd — baD — V" Ty — v, . (4.25b)
I

The transformation rule of the component connection v,," can be derived from the super-

gravity gauge transformation of V1, 6gV! = EP¢C Fop!, leading to
Svm! = —Eym AR (4.26)

Up to differences in conventions, these match the results of [30].
To construct the FOF action, we again exploit the B-action principle. Here the
relevant composite superfield is

i

B, = iTr (A'yaA7) = ZA”%AJJ g1y, (4.27)

where g7y is the Cartan-Killing metric, which we employ to raise and lower adjoint indices.
This superfield again describes a composite four-form field strength multiplet, with the
bosonic part of C, given by

1 C e
Clay) = —ééabcdefF e fI, (4.28)

which is indeed the dual of a closed four-form. The full expressions for the various pieces
of the B action principle are given in a supplementary file.
Building the bosonic Lagrangian as in (4.9) and dropping a total derivative leads to

N N 2 2 -
L= —Fy! V2P 4 XTENV2Xjic = 22D Fop 'F® 4 = D XVE Xyc

+4 Fab IchIT—abeTc;le + Cabcd Fab Ich I+ 8T—achab I@chd I+ 4T—achab I@chd s

+2FY XU R(NVapij — 2F TRCTEAE frope + X XGR X0
+ 45, Fp P — 85, B L oy (4.29)

Some useful results, which hold up to fermions, are

VoV X9 = DDy X4 — 4, X (4.30a)
ﬁa@chdl = ﬁaﬁchdl - 4fabFCdI + 4fa[ch]bI - 4fa6Fe[clnd}b . (430b)
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5 The N = (2,0) conformal supergravity invariant

As mentioned in the introduction, it is expected that there should be only one type B
anomaly for N/ = (2,0) superconformal field theories with a specific relative coefficient
between the bosonic COC and curvature cubed terms. The type B anomaly should corre-
spond to some A = (2,0) conformal supergravity invariant. In this section, assuming such
an invariant exists, we provide an alternative argument for its uniqueness (and, therefore,
of the type B anomaly) and significantly extend its known bosonic terms.

The Weyl multiplet for N = (2,0) conformal supergravity was constructed in [55].
There it was noted that many of the formulae involving the N' = (2,0) Weyl multiplet
can actually be obtained by considering their truncations to the ' = (1,0) case. It turns
out that most of the bosonic part of the N' = (2,0) conformal supergravity invariant can
be reverse-engineered in a similar way by considering its potential A" = (1,0) reduction.
A key issue is that while there exist two (1,0) conformal supergravity invariants, only
one (2,0) invariant is expected. It is immediately apparent that neither of the two (1,0)
invariants described in the previous sections can alone originate from the truncation of a
(2,0) invariant. The reason for this derives from the presence of e.g. the term DC®4C,;
appearing in these actions, which cannot arise from the truncation of a scalar term in the
N = (2,0) case; the covariant scalar field in the (2,0) Weyl multiplet is D%y, which lies
in the 14 of the USp(4) R-symmetry group, and so no such term can be built as a USp(4)
singlet. However, there exists a certain linear combination of the two (1,0) invariants for
which all such terms cancel and it is this combination which could come from a potential
truncation. It is worth emphasizing that since any potential (2,0) conformal supergravity
invariant has a (1,0) truncation, this leads to a proof that there can be at most one (2,0)
conformal supergravity invariant. In order to see this in more detail and uncover many
of the bosonic terms in the (2,0) conformal supergravity invariant it is necessary to first
briefly review the salient details of the (1,0) truncation of the (2,0) Weyl multiplet (slightly
adapted to our notation and conventions).

To begin with let us recall the component structure of the Weyl multiplet of ' = (2,0)
conformal supergravity [55]. The superconformal tensor calculus of [55] is based on an
off-shell gauging of the N/ = (2,0) superconformal group. One associates the following
independent fields with the local translations, Q-supersymmetry, USp(4) R-symmetry, and
the dilatations: the vielbein e,,, the gravitino ¥,,%, the USp(4) gauge field V,,*, and the
dilatation gauge field b,,. The remaining gauge symmetries are associated with composite
connections, which include the spin connection w,,®, the S-supersymmetry connection
om! and the special conformal connection fma- An off-shell representation of the conformal
supersymmetry algebra is achieved by introducing three covariant matter fields: T, =
Tlabe] [l xiik = xbUk and D7, = D[ij][kl] = Dy, Here Ty is anti-self-dual with
respect to its Lorentz vector indices and all covariant matter fields of the Weyl multiplet are
traceless with respect to the invariant antisymmetric tensor Q% of USp(4). These covariant
fields are used to build the full covariant curvatures given in [55]. In this section we have
endeavored to match the conventions of [55], but the reader should keep in mind some minor
differences explained later. Here we do not provide details such as the supersymmetry
transformations and expressions for the composite fields since these are given in [55].
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We now wish to outline how to perform the truncation. The (2,0) Weyl multiplet
should decompose into the following (1,0) multiplets: a Weyl multiplet on which half of
the supersymmetry is manifest, two gravitini multiplets associated with the extra spin-3/2
gauge fields, and a Yang-Mills multiplet associated with the extra R-symmetry connec-
tions. The structure of the additional gravitino multiplets and their couplings will be quite
complicated from a (1,0) perspective, so we will switch them off. However, we will elect to
keep the additional (1,0) Yang-Mills multiplet, which takes its values in an SU(2) gauge
group, rather than turning it off (as in the analysis of [55]). This means that the truncation
of the N' = (2,0) conformal supergravity action should also generate the FOF invariant in
a linear combination with the A/ = (1,0) conformal supergravity invariants. This will in
turn provide a useful consistency check on our results.

The truncation follows [55] very closely. We split the USp(4) indices i = 1,--- ,4 to
(i =1,2,7 = 1,2) and switch off the third and fourth gravitini ¢, = 0. To preserve this
last condition, we must restrict USp(4) transformations to the block diagonal form

. (A 0
Al‘ — J -/ 1
J < 0 Az j’> ’ (5 )

where we have chosen a basis for Q% so that!?

- 1j -
Qi = (70 = (% 0. (5.2)
O 57/‘7 O Ei/j/

The above conditions ensure that A’; and A", parametrize SU(2) x SU(2) local gauge
transformations. Considering the supersymmetry transformation of the gravitini one must
also impose V"7 = 0. We keep separately the SU(2) gauge fields V;,” = Vi and Vit
in what follows. Since we have turned off the extra gravitini, it is necessary to constrain
some of the covariant fields so that the - and S-supersymmetry transformations are
consistent.'® The non-vanishing covariant fields are

Tupe? = 9T, T ? = 9T, (5.3a)
xi* =y, iV =Wy, xi?F= —% (Qk)l/ 7y %Cﬁjflxka (5.3b)
DYy = —eeyD, DYy =c9yD, D'y =—e"epuD, (5.3¢)
D'y = —%5;;5{/0 n ? Vi) v, (5.3d)

where (QF)"7 (Y#%)"7" are the covariant component fields of the additional SU(2) Yang-
Mills multiplet.

It is important to keep in mind that the conventional constraints chosen for the (2,0)
Weyl multiplet in [55] are not “traceless”, because there is a contribution of the form

120ur conventions for ¢;; and Q;; differ by a sign from the ones of [55]. However, our conventions for
lowering a USp(4) index also differ by a sign so lowering a USp(4) index as \; = Q;; )\ is actually equivalent
to lowering the index in the conventions of [55].

13We take as in [55] the truncated supersymmetry parameters ¢! — (¢',0) and n° — (n°,0).
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TacdiijCdij to the (2,0) special conformal gauge field fab. Thus upon truncating, one
would have to switch to the “traceless” frame by extracting the term quadratic in 7, in
order to match formulae. We will deal with this by writing all (2,0) formulae below in
terms of a “traceless” (2,0) gauge field ]Eab = b — %TacdiijCdij.

Now by considering the truncation of various terms built out of the N' = (2,0) Weyl
multiplet, one can identify the linear combination of the supersymmetric C3, COC and
FOF invariants that permits an uplift to (2,0). This combination is

1
Iooc + 5les + Iror (5.4)

where the additional SU(2) generators are taken in the fundamental so that iV, ' (t;)"; =
7 jo- As already described, this linear combination of COC and C3 is the only choice that
eliminates the DC®C ;. term appearing in both the (1,0) invariants. The additional
contribution Irgp can be determined by uplifting the first two invariants to (2,0) and then
reducing back to (1,0); this actually provides an independent check of the entire Ipop
invariant. The result of the uplift gives most of the bosonic terms in the corresponding
N = (2,0) conformal supergravity invariant:

1 N
£= 5 CapeaP2C™ 4 Cu M0 Cogeg — 4 CopeaCeI €
— R(V)ap PVER(V)™ 35 = 2 R(V)o" TR(V) e P ROV 5+ CP ROV TR(V )aa
A 32 iJ 2 ..
+ fab <3 CaCdercde -8 R(V)bc UR(V)QC ij> - 4faa (C’bcdechde — R(V)bc I]R(V)bc ij)

+ T;Dijkl@2Dklij - %Dijleklqupqij - %DijklR(V)abkiR(V)abjl
+ AT TV gR(V)® i ROV, 4 8T IV g R(V) 1 R(V )b,

T AT 4 g Coped T 0 ;T 0 4 g Cobed Ty ;57 T4 i

_ g COeAT, TSI 4 2 T T 43 Coy N T ;7 e
- g abef CU Topg IT°,5 4 4 Ty I T H RV ik R(V) e

+2(1 — a)TabcijTadein(V)bcklR V)dekl

—~

2 .. A A
+ 7Dwkl <TabcklvavdTdeij o

= @aTabckl @dTbcdij>

N

- %Dijleabcleabdichef paTaef™ + O(T?), (5.5)
where we have introduced @a =D, — fabe, and the K-invariant operator A* is defined
formally the same as (4.16). This action is exactly determined up to linear order in the
covariant field T,;.", while one combination of two terms quadratic in Ty is left undeter-
mined by the uplift and parametrized by an unknown real constant a. No terms cubic in
Top.” may appear for group-theoretic reasons, and indeed one finds that in the correspond-
ing (1,0) invariant (5.4), all terms cubic in T, cancel. There is only one possible term
involving four Ty.” and a single D%}, which we have given here explicitly since it can
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be determined by its (1,0) descendant. All other terms involving four Topc? are denoted
here O(T*): these involve terms with four T and two derivatives (or a Weyl tensor or
a USp(4) curvature tensor) and cannot be uniquely determined by matching to (1,0).

Note that our (2,0) conventions differ from [55] in the same way as our (1,0) con-
ventions differ from [30], see appendix B. In particular, one should keep in mind a sign
difference in the Lorentz curvature tensor from the one in [55], as well as the redefinition of
the special conformal gauge field. Finally, the USp(4) gauge field and curvature are scaled
by a factor of 2 so that

ROV)as = 20, (Vi 4+ Vi V)5 ) (5.6)

6 Discussion

In this paper we have described the component actions for the two conformal supergravity
invariants constructed in [9]. As shown by a supercurrent analysis [9], all conformal super-
gravity invariants must be given by the linear combination I = alz3 + blcoc, where a and
b are some constants, and Is and Icoc are the supersymmetric C3 and COC invariants.
The relative coefficients of the three purely gravitational pieces (1.1) then obey the linear
relation already known in the literature, see e.g. [3] and references therein. As discussed in
the previous section, amongst the invariants there exists a special choice which corresponds
to the N/ = (1, 0) truncation of the N' = (2, 0) conformal supergravity invariant. Identifying
the choice of coefficients as the one-parameter family that permits an uplift to ' = (2,0)
supergravity allowed us to prove uniqueness of the (2,0) conformal supergravity invariant
and construct many of its bosonic terms. It would be interesting to develop an alternative
method to construct this invariant and recover all terms. This would be interesting not
only in the context of Weyl anomalies, but also in the context of higher-derivative gravity
theories [56-58], where the combination (1.4) of Weyl invariants particular to (2,0) theories
was observed to correspond to 6D critical gravity. It would be interesting to understand
how the covariant matter fields of the standard Weyl multiplet affect the dynamics of these
models when extended to supergravity. We expect that the development of (2,0) conformal
superspace in six dimensions together with the ideas advocated in [9] for the (1,0) case
will provide a viable means to complete the construction of the (2,0) invariant. We hope
the results in this paper will be useful for these applications.

While the supersymmetric C® and COC invariants have been constructed in the stan-
dard Weyl multiplet, it is interesting to note that one could construct these invariants with a
variant Weyl multiplet, known as the dilaton-Weyl multiplet (or type II formulation) [30].14
The dilaton-Weyl multiplet is obtained by coupling the standard Weyl multiplet to a tensor
multiplet [59, 60] and exchanging the covariant matter fields of the standard Weyl multiplet
with those of the tensor multiplet, which include a scalar field o, a gauge 2-form B, and
a negative chirality spinor x?,. This procedure can directly be performed for the supersym-
metric C® and COC invariants and would lead to new higher-derivative invariants in the
dilaton-Weyl multiplet.

1Gee e.g. [37, 38] for a recent discussion.
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Because the dilaton-Weyl multiplet possesses a built-in Weyl compensator in the form
of the scalar field o, it is evident that there are many other curvature invariants one can
construct that have no analogues in the standard Weyl multiplet. For example, one can
construct a supersymmetric RapegOR¥¢ action in addition to CupegDC*®e. To see this, it
is important to realize that the supersymmetry transformations of certain fields built out
of the dilaton-Weyl multiplet can be formally mapped to those of a Yang-Mills multiplet
taking values in the 6D Lorentz algebra [36]. This property leads to a natural correspon-
dence between an action based on a Yang-Mills multiplet and an action in terms of the
dilaton-Weyl multiplet. Using this correspondence (given in component form in [36]), the
supersymmetric FOF action can be converted into an invariant containing R gpcq DR

It is worth mentioning that the YM correspondence can also be exhibited in super-
space. First, one must adapt superspace to the dilaton-Weyl multiplet by introducing a
compensating tensor multiplet ® (with lowest component o), which satisfies vﬁf Vé)q) =0,
and then make use of the modified derivatives 2! and the associated torsion components
that were introduced in section 3.4 of [9] (with X = ®).!” One can then construct a
primary superfield A% 37 satisfying the following constraints (which are formally the same
constraints as those of a vector multiplet valued in the Lorentz group):!°

. o 1 o .
AP =0, PUAPDS Zéﬁ@,ﬁmm)f =0, ZaiA57=0. (6.1)
The appropriate primary superfield A% g7 is given by
, . , 2 ; 1 ;
A% = AV ML P = @3/4 (@ng - ggaw.@gwpﬁ - 3539;%5> M, . (6.2)

We can now describe a supersymmetric RapeaOR@ invariant in the dilaton-Weyl mul-
tiplet in a completely analogous way as the supersymmetric F'OF' action by using the B
action principle with B®%J = {Tr (Ao‘(iAﬁj)). It would be interesting to carry out a de-
tailed analysis of this supersymmetric invariant elsewhere. As a side note, the primary
superfield (6.2) may be used to construct other invariants. For instance, one can describe
a topological invariant containing the 6D Euler term using the A action principle with
A = eqp,5 Tr (APEAYIACK)).,

A natural question to ask is whether other curvature invariants with fewer than six
derivatives may be built when compensating superfields, such as the tensor superfield of
the dilaton-Weyl multiplet, are present. It turns out that it is possible to construct all of
the curvature-squared invariants using either tensor or linear multiplet compensators, just
as in five dimensions [61]. In six dimensions, there is a topological action, corresponding
to the supersymmetrization of By A Hy, that couples a tensor multiplet (with two-form
potential Bs) to a four-form field strength multiplet (containing a closed four-form Hy). It

'5The resulting superspace geometry is equivalent to using the SU(2) superspace formulation of con-
formal supergravity in [26] with the torsion component C,* switched off. This is also equivalent to the
superspace of [36].

1The superspace results given here are similar to the 5D N = 1 description of the Riemann curvature
squared invariant in the dilaton-Weyl multiplet given in [13].
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can be built by starting with the A action principle with the specific choice!”
A T* = £,5,5VPCEBYOIR) (6.3)

where V® is the prepotential for the tensor multiplet (see [26, 62] for details) with the
superfield B3 satisfying the constraints (4.1) and (4.10) corresponding to a four-form
field strength multiplet [44]. A special form of this action was already constructed in [30],
for the case where Hy = Tr(F A F') is built out of a non-abelian vector multiplet. Its
component action contains the terms o Tr(Fq;,F®) and ¢ Tr(X;; X¥). Employing the YM
correspondence, the first of these terms gives a curvature-squared invariant in the gauge
o =1 via Tr(F g F®) — RapeaR%, as shown in [36] (see also [34, 35]). This construction
corresponds to choosing the superfield B“%% = i Ty (Aa(iAﬁj )) within (6.3) and imposing
the gauge ® = 1.

A second curvature squared invariant can be built by choosing a composite abelian
vector multiplet built out of a linear multiplet G¥ [63]. In superspace, this corresponds to
taking B*PY = iWetWA) | with W built from the superfield G as

at aB~i af~ri e Tark, . af i k ij pof )
+1665 PPN X Y GIGH (6.4)

where Tia = %VajGij and F,g = ivk ka. Provided G¥ satisfies the linear multi-

[a
plet constraint V&i G7%) = 0, W describes a composite abelian vector multiplet.'® The
isotriplet X% turns out to include a term RG% /G, and the term Xinij within the compo-
nent action generates R2.

A third curvature-squared invariant is possible but unlike the previous two examples, it
actually requires the supersymmetric version of By A Hy where the four-form field strength
is not a product of Yang-Mills curvature two-forms. One must take the four-form multiplet
built from the superfield B*?% given in (4.11). It is not hard to see that the component
action must contain a term ClpgC?%°?, which then completes the set of curvature-squared
invariants. Because the use of the four-form field strength multiplet has to our knowledge
not been considered, the last curvature-squared invariant remained undiscovered until now.
The three curvature squared invariants described here, corresponding to supersymmetric
extensions of RapeaR¥?, R?, and ClpegC®?, extend the analogous 5D examples con-
structed in components [61] and superspace [13], and span the supersymmetric extensions
of all possible curvature squared terms. Another curvature-squared invariant was partially
constructed in [34, 35] and may correspond to a linear combination of these. It would also
be interesting to find a connection with the curvature-squared invariants of [65] involv-
ing supergravity coupled to matter. We leave a further discussion and analysis of these
invariants, including the component expression for Cyp.qC®c?, for future work.

1"We refer the reader to [9] for details about the gauge invariance of this action.
8The component form of the vector multiplet W appeared originally in [30]. The corresponding result
in Minkowski superspace was given in [64].
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A 6D N = (1,0) conformal superspace

In this appendix we review and expound on the 6D N = (1,0) conformal superspace of [9]
focusing on the ingredients relevant to our presentation in this paper.

A.1 The superconformal algebra

The 6D N = (1,0) superconformal algebra contains the generators of translation (P,),
Lorentz (Mgp), special conformal (K¢), dilatation (D), SU(2) (J;;), @-supersymmetry (Q?)
and S-supersymmetry (S¢) transformations.!? Their (anti)commutation algebra is

[Map, Mea] = 2000 Myjg — 20aaMyge,  [J9, JM) = HOJDE 4 10 gk (A.la)
[Maba Pc] = 277c[an] ) [Maln Kc] = 277c[af(b] ) [Dv Pa] = P, [Dv Ka] =—Ka,
(A.1b)
1 . 1 . L o
[Map, Q%] = _5(%17)76@?7 D, Q] = 3 LT, QR = eMiQd) | (A.lc)
1 . o 1 o ij Qo 1 qaj
(Map, 5] = —5 Gan) 557 [D,57) = —5 57, [79,5¢) = 6,59, (A1d)
{QL. QL) = =29 (V)apPe, {52, 87} = —2ie;;(79)* K., (A.le)
{52, QLY = 20567D — 467 Mg® + 8557, [Ka, Py] = 20apD + 2M, (A.1f)
[Kaa Q’La] = _l(fya)aﬁsﬁl ) [Sélv Pa] = _1(;)‘/a)aﬁQﬁl ) (Alg)

with all other (anti)commutators vanishing. Note that the generator M,? = —%(’yab Vo My,
acts on Q,’j and S} as follows

1 1
(Mo”, Q) = —85Qn + 100Q% . (Mo, S]] = 808 — 1675 - (A.2)

9For our spinor conventions and notation we refer the reader to appendix A of [9].
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We can group together the translation and @-supersymmetry as generators of su-
pertranslations, P4 = (Q°, P,). Similarly we group together the special conformal and
S-supersymmetry transformations by denoting K4 = (S, K*) and the closed subset of
generators that do not contain Py by X, = (Mg, Jij, D, K 4). The superconformal algebra
takes the form

(Xo, Xp} = —fa®Xe, [Xo P} = —fuB“Po — fapX., [Pa,Pp}=—fa’Pc .
(A.3)
The group associated with the subalgebra generated by X, is denoted by H.

A.2 Gauging the superconformal algebra in conformal superspace

The 6D N = (1, 0) conformal superspace is parametrized by local bosonic (z) and fermionic
coordinates (6;), 2™ = (2™, 0!), where m = 0,1,2,3,4,5, p = 1,2,3,4 and i = 1,2. In
gauging the superconformal group we associate to each generator a connection one-form. In
particular, we associate with the supertranslation P4 a vielbein one-form E4 = (B¢ E) =
dzM EpA, while to the generators Xo = (Map, Jij, D, S5, K*) we associate the connection
one-forms w? = (Q%®, &Y, B, §F,F.) = dzMwy® = EAws% These are used to construct

the covariant derivatives, which have the form
1
Vai=Es—wasX.=Fas— 5QAchw, — &M Ty — BaD — FapK? (A.4)

with E4 = E4M 9y the inverse vielbein.

The superconformal algebra is gauged in superspace?’ by the following local transfor-
mations of the vielbein and the connections

Sk B = 0y + EyCePTpe™ + wnel fp + EviC ALfiyc? (A.5a)
Scwn® = IAL + By P Rpe® + wneB fp + EarC ALfyc® + wpSALf s . (A.5b)

Here ¢4 = SA(Z) parametrizes the covariant general coordinate transformations and A% =
A%(z) = (A%, A o, Al , A?) are the gauge parameters associated with the structure group
H. It is important to observe that in (A.5) fpc%, foc®, and fQCA are components of the
structure constants of the superconformal algebra (A.1) and (A.3). The superfields T4
and Rpc? are respectively the torsion and curvature tensors that appear as components
of the two-forms

1
TC = §EB A EATABC - dEC - EB A wngBC ’ (A6a)

1 1
RS := 5EB ANEAR ¢ = dwe — EB A w? fupe — iwb AW fur . (A.6b)

2ONote that in the conventional superspace approach to 6D supergravity the locally superconformal
structure is encoded in super-Weyl transformations [26, 66] analogously to the 4D case [18].
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From the explicit structure constants of the superconformal algebra, these tensors become

T = dE*+ E A" + E° A B, (A.7a)

T — dEY + P A Q% + %Eg AB—E% A®; — 1 E°AF5(3)°%,  (ATb)
R(D) = dB+2E* AT, + 2EX AT, (A.Tc)
R(M)™ = dQ™ + Q* A Q. — 4B A G+ 282 A §(v)a”, (A.7d)
R(J)7 = d®¥ — &0 A 1)) — 8E*0 A FT) (A.7e)
R(K)* = dF* + §° A — F9A B —ig% A Far(39)°7, (A.7f)
R(SY, = a8, — 8 A 0’ — S0 A B~ § A B —iEY AF(0)as (A7g)

This gauging leads to a consistent modification of the superconformal algebra (A.3) de-
scribed by the (anti)commutation relations

[ng XQ} = 7fa7ngQ, (A8a)
[(Xa,VB} = —fuVe — fupX., (A.8D)
VA, VB} = —Tup®Veo — RapXe, (A.8c)

where the generators of the supertranslations, P4, are replaced by the covariant derivatives
V4. The K transformations, (A.5), can then be described by the following variation of the
covariant derivatives

1
Va=[K,Va], K:=¢Ve+AX,=EVe+ 5ACUlMcd + AR Ty + oD+ AuK?,
(A.9)
provided that one interprets the action of the covariant derivatives on the parameters as

Vall = BatP + 0P fp.B, VAL = E4A2 + wA%€P fp 2 + wasAlfyl. (A.10)

A covariant superfield ® is such that under K transformations it varies with no deriva-
tives on the parameters and can be represented as

Sed = Ko . (A.11)

Due to (A.9), covariant derivatives of ® transform covariantly 6x(Va®) = KV 4®P. The
torsion and curvatures superfields, T'4 5% and Rp¢<, are necessarily covariant. A superfield
® is said to be primary if it is annihilated by the special conformal generators, K4® = 0.
Due to (A.1), S¥® = 0 is a sufficient condition for ® to be primary.

In [9] it was proven that a consistent description of the 6D A = (1,0) Weyl multiplet
in conformal superspace can be achieved by:

i) choosing the gauging in conformal superspace described before that leads to the
algebraic structures in (A.8);
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ii) requiring the covariant derivative algebra to resemble the one of 6D N = (1,0) super
Yang-Mills theory [54, 67—-69], which takes the form

{Vi,Vi} = =217 (y")apVa, (A.12)

[vaa VZOJ = (%)aﬁWﬂi, (A12b)
i

[Va, vb] = _g(’}/ab)ozﬁ{vgy W}?} s (A12C)

where W% is a primary dimension 3/2 operator such that

. . . 1 . .
(KA W) =0, {vg,wﬁﬂ}:zag{vgl,wm}, {(VEW=0; (A.13)

iii) constraining the operator W to be of the form

W — Waﬂv/zB + §W(M)ambMab + W(J)&Z]kjjk + W(D)azD + W(K)azBKB ,
(A.14)
where W8 = %(’y“bc)o‘ﬁ Wpe is the super-Weyl tensor [26, 70, 71] such that

SiweP =0, DWW =ws (A.15)

It turns out that, under the previous assumptions, the super-Jacobi identities for the
algebra (A.3) uniquely fix all the superfields W(M)®@ W(J)*dk WD) W(K)*p
together with the torsion and curvatures in terms of W% and its covariant derivatives.
Moreover, W satisfies the Bianchi identities

VIvIW = —s0vEvIwer, (A.16a)
1
VAV WHY — Z<5§v,’§v5kwﬂ<5 = 8iV,, WP, (A.16b)

We refer the reader to [9] for more details.

A.3 Different superspace frames

It is worth underlining that the action of the generators X, on V4, eq. (A.8b), was chosen
in [9] to be identical to the action on P4, eq. (A.3). This condition leads for example
to a simple choice (A.12a) for the form of the supersymmetry algebra, but gives more
complicated constraints on the vector curvatures (2.16), which contribute a number of
covariant fields into the composite connections. As described in the main body of the
paper, for components applications, different choices of conventional constraints can be
more convenient. In conformal superspace this results in a framework where the structure

constants f,p¢ are replaced by structure functions ]Eng.zl

21The reader can find a pedagogical discussion of structure functions in the textbook [33].
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For applications in this paper we use a change of frame where only the vector covariant

derivatives are modified. In particular, we introduce the V4 derivatives as??

Vi, =V, (A.17a)
. 1 ) wi
Va 1= Va = 5 MWa"Mye — iXo(7a)as XS}

- (AgYnac MV Woape + As W W, fc) K, (A.17h)

where A1, A2, A3, Ay, A5 are arbitrary real constant parameters and the dimension 3/2 co-
variant superfield X;* is defined as

ol . 1 7 af
X = VW (A.18)

The new V 4 derivatives have the same vielbein of V 4, Ey?, but have modified con-
nections
@A = EAM (OM — (ZJMQXQ) ) oyt =wpyt+ EMB./\/lBg . (A.19)

For the change of frame (A.17), M€ is given by

M= N\ W, (A.20a)
Mo = —iXo(7a)1s X", (A.20D)
Mae = MY Nae + MV Wape + AW W (A.20c)

with all the other components identically zero.
Given the algebra (A.8) of (X,, V) and the relations (A.17), it is straightforward to
show that the (anti)commutation relations satisfied by X, and V 4 have the following form

[(Xa, Xp} = —fap“Xe, (A.21a)
[Xa,VB} = —fa8Ve — fapXe, (A.21b)
[@A,ﬁB} = —TABC@C — RABQ)(2 . (A.21c)

Here fuS, fa 5% match the structure constants of the superconformal group, but f,4¢ be-
comes a nontrivial structure function fg A% that has dependence on Wy and its descendant
superfields. In the new frame, the torsion and curvatures, T ug¢ and R ABS, have the same
form as their unhatted partners in (A.6), with w, — &, and f,p¢ — fg B

It turns out that by properly tuning the parameters A; and A4 as

1
M=2, h=-7, (A.22)

we can set to zero the torsion Tabc and the dilatation curvature

~

T =0, R(D)ay =0. (A.23)

22Note that, due to Wa[bEch]e = 0 the useful relation VWpyeq = @aWde holds.
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Moreover, the choice of parameters (A.22) removes terms of the form VWape from
Rade(M) and ensures that f%¢ = f%=%, so that

[Ka, Vb] = 20D + 2Mgp - (A.24)

The choice (A.22) simplifies the component analysis and we will assume it from now on.
We leave Ao, A3 and A5 unfixed for the moment although two sets of choices, highlighted
in table 1, are particularly interesting. The first, that we denoted as “Traceless,” gives
rise to a superspace geometry whose projection to components, as described in section 2.3,
leads to convenient constraints on the component curvatures. The second choice leads to
a superspace whose component constraints are identical to the ones originally used in [30].

With the choice (A.22), the structure constants fg A€ turn out to have the following
nontrivial components

¢ 1 8 ~cd\«

ok = <2 + 5)\2) Whea 87 (7°) %, (A.25a)
£ g (0% 1 (0%

Fhe = —2(A2 + 223) X — (1 + 2Xa) () X, — 5(%0)5”)%5 ; (A.25Db)

while all the other components of fgbg are identical to the ones of the superconformal
algebra. Here the dimension 3/2 covariant superfield Xfﬁo‘ is [9]

Xhod = —iVSWOﬁ —olex Mk xked = xkoo - xhor — g (A.26)

Note that for the choice of frame we are considering, the commutator [S{, @b] is

= six \aBe 1 8 AN o
152, Vy] = —i(3) %PV 5; — (2 + 5>\2> Wied (7 d) ST+ 200 + 223) XOK,
~ 6% 1 (0% (&
+ |:(1 + 2)\2)(’}/1,6) BXsz + i(Vbc)B'yX'yiB :| K°. (A.27)

The torsion T’ ugC and curvatures RA B¢ in the new frame can be computed by using
the (anti)commutation relations of the V 4 derivatives derived in [9] together with (A.17).
The anticommutator of two spinor derivatives, {%,%}, has the following torsion and

curvatures

Tile = 2 (1)ap (A.28a)
R(M)LL = 4ie™ (14)0p W, (A.28b)
A(S)é% = 4)\2€ij€a,375X5k, (A.28c)
R(K)Zoz,J/g’C = 2ie¥ (’ya)ag (Agnacy + )\4@bWabc + )\5Waechef> , (A.28d)
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where the omitted components vanish. The non-zero torsion and curvatures in the com-
mutator [V, V] are:

A 1

whi = —5 () ss W5 (8.292)
R(D)} = -2 <)\2 " :) ()2 X7 (A.29b)
RO = 2 (e + 3 ) a0 X7 = 41 (2 + 5 ) (0 X7
—1(a")s X570 + 2i(7a) gy (v s X370 (A.29¢)
R(D) G = 8i <>\2 + g) (Ya) gy X Y ReVT | (A.29d)
R(S)a%hy =i <12 - %)\2 - A3> (Ya)pye?*Y — %(%)55 Yok~ %Az(va)véyﬁéjk
2 () W — (é " ?AQ) ()5 ¥ 5 W e
—iAg;(’ya)gE Eppry WOPW T eIl (A.29)
R(K)ohe = i(%)ﬁﬁaX” +2i <A3 — ;) NacV gy X — i(%cd)mﬁdXé”‘s

1 N ; . 1 1 )
+§(7a)55(70d)p7vdX%6p +1 (AQ + 5)\5 + 8> ('Ya)ép('yc)ﬂ’YW’anm

('Ya)ﬁp (%)%W»angpe

. 1 - bi
+1 (e + 5%) G (oo + 5

1  pe . j pe
+Z<7a)7p<70)56W76X§p _1)‘5(%)70(%)56””5)(# . (A.29f)

In the new frame, the commutator of two vector derivatives, [@a, @b], has the following
non-vanishing torsion and curvatures:

- 3
Tuvy = (Yab)s® {Xakﬂv -2 <>\2 + 8) 53X,f] , (A.30a)
3 1 1
R(M) g = Yyl 4 8 <>\3 - 8> Yolesd 48 <>\5 - 2) WapWied, (A.30b)
~ 1
RN = 5(7@)5”1@5’“’ =Y, (A.30c)

1 ~ 1 ~ 1
R(S)abs = _g(')/ab)zsav'yﬁXsﬂ& - E(Vabc)aﬁvc)d:aﬁ - gevﬁep(’yab)cspwaﬁXz&

: 3 = « ! 3 eI
+i (2/\2 + 4> VieX k(’yb])cw 3 <)\2 + 8) vp5c(Yap)a WP XF | (A.30d)
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~

1. 1 .
R(K)ape = Zdeabcd + S XEPY X 51 (Yape)ys + 1(Vab)e ™ (Ve) s X XA X g1,

3
51 3 vk ap . 2 ak ¥6 B
+§ Ao + 3 X7 Xk (Vabe)ap — 41 | A2 + 6 X X" (Yab )y (Ve)as
. 3 5Y ok os N
+2i | Ao + g Ao + g X Xk (’Yabc)aﬂ +2| A3 — é v[aYr Mb]c
1 1 A
+5 <>\5 - 2) WP W () () 5 - (A.30e)

Note that we have introduced the following higher dimension descendant superfields con-
structed from spinor derivatives of Wo5:

py 5 Ay 1 P
VP = -3 <vgxﬁﬂ> - 45§ngW>> : (A.31a)
1
Y = ivﬁxg, (A.31D)

1
Yos" = VE X" - év’;X(akma‘” (A.31c)

(a B -

By using (A.16) and the previous definitions, one can derive the following relations for the
descendant superfields:

. . ) 9 1 ..
Vi XPI = —EYO/%J - ge”vwww - 55“551/, (A.32a)
A 1 | 1 N 1 ...
VLXE = S00Ye0Y E(SE]YQ‘”” — 367 Vag™® = 1€ 9VoW?
3 1 .. .
+%s”5§vapw5>ﬂ — €ISV (A.32b)
VY = —2iV,5 X7 (A.32¢)

. 2 . R . R . . . . .
VEY, P = 35’*“(’( — 81 Vs X2 — 4i Vs XI5 4+ 31 Vo X9 + 3165 Vo5 X9

3i 4 } . :
—5153 Vs X% — 306 WP XD + dicyye, W5€X§)5p> , (A.32d)

- 4 (ye 8i (v .
l 5 _ s L v6 (v 16 (v 1§ : L5
VeYap™ = ~4iVe@Xp) ™ + 200 Vi), X + 200V Xy P + 8160V 0 X5 P

sﬁ)EO'TXéé)T — 8 5€pg(aWP(’YXé)5)U . (A32e)

4i (
_H o 5O
3 W (5(a
These relations define the Q-supersymmetry transformations of the descendant superfields
of the super-Weyl tensor. Their S-supersymmetry transformations are instead given by

the following relations [9]:

el j 8i « oy <] sa 2 @

SeXH = ZHWe . Sex® = —islegw’ + gdgafgwﬁ . (A.33a)
STV, P = g (16Xé)75 — 288X 4 853Xﬁj>) , (A.33D)
SPY,51 — 24 (60 X5 — L5 x, O SOY = —4X2 (A.33c)

jab (a*B)j 3 (a B)j ) i i - .
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Note that the Bianchi identities for the V4 derivatives are identically satisfied due
to (A.16), (A.32) and the following useful relations

VoYs ™ =0,  VOY AU = 4 (5 +8x) X XD (A.34a)
Vol xibn — polexifn 4 g ()\2 + :) wieBxi (A.34D)
@5(0[}/67)56 = 0, (A34C)

VOOYs A = 24iXFO X5 1) — 8ixkOSE X 5,77 4 96i (AQ + z> Xk x, B7)
3
—16i <A2 + 8> X0k X5, (P62 (A.34d)
We conclude this appendix by mentioning that in the new frame the supergravity

gauge transformations of the vielbein, the connections and of a covariant tensor superfield
®, respectively, are (compare with (A.5) and (A.11))

Sk B = 0y + EyCePTpe™ + oneel fpt + EvC Alfyc? (A.35a)
Scion® = oAl + ExCeB Rpe® + one? fp + ExrC AL frc® + oAl fyt,  (A.35b)
5c® = Ko, (A.35¢)

where the operator K is K = (5’4@ A+ AQXQ) and the gauge parameters A2 and A% are
related to each other by
A% = A 4 eAM 2 . (A.36)

B Relating notation and conventions

As underlined in section 2 and appendix A, the “hat” frame described in section 2.3 is
equivalent to the one employed originally in [30] by choosing the parameters as follows

D =2 M=, M=l (B.1)
This is true up to a choice of notation and conventions. In this appendix we describe the
relevant notational differences and show how to obtain the results of [30] from the ones in
section 2.3.

First of all, note that throughout our paper we have used chiral four-component spinor
notation while in [30] eight-component spinor notation is used. To match the results, one
should first reinterpret our formulae using eight component spinors. This is straightforward
by using appendix A of [9] where we refer the reader for more details. Our 8 x 8 Dirac
spinors ¥ and matrices I'* are

_ (v a_ [ 0 (39 (030
‘P<x> ! ((vw 0 ) F*<5—5£>’ 2

where 'y obeys Pelolelal’el' s = €abedesTs- Similarly, there is a direct relation between

v
wardly lifted to a product of Dirac I's. The eight component spinor generators of the 6D

avan  Faran gnd Poran .— Plapaz ... panl gince a product of chiral s are straightfor-
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Our notation Bergshoeft et al. [30]
yab, gabedef Ta par-an .. pab, gabedef i (_jymaian
P,, K% @', S; P,, K* —2Q°, 25;
My, Jij, D —2Mp, 2U;5, D
em® Font, ol S eu®s Ful byl Gy
o Vi by, 0%, 1V, b,

R(P)ap®s R(K)apes R(Q)av's R(S)api R(P)ap®, R(K)apes 2R(Q)ap’s SR(S)ani
R(M) ™, R(J)ap'?, R(D)ab, —R(M)ap*, 5R(U)ar, R(D)ap
£ A &y ' &%, A, 3ei, 31
Aab N o e LA A

Table 2. Translation of notation and conventions.

N = (1,0) superconformal algebra are

i _ (0 S
Q‘(QQ)’ &—(0). (B.3)

Similarly, all the (anti)chiral spinor fields are straightforwardly lifted to eight components,
such that, e.g. Ym¥ Q% = ¥miQ?, dmhS* — ¢m'Si. The results of [30] for the 6D N = (1,0)
Weyl multiplet may be obtained from the results of section 2 by lifting to eight-component
spinors, fixing the parameters as in (B.1) and renaming the fields in accordance with table 2.
We have normalized the covariant fields 77, , X' and D to match those of [30].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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