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Referat:

Food craving - the strong desire for particular food [1] - is a powerful trigger for food intake
[2] and has been associated with obesity [1, 3] including dieting success [2]. Despite its
relevance for successful weight control [1], current knowledge on weight-related di�erences
in the underlying brain mechanisms is rather limited. Reasons for the lack of knowledge
might be (1) the assumption of linear relationships between weight status and craving-
related neural mechanisms or (2) the focus on normal-weight and obese samples with over-
weight individuals being underrepresented in previous studies [4�9]. Therefore, here we
investigated neural correlates (BOLD activity and functional connectivity) of food craving
regulation in a balanced sample of hungry normal-weight, overweight, and obese women;
aiming at identifying relationships with weight status (focusing on quadratic associations)
and obesity-relevant personality aspects. We �rst explored relationships between the body
mass index (BMI), as a measure of the individual weight status, and general personality
characteristics (i.e., sensitivity to reward/sensitivity to punishment [10] and impulsivity
[11]) as well as eating-speci�c aspects of personality [12]. We found linear and quadratic
relationships which were partly moderated by gender (publication 1). Relevant eating-
speci�c aspects of personality (i.e., Disinhibition and Cognitive Restraint) were considered
for the neuroimaging part of this thesis project. In this study participants were presented
with pictures of palatable food and instructed to either admit to the upcoming craving
or to regulate it. Regulation, in contrast to craving, was characterized by an inverted
U-shaped association of BMI and brain activity in areas involved in food salience process-
ing (putamen, amygdala, and insula), indicative of BMI-related variation in motivational
signaling. Moreover, several di�erences in functional connectivity were observed. They
suggest an increased need for top-down adjustment of striatal value representations with
a higher BMI (linear relationship of BMI and connectivity of putamen/dorsolateral pre-
frontal cortex) and an impaired interplay between salience processing and self-monitoring
or eating-related strategic action planning in highly disinhibited eaters (linear relationship
of Disinhibition and connectivity of amygdala/dorsomedial prefrontal cortex or caudate)
(publication 2). Although further research is needed to con�rm the current �ndings, this
thesis project contributes to a better understanding of the neural basis of food craving reg-
ulation in relation to weight status and di�erences in eating behavior. Identi�ed regions
may represent targets for real-time fMRI neurofeedback training paradigms for obesity
treatment, an innovative approach that enables individuals to volitionally regulate brain
activity of certain regions to induce changes in behavior [13�15].
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1 Introduction

Obesity is a multifaceted phenomenon. A variety of interrelated factors contribute to

overeating and the abnormal or excessive body fat accumulation characterizing over-

weight and obesity [17]. Such factors range from genetic aspects a�ecting body physiology

and behavior [18, 19] to environmental characteristics including lifestyle or accessibility,

price, and promotion of calorie dense food [20�23]. A mismatch between modern envi-

ronment/lifestyle and biological processes which evolved in ancient times of food scarcity

has been proposed to constitute the basis for the present obesity problem. Thus, biolog-

ical traits such as strong attractability to high-caloric food, slow satiety mechanisms or

high metabolic e�ciency are advantageous in a scarce environment but detrimental in our

modern societies with an abundance of food [24, 25]. Brain mechanisms involved in the

processing of reward, learning and memory, for example, likely evolved to induce ingestion

of palatable food beyond homeostatic needs to guarantee energy storage for times of food

shortage or famine, having adverse consequences for health these days [26, 27].

To specify the degree of overweight or obesity and the associated risk for comorbidi-

ties, several classi�cation systems are available. One commonly used measure to classify

overweight and obesity in adults is the body mass index (BMI). The BMI is de�ned as

an individual's weight in kilograms divided by the square of his or her height in meters

(kg/m2). The World Health Organization (WHO) de�nes six di�erent weight categories

[17]: (1) underweight (BMI < 18.50), (2) normal weight (BMI ≥ 18.50 kg/m2 < 25

kg/m2), (3) overweight (BMI ≥ 25 kg/m2 < 30 kg/m2), (4) obesity class I (BMI ≥ 30

kg/m2 < 35 kg/m2), (5) obesity class II (BMI ≥ 35 kg/m2 < 40 kg/m2), and obesity

class III (BMI ≥ 40 kg/m2). Above a BMI of 25 the risk of comorbidities, such as cardio-

vascular diseases, continuously increases with BMI [17]. Although the BMI provides the

most useful population-level measure of overweight and obesity, it does not account for

di�erences in body fat distribution and may not correspond to the same degree of fatness

in di�erent individuals [17]. However, obese individuals with abnormal intra-abdominal

fat depots are at particular risk of the adverse health consequences of obesity [28]. Mea-

surement of waist circumference, therefore, provides a convenient and simple method of

identifying individuals at increased risk of obesity-associated diseases due to abdominal

fat distribution. A waist circumference of ≥ 102 cm in men and ≥ 88 cm in women is

categorized as abdominal obesity [17]. Another approach to classify obesity is the Edmon-

ton Staging System that proposes four stages of obesity (in addition to a stage 0 without

any indication for obesity). Classi�cation is based on the evaluation of obesity-related

comorbidities, physical and psychological symptoms, as well as potential impairments in

quality of life [29]. The staging system aims at complementing existing anthropometric

systems by providing indication of obesity-associated disease extent and severity [29].



Worldwide obesity is on the rise (Fig. 1). The prevalence nearly doubled between 1980

and 2008, especially in higher income level countries [30]. According to the WHO, an

alarming prevalence is being reached in America with 62% of the population being classi-

�ed as overweight1 and 26% as obese2. These individuals are at a higher risk for coronary

heart disease, ischemic stroke, type 2 diabetes, and several cancer diseases [30]. Every

year around 3 million people die because of overweight or obesity [30].

Figure 1: Situation of worldwide obesity (2014, females). Reprinted with permission from the
WHO.

Considering the rising prevalence levels of obesity and associated health risks, rigorous

intervention approaches are needed to prevent and treat this health problem. Unfortu-

nately, standard lifestyle interventions show just small and short-lived changes in BMI

(∼ 5%) [31�37], as dieters typically �nd it di�cult to stop unhealthy eating habits [38].

So far, bariatric surgery is considered the most e�ective method for large and long-term

weight loss [39�42], resulting in a substantial improvement of cardiovascular risk factors

and quality of life [43�45]. Therefore, it is the therapy of choice for patients with severe

obesity. However, it is an invasive intervention with several side e�ects [46�48]. For in-

stance, patients have to compensate nutritional de�cits by daily multivitamin and mineral

supplements [46, 49, 50]. After the surgery patients may also su�er from depressive symp-

toms increasing suicide rate [51]. To establish more e�ective non-surgical interventions, we

1BMI ≥ 25 kg/m2 < 30 kg/m2

2BMI ≥ 30 kg/m2
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have to learn more about the underlying mechanisms that lead to and maintain unhealthy

eating behavior. Therefore, this thesis project is dedicated to one of these processes - food

craving. Food craving is de�ned as the inner drive or desire to eat certain foods [1]. Ac-

cording to its relevance for overeating and obesity [1], the present thesis project focuses

on the examination of brain regulation of food craving and its relationship with weight

status and associated psychological traits. Speci�cally, the following research questions

will be addressed: (a) Which aspects of personality are relevant for obesity and thereby

interesting for the study of food craving regulation?, and (b) How are weight status or

obesity-associated psychological traits linked to brain regulation of food craving? Insights

may be used to develop novel intervention modules, such as neurofeedback training, or to

design personalized treatments based on the patient's personality structure.

In the following two sections, I will introduce mechanisms involved in the homeostatic

(section 1.1) and hedonic (section 1.2) regulation of eating, including obesity-related al-

terations in these systems. The focus will be on hedonic (i.e., reward) eating. Speci�cally,

current knowledge on functional imaging of the brain network for appetite, including lit-

erature on food craving and its regulation, will be presented. Section 1.3 will be dedicated

to the introduction of current knowledge on associations between psychological traits and

obesity. Based on the summarized literature, I will derive the rationale for the experimen-

tal work in section 1.4. This experimental work resulted in two publications that form the

present cumulative dissertation (chapter 2). I close with a summary of the thesis project

(chapter 3).

1.1 Homeostatic eating

According to the process of energy homeostasis, human body weight and body fat content

are relatively stable over time [52]. The energy homeostasis system matches energy intake

to energy expenditure over long time periods. Circulating signals (nutrients and peptides

from the periphery) inform the brain (e.g., hypothalamus) of available energy stores. In

response, the brain adjusts food intake by signaling hunger or satiety which then a�ects

energy intake and energy expenditure [53, 54].

1.1.1 Neurocircuits involved in the homeostatic regulation of eating

The central nervous system (CNS) regulates energy intake and expenditure by integrating

anorexigenic or appetite inhibiting (e.g., leptin, insulin, peptide YY [PYY], glucagon-like

peptide [GLP-1], cholecystokinin [CCK], melanocortins, oxytocin) and orexigenic or ap-

petite stimulating (e.g., ghrelin, agouti-related protein [AGRP], neuropeptide Y [NPY],

γ-aminobutyric acid [GABA]) signals [55]. Peripheral anorexigenic input into the CNS

3



can be divided into long-term signals circulating in proportion to body fat stores (e.g.,

the hormones leptin and insulin [56�60]) and short-term meal-related signals from the

gut (e.g., peptides such as CCK, GLP-1, and PYY [61�63]). Also meal-related nutrient

sensing contributes to this short-term input [64]. The stomach-derived hormone ghrelin

provides peripheral orexigenic input into the CNS [65]. Figure 2 summarizes the main

signals involved in homeostatic eating regulation.

Figure 2: Main signals involved in the homeostatic regulation of eating (respective sites of
release in brackets). The central nervous system (CNS), especially hypothalamus, senses pe-
ripheral hunger (ghrelin; left) and satiety (leptin, insulin, PYY, GLP-1, CCK, nutrients; right)
signals. In response to the peripheral stimulation, neurons in the hypothalamic arcuate nu-
cleus release neuropeptides and neurotransmitters into downstream neurons (e.g., PVN releasing
oxytocin) to initiate hunger/energy intake (NPY, AGRP, GABA) or satiety/energy expendi-
ture (melanocortins). Abbreviations: AGRP agouti-related protein, ARC arcuate nucleus, CCK
cholecystokinin, GABA γ-aminobutyric acid, GLP-1 glucagon-like peptide, NPY neuropeptide
Y, POMC pro-opiomelanocortin neurons, PVN paraventricular nucleus, PYY peptide YY.

Signaling of the hormone leptin provokes satiety [66, 67] by enhancing the responsiveness

to gut-derived anorexigenic signals [68, 69] of neurons located in the forebrain (e.g., arcu-

ate nucleus of the hypothalamus [ARC]) [70] and hindbrain (e.g., nucleus of the solitary

tract) [71]. However, hypothalamic ARC neurons also contribute to hunger and energy

intake [72]. While leptin inhibits agouti-related protein (AGRP) neurons in the ARC -

resulting in satiety, these neurons are activated by the stomach-derived hormone ghrelin -

provoking hunger [73]. Ghrelin-binding induces the release of several orexigenic neuropep-

tides (e.g., NPY or AGRP) and neurotransmitters (e.g., GABA) into downstream neurons

of, for example, those in the hypothalamic paraventricular nucleus (PVN), stimulating

feeding. Other ARC neurons - pro-opiomelanocortin neurons (POMC) [74, 75] - inhibit
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food intake through leptin stimulation and the release of the anorexigenic α-melanocyte

stimulating hormone (α-MSH) after binding to melanocortin receptor 4 (MC4R) in the

PVN [73, 76, 77]. AGRP can inhibit these POMC neurons. Strikingly, leptin, insulin and

ghrelin also a�ect dopaminergic signaling thereby in�uencing motivational processes of

food intake [78, 79].

1.1.2 Homeostatic eating and obesity

The above described processes ensure that the body 'defends' itself against weight loss and

weight gain in normal-weight individuals [80�83]. Su�cient availability of energy stores or

nutrients and corresponding neural signaling restricts further enhancement. Decreasing

neuronal input from these peripheral signals stimulates the brain to signal de�ciency of

stored energy and available nutrients to raise energy stores and nutrient levels. Remark-

ably, overweight and obese individuals 'defend' their body fat stores - although increased

- as well [84�86]. Potential causes are impairments in the secretion of insulin or leptin;

dysfunction in hypothalamic sensing of adiposity-, meal-, or nutrient-related signals; or

alterations in the neuronal sensitivity to these inputs [87]. A frequently discussed expla-

nation, for instance, is leptin resistance [55]. Leptin levels are typically increased in obese

animals and humans, but its function to reduce food consumption is blunted in obesity.

Although the cause of leptin resistance is still unknown, diet-induced in�ammation, gliosis

or injury [88�92] a�ecting hypothalamic cells supposedly play a role, leading to impaired

responding to leptin. As a consequence, for 'normal' energy homeostasis leptin needs

to be increased leading to an expansion of body fat stores to adapt leptin levels until a

new steady state is reached and stabilized. Similar to leptin, diet-induced in�ammatory

processes are supposed to blunt the anorectic e�ect of insulin, promoting hyperphagia

and weight gain [91, 93]. According to such adverse processes weight loss interventions in

obesity might be counteracted by homeostatic mechanisms [94, 95].

1.2 Hedonic eating

The mere sight of palatable food can trigger food consumption just for pleasure and be-

yond homeostatic needs. It has been speculated that such reward-related aspects of eating

evolved to motivate engagement in food consumption in order to store energy for times

of scarcity [96]. Reward-related eating might be subdivided into three phases. In the

preparatory phase food reward is anticipated. This phase is crucial for decision making,

i.e., whether or not to approach and consume available food. To anticipate the reward-

ing properties of attractive food the brain uses representations of reward expectations

and e�ort/risk requirements from prior experiences to optimize choices [97�101]. The
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preparatory period is followed by the consummatory phase. In this stage initial reward

expectancy is con�rmed or rejected. During food consumption pleasure is directly derived

from gustatory and olfactory sensations which drive consumption until satiation signals

dominate. After meal termination the postconsummatory phase starts and last until the

next meal. As nutrient sensing in, for example, the gastrointestinal tract supposedly also

contributes to the generation of food reward, this stage adds to the reinforcing power of

food [102].

A food reward consists of two components: pleasure (liking) and motivation (wanting).

The a�ective part or food liking is associated with the hedonic reaction to the pleasure

of a food reward, whereas the motivational part or wanting relates to incentive salience

[103�105]. Incentive salience is generally triggered by rewards and their predictive cues -

previously neutral stimuli which acquired reward properties after being repeatedly linked

to, e.g., the consumption of palatable food [106] [107�109]. It makes these cues or associ-

ated actions attractive and desirable. Although wanting and liking typically go together,

excessive incentive salience may in some cases lead to irrational 'wants' for outcomes

that are not pleasurable or liked [110, 111], as proposed for compulsive drug taking in

substance addiction and aspects of overeating in obesity [112, 113]. Physiological states

such as hunger or satiety directly modulate incentive salience assigned to food rewards

[114]. Whereas hunger elevates the incentive salience of food rewards and their cues

[114, 115], satiety is supposed to dampen food attractability [114]. Besides their e�ects

on the motivational aspect of reward, physiological states also modulate food pleasant-

ness [114, 116�118]. The components of food reward, moreover, are closely related to

the concept of craving [119]. Craving describes the intense desire for a particular sub-

stance, such as food [1, 120]. Food craving is a strong motivational state, closely related

to hunger [121] - although more intense and speci�c [122]. Cravings are considered to be

an important component of addiction [123], predicting treatment outcomes for substance

addictions [124, 125]. Food cravings have been positively linked to BMI [3, 126, 127] and

the consumption of sweets or high-fat food [126]. Changes in craving might discriminate

between successful and unsuccessful dieters, with a reduction of craving resulting in weight

loss [2, 128].

1.2.1 Neurocircuits involved in hedonic eating

Pleasant foods have been shown to activate cortical regions like the orbitofrontal cortex

(OFC), anterior cingulate cortex (ACC), and insular cortex in addition to subcortical

forebrain structures such as the ventral striatum (VS), ventral pallidum, or amygdala; as

well as mesolimbic dopaminergic projections and deep brainstem areas [104, 107, 129�135].

Neuroimaging studies in humans suggest that the subjective pleasantness of food, as mea-

sured by subjective ratings, is particularly coded within portions of the OFC [110, 131].
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In animals, only subconscious components of pleasure and aversion are experimentally

available, measuring positive and negative orofacial expressions when tasting respective

stimuli [136]. Such studies indicate the presence of opioid mediated liking hotspots in

the medial shell subdivision of the Nucleus accumbens (NAc, part of the VS) and the

ventral pallidum [114, 137�144]. Similarly, opioids stimulate food wanting in a large zone

throughout the entire NAc and other brain structures including amygdala and neostriatum

in animals [145�148]. However, the most important wanting component, purely modu-

lating motivational processes, seems to be dopaminergic signaling within the mesolimbic

dopamine (DA) projection system [103, 109, 149, 150]. These projections arise from neu-

rons in the midbrain ventral tegmental area (VTA) and project to the NAc in the ventral

striatum [151]. Depending on their pleasantness, attractive foods (and other rewards) or

associated cues trigger mesolimbic DA release [116, 151�154]. Phasic activity of dopamin-

ergic projections from the VTA to the NAc is particularly involved in the decision making

process during the preparatory phase of hedonic eating behavior [101, 102], potentially

a�ecting food craving. Nevertheless, DA signaling in the NAc also appears to play a role

in the consummatory phase, as DA levels and turnover continue to increase when food is

consumed [155�157]. In addition to that, DA mediates food-related reward e�ects that

are driven by energy content, as has been indicated by calorie-dependent DA changes in

NAc that were unrelated to taste [158�161].

Functional imaging of the desire for food In recent years, the development of neu-

roimaging modalities, such as magnetic resonance imaging (MRI) or positron emission

tomography (PET), has allowed the examination of brain anatomy and brain activity.

Functional magnetic resonance imaging (fMRI) provides an indirect measurement of neu-

ronal activity. It is based on neurovascular coupling, i.e., the assumption that synaptic

neuronal activity is associated with a proportionate increase in local cerebral blood �ow

(CBF) [162, 163]. Functional MRI measures changes in CBF using the the so-called blood

oxygen level-dependent (BOLD) signal [164]. This signal is sensitive to changes in blood

oxygenation and corresponding local magnetic �eld inhomogenities [165�167], induced by

neural activity while performing an experimental task in the MRI scanner. The resulting

fMRI dataset of a participant is typically analyzed using the general linear model (GLM)

approach [168]. In its simplest formulation the GLM can be expressed as: Y = Xβ + ε

(1). Y represents the BOLD signal associated with a single voxel (3-D element). X is the

design matrix describing the experimental paradigm. β represents the unknown weights

setting the magnitude and direction of the association between the paradigm X and the

data Y . The vector ε contains error values. β estimates of certain experimental condi-

tions can be contrasted against each other to assess the relative di�erence between, e.g.,

food pictures vs. control items. The resulting images are thresholded statistical maps.

They map brain areas showing signi�cantly stronger CBF response. The contrast food
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pictures vs. control items thus may map areas which represent the incentive salience of

the presented food cues. As signal changes from brain activation are rather small, data

from several participants have to be combined. For this combination individual brain

images are transformed into a standard coordinate space [169], allowing the application

of statistical tests to each voxel of the combined images [170].

As food selection is heavily guided by the visual system, typically visual food cues are

used in corresponding neuroimaging studies. The sight of food is thought to elicit a wide

range of anticipatory responses that likely determine our feeling of appetite for attractive

food and associated eating behavior [171]. Visual food stimulation triggers emotional re-

sponses like the desire to eat [172], a main component of eating initiation. It also activates

cognitive processes such as memory retrieval and hedonic evaluation based on previous

experiences with the food [26, 173]. Additionally, self-control processes (e.g., dietary re-

straint) may be triggered [174, 175]. Several variables such as homeostatic state, stress,

self-control, personality and eating style may in�uence the BOLD signal in food-related

tasks [16].

The appetitive network On the basis of previous human neuroimaging studies, the

appetitive network has been recently characterized [16]. It integrates homeostatic informa-

tion on energy stores with external or internal food sensations and higher-order cognitive

information on dietary goals (Fig. 3). Four interconnected brain areas form the core of

this network: amygdala including hippocampus, OFC and adjacent vmPFC, striatum,

and insula. These regions respond to food cues [16]. Activity depends on personality

characteristics (e.g., [176, 177]) and can be modulated by homeostatic signals from the

hypothalamus or the periphery [54, 55, 178]. Dopaminergic neurons, mainly originating in

the midbrain (VTA and substantia nigra pars compacta [Snc]) [53], innervate these brain

structures. This dopaminergic neurotransmission plays two roles: it acts as a learning

and as a motivational signal [16]. Following food ingestion, DA provides a measure of the

nutritional (i.e., reward) value of the consumed foods, thereby acting as a learning signal

[152, 179]. After learning consolidation, though, DA is released in response to external

food cues (e.g., sight) as an anticipatory reward signal which motivates approach and

consumption of rewarding foods. Considering the core regions' speci�c functions, amyg-

dala and OFC code the incentive value of food cues [180]. The amygdala is considered to

assign value to sensory stimuli and to pass that information to the OFC/vmPFC. Here,

the current absolute subjective value is computed [181, 182] and used for decision mak-

ing. Importantly, the amygdala encodes stimulus salience, i.e., both positive and negative

valence of a stimulus [183, 184] and is sensitive to contextual information to adjust the

motivational level. The anterior insula, including adjacent frontal operculum, encodes

multimodal sensory features of food [185]. This area constitutes the primary taste cortex

[186], but also receives somatosensory projections from the oral cavity [187] as well as
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visceral a�erents from the gut [188]. However, the sight of food is su�cient enough to

activate the insula; thus, it might be involved in higher-order processing of food [185].

Posterior and mid-insula portions are particularly responsible for the integration of in-

teroceptive signals and interoceptive awareness [189]. The striatum, which is the main

projection site of DA neurons, is signi�cantly involved in motivated behaviors and incen-

tive learning. Striatal signaling helps to transform value signals into action plans. This

area is strongly responsive to conditioned cues which motivate individuals to approach

and consume food by creating incentive states [103]. The core regions of the appetitive

network are under cognitive control, mainly exerted by the ACC and lPFC which work

in concert to evaluate and compare options to channel behavior [190, 191]. Depending on

context and goals, these regions either enhance appetite and motivation to eat or suppress

it. Signaling in these areas, therefore, does not automatically implicate self-control. The

dorsal ACC plays a crucial role in error awareness and con�ict monitoring [192, 193]. The

lPFC, on the other hand, is involved in planning of behavior to achieve goals but also in

encoding of reward values [194]. For adaptive behavior, the dorsolateral prefrontal cortex

(dlPFC) incorporates contextual information with external input and internal signals such

as hunger [195].

Figure 3: The appetitive network. Core regions (within dashed circle) respond to external
food cues to create incentive states and motivate food approach/consumption. The core regions
are modulated by homeostatic signals from the hypothalamus, direct peripheral input or intero-
ceptive signals from the gut. Higher-order executive control signals from the PFC/ACC either
enhance or reduce the appetitive response (adapted from [16]). Abbreviations: ACC anterior cin-
gulate cortex, PFC prefrontal cortex, Snc substantia nigra pars compacta, vmPFC ventromedial
prefrontal cortex, VTA ventral tegmental area.
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Regulation of the desire for food: insights from functional neuroimaging

One of the major drivers of overeating is food craving [1]. Enhanced BOLD activity

within reward-sensitive regions of the appetitive network (VTA, VS, insula, operculum,

OFC/vmPFC) has been observed during instructed food craving [196]. Cognitive regula-

tion (e.g., reappraisal or mental distancing) of food craving, on the other hand, induced

a decrease in reward-related activity [7, 197, 198] in contrast to increased activity in ar-

eas associated with top-down control (lPFC, dACC) [4�7, 197]. Strikingly, relationships

between weight status and neural correlates of craving regulation are still an open issue.

Previous �ndings are inconsistent: some studies report decreased activity in top-down

executive control areas (lPFC, dACC) [6, 7], others did not �nd such associations [4, 5].

1.2.2 Hedonic eating and obesity

Evidence is accumulating that obesity is associated with impairments in brain structures

associated with reward processing [102]. Obesity, in contrast to normal weight, has been

related to elevated cue-induced incentive salience and value processing (e.g., insula, OFC,

amygdala, striatum), alterations in emotion processing and memory retrieval (e.g., insula,

amygdala, cingulate gyrus, striatum, hippocampus), dysregulation of decision making

networks (OFC, PFC, thalamus) and altered visual processing (e.g., thalamus, fusiform

gyrus) [199�202]. Decreased activity of executive control regions in response to the pre-

sentation of cues signaling palatable food supposedly further a�ect reward processing in

obesity [203]. These �ndings are indicative of dysregulation within the appetitive network

in obesity, i.e., greater attribution of incentive salience to food cues supposedly driving

overeating [16, 199, 201, 204�207]. Further, reactivity of the appetitive network appears to

inappropriately adapt to satiety, as obesity is linked to increased activity in areas involved

in decision making (PFC, OFC, caudate), reward anticipation (anterior cingulate, OFC),

and emotional processing (insula, caudate, amygdala) in the sated state [202, 208, 209].

Besides alterations in reward anticipation, brain responding linked to food consumption

might be also impaired in obesity. Neuroimaging studies indicate both hypo- [161, 207,

210�213] as well as hypersensitivity to food reward delivery in obesity [214]. According

to the reward de�ciency hypothesis, obese individuals overeat to compensate a diminished

experience of subjective reward from food intake [161, 212, 213, 215]. This has been sug-

gested to be caused by reduced dopaminergic D2/D3 receptor availability [113, 216, 217].

In contrast to that, hypersensitivity to food reward has been indicated by enhanced reac-

tivity of the reward system in adolescents gaining weight, suggested to increase the risk

for overeating and obesity [207]. Merging both concepts, Horstmann et al. (2015) pro-

posed a non-linear relationship between human obesity and dopaminergic signaling [113].

According to this model, overweight and mild obesity might be paralleled by a low DA

tone and exaggerated phasic DA responding in the striatum, resulting in high sensitivity
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to reward. Severe obesity, on the other hand, may be accompanied by an increased DA

tone and blunted phasic striatal DA �ring, resulting in a reward de�cit [113].

1.2.3 Interactions between the hedonic and homeostatic eating systems

Homeostatic status and food reward strongly in�uence each other. In circumstances of

food deprivation, food reward and the motivation to seek out food is enhanced, whereas

food becomes less rewarding and motivationally salient in times of repletion [55]. Key

metabolic and hormonal signals regulating homeostasis co-modulate reward-related cir-

cuitry and operate by direct and indirect e�ects on DA function [55]. For example, the

anorexigenic hormones insulin and leptin do not only a�ect energy homeostasis but also

reduce DA release, facilitate its synaptic reuptake, and can decrease DA neuronal ex-

citability [78, 218]; whereas the 'hunger-hormone' ghrelin enhances DA function. These

hormones either directly modulate DA neurons in the mesolimbic circuitry or indirectly

in�uence DA function via the lateral hypothalamic area (LHA) which integrates reward-

related input (e.g., from NAc) with information about energy homeostasis from the ARC

nucleus. In turn, LHA orexin neurons (amongst others) project to and modulate mesolim-

bic DA structures as well as hindbrain areas [79, 219]. Importantly, the neural loop in-

cluding LHA, NAc, and VTA is necessary to attribute incentive salience to goal objects by

making metabolic state signals available to the LHA [79, 101, 106, 220, 221]. Conversely,

purely hedonic cues (such as the smell or sight of food) can, for example, trigger ghrelin

release from the stomach [222].
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1.3 Personality traits and obesity

Although many people have di�culties resisting food temptations, ultimately resulting

in overweight and obesity, others manage to withstand and maintain a healthy weight.

Personality di�erences seem to play a role in this phenomenon. Certain personality char-

acteristics appear to predispose to weight gain whereas others may help to maintain a

healthy body weight.

1.3.1 Neurocognitive tasks and obesity

Obesity has been frequently associated with general or speci�c personality characteristics

measured by neurocognitive tasks [223]. These tasks cover domains ranging from exec-

utive function to time judgment, attention, visuospatial and language abilities, motor

control, memory, and food motivation [223]. Vainik et al. [223] showed in a recent review

that maladaptive eating behavior and high BMI were most consistently related to lower

performance in executive function and enhanced food motivation. More speci�cally, the

most sensitive measures of executive function captured the subdomains response inhibi-

tion (especially Stroop test [224�227] and stop signal task [228�230]), working memory

(particularly Austin maze task [225]) and, although to a lesser degree, decision making

(especially delay discounting [231�234]) [223]. The interaction of low executive function

in combination with high food motivation (best measured by the relative value of food

task [235�237]) was more strongly associated with maladaptive eating behaviors or BMI

than these measures alone [223, 229, 231, 238�240].

1.3.2 Personality questionnaires and obesity

Another approach relates aspects of obesity to general or eating-related personality scales

[223]. Large-scale studies showed that the general personality domains of the Five-Factor

Model of personality [241, 242] are related to obesity [223]. The Five-Factor Model is a

widely used approach to categorize personality based on �ve broad domains: Neuroticism,

Extraversion, Openness/Intellect, Agreeableness and Conscientiousness [241, 242]. Neu-

roticism is a measure of the sensitivity to punishment and negative a�ect. Extraversion

characterizes the sensitivity to reward and positive a�ect. Openness/Intellect measures

cognitive and perceptual �exibility and exploration. Agreeableness measures altruism as

opposed to exploitation of others. Conscientiousness represents a measure of top-down

control over impulses that facilitates goal-directed behavior [241, 242]. These domains can

be divided into several intercorrelated subdomains. For example, Neuroticism includes the

subdomains N1: Anxiety, N2: Angry Hostility, N3: Depression, N4: Self-Consciousness,

N5: Impulsiveness, and N6: Vulnerability. Individuals with obesity tend to score higher
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in aspects of Neuroticism and lower on aspects of Conscientiousness, show aspects of

high Extraversion and low Agreeableness [243�245]. A more precise characterization via

subdomains of these scales showed that obese individuals tend to be less stable and able

to resist temptations (high level of N5: Impulsiveness), are assertive/wanting (high level

of E3: Assertiveness, low level of E4: Activity) and show diminished scores on self-control

(low level of C2: Order, low levels of E4: Self-Discipline) [244, 245]. The most crucial

subdomain seems to be Impulsiveness (N5). Impulsivity - a multidimensional construct -

might be generally described as the tendency to act without adequate forethought, includ-

ing aspects such as responding rashly and without re�ection, poor response inhibition, or

preference of smaller immediate rewards instead of larger delayed ones [246]. Although

it has been mainly related to BMI via the broad personality scales, impulsivity-speci�c

questionnaires correlate with aspects of obesity as well [228, 247�252]. Additionally, the

related psychological concept of self-control has been associated with weight gain and

eating behaviors [253]. Another obesity-relevant model of personality is grounded in re-

inforcement sensitivity theory [254�257]. Based on this theory, two motivational systems

underlie behavior and a�ect: the behavioral activation system (BAS) and the behavioral

inhibition system (BIS), which can be assessed by the BIS/BAS Scales [10]. The BIS is

the aversive motivational system which drives behavioral inhibition. It is characterized

by sensitivity to punishment and negative a�ect. The BAS represents the appetitive mo-

tivational system which drives behavioral approach. This system is sensitive to reward

and positive a�ect. Sensitivity to reward has been previously related to obesity [258�

262]. The relationship with BMI seems to be curvilinear (inverted U-shaped), with less

sensitivity to reward in normal weight and morbid obesity compared to overweight and

mild obesity [258]. Sensitivity to punishment might be enhanced in obesity, indicated

by heightened Neuroticism [243�245]. Sensitivity to punishment has also been related to

eating disorders (Harrison 2010, 2011). For instance, there is the observation of a posi-

tive relationship between symptoms of binge eating and sensitivity to punishment (Davis

2013). Strikingly, studies on relationships between self-report measures of reinforcement

sensitivity and obesity or eating disorders are mainly restricted to females, with males

being underrepresented.

1.3.3 Eating-speci�c personality questionnaires and obesity

Several decades of research di�erentiated at least �ve eating-related personality constructs:

Cognitive Restraint (extent of conscious e�orts to restrict food intake to achieve long-term

weight goals), Disinhibition (overeating tendencies provoked by emotional or situational

triggers), Susceptibility to Hunger (extent to which hunger feelings are experienced and

evoke food intake), Emotional Eating (overeating in response to emotional distress), and

External Eating (overeating in response to external food cues) [12, 263]. These constructs
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have been frequently related to overweight and food intake [264�267]. For example, Dis-

inhibition is robustly positively related to BMI [264, 268�270]. However, the relationship

between Cognitive Restraint and BMI is less straightforward, indicating a curvilinear rela-

tionship, as negative and positive relationships with characteristics of obesity and weight

management have been reported [265]. Strikingly, these eating-related personality traits

are not independent from each other but interact instead [12, 271�274].

1.3.4 Underlying brain mechanisms of personality questionnaires in the food

context

Little is known about relationships between personality characteristics and the underlying

food-related brain mechanisms. Modulating e�ects of Cognitive Restraint [5, 275�279] as

well as Disinhibition [199, 280] on the neural responses to food cues have been reported.

Individuals scoring high on Cognitive Restraint [5, 277, 278], interested in their diet [281],

or focusing on health aspects of food [282] showed stronger activation in executive control

and attention areas such as the lPFC and lateral OFC in response to viewing food pic-

tures. Higher scores of Disinhibition were related to increased activation in the vmPFC

and decreased ACC response to visual food cues [199, 280]. Another study showed that

di�erences in the sensitivity to external food cues interacted with the reward network's

response to appetizing food pictures. More speci�cally, External Eating scores modu-

lated functional connectivity between ventral striatum, amygdala, ACC and premotor

cortex while viewing appetizing compared to bland foods [177]. Further, a high level

of Emotional Eating has been associated with strong dopaminergic striatal responses

to gustatory and olfactory stimuli [283] as well as greater activity in parahippocampal

gyrus, ventral pallidum, thalamus and ACC during the anticipation and/or consumption

of palatable food (i.e., milkshake) [284]. Besides these food-speci�c measures, sensitivity

to reward, as measured by the Behavioral Activation Scale (BAS) [10] has also been shown

to modulate cue-induced neural responses in reward-related regions in the frontal cortex,

striatum, amygdala and midbrain [176]. A recent meta-analysis, which summarized the

current knowledge on personality characteristics in relation to food-induced brain activa-

tion revealed high variability in the results within single personality characteristics and

interrelated constructs [285]. According to this low concurrence, core neural correlates of

personality aspects in the food context are still to be identi�ed.
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1.4 Rationale of the experimental work

From the current state of knowledge, as summarized above, we derived the necessity for

the following experimental work:

From the current state of knowledge, we derived the need for (a) an in-depth charac-

terization of the relationships between aspects of personality and human weight status,

and to (b) examine the link between weight status or associated personality aspects and

brain mechanisms of food craving regulation. Consequently, the aims of the present thesis

project are two-fold:

Study 1) To establish a regression model for BMI including the most obesity-relevant

general and eating-speci�c personality traits, including testing for linear and non-linear

relationships.

Study 2) To examine the relationships between brain mechanisms of food craving regu-

lation (i.e., BOLD activity and functional connectivity as measured by fMRI) and weight

status or the afore characterized personality traits (focusing on the eating-speci�c as-

pects Cognitive Restraint and Disinhibition [12]) in a balanced sample of normal-weight,

overweight and obese females.

We hypothesized Cognitive Restraint, Disinhibition, Susceptibility to Hunger (Three-Factor

Eating Questionnaire [TFEQ]) [12] as well as sensitivity to reward/sensitivity to punish-

ment (Behavioral Inhibition System/Behavioral Activation System [BIS/BAS] Scales) [10]

and impulsivity (Barratt Impulsiveness Scale [BIS-11]) [11] to collectively explain variance

in body weight status (i.e., BMI). We further expected to observe a non-linear (inverted

U-shaped) relationship of Cognitive Restraint [12] and BMI, with the relationship being

moderated by the level of Disinhibition [12].

With respect to brain regulation of food craving, we expected to observe quadratic rela-

tionships between BOLD activity and functional connectivity and BMI in areas involved

in executive control and motivational processing. In addition to weight status, we hypoth-

esized Cognitive Restraint to be related to the responding of executive control regions and

Disinhibition to scale with reward and motivation related brain responding.
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Behavioral and personality characteristics are factors that may jointly regulate body
weight. This study explored the relationship between body mass index (BMI) and self-
reported behavioral and personality measures. These measures included eating behavior
(based on theThree-Factor Eating Questionnaire; Stunkard and Messick, 1985), sensitivity
to reward and punishment (based on the Behavioral Inhibition System/Behavioral Activation
System (BIS/BAS) scales) (Carver and White, 1994) and self-reported impulsivity (based on
the Barratt Impulsiveness Scale-11; Patton et al., 1995). We found an inverted U-shaped
relationship between restrained eating and BMI. This relationship was moderated by the
level of disinhibited eating. Independent of eating behavior, BIS and BAS responsiveness
were associated with BMI in a gender-specific manner with negative relationships
for men and positive relationships for women. Together, eating behavior and BIS/BAS
responsiveness accounted for a substantial proportion of BMI variance (men: ∼25%,
women: ∼32%). A direct relationship between self-reported impulsivity and BMI was
not observed. In summary, our results demonstrate a system of linear and non-linear
relationships between the investigated factors and BMI. Moreover, body weight status
was not only associated with eating behavior (cognitive restraint and disinhibition), but also
with personality factors not inherently related to an eating context (BIS/BAS ). Importantly,
these relationships differ between men and women.

Keywords: eating behavior, gender differences, obesity, personality traits, reward sensitivity, punishment

sensitivity, Behavioral Activation System, Behavioral Inhibition System

INTRODUCTION
Body weight regulation and the development of obesity are asso-
ciated with multiple interdependent factors and mechanisms.
These mechanisms include, at the individual level, genetic and
endocrine factors as well as behavioral and personality char-
acteristics (e.g., Williamson et al., 1995; Bellisle et al., 2004;
Provencher et al., 2004; Dina et al., 2007; Farooqi et al., 2007;
Frayling et al., 2007; Klok et al., 2007; Ahima, 2008; Davis and
Fox, 2008; Rosenbaum et al., 2008; Page et al., 2011). One of
the most important factors contributing to body weight status
is eating behavior, which is commonly assessed by the Three-
Factor Eating Questionnaire (TFEQ; Stunkard and Messick, 1985).
The TFEQ measures three dimensions of eating behavior: cog-
nitive restraint (CR), disinhibition (DIS), and susceptibility to
hunger or hunger (HUN), for short. Cognitive restraint mea-
sures individual control over eating. Restrained eaters attempt
to suppress impulses to eat in order to pursue long-term weight
goals. Typical characteristics are avoidance of fattening foods
and eating of small portions. The factor disinhibition reflects

overeating tendencies. Disinhibited eaters typically initiate eat-
ing because of external environmental cues, such as palatable
food. They have difficulties resisting food stimulation and/or
eat under emotional distress. Considering this, cognitive restraint
(conscious restriction of food intake) and disinhibition (tendency
to overeat) conceptually represent antagonistic concepts. The
third factor, hunger, characterizes the extent to which hunger
feelings are experienced and evoke food intake. While hunger
and disinhibition are positively associated with body mass index
(BMI; e.g., Bond et al., 2001; Boschi et al., 2001; Bellisle et al.,
2004; Bryant et al., 2008; Lesdéma et al., 2012), the relation-
ship of cognitive restraint and BMI seems to be more complex
and non-linear: In normal weight individuals they are usually
positively associated, but the relationship is typically negative
in overweight and obese individuals (e.g., Foster et al., 1998;
Lluch et al., 2000; Bellisle et al., 2004; Provencher et al., 2004;
de Lauzon-Guillain et al., 2006; Cappelleri et al., 2009). Addi-
tionally, cognitive restraint and disinhibition are not indepen-
dently related to BMI, they interactively influence body weight
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status (Stunkard and Messick, 1985; Westenhoefer et al., 1990;
Williamson et al., 1995; Hays et al., 2002; Dykes et al., 2004).
Specifically, cognitive restraint attenuates the effect of disinhibi-
tion on BMI. What is more, previous investigations indicate that
eating behavior (including presumably also underlying biologi-
cal mechanisms) and body weight status mutually influence each
other. For example, there are alterations in the level of cogni-
tive restraint as well as disinhibition in response to dieting (e.g.,
Karlsson et al., 1994; Pekkarinen et al., 1996; Foster et al., 1998;
Westerterp-Plantenga et al., 1998; Dalle Grave et al., 2009; Savage
et al., 2009; Tucker and Bates, 2009).

In addition to eating behavior, various personality traits are
related to food consumption and weight status (Faith et al., 2001;
Elfhag and Morey, 2008). One of the most popular models
of personality that may explain individual variations in food
intake is the reinforcement sensitivity theory (RST; Gray, 1970,
1982, 1987; Gray and McNaughton, 2000). Based on this the-
ory, two general motivational systems that underlie behavior
and affect have been suggested—the Behavioral Inhibition Sys-
tem (BIS) and the Behavioral Activation System (BAS), commonly
assessed by the BIS/BAS scales (Carver and White, 1994). The
BIS represents the aversive motivational system. It is sensitive
to signals of punishment, reward omission, and novelty. The
BIS is supposed to inhibit behavior that may lead to negative
or painful outcomes and is associated with negative affect (nega-
tive reinforcement). The BAS reflects the appetitive motivational
system. It is sensitive to signals of reward and the avoidance
of punishment (positive reinforcement). High BAS responsive-
ness is related to enhanced approach behavior and positive
affect.

As food can be both a positive or negative reinforcer, respon-
siveness of these systems potentially plays a substantial role in
body weight regulation. However, the relationship between sen-
sitivity to reward (as a facet of BAS responsiveness) and BMI
has been almost exclusively investigated in women. Investigations
showed positive associations of reward sensitivity with BMI and
eating habits supporting weight gain (Davis et al., 2004, 2007;
Franken and Muris, 2005). In addition, reward responsiveness
has been related to neural responses. In particular sensitivity
to reward was shown to be positively associated with neural
responses to pictures of highly palatable food in a fronto-striatal-
amygdala network (Beaver et al., 2006). Further findings indicate
that long-lasting overeating and obesity account for adapta-
tions of the reward system (Wang et al., 2001; Volkow et al.,
2008; de Weijer et al., 2011). In combination with the afore-
mentioned findings, these studies led to the development of a
hyper- vs. hyposensitivity theory of reward in obesity (e.g., Davis
and Fox, 2008). According to this theory, some individuals show
an inherent heightened reward sensitivity (hypersensitivity) and
are particularly susceptible to the rewarding properties of high-
calorie food. They are thus supposed to regularly overeat on
fattening food and consequently become overweight or obese.
Prolonged overeating and corresponding obesity, on the other
hand, are associated with alterations in the dopaminergic (DA)
reward circuitry, presumably to compensate for an enhanced
DA tone (Wang et al., 2001; Volkow et al., 2008; de Weijer et al.,
2011). These alterations are assumed to result in hyposensitivity

to reward in obese individuals as well as in increased hedonic
eating to compensate this deficiency. This theory was explored
by Davis and Fox (2008). According to their model, in both
genders BMI and sensitivity to reward are non-linearly asso-
ciated by an inverted U-shaped relationship. More specifically,
the authors reported high reward sensitivity in overweight and
mildly obese participants and low reward sensitivity in morbidly
obese ones. Thus, although sensitivity to reward and sensitiv-
ity to punishment are assumed to be dispositional traits rather
than transient states or symptoms (Wilksch and Wade, 2009),
at least sensitivity to reward seems to be flexible to a certain
extent.

To our knowledge, the association between sensitivity to pun-
ishment and BMI so far has not yet been studied directly, although
several studies demonstrate a relationship between sensitivity
to punishment and eating disorders. Similar to obese subjects,
patients suffering from bulimia nervosa and anorexia nervosa
(binge/purge subtype) are characterized by overeating. This points
at possible similarities in the underlying personality structure
leading to a shared decision-making profile (Brogan et al., 2010).
Studies investigating eating disorders repeatedly report high pun-
ishment responsiveness in patients compared to healthy controls
(e.g., Harrison et al., 2010, 2011). In addition, sensitivity to pun-
ishment has been shown to be positively associated with symptoms
of binge eating (Davis, 2013). Again, these studies are almost
exclusively restricted to women. Matton et al. (2013) clustered
adolescents with respect to reward and punishment responsive-
ness. Interestingly, the cluster of subjects with both high reward
sensitivity and high punishment sensitivity outscored other clus-
ters on self-reported eating problems (i.e., data regarding concerns
about eating, body shape and weight as well as emotional and
external eating). Although girls were more likely to belong to
this cluster, effects were similar for both girls and boys. Based on
these findings, Matton et al. (2013) proposed that adolescents in
this cluster are especially vulnerable to the development of eating
problems.

Sensitivity to reward is regarded as one aspect of the multi-
dimensional psychological construct impulsivity (e.g., Guerrieri
et al., 2008). Generally, impulsive behavior is rapid and rash,
characterized by a lack of planning and less forethought about
consequences of spontaneous actions (Moeller et al., 2001). As the
term “multidimensionality” indicates, impulsivity covers several
different but related concepts. The relationship to overeating is
thus not straightforward. While individual differences in some
aspects of impulsivity are likely to contribute to the ability to
resist overeating, others may not. Various tasks that assess aspects
of impulsive behavior indicate altered decision-making in over-
weight and obese individuals. In Delay Discounting Tasks or Delay
Gratification Paradigms, for example, obese subjects in general
(Rasmussen et al., 2010) or obese women in particular (Weller
et al., 2008; Weygandt et al., 2013) chose more often immediate but
smaller monetary or food-related reward in comparison to normal
weight control subjects. In the Iowa Gambling Task obese volun-
teers preferred high immediate reward despite long-term losses.
This was shown in both genders (Pignatti et al., 2006; Brogan et al.,
2011), women (Horstmann et al., 2011), or men (Koritzky et al.,
2012). In addition, obese women and children of both genders
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lacked appropriate inhibitory control in the non-reward related
Stop Signal Task (Nederkoorn et al., 2006a,b). Another task mea-
suring inhibitory control, the Go/No-Go Task, showed especially
overweight and obese adolescent girls to have difficulties inhibiting
prepotent motor responses to high-calorie food (Batterink et al.,
2010). Heightened impulsivity was also reported for overweight
children (Braet et al., 2007) as well as overweight and obese adults
(e.g., Chalmers et al., 1990; Mobbs et al., 2010) based on different
self-reported measures. For example, Mobbs et al. (2010) reported
higher levels of urgency, lack of perseverance and strong sensitivity
to reward in overweight and obese women. They concluded that
overweight and obesity are associated with problems in inhibit-
ing dominant behavior and intrusive thoughts. Within the obese
population, there is evidence for heightened self-reported impul-
sivity among severely compared to less severely obese individuals
(Rydén et al., 2003), and impulsivity was further related to higher
food intake in women using the Barratt Impulsiveness Scale (BIS;
Guerrieri et al., 2007).

An important factor that contributes to differences in eating
behavior and personality, and probably also to body weight reg-
ulation, is gender. Women, for example, have higher scores of
cognitive restraint and disinhibition compared to men (Bellisle
et al., 2004; Provencher et al., 2004; Li et al., 2012). Addition-
ally, eating disorder symptomatology is more prevalent among
women (e.g., Keel et al., 2007; Matton et al., 2013; Yean et al.,
2013). Furthermore, men and women differ in personality traits
such as impulsivity. For example, higher sensation seeking and
behavioral risk taking was observed in men compared to women
(Arnett, 1992; Byrnes et al., 1999; Cross et al., 2011). Addition-
ally, both gender-independent and gender-specific effects have
been reported, for example, with respect to the Iowa Gambling
Task and weight status (Pignatti et al., 2006; Brogan et al., 2011;
Horstmann et al., 2011; Koritzky et al., 2012). The precise rela-
tionship between impulsivity, BMI and gender thus is not clear
from previous data. Furthermore, women are more sensitive
to both reward and punishment compared to men (Carver and
White, 1994; Jorm et al., 1999; Cross et al., 2011). Yet, the relation-
ship of these measures to weight status has not been sufficiently
explored in males, as described earlier. Differences in the hor-
monal repertoire between men and women might account for
variations in the susceptibility to reinforcers like food. Ovarian
hormones in particular, which affect mesolimbic DA system (i.e.,
reward processing; Sofuoglu et al., 1999; Kaasinen et al., 2001;
Evans et al., 2002; Lynch et al., 2002; Carroll et al., 2004) but also
HPA functioning (i.e., stress response; Burgess and Handa, 1992;
Handa et al., 1994; Patchev et al., 1995; Young, 1995), might be
responsible for such differences, making women generally more
vulnerable to the reinforcing properties of most drugs of abuse
(see Fattore et al., 2008, 2009 for review). As addiction and obe-
sity share several properties (see Volkow et al., 2013 for review),
there might be also gender differences in the susceptibility to
the reinforcing value of food. For other personality domains
and their association with weight status, the gender interaction
has already been shown. In a study by Faith et al. (2001) BMI
was positively associated with neuroticism and negatively with
extraversion in women. In men, BMI was positively associated
with extraversion and psychoticism (Faith et al., 2001). Finally,

gender moderates obesity-related differences in brain structure.
Specifically for women obesity-related variation were observed in
regions involved in habitual and goal-directed control of behav-
ior such as the dorsal striatum and dorsolateral prefrontal cortex
(Horstmann et al., 2011).

Therapeutic approaches to obesity classically target aspects of
eating behavior. Behavioral interventions, for example, aim at
increasing cognitive restraint and decreasing disinhibition (e.g.,
Jubbin and Rajesh, 2012). Yet, as described above, individual
body weight status is also related to personality traits. For a more
effective treatment of obesity it is therefore necessary to regard
personality traits as well. This study aims to establish a comprehen-
sive model relating BMI to eating behavior and the most relevant
obesity-related personality traits (self-reported impulsivity and
reward/punishment sensitivity). We investigated questionnaire
measures of these traits as they can be easily and quickly assessed
in the clinical setting. TFEQ scales cognitive restraint, disinhibi-
tion, and hunger (Stunkard and Messick, 1985) served as measures
of eating behavior. The BIS/BAS scales (Carver and White, 1994)
were considered as measures of sensitivity to punishment (BIS)
and sensitivity to reward (BAS). Further, self-reported impulsiv-
ity, assessed by the BIS-11 (Patton et al., 1995), was incorporated
into the model. The overall goal of our approach was to quan-
tify the individual and joint contribution of these scales to BMI
variance explanation.

Based on previous findings, different models were developed
to test the following hypotheses:

(1) A significant proportion of BMI variance is explained by
disinhibition, hunger, and cognitive restraint. According to
previous findings, we assumed positive linear associations of
both disinhibition and hunger with BMI (e.g., Bond et al.,
2001; Boschi et al., 2001; Bellisle et al., 2004; Bryant et al.,
2008; Lesdéma et al., 2012). As cognitive restraint and BMI are
positively associated in normal weight individuals and nega-
tively in overweight and obese individuals (e.g., Foster et al.,
1998; Lluch et al., 2000; Bellisle et al., 2004; Provencher et al.,
2004; de Lauzon-Guillain et al., 2006; Cappelleri et al., 2009),
we expected an inverted U-shaped relationship between these
variables.

(2) A portion of BMI variance is explained by the interaction
of disinhibition and cognitive restraint, indicated by previ-
ous studies (Stunkard and Messick, 1985; Westenhoefer et al.,
1990; Williamson et al., 1995; Hays et al., 2002; Dykes et al.,
2004).

(3) Additional BMI variance is explained by the level of BIS (as a
measure of punishment responsiveness) and BAS (as a mea-
sure of reward responsiveness). Based on previous research,
we expected positive linear associations for both variables with
BMI in women (Davis et al., 2004, 2007; Franken and Muris,
2005; Harrison et al., 2010, 2011). Despite the lack of previous
data for these relationships in men, we expect the positive rela-
tionships between BIS/BAS and BMI to be specific for women,
which is based on gender-dependent differences in the hor-
monal repertoire influencing the vulnerability to reinforcers
(e.g., Sofuoglu et al., 1999; Kaasinen et al., 2001; Evans et al.,
2002; Lynch et al., 2002; Carroll et al., 2004).
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(4) Further, BMI variance is explained by the level of self-reported
impulsivity (BIS-11). According to previous findings, we
expected a positive linear association with BMI (e.g., Chalmers
et al., 1990; Rydén et al., 2003; Mobbs et al., 2010). Consider-
ing opposing findings with respect to gender (Pignatti et al.,
2006; Brogan et al., 2011; Horstmann et al., 2011; Koritzky
et al., 2012), we tested for gender interactions, although they
were not expected.

Besides the study’s main purpose of modeling BMI, we had two
secondary objectives:

(5) Cognitive restraint, disinhibition, and body weight status mutu-
ally influence each other (e.g., Karlsson et al., 1994; Pekkarinen
et al., 1996; Foster et al., 1998; Westerterp-Plantenga et al.,
1998; Dalle Grave et al., 2009; Savage et al., 2009; Tucker and
Bates, 2009). Therefore, we hypothesized the quadratic rela-
tionship between BMI and cognitive restraint to be moderated
by disinhibition. Depending on the level of disinhibition, we
expected the association of BMI and cognitive restraint to be
as follows: Normal body weight and low disinhibition is asso-
ciated with low cognitive restraint. Normal body weight and
high disinhibition is associated with high cognitive restraint.
Overweight is associated with high cognitive restraint regard-
less of the level of disinhibition. Obesity is associated with low
cognitive restraint regardless of the level of disinhibition.

(6) Davis and Fox (2008) demonstrated an inverted U-shaped rela-
tionship between sensitivity to reward and BMI. We aimed
to corroborate these findings by testing for a quadratic rela-
tionship between BAS and BMI. We hypothesized an inverted
U-shaped relationship between these measures.

As the focus of this investigation was on self-report question-
naires, i.e., explicit, mentally represented data, this study did not
consider implicit or automatic processes (i.e., eating habits) that
influence behavior and potentially body weight independently of
explicit experience (e.g., Berridge and Robinson, 2003; Finlayson
et al., 2008; Papies et al., 2009; Goldstein et al., 2014).

MATERIALS AND METHODS
SUBJECTS
Data were collected by the joint obesity work group of the Max
Planck Institute for Human Cognitive and Brain Sciences and
the IFB Adiposity Diseases in Leipzig between 2009 and 2013.
Healthy adult subjects were invited to participate in different
behavioral and neurocognitive experiments in the context of obe-
sity research and were reimbursed for their participation. As
part of these experiments, subjects completed various question-
naires this cross-sectional study is based on. Exclusion criteria
were age under 18 or over 50 years, BMI under 18 kg/m2,
hypertension, dyslipidemia, metabolic syndrome, depression
(Beck’s Depression Inventory, cut-off value 18), a history of
neuropsychiatric diseases, smoking, diabetes mellitus, vegetari-
anism, and pregnancy. Although there were no restrictions for
ethnicity, only Caucasian subjects volunteered. Age in years and
BMI were assessed at the time of the experiment. Height and
weight for BMI calculations were measured by scientific staff at
the Max Planck Institute in Leipzig. As not all questionnaires

Table 1 | Descriptive statistics.

Variable n Mean (SD) Range Mean

women (SD)

Mean

men (SD)

BMI 326 26.6 (6.1) 18.1–46.5 26.4 (6.6) 26.7 (5.6)

192 26.7 (6.2) 18.1–46.5 26.6 (6.5) 26.8 (6.0)

Age 326 26.7 (4.8) 18–46 26.3 (4.8) 27.0 (4.9)

192 26.6 (4.7) 18–46 25.7 (4.1) 27.2 (5.0)

CR 326 6.5 (4.6) 0–19 7.3 (5.0) 5.8 (4.1)

192 6.7 (4.7) 0–19 7.4 (5.0) 6.2 (4.4)

DIS 326 6.1 (3.2) 0–15 6.8 (3.5) 5.6 (2.8)

192 6.1 (3.0) 1–14 6.8 (3.3) 5.6 (2.6)

HUN 326 5.5 (3.3) 0–14 5.6 (3.3) 5.5 (3.3)

192 5.6 (3.3) 0–14 5.9 (3.4) 5.4 (3.3)

BAS 192 30.9 (8.8) 13–51 29.7 (8.5) 31.8 (9.0)

BIS 192 17.0 (3.9) 5–26 16.5 (4.3) 17.4 (3.4)

BIS-11 192 32.2 (8.7) 9–58 32.0 (8.8) 32.3 (8.6)

Descriptive statistics of variables assessed in the TFEQ-only cohort (n = 326,
145 women, 181 men) and the TFEQ-plus cohort (subgroup of TFEQ-only cohort
(grey), n = 192, 82 women, 110 men). CR, TFEQ cognitive restraint score; DIS,
TFEQ disinhibition score; HUN,TFEQ hunger score; BIS-11, Barratt Impulsiveness
Scale 11 total score; BAS, Behavioral Activation System total score; BIS, Behav-
ioral Inhibition System total score; TFEQ, Three-Factor Eating Questionnaire.

were assessed for all participants, we decided to investigate two
cohorts (called TFEQ-only and TFEQ-plus cohort). The total
cohort consisted of 326 healthy subjects (TFEQ-only cohort; 145
women, 181 men). Besides BMI, age, and gender, the TFEQ
scores of CR, DIS, and HUN were assessed in these subjects.
In a subgroup of 192 participants, BIS, BAS, and BIS-11 were
additionally assessed (TFEQ-plus cohort; 92 women, 110 men).
Table 1 depicts descriptive statistics of the two cohorts. The study
was carried out in accordance with the Declaration of Helsinki
and approved by the local ethics committee of the University
of Leipzig. All subjects gave written informed consent before
participation.

QUESTIONNAIRES
Three-Factor Eating Questionnaire (Stunkard and Messick, 1985;
German version: Pudel and Westenhoefer, 1989)
The TFEQ is a 51-item self-report assessment of eating behavior.
The questionnaire contains three subscales. The 21-item cognitive
restraint scale (CR, scale range: 0–21, Cronbachs Alpha of German
version = 0.84) measures intent to control food intake. The 16-
item disinhibition scale (DIS, scale range: 0–16, Cronbachs Alpha
of German version = 0.75) quantifies overeating tendencies. The
14-item susceptibility to hunger scale (HUN, scale range: 0–14,
Cronbachs Alpha of German version = 0.76) is a measure for food
intake in response to feelings of hunger.

The Behavioral Inhibition System/Behavioral Activation System
Scales (Carver and White, 1994; German version: Strobel et al., 2001)
This self-report questionnaire consists of 20 items designed to
assess the responsiveness of Gray’s (1982, 1987) BAS and BIS as
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personality characteristics. The 7-item BIS scale measures reac-
tivity of the aversive motivational system (scale range: 7–28,
Cronbachs Alpha of German version = 0.78), whereas the 13-
item BAS scale measures reactivity of the appetitive motivational
system (scale range: 13–52, Cronbachs Alpha of German ver-
sion = 0.81). The BAS scale can be divided into three subscales:
Drive, Fun-Seeking, and Reward. In this study we applied the BAS
sum score, as the subscales were not confirmed in the German
version.

Barratt Impulsiveness Scale-11 (Patton et al., 1995; German version:
Preuss et al., 2008)
The BIS-11 is a 30-item self-report questionnaire developed
to measure impulsivity. Along a four-point scale subjects rate
whether statements describing impulsivity pertain to themselves
(scale range: 0–90, Cronbachs Alpha of German version = 0.69).
For the original English version, six factors were identified. This
originally suggested factor structure was not confirmed for the
German equivalent. We therefore applied the total score of the BIS-
11, as it shows adequate internal consistency for German-speaking
regions.

STATISTICAL ANALYSES
Statistical analyses were performed using SPSS (IBM Corpora-
tion Released 2011. IBM SPSS Statistics for Windows, Version
20.0. Armonk, NY: IBM Corporation) and the SPSS toolbox
PROCESS (Hayes, 2013). Associations between BMI and self-
reported behavioral data were explored by means of multiple
regression analyses. All variables except gender were treated
as continuous variables. We separately tested for the associa-
tion between the three TFEQ scales and BMI in the TFEQ-only
cohort (see Association of the TFEQ Scales with BMI). Age and
gender were included as covariates. Significant terms were sub-
sequently used to build a regression model for BMI to assess
the proportion of variance solely explained by variables of eat-
ing behavior (see BMI Modeling Based on the TFEQ Scales
Cognitive Restraint and Disinhibition). Next, we tested BIS-11,
BIS, and BAS seperately for their association with BMI in the
TFEQ-plus cohort (see Association of the Barratt Impulsiveness
Scale-11, Behavioral Activation System, and Behavioral Inhibition
System Scales with BMI). Additionally, gender interactions for
the relationships of the latter three scores with BMI were tested.
Age and gender were included as covariates. Again, all signifi-
cant terms were used to build a comprehensive regression model
for BMI including eating behavior and personality traits (see
BMI Modeling Based on Cognitive Restraint, Disinhibition, the
Behavioral Activation System, and Behavioral Inhibition System
Score).

Based on findings of previous studies, quadratic relationships
between BMI and CR (moderated by DIS, see Interactions between
Cognitive Restraint, Disinhibition, and BMI) and between BMI
and BAS (see Quadratic Relationship between BMI and the
Behavioral Activation System Score) were tested (Foster et al.,
1998; Lluch et al., 2000; Bellisle et al., 2004; Provencher et al.,
2004; de Lauzon-Guillain et al., 2006; Davis and Fox, 2008;
Cappelleri et al., 2009). BMI was treated as regressor for these
analyses.

Table 2 | Regression models and corresponding variables.

Association with

regressand

Variables in

model

Tested gender

interaction

Linear A, g, a A*g

Quadratic (e.g., CR2) A, A2, g, a A2*g

2-way interaction

(DIS*CR)

A, B, A*B, g, a –

Quadratic 2-way

interaction (BMI2*DIS)

A, B, A2, A*B,

A2*B, g, a

–

Different regression models were computed to test our individual hypotheses.
Corresponding variables of all the investigated models are listed. Partial correla-
tions of the underlined terms were tested against 0. A, B: tested variables, e.g.,
Three-Factor Eating Questionnaire cognitive restraint (CR) or disinhibition score
(DIS); g, gender; a, age.

Table 2 lists the regression models which were used to test all
abovementioned associations. As measures of effect size we used
partial correlations and squared partial correlations. The latter can
be interpreted as the regressand’s (e.g., BMI) proportion of vari-
ance which can be explained by a single regressor (e.g., DIS) when
all other variables are held constant. For reasons of consistency,
not to indicate causality, BMI was depicted at the x-axis of every
graph. We added a table of Pearson Correlations of the assessed
variables at the end of the results section (see Pearson Correlations
of All Variables of Interest).

RESULTS
TFEQ-ONLY COHORT (n = 326)
Association of the Three-Factor Eating Questionnaire scales
with BMI
In the total cohort of 326 subjects, a gender difference in CR
(p = 0.004) and in DIS (p = 0.001) was observed, with women
having higher scores in both cases. BMI significantly correlated
with DIS, CR2 (hypothesis 1), and the interaction term of CR and
DIS (hypothesis 2; Figure 1; partial correlations, all p < 0.0005;
see Table 3). We observed no significant association of HUN
with BMI.

BMI modeling based on the TFEQ scales cognitive restraint and
disinhibition
To obtain a model for BMI regressed on the TFEQ scales, a multi-
ple regression analysis using all former significant terms (i.e., CR,
DIS, CR2, and CR∗DIS; additional covariates age and gender) was
conducted. The underlying adjusted R2 of this model was 0.232
(women: 0.247, men: 0.208). CR∗DIS as well as CR2 separately
explained part of BMI variance, as their partial correlations dif-
fered from 0 (both p < 0.0005). Hence, the TFEQ scales CR and
DIS (in addition to age and gender) explained about 23% of the
overall variance of BMI in the population of this cohort.

Interactions between cognitive restraint, disinhibition, and BMI
We hypothesized a quadratic relationship between CR and BMI
(hypothesis 5). The regression of CR on BMI2 confirmed this
hypothesis (squared partial correlation: 0.029, p = 0.002, age
and gender as covariates). Furthermore, this inverted U-shaped
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FIGURE 1 | Interaction of DIS and CR on BMI in theTFEQ-only cohort

(n = 326). The figure illustrates the linear relationship between BMI and
DIS moderated by the level of CR with age and gender as covariates. Partial
correlation of BMI*CR is −0.203 (p < 0.0005; adjusted R2 change of 0.163
through BMI, CR, and BMI*CR). Dots indicate 10th, 25th, 50th, 75th, and
90th percentiles of BMI (20.1, 21.8, 24.9, 30.7, and 35.3 kg/m2). Colors
indicate 10th, 25th, 50th, 75th, and 90th percentiles of CR (1, 3, 6, 9, 13).
CR, cognitive restraint score; DIS, disinhibition score; TFEQ, Three-Factor
Eating Questionnaire.

relationship was moderated by DIS (p = 0.001). In other
words, the relationship between BMI and CR differed with
respect to the DIS score (Figure 2): For low DIS scores the
quadratic association between CR and BMI was well pronounced,
whereas no strong quadratic relationship for high DIS scores was
observed.

TFEQ-PLUS COHORT (n = 192)
Association of the Barratt Impulsiveness Scale-11, Behavioral
Activation System, and Behavioral Inhibition System Scales
with BMI
With respect to eating behavior (based on the TFEQ), results
in the subgroup of 192 participants (TFEQ-plus cohort)
were comparable with the whole sample (TFEQ-only cohort,
n = 326).

BAS and BIS scores did not correlate with BMI, but showed a
significant interaction with gender (hypothesis 3; all p = 0.001).
In women, there was a significant positive correlation of BIS
and BMI (partial correlation = 0.281; p = 0.011) as well as a
strong tendency for the correlation of BAS and BMI (partial cor-
relation = 0.214; p = 0.055). In men, we found a significant
negative correlation of BIS and BMI (partial correlation =−0.208;
p = 0.03) as well as BAS and BMI (partial correlation = −0.295;
p = 0.002). The relationship of BMI and BAS, moderated by

Table 3 | Squared partial correlations (SPC) with BMI.

Variable Squared partial

correlation (η2
p)

Direction of

correlation

p-value

CR (0.009) (+) 0.083

DIS 0.138 + <0.0005

HUN (0.003) (+) 0.596

CR2 0.054 − <0.0005

CR*DIS 0.054 − <0.0005

Squared partial correlations with BMI in the TFEQ-only cohort (n = 326) in a
regression model with age and gender as covariates. SPC can be interpreted as
the proportion of BMI variance explained only by the corresponding variable, not
by covariables. CR,TFEQ cognitive restraint score; DIS,TFEQ disinhibition score;
HUN, TFEQ hunger score; TFEQ, Three-Factor Eating Questionnaire.

gender, is shown in Figure 3 (results for the association of BIS
and BMI are comparable). Concerning the association of self-
reported impulsivity and BMI, neither a correlation between BMI
and BIS-11 (total score) nor a gender interaction was found
(hypothesis 4).

BMI modeling based on cognitive restraint, disinhibition, the
Behavioral Activation System, and Behavioral Inhibition System
score
The final model comprised the relevant variables of self-reported
eating behavior (see BMI Modeling based on the TFEQ Scales
Cognitive Restraint and Disinhibition, TFEQ-only model) as well
as BIS, BAS, gender, BIS∗gender, BAS∗gender and age as regressors.
The resulting adjusted R2 was 0.271 (women: 0.324, men: 0.252).
R2 for women and men did not differ significantly (p = 0.474,
two-tailed Fisher’s Z). Independent of eating behavior, BIS and
BAS significantly contributed to variance explanation of BMI (R2

change of TFEQ-only model and TFEQ-plus model in the sample
of n = 192, p < 0.0005). Hence, self-reported behavioral measures
of CR, DIS, BIS, and BAS in addition to age and gender explained
about 27% of the overall variance of BMI in the population of this
sample. See Figure 4 for variance proportions of the variables for
each gender.

Quadratic relationship between BMI and the Behavioral Activation
System score
As Davis and Fox (2008) reported an inverted U-shaped associ-
ation between sensitivity to reward and BMI, we tested for the
quadratic association of BAS with BMI (hypothesis 6). We cor-
roborated their finding: BMI showed a quadratic relationship
with BAS (p = 0.018, age and gender as covariates, adjusted R2

changed by 0.03 after adding BMI and BMI2). There was only a
trend for a gender interaction of this effect (p = 0.091, stronger
effect in women). Concerning the model, a BMI of around
30 kg/m2 was associated with the highest BAS scores, whereas
a higher and lower BMI was associated with lower BAS scores
(Figure 5).

PEARSON CORRELATIONS OF ALL VARIABLES OF INTEREST
For an overview of the assessed variables and how they are inter-
related, see Table 4. As the correlation of BIS and BAS was not
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FIGURE 2 | Quadratic interaction of BMI and DIS on CR in the

TFEQ-only cohort (n = 326). The figure illustrates the quadratic
relationship between BMI and CR moderated by the level of DIS with age
and gender as covariates. Partial correlation of BMI2*DIS is 0.185
(p < 0.001; adjusted R2 change of 0.083 through BMI, DIS, BMI2, BMI*DIS
and BMI2*DIS). Dots indicate 10th, 25th, 50th, 75th, and 90th percentile of
BMI (20.1, 21.8, 24.9, 30.7, and 35.3 kg/m2). Colors indicate10th, 25th,
50th, 75th, and 90th percentiles of CR (2, 4, 6, 8, 10). CR, cognitive restraint
score; DIS, disinhibition score; TFEQ, Three-Factor Eating Questionnaire.

described thus far, this association was further investigated. One
reason for this relationship might be the high proportion of obese
subjects in our sample. Therefore we tested for an interaction of
BMI with BIS or BAS. Also gender interactions of this assumed
effects were tested. We found a 3-way-interaction between BMI,
gender and BIS (p = 0.007 for BIS∗BMI∗gender with BAS as regres-
sand; age as covariate). Probing this 3-way-interaction revealed
that women with a high BMI had a stronger association of BIS
with BAS.

DISCUSSION
RELATIONSHIP BETWEEN EATING BEHAVIOR AND BMI
Interestingly, only two measures of eating behavior, disinhibi-
tion and cognitive restraint, accounted for much of BMI variance
(∼23%). In other words, the individual level of overeating ten-
dencies in interaction with the level of conscious efforts to restrict
food intake explained a large amount of variance in individual
body weight status. Susceptibility to hunger did not contribute to
variance explanation of BMI. However, an association of hunger
with disinhibition and cognitive restraint was shown in our sam-
ple, which is in line with previous studies (Bellisle et al., 2004;
Lesdéma et al., 2012).

Besides modeling of BMI, we aimed to investigate the appar-
ent non-linear relationship between cognitive restraint and BMI.

FIGURE 3 | Relationship between BMI and BAS in women and men in

theTFEQ-plus cohort (n = 192). As the relationship of BAS and BMI is
moderated by gender, it is shown separately. Partial correlation of
BMI*gender is −0.255 (p < 0.0005, age as covariate). Partial correlation of
BMI (age as covariate) with BAS is 0.214 in women (n = 82) and −0.295 in
men (n = 110). Dashed lines indicate confidence interval of 95% for the fit
lines. BAS, Behavioral Activation System total score.

We found an inverted U-shaped association of BMI with cog-
nitive restraint. Our model demonstrates low levels of cognitive
restraint at the outer edges of the BMI range and a high level
around the overweight range. Interestingly, this relationship
was moderated by the level of disinhibition. For low levels of
disinhibition (low overeating tendencies) the curvilinear relation-
ship between BMI and cognitive restraint was well pronounced.
Accordingly, we conclude that restrained eating is low in normal
weight individuals as food restriction is presumably not necessary.
With higher BMI, food restriction becomes necessary, as losing
weight or avoiding further weight gain are supposedly more fre-
quent with higher BMI (maximum in the overweight/moderate
obese range of the BMI). In the obese BMI range, the posi-
tive relationship between BMI and cognitive restraint is shifted,
resulting in relatively low levels of restrained eating among
morbidly obese individuals. Although restrained eating seems
desirable in this BMI range, morbidly obese individuals might
not be able to raise sufficient self-control resources to restrict
food intake. This notion is supported by neuroimaging studies
that report structural as well as functional obesity-related alter-
ations in brain structures associated with self-control (Le et al.,
2006, 2007; Horstmann et al., 2011). With higher levels of dis-
inhibition there was no strong curvilinear relationship between
BMI and cognitive restraint. This effect indicates that in response
to heightened overeating tendencies, normal weight individu-
als increase conscious efforts to restrict food intake in order to
maintain weight/stay slim. Overweight and moderately obese
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FIGURE 4 | BMI variance explained by final regression model in men and

women. The pie charts show the squared part correlations of all variables of
the final BMI model in the TFEQ-plus cohort (n = 192). All variables with
significant correlation to BMI were included. As the directions of the effect of
BAS and BIS differed between men and women, separate models comprising

the same variables were computed. R2 for women (n = 82) = 0.382. R2 for
men (n = 110) = 0.300. CR, TFEQ cognitive restraint score; DIS, TFEQ
disinhibition score; BAS, Behavioral Activation System total score; BIS,
Behavioral Inhibition System total score; TFEQ, Three-Factor Eating
Questionnaire.

FIGURE 5 | Quadratic association between BAS and BMI in the

TFEQ-plus cohort (n = 192). Partial correlation of BMI2 is −0.92
(p = 0.008, adjusted R2 change of 0.039 through BMI and BMI2, age and
gender as covariates). Dashed lines indicate the 95% confidence interval of
the quadratic fit line. BAS, Behavioral Activation System total score.

individuals presumably do not adequately adapt their dietary
restraint. On the contrary, the model indicates that attempts to
restrict food intake decrease (reflected in lower levels of cognitive

restraint) with stronger disinhibited eating. Eating behavior seems
to be more and more dominated by an uncontrolled eating style,
driven by, for example, external eating signals or habitual food
intake.

GENDER-SPECIFIC RELATIONSHIPS BETWEEN BIS/BAS AND BMI
The aforementioned model for BMI based on eating behavior was
extended to incorporate personality factors not inherently related
to food context but potentially influencing body weight. Both BIS
and BAS explained part of BMI variance independently of eating
behavior (∼6%), whereby they inversely accounted for BMI vari-
ance in men and women. Both scales were positively associated
with BMI in women, but negatively in men.

BAS RESPONSIVENESS AND BMI
Studies already showed that reward responsiveness is positively
related to body weight status and eating habits contributing to
weight gain in women (Davis and Woodside, 2002; Davis et al.,
2004; Franken and Muris, 2005; Loxton and Dawe, 2006). Women
report more food cravings than men, indicating heightened moti-
vation for hedonic eating (Lafay et al., 2001; Cepeda-Benito et al.,
2003; Meule et al., 2012). Moreover, several studies have shown
that women are highly susceptible to the sociocultural pressure
resulting from the “lean ideal” portrayed by the media, lead-
ing to attempts to lose weight and be slim (Polivy and Herman,
2004; Dittmar, 2005; Mask and Blanchard, 2011; Yean et al., 2013).
As a consequence food restriction and avoidance behavior might
boost initial vulnerability to and incentive saliency of highly palat-
able “forbidden” food. In males, drive for a lean body has been
shown to be lower (e.g., Cohane and Pope, 2001; Grogan and
Richards, 2002; Yean et al., 2013). Their individual motivational
value of food might thus be less environmentally influenced.
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Table 4 | Pearson correlations.

BIS-11 BAS BIS HUN DIS

CR r −0.196** 0.180* 0.018 −0.227*** 0.148*

p 0.006 0.013 0.801 0.002 0.041

DIS r 0.046 0.135 −0.022 0.494***

p 0.525 0.061 0.764 <0.0005

HUN r 0.195** −0.050 −0.062

p 0.007 0.487 0.391

BIS r −0.002 0.324***

p 0.981 <0.0005

BAS r −0.132

p 0.068

*p < 0.05, **p < 0.01, ***p < 0.0033.
Pearson correlations between all assessed questionnaire scores in the TFEQ-plus cohort (n = 192). p-values < 0.0033 (***, bold) are considered as significant after
Bonferroni correction for multiple comparison. Noticeable are the associations of CR with HUN (negative), DIS with HUN (positive), and BAS with BIS (positive) as
well as the trend toward the correlation of CR and BIS-11 (negative). CR, TFEQ cognitive restraint score; DIS, TFEQ disinhibition score; HUN, TFEQ hunger score;
BIS-11, Barratt Impulsiveness Scale 11 total score; BAS, Behavioral Activation System total score; BIS, Behavioral Inhibition System total score; TFEQ, Three-Factor
Eating Questionnaire.

For men, reward associated with novelty and excitement might
be particularly reinforcing. Studies reported a higher risk for
excitement-related addiction like pathological gambling (see van
den Bos et al., 2013a for review), alcohol and cannabis (Wagner
and Anthony, 2007; NSDUH, 2012; EMCDAA, 2013) or exercise
dependence (Crossman et al., 1987; Pierce et al., 1997; Weik and
Hale, 2009) in men.

BIS RESPONSIVENESS AND BMI
Emotional eating, which is related to punishment sensitivity (Gray,
1970, 1982, 1987), serves as a way to compensate perceived pun-
ishment/negative affect in women (van Strien et al., 1986, 2013;
Geliebter and Aversa, 2003; Nolan, 2012). Therefore obesity in
women with high BIS responsiveness might be related to com-
pensational eating. Men generally show a lower sensitivity to
punishment (Cross et al., 2011) as well as stronger emotional and
cognitive control over immediate emotional events (especially
punishments; van den Bos et al., 2013b), presumably reducing
their need for compensation of negative emotionality. Further,
there is no clear-cut link between negative emotional eating and
BMI in men (Macht et al., 2002; Geliebter and Aversa, 2003; Nolan,
2012), and, in contrast to women, food craving has been associ-
ated with positive mood states (Lafay et al., 2001). In contrast to
women BIS responsiveness in men might reflect differences in risk
taking behavior. Koritzky et al. (2012) showed that particularly
overweight and obese in comparison to lean men decided more
often for high immediate reward despite long-term losses. Accord-
ingly, they might more easily ignore long-term consequences of
overeating, such as weight gain, because of low sensitivity to related
punishment.

Although the BIS and BAS scales are assumed to be orthogo-
nal (Gray, 1982, 1987), we found a correlation between the two
measures. As BMI moderated the relationship between BIS and
BAS in women, we assume that differences in body weight status
accounted for this effect in our sample.

INVERTED U-SHAPED RELATIONSHIP BETWEEN BMI AND BAS
We corroborated the inverted U-shaped relationship between sen-
sitivity to reward and BMI demonstrated by Davis and Fox (2008)
using the BAS scale. Following Davis and Fox (2008), subjects with
a high BMI in the non-obese range are supposed to face stronger
food cravings and appetitive drive, resulting in enhanced hedonic
eating, weight gain, and possibly overweight. Davis and Fox (2008)
assumed that these individuals detect rewarding stimuli like palat-
able food more easily and more likely approach them. The inverse
relationship between BMI and BAS in the obese range of the
BMI is supposed to reflect reward deficiency resulting from hypo-
DA functioning in obese individuals (Wang et al., 2001; Volkow
et al., 2008; de Weijer et al., 2011). Compensatory hedonic eating
probably compensate for this deficiency.

RELATIONSHIP BETWEEN SELF-REPORTED IMPULSIVITY AND BMI
The contribution of self-reported impulsivity on body weight
remains vague. Impulsivity did not explain BMI variance in our
dataset. Contradictory results regarding the relationship with BMI
have been reported previously (Nolan, 2012; van Koningsbruggen
et al., 2013). In general, none of the subscales seem to be consis-
tently related to overeating or BMI (Meule, 2013). However, we
observed a trend for a negative correlation between BIS-11 and
cognitive restraint. This indicates an indirect influence of impul-
sivity on body weight status via eating behavior, which is in line
with previous findings (Leitch et al., 2013).

STUDY LIMITATIONS AND FUTURE DIRECTIONS
This study is based on analyses of self-reported measures, i.e.,
mentally represented, explicitly accessible information. We have
not considered automatic processes (i.e., eating habits) like
implicit food attitudes (e.g., Papies et al., 2009; Goldstein et al.,
2014) or implicit liking/wanting (e.g., Berridge and Robinson,
2003; Finlayson et al., 2008), which should be regarded in future
studies.
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Furthermore, impulsivity is a multifaceted construct (e.g.,
Patton et al., 1995; Whiteside and Lynam, 2001). According to
insufficient validity of the factor structure of the BIS-11 in Ger-
man (Preuss et al., 2008) we restricted our analysis to the BIS-11
total score. Another impulsivity scale, the UPPS Impulsive Behavior
Scale (Whiteside and Lynam, 2001), is recommended as an addi-
tional self-report measure of impulsivity. This scale is associated
with obesity (Mobbs et al., 2010), but probably measures aspects
of impulsivity that are not covered by BIS-11 (Meule, 2013).

Moreover, cognitive restraint has been proposed to be subdi-
vided into a rigid and flexible component (Westenhoefer, 1991;
Westenhoefer et al., 1999). For reasons of construct validity, the
cognitive restraint scale has been expanded by several further
items (Westenhoefer et al., 1999). We recommend assessment of
these items, because subscaling allows a more detailed analysis of
cognitive restraint’s influence on body weight.

Finally, BMI, although a common way to assess obesity, is a
rather course measure. It relates body weight to body height with-
out taking actual body composition into account. As it does not
measure body fat directly, erroneous evaluation of body weight sta-
tus with respect to obesity can occur (Rothman, 2008). Addressing
this limitation, we recommend consideration of additional mea-
sures like waist/hip ratio or concentration of adipokines like leptin
(Badman and Flier, 2005).

SUMMARY
This study demonstrates that responsiveness to the behavioral acti-
vation and behavioral inhibition system explains differences in
BMI independently of eating behavior. Interestingly the relation-
ships of BMI to BIS and BAS depend on gender, with opposing
directions in men and women. Therefore, specified for men and
women, BIS/BAS responsiveness should be considered in the treat-
ment of obesity. Further, our study contributes to a better under-
standing of the complex relationships between eating behavior and
body weight status. We showed that cognitive restraint and BMI are
non-linearly associated (inverted U-shaped relationship). Impor-
tantly, this relationship is moderated by the level of disinhibition.
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ORIGINAL ARTICLE

Brain regulation of food craving: relationships with weight
status and eating behavior
A Dietrich1, M Hollmann1, D Mathar1,2, A Villringer1,2,3,4,5 and A Horstmann1,2,6

OBJECTIVES: Food craving is a driving force for overeating and obesity. However, the relationship between brain mechanisms
involved in its regulation and weight status is still an open issue. Gaps in the studied body mass index (BMI) distributions and
focusing on linear analyses might have contributed to this lack of knowledge. Here, we investigated brain mechanisms of craving
regulation using functional magnetic resonance imaging in a balanced sample including normal-weight, overweight and obese
participants. We investigated associations between characteristics of obesity, eating behavior and regulatory brain function
focusing on nonlinear relationships.
SUBJECTS/METHODS: Forty-three hungry female volunteers (BMI: 19.4–38.8 kg m− 2, mean: 27.5 ± 5.3 s.d.) were presented with
visual food stimuli individually pre-rated according to tastiness and healthiness. The participants were instructed to either admit to
the upcoming craving or regulate it. We analyzed the relationships between regulatory brain activity as well as functional
connectivity and BMI or eating behavior (Three-Factor Eating Questionnaire, scales: Cognitive Restraint, Disinhibition).
RESULTS: During regulation, BMI correlated with brain activity in the left putamen, amygdala and insula in an inverted U-shaped
manner. Functional connectivity between the putamen and the dorsolateral prefrontal cortex (dlPFC) correlated positively with BMI,
whereas that of amygdala with pallidum and lingual gyrus was nonlinearly (U-shaped) associated with BMI. Disinhibition correlated
negatively with the strength of functional connectivity between amygdala and dorsomedial prefrontal (dmPFC) cortex as well as
caudate.
CONCLUSIONS: This study is the first to reveal quadratic relationships of food-related brain processes and BMI. Reported nonlinear
associations indicate inverse relationships between regulation-related motivational processing in the range of normal weight/
overweight compared with the obese range. Connectivity analyses suggest that the need for top-down (dlPFC) adjustment of
striatal value representations increases with BMI, whereas the interplay of self-monitoring (dmPFC) or eating-related strategic action
planning (caudate) and salience processing (amygdala) might be hampered with high Disinhibition.

International Journal of Obesity advance online publication, 26 April 2016; doi:10.1038/ijo.2016.28

INTRODUCTION
These days obesity has become one of the major health risks of
western societies.1 A main cause of the rising obesity level is
overeating in response to a food-rich environment.2 Appetizing
but high-caloric food is omnipresent and triggers craving, that is,
the intense desire for certain food, which can result in
overconsumption.3 Further, heightened food craving has been
linked to a higher weight status.3 Consequently, therapeutic
approaches targeting food craving are promising tools to
successfully control weight.4 To improve such treatments, it is
necessary to understand the underlying brain mechanisms of
food-craving regulation.
Recently, a network mediating food-related appetitive behavior

consisting of neural structures commonly identified as being
sensitive to food- and eating-associated stimuli has been
proposed.5 Four interconnected brain regions form the core of
this network: amygdala including hippocampus, striatum, ven-
tromedial prefrontal cortex (vmPFC) including orbitofrontal cortex
and insula.5 Activity of these areas is related to the processing
of food motivation as well as food reward (anticipation or
delivery),5–8 and enhanced activity has been associated with the

desire for appetizing food.9 The core regions’ activity is modulated
via higher-order executive control areas including dorsal anterior
cingulate cortex (dACC) and lateral prefrontal cortex.5,10 Previous
functional magnetic resonance imaging (fMRI) studies demon-
strated that volitional regulation of the desire for appetizing food
relates to decreased activity in the core appetitive network
accompanied by heightened activity in the lateral and medial
prefrontal control regions.9,11–16

As food craving and overeating differ with respect to weight
status,3 also neural mechanisms of craving regulation likely vary as
a function thereof. Strikingly, relationships between weight status
and neural correlates of food-craving regulation are still open
issues. Some studies investigating neural correlates of food-
craving regulation did not report on BMI effects.9,11,12 The studies
which showed relationships of weight status and brain regulation
of food craving are inconsistent in that no14,16 smaller13,15,17 or
larger18 responses in executive control areas of the lateral
prefrontal cortex have been reported with higher BMI. Reasons
for that inconsistency might be manifold. To our knowledge,
balanced samples of the full BMI range have been investigated
in children and adolescents only.14,15 In adults, two studies
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compared groups of normal-weight and obese participants but
spared out the overweight status.17,18 Other studies investigating
BMI continuously mainly included normal-weight participants.13,16

Moreover, none of the above-mentioned studies investigated or
reported nonlinear associations with BMI. However, there is
evidence for quadratic relationships between BMI and behavior.
Overweight and mild obesity seem to be characterized by
heightened eating-related self-control and reward sensitivity in
comparison to normal weight and severe obesity.19,20 The
biological basis of these nonlinear relationships might be
weight-status-associated alterations in the dopaminergic system,
recently proposed to be driven by shifts in the balance between
dopaminergic tone and phasic dopaminergic signals.21 Thus,
a continuous investigation of the full BMI range with a focus on
quadratic relationships seems to be highly relevant to our
understanding of brain mechanisms contributing to food over-
consumption and the development and maintenance of obesity.
With the current study, we directly addressed this issue.

By means of fMRI, we investigated neural correlates of food-
craving regulation in a balanced sample of hungry normal-weight
to obese women. We focused particularly on nonlinear (that is,
quadratic) relationships with BMI. As dietary self-control is
nonlinearly (inverted U-shaped) related to BMI,20 we hypothesized
quadratic relationships between brain activity during the regula-
tion of food craving and BMI in areas involved in executive control
and salience processing. In addition to weight status, we
hypothesized characteristics of eating behavior, as assessed by
the Cognitive Restraint (CR) and Disinhibition (DIS) scales of the
Three-Factor Eating Questionnaire,22 to be related to reactivity of
the appetitive network. Cognitive Restraint measures conscious
efforts to regulate food intake in order to achieve long-term
weight goals.22 Therefore, we hypothesized Cognitive Restraint
to be related to regulatory brain activity of top-down control
regions. Disinhibition assesses overeating tendencies provoked by
emotional or situational triggers and is positively associated with
aspects of food reward.22,23 Thus, we hypothesized Disinhibition
to scale with reward- and motivation-related brain activity.
Further, previous studies demonstrated obesity-associated altera-
tions in functional connectivity within core structures of the
appetitive network or regions implicated with executive control
during the presentation of palatable food cues.17,24 Therefore, we
hypothesized functional connectivity within the appetitive network
and with executive control regions to be modulated by weight status
and characteristics of eating behavior.

MATERIALS AND METHODS
Participants
This investigation is an extension to the study of Hollmann et al.16

The prior sample (n=20) of mainly normal-weight participants (n= 17) was
extended to a balanced sample of 43 healthy normal weight to obese
females (see Table 1 for detailed descriptive statistics). Volunteers were
nonsmokers without indications for major depression (Beck’s Depression
Inventory, cutoff value 18),25 abnormalities in the T1-weighted structural
MR scan or contraindications to MRI. The participants gave written
informed consent in accordance with the Declaration of Helsinki and the

requirements of the local ethics committee of the University of Leipzig.
Furthermore, we included only volunteers who did not exclusively follow a
vegetarian diet. According to gender-related differences in the behavioral
and neural responses to food, we restricted the study to women.26

To avoid confounding effects of the menstrual cycle on appetite and the
underlying neural processes, experiments were conducted in a period
between the third and thirteenth day of the menstrual cycle.27 As the
response of the appetitive network to food images is greater in a hungry
state,8 volunteers were instructed to fast at least 6 h before the fMRI
session that was conducted between 1400 to 2000 h. Further, volunteers
completed the Three-Factor Eating Questionnaire.22 The scales CR (range
0–21) and DIS (range 0–16) were considered for analysis.

Experimental paradigm
Before the fMRI experiment, each participant rated 180 high-caloric food
images according to tastiness and healthiness. For each participant, 60
pictures individually rated as ‘unhealthy’ were chosen as stimuli for the
fMRI task—30 images rated as tasty and 30 images rated as not tasty.
During the fMRI task, we presented the volunteers with every food picture
for 6 s under two conditions. During the ‘ADMIT’ condition, the participants
were instructed to freely crave for the following three presented food
pictures. In the ‘REGULATE’ condition, the participants were instructed to
downregulate their craving for the following three food images using
everyday mental strategies. The participants were asked about individual
strategy use at the end of the fMRI session. After every trial (series of three
food pictures), the participants rated their performance by pressing one
of four buttons inside the scanner (Figure 1). Rating of ‘ADMIT’ trials was
considered as a measure of individual craving intensity, whereas it was
regarded as a measure of subjective regulation success in ‘REGULATE’
trials. Ratings of craving intensity and regulation success were averaged,
respectively. Please see ref. 16 for additional details on the paradigm.

Imaging procedure
A 3 T whole-body MRI scanner (TIM Trio; Siemens Medical Systems,
Erlangen, Germany) was used to measure the blood-oxygen-level
dependent (BOLD) signal during the above-presented experimental
paradigm. We followed the imaging procedure described in ref. 16.

Data analysis
The analysis was based on SPM 8 (Wellcome Department of Imaging
Neuroscience, London, UK) and Matlab 2010b (http://www.mathworks.
com/). Pre-processing of the imaging data consisted of time-acquisition
correction to the slice obtained at TR/2, motion correction and normal-
ization to the standard MNI (Montreal Neurological Institute) template
brain using individual high-resolution T1-weighted structural images,

Table 1. Descriptive statistics of the studied sample, n= 43 (female)

BMI
(kg m− 2)

DIS CR Age
(years)

Craving
intensity

Regulation
success

Range 19.4–38.8 1–14 0–15 21–36 2.1–4.0 1.7–3.5
Mean
(s.d.)

27.5
(5.3)

7.49
(3.6)

7.0
(4.0)

26.7
(3.5)

3.5
(0.4)

2.7
(0.5)

Abbreviations: BMI, body mass index; CR, Cognitive Restraint; DIS,
Disinhibition.

7-10 s +

Instruction:
Admit / Regulate

3x various food
(same class)

Regulate2 s

...

6 s

3 s
1 2 3 4

Rating

Figure 1. Design of a trial of the fMRI session. The instruction ‘Admit’
or ‘Regulate’ referred to the three following food items. According to
individual pre-ratings, pictures of one trial belonged either to the
class ‘tasty’ or ‘not tasty’. After each trial, participants rated their
performance (corresponds to craving intensity or regulation
success) on a scale of 1–4 via button-press inside the scanner.
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which resulted in a voxel size of 3 × 3× 3 mm3. Functional images were
high-pass-filtered (filter size 128 s) and spatially smoothed according to
an 8 mm isotropic Gaussian kernel.

Analysis of BOLD response. On the single-subject level, a general linear
model was defined including the regressors REGULATE_TASTY, REGULA-
TE_NOT_TASTY, ADMIT_TASTY and ADMIT_NOT_TASTY. The regressors
were convolved with a double-gamma hemodynamic response model. We
investigated the BOLD response during the epoch of 6 s during which food
images were presented. Re-alignment parameters were added as nuisance
regressors to account for residual motion effects. The resulting general
linear model was corrected for temporal autocorrelation using a first-order
autoregressive model. Second-level analysis was based on the contrast
estimates of the first-level analysis. To compare this study with previous
findings and demonstrate its conceptual validity, main effects of regulation
and tastiness as well as corresponding interactions were investigated
across all subjects (please see the Supplementary section II for details).
Our main goal was to identify associations (linear and quadratic) of BMI

and characteristics of eating behavior (CR, DIS) with BOLD activation
during volitional regulation of food craving. We tested separate regression
models to individually assess the relationship of BMI, CR, DIS or regulation
success and the respective regulation contrasts (REGULATE_TASTY4
ADMIT_TASTY, REGULATE_TASTY4REGULATE_NOT_TASTY) including age
(analyses of BMI, CR, DIS, regulation success) or age and BMI (analysis of
BMI2) as covariates. To assess the relationship of craving intensity
and appetitive brain activity, separate regression models were tested on
the respective craving contrasts (ADMIT_TASTY4REGULATE_TASTY,
ADMIT_TASTY4ADMIT_NOT_TASTY). Please see Supplementary Table III

for a summary of performed regression analyses. Second-level maps were
thresholded voxelwise at Po0.001 and corrected for multiple comparisons
at a cluster threshold of Po0.05 (family-wise error) for the whole brain.

Functional connectivity analysis. Functional connectivity was assessed
by means of psychophysiological interaction (PPI) analysis.28 Source
regions were based on the above-mentioned regression analysis of BOLD
activation and BMI, our primary research focus. Individual BOLD signal time
series within 4-mm spheres surrounding detected peak coordinates were
extracted (based on the inverted U-shaped relationship of BMI and
REGULATE_TASTY4ADMIT_TASTY, please see ‘Results’ section and Table 2
for details). General linear models were estimated separately for every
source region including the following regressors: Time course of the
respective source region (physiological vector), a vector coding for the
main effect (psychological vector; REGULATE_TASTY4ADMIT_TASTY; with
the former term weighted as +1 and the latter one weighted as − 1), and
the PPI term (element-by-element product between the time course of the
source region and the vector coding the main effect). The models also
included realignment parameters as nuisance regressors. Single-subject
contrasts for the PPI regressors were calculated. In the second-level
analysis, we aimed to identify regions whose functional connectivity was
related to BMI (linear and quadratic) or characteristics of eating behavior
(CR, DIS). Therefore, the PPI terms were regressed on these measures in
separate multiple regression analyses. Second-level models also included
the regressors of no interest mentioned under subsection ‘Analysis
of BOLD response’. Second-level maps were thresholded voxelwise at
Po0.001 and corrected for multiple comparisons at a cluster threshold of
Po0.05 (family-wise error) for the whole brain. Clusters were considered

Table 2. Modulation of brain activity (BOLD response) and functional connectivity (PPI, source regions: left putamen and left amygdala) by BMI,
craving intensity and Disinhibition

Brain region MNI peak coordinates Peak z-value k P-value (FWE)

Brain activity (BOLD response)
BMI2 (neg. correlation)
REGULATE_TASTY4CRAVE_TASTY
Left putamen − 33, − 9, − 3 4.13 83 0.012
Left amygdala/hippocampus − 30, − 3, − 18 3.86
Left insula − 39, − 12, 9 3.75

Craving intensity (pos. correlation)
CRAVE_TASTY4REGULATE_TASTY
Right hippocampus/amygdala 30, − 18, − 15 4.45 107 0.004

33, − 9, − 15 4.20

Functional connectivity (PPI)
BMI (pos. correlation), source region: left putamen
REGULATE_TASTY4CRAVE_TASTY
Left dlPFC − 24, 33, 30 4.50 109 0.005

− 33, 27, 24 4.09
− 33, 45, 30 3.92

Left/right dmPFC/dlPFC − 12, 21, 45 4.24 156 0.001
9, 42, 45 3.83

− 15, 33, 48 3.79
BMI2 (pos. correlation), source region: left amygdala
REGULATE_TASTY4CRAVE_TASTY
Left pallidum − 15, 0, 0 4.94 102 0.006

− 21, 18, 3 3.64
Left lingual gyrus − 3, − 90, 6 4.62 121 0.003

− 6, − 81, −9 3.62
DIS (neg. correlation), source region: left amygdala
REGULATE_TASTY4CRAVE_TASTY
Right caudate (head) 9, 15, 3 4.23 63 0.040

18, 18, 3 4.10
Left/right dmPFC/dACC 0, 45, 27 4.13 78 0.019

6, 54, 33 3.76

Abbreviations: BOLD, blood-oxygen-level dependent; BMI, body mass index; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; DIS,
disinhibition; dmPFC, dorsomedial prefrontal cortex; FWE, family-wise error; k, cluster size; MNI, Montreal Neurological Institute; neg., negative; pos., positive;
PPI, psychophysiological interaction (correlations of Disinhibition are uncorrected for the number of investigated seeds). Results are thresholded voxelwise at
Po0.001 and corrected at a cluster threshold of Po0.05 (FWE) for the whole brain.
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to be significant at Po0.017 (Bonferroni adjustment to account for the
number of investigated seeds). Please see Supplementary Table III for a
summary of performed regression analyses.

RESULTS
Relationships between BMI and eating behavior, craving intensity
or subjective regulation success
We observed a strong positive correlation of BMI and DIS (R2 = 0.285,
P40.001, Pearson correlation, Supplementary Figure Ia). Multiple
regression analysis revealed a negative association of BMI2 with
CR (R2 = 0.151, P=0.038, covariate BMI; Supplementary Figure Ib),
indicating an inverted U-shaped relationship. Craving intensity did
not correlate with BMI (R=− 0.206, P=0.185, Pearson correlation).
We found a trend of a negative correlation between regulation
success and BMI (R =−0.295, P=0.055, Pearson correlation).
See Table 1 for descriptive statistics.

Strategies
To regulate their craving, most of the participants (especially
overweight volunteers) imagined the negative long-term
consequences of eating the depicted palatable food. Most
participants switched between different regulation strategies
during the course of the experiment (see Supplementary Table
IV for details on strategy use). When instructed to admit, all of the
participants imagined taste or texture of the presented food items.

Relationships between BOLD activity and BMI, eating behavior,
craving intensity or subjective regulation success
Activity in a cluster comprising left putamen, amygdala and insula
was nonlinearly (inverted U-shaped) related to BMI during
volitional regulation devoid of craving influences (REGULATE_-
TASTY4ADMIT_TASTY; Table 2, Figure 2). Activation during
regulation specific to hedonic food (REGULATE_TASTY4REGULA-
TE_NOT_TASTY) was unrelated to BMI. We found no linear
relationships with BMI. Craving intensity correlated positively with
activity in the right hippocampus/amygdala during craving devoid
of volitional regulatory influences (ADMIT_TASTY4REGULATE_-
TASTY; Table 2, Supplementary Figure X), but did not correlate
with activation during craving specific to hedonic food (ADMIT_-
TASTY4ADMIT_NOT_TASTY). Neither subjective regulation suc-
cess nor measures of eating behavior were significantly related to
task-related BOLD activity. The above-mentioned results indicate
some lateralization of the findings. However, when a less strict
threshold was applied, bilateral BOLD activation of all mentioned
regions associated with BMI and craving intensity was observed
(relationship of BOLD and BMI: t-values thresholded at Po0.05,
uncorrected; relationship of BOLD and craving intensity: t-values
thresholded at Po0.001, uncorrected).

Relationships between PPIs and BMI or eating behavior
The source regions for these analyses were based on areas whose
BOLD activation was related to BMI, our primary target of interest.
Therefore, seeds were defined as 4 -mm spheres surrounding the
peak voxels of the inverted U-shaped relationship between BMI
and BOLD activation: putamen: − 33, − 9, − 3; amygdala: − 30, − 3,
− 18; insula: − 39, − 12, 9 (REGULATE_TASTY4ADMIT_TASTY).
Functional connectivity between the left putamen and the PFC
(bilateral dlPFC extending into dmPFC) was positively and linearly
associated with the BMI (Table 2; Figure 3a). Further, functional
connectivity between the left amygdala and left pallidum (Table 2;
Figure 3b, left/center) as well as the left lingual gyrus (Table 2;
Figure 3b, right/center) was nonlinearly associated with BMI
revealing U-shaped relationships. Considering eating behavior,
DIS negatively correlated with functional connectivity between
the left amygdala and contralateral caudate (Table 2; Figure 3c,

left) as well as bilateral dmPFC including dACC (Table 2; Figure 3c,
right). However, associations with DIS did not reach statistical
significance after Bonferroni adjustment according to the number
of the investigated seeds. Functional connectivity of the left insula
was not associated with BMI or eating behavior. PPIs of all three
source regions were not associated with CR. PPI results indicated
some lateralization of the findings. However, applying a less strict
threshold revealed bilateral connectivity changes of all reported
regions associated with BMI and eating behavior (relationships
with BMI: t-values thresholded at Po0.01, uncorrected; relation-
ships with DIS: t-values thresholded at Po0.001, uncorrected).
Please see Figure 4 for a simplified summary of the reported
relationships.

DISCUSSION
Brain mechanisms implicated in the regulation of food craving:
relationships with weight status
Regulatory brain activity and BMI. Comparing regulation with
craving revealed an inverted U-shaped relationship between BMI
and activation in a cluster including left putamen, amygdala and
insula; that is, a positive relationship in the range of normal weight
and overweight (maximum in the range of mild obesity), which
shifts to a negative one in the range of obesity. As these areas
are known to mediate motivation related to food,7,29–32 our findings
supposedly indicate an effect of weight status on brain regulation of
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Figure 2. Modulatory effects of BMI on neural correlates of
the volitional regulation of food craving (REGULATE_TASTY4
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BOLD activation in a cluster of left (a) putamen, amygdala and
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food craving via modulation of motivational processing. We suggest
the inverted U-shaped relationship to indicate enhanced motiva-
tional relevance of hedonic unhealthy food stimuli in the mid-BMI
range in a context of volitional food-craving regulation. Differences
in eating behavior may account for that. It was proposed previously
that particularly overweight and mildly obese individuals are
motivated to lose weight or avoid further weight gain, reflected
in an inverted U-shaped association between BMI and dietary self-
regulation.20 These controlled eaters probably learned to associate

the sight of desirable food with the negative consequences of their
consumption. Enhanced activation of the putamen in the mid-BMI
range might signal increased incentive drive towards avoidance of
learned dieting cues since the putamen, as part of the basal-ganglia
motivation-to-movement circuit,33 was shown to be essential in
instrumental performance34 and has been assumed to be involved
in potentiating learned dietary rules in successful dieters.35 Further,
results indicate that BMI-dependent differences in food-craving
regulation may manifest on the level of the amygdala, a structure
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that encodes motivational salience of environmental stimuli such
as food. In this way, the amygdala can trigger responses to arousing
stimuli (for example, food)8,30 and adjust the motivational level
context-specifically (for example, regulation vs craving).33 According
to increased dietary restraint, palatable but unhealthy food stimuli
might be particularly relevant in overweight or mildly obese
individuals in the context of craving regulation, reflected in altered
amygdala responding. Regulation-related left mid-insula processing
was also nonlinearly associated with BMI. As the mid-insula
integrates interoceptive visceral signals with information on salience
or attention from anterior insula, weight status may further
contribute to differences in craving regulation by modulating mid-
insular affective mediation of autonomic activity.36 This process may
be enhanced in the mid-BMI range according to the suggested
increased motivational salience or biological relevance of unhealthy
palatable food cues.
Although the above-discussed interpretation of the association

between BMI and BOLD activation is plausible, an alternative
explanation for the detected inverted U-shaped relationship might
exist. Volitional food-craving regulation may go along with
counterproductive motivation regarding attractive food stimuli
on the level of the brain. Increased eating-related self-control
might enhance motivational brain mechanisms, inducing tenden-
cies to approach palatable but unhealthy food especially in
overweight/mildly obese individuals, as described previously for
restrained eaters.37

Functional connectivity during regulation and BMI. During regula-
tion, functional connectivity between the left amygdala and left
pallidum as well as left lingual gyrus was nonlinearly (U-shaped)
related to BMI. Therefore, weight status might affect the interplay
between amygdala and pallidum,38 a region implicated with food
pleasantness signaling.39 More specifically, BMI may affect craving
regulation by a nonlinear modulation of the interaction between
salience encoding (amygdala) and/or pleasantness computation
(pallidum).39 The lingual gyrus, on the other hand, plays a role
in elementary processing of visual information.40 Previous
studies showed that emotional salience of a stimulus can
influence such early stages of visual processing.41 Therefore,
weight-status-dependent variations in salience signaling (amyg-
dala), as discussed above, might affect visual processing,

presumably influencing subsequent perceptual experience or
meaning of the presented stimuli as a means of BMI-dependent
neural craving regulation. Importantly, the above-discussed
interactions within the appetitive network supposedly vary
especially between overweight and mildly obese individuals in
comparison to normal-weight and more severely obese
individuals, indicated by the U-shaped relationship.
Moreover, functional connectivity between the left putamen

and the prefrontal cortex (dlPFC/dmPFC) was enhanced with
higher BMI during regulation compared to craving. According to
its role in coordinated context-specific goal-directed behavior,42,43

the lateral prefrontal cortex supposedly integrates interoceptive
hunger signals with external information on the food stimuli and
internal rules about weight goals during craving regulation.
The putamen, on the other hand, is presumably relevant to
integrate this prefrontal information to modulate striatal incentive
value representation and action selection.33 The need for this
prefrontal–striatal integration may be enhanced with a higher BMI,
as indicated by the positive linear association. A reason for that
may be working memory deficits with overweight and obesity,44

that potentially complicate keeping the weaker but more
favorable goal of food restriction (in contrast to food consump-
tion) in an active state within working memory and appropriately
adjust striatal value processing and action selection. Apart from
that, increased top-down control of striatal value representation
or action selection during craving regulation might be particularly
necessary in individuals with a higher BMI to counteract enhanced
sensitivity to food cues.45

Brain mechanisms implicated with the regulation of food craving:
relationships with Disinhibition
Disinhibition scaled negatively with functional connectivity of left
amygdala and left dmPFC including dACC during regulation
compared to craving. This is in line with a previous study that
showed reduced functional connectivity between the amygdala
and dACC during the presentation of appetizing food in
individuals with high external food sensitivity,46 a trait that is
reflected in the measure of Disinhibition. Neural activity within the
dmPFC/dACC plays an important role in interpreting mental
states47 and conflict detection.48 Further, medial prefrontal
regions have been shown to project to the amygdala, which, in
turn, sends outputs to autonomic brain centers.38 Therefore,
Disinhibition might affect neural craving regulation by influencing
the prefrontal modulation of the affective response in the
amygdala towards palatable but unhealthy stimuli. In highly
disinhibited individuals, this may lead to an inappropriate affective
response. Further, functional connectivity between caudate and
amygdala was negatively associated with Disinhibition. The
caudate receives and integrates value- and goal-related informa-
tion to generate strategic action plans.33 Therefore, decreased
functional connectivity between the amygdala and caudate with
higher Disinhibition might result in suboptimal modulation of
striatal regulatory action planning by the context-specific salience
signal of the amygdala. However, interpretations for Disinhibition
should be regarded with some caution, as the underlying results
are uncorrected for the number of investigated seeds.

Limitations and outlook
A strength of this study is the use of individually rated stimulus
material. Nevertheless, we cannot exclude differences in the
absolute subjective value depending on weight status. In addition,
stimulus valence was assessed only explicitly. Implicit valuation
might have additionally biased performance and brain activity.
Further, findings are limited to the food-deprived status and might
change considerably in a sated condition. In addition, this study is
restricted to women. Future studies should include men as well.
Moreover, Cognitive Restraint did not affect brain regulation of
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Figure 4. Brain mechanisms implicated in the volitional regulation of
food craving and their interactions with weight status (BMI) and the
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an inverted U-shaped relationship with BMI (that is, heightened
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food craving, which is in line with other investigations,13,35 but in
contrast to our prior study.16 However, the previous study mainly
included normal-weight volunteers. Following up on this investi-
gation, we now include an equally distributed number of normal-
weight to obese participants. As Cognitive Restraint is related to
BMI,20 assessing the full BMI range increases variance of this
measure, supposedly leading to an increased accuracy of the
conducted analyses. Moreover, we instructed participants to apply
everyday strategies but not specific ones. Thus, the effect of
general regulatory brain activity was measured but not that of
specific strategies. The participants approached the task in various
ways. It seems reasonable that manifold strategy use translates
into inter-individual variability in associated brain activity as
shown in the context of emotion regulation.49 Further, conclusions
regarding successful dieting are complicated, as subjective
regulation success did not correlate with activity in the above-
mentioned regions. Underestimation of subjective regulation-
related self-efficacy with higher BMI affecting performance rating
might have contributed to this.50 For future studies, we
recommend post-experimental measurement of food intake to
directly assess the regulation efficacy. Moreover, the ability to
regulate food craving might be very different between everyday
situations and an experimental setting. Nevertheless, a previous
study indicated responsiveness of putamen and dorsal PFC to play
a role in successful food restriction, as their activity was enhanced
in successful dieters (determined by the Cognitive Restraint scale
of the Three-Factor Eating Questionnaire22) after consumption of
a meal.35 Future studies should focus on longitudinal weight
development to assess whether the detected relationships translate
into successful weight control. Finally, we would like to stress the
importance of replication studies, as the reported findings should be
considered with some caution due to statistical thresholds less than
the most conservative.

CONCLUSIONS
We showed for the first time nonlinear relationships between
food-related brain processes and BMI, emphasizing the contin-
uous nonlinear investigation of weight status and brain reactivity.
Brain regulation of food craving in a food-deprived state seems
to be reflected by an increase in motivational or incentive
encoding of hedonic unhealthy food in the range of normal
weight up to overweight/mild obesity and a decrease of this
brain response in the range of obesity, supposedly related to
previously learned associations of food stimuli and their negative
consequences. The interplay between pleasantness signaling
(pallidum) but also visual processing (lingual gyrus) and salience
encoding (amygdala) seems to be nonlinearly affected by
BMI, contributing to differences in neural craving regulation.
The positive linear relationship of functional connectivity between
the putamen and PFC may indicate a stronger need for top-down
control of striatal value representation or action selection with
higher BMI. Further, neural regulation of food craving might be
hampered in highly disinhibited eaters as the interplay between
salience signaling (amygdala) and prefrontal self-monitoring,
as well as striatal eating-related strategic action planning may
be affected in this individuals. Altogether, reported areas
potentially represent targets for neurofeedback51 interventions
in the context of obesity. Overweight and obese subjects might be
trained to control activity or connectivity within these areas or
within striato-frontal networks by the help of feedback on the
activity of these regions to induce changes in eating behavior.
Therefore, our findings may help to develop new directions for
obesity treatment.
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3.1 English

Current obesity intervention programs typically show just small, short-lived changes in

BMI (∼5%) [31�37] and many dieters regain weight after a diet [286, 287]. A reason

for this lies in the di�culty to change unhealthy eating habits [38]. Therefore, a deep

understanding of behavioral control mechanisms that help to avoid unhealthy eating be-

havior is needed to improve intervention programs and realize long-term weight loss. A

main behavioral contributor to unhealthy eating and obesity is food craving - the intense

desire for certain foods [1]. Cognitive behavioral approaches counteracting such strong

food desires seem to be promising in the treatment of obesity [288]. However, to target

food craving e�ectively, it is crucial to gain a profound understanding of the underlying

biological mechanisms. In particular, it is necessary to understand brain mechanisms of

craving regulation and how they are related to weight status or obesity-associated person-

ality traits. Previous studies indicate food craving to be represented by a brain network

processing food reward [16, 201, 289, 290]. Four interconnected structures form the core of

this network: amygdala including hippocampus, striatum, ventromedial prefrontal cortex

(vmPFC) including orbitofrontal cortex (OFC), and insula [16, 291]. During food craving

regulation, responding of these areas is modulated by higher-order control regions (dorsal

anterior cingulate cortex and lateral prefrontal cortex) [4�7, 196�198]. However, the rela-

tionship between neural correlates of food craving regulation and weight status is still an

open issue. Existing imaging studies are inconsistent regarding associations of regulatory

brain activity with the BMI [4�9]. The focus on normal-weight and obese samples with an

underrepresentation of overweight individuals and the assumption of linear relationships

might have contributed to this lack of knowledge. Strikingly, non-linear associations with

BMI have not been investigated yet. However, there is indication for quadratic relation-

ships, as U-shaped associations between BMI and behavior, particularly eating-related
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self-control and reward sensitivity, have been found [258, 265]. Addressing this open is-

sue, we investigated neural correlates, i.e., BOLD activity and functional connectivity as

measured by functional magnetic resonance imaging (fMRI), of food craving regulation

in a balanced sample of hungry normal-weight, overweight, and obese women. We aimed

at identifying relationships with weight status (focusing on quadratic relationships) and

obesity-associated aspects of human personality.

To specify personality traits of interest, we characterized relationships between BMI and

obesity-relevant general and eating-speci�c personality characteristics and established a

model for BMI based on these measures. The following personality measures, which

are based on validated and well established self-report questionnaires, were considered for

analysis: (a) characteristics of eating behavior based on the constructs of the Three-Factor

Eating Questionnaire (TFEQ) [12, 292] including (1) Cognitive Restraint, (2) Disinhibi-

tion, and (3) Susceptibility to Hunger as well as (b) general aspects of personality including

(1) sensitivity to reward and (2) sensitivity to punishment based on the Behavioral Inhi-

bition System/Behavioral Activation System (BIS/BAS) Scales [10], and (3) impulsivity

based on the Barratt Impulsiveness Scale (BIS-11) [11, 293]. Associations of BMI and the

mentioned personality measures were explored in a sample of 326 (145 women; analyses

on eating-related personality types only) or 192 (92 women; analyses including BIS/BAS

Scales and BIS-11 ) healthy participants by the help of multiple regression analysis. Based

on previous �ndings, quadratic relationships of BMI and Cognitive Restraint (moderated

by Disinhibition) as well as BMI and sensitivity to reward (i.e., BAS ) were tested.

We found an inverted U-shaped relationship between Cognitive Restraint and BMI which

was moderated by the level of Disinhibition: For low Disinhibition scores the quadratic

association of Cognitive Restraint with BMI was well pronounced, whereas no strong

quadratic relationship was observed for high Disinhibition scores. We further found op-

posing relationships between BMI and sensitivity to reward (i.e., BAS ) and sensitivity to

punishment (i.e., BIS ) in men (negative associations) compared to women (positive asso-

ciations). Controlling for gender, an inverted U-shaped relationship between sensitivity to

reward and BMI was observed. In the �nal regression model Cognitive Restraint, Disinhi-

bition (considering their interaction) and sensitivity to reward/sensitivity to punishment

(considering gender interactions) jointly explained 27% of the overall variance in weight

status. Susceptibility to Hunger and self-reported impulsivity did not explain variance in

BMI.

The inverted U-shaped relationship of Cognitive Restraint and BMI at low levels of Dis-

inhibition indicates that food restriction may not be needed in normal-weight individuals

and correspondingly Cognitive Restraint is low. With increasing BMI, food restriction

presumably becomes relevant, resulting in increasing attempts to manage weight and

higher Cognitive Restraint (reaching the maximum in the range of overweight/mild obe-
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sity). Obese individuals, though, might not be able to raise su�cient self-control resources

to restrict food intake [294�296], resulting in decreasing attempts to control weight in this

BMI range and lower Cognitive Restraint. With higher levels of Disinhibition, eating be-

havior seems to be shaped towards more self-control in the normal-weight range of the

BMI but dominance of uncontrolled eating in the overweight and obese range, as indicated

by a less pronounced inverted U-shaped relationship. Moreover, the opposing relation-

ships between sensitivity to reward and sensitivity to punishment and BMI in men and

women might indicate gender di�erences in the reinforcing power of food [2, 297, 298]

and the signi�cance of emotional eating (to compensate punishments) [299, 300]; with

women being more susceptible to these factors, potentially a�ecting weight status dif-

ferently. According to our BMI model, �ve factors contribute to di�erences in weight

status: (1) Cognitive Restraint, (2) Disinhibition (eating-speci�c factors); (3) sensitivity

to reward and (4) sensitivity to punishment (general personality factors) as well as (5)

gender. The relationship between impulsivity and weight status needs further investiga-

tion. As impulsivity is a multifaceted construct [246], some aspects of impulsivity may

contribute to obesity while others do not. Behavioral intervention of overweight or obesity

potentially bene�t from our detailed speci�cation of relationships between weight status

and personality traits by individually adapting treatment based on personality character-

istics and gender of the patient. Minimal e�ort is needed to implement the investigated

questionnaires into a clinical setting ([301], publication 1).

In the fMRI part of this project we focused on weight status and the above speci�ed

personality types within the eating domain (Cognitive Restraint, Disinhibition). This in-

vestigation was an extension of the study of Hollmann et al. (2012) [5] mainly including

normal-weight subjects. A balanced distribution of 43 normal-weight, overweight, and

obese healthy women was now investigated (BMI: 19.4 � 38.8 ≥ 30 kg/m2, mean 27.5 +/-

5.3 SD). Participants were presented with food pictures, individually pre-rated according

to tastiness and healthiness, while scanned in a 3T whole-body MRI scanner. They were

instructed to either admit to the upcoming craving for the presented food or to regulate

it. By the help of regression analyses we analyzed relationships between regulatory brain

activity (BOLD response) as well as functional connectivity and BMI or eating-related

personality constructs (i.e., Cognitive Restraint, Disinhibition). Functional connectivity

was assessed by means of psychophysiological interaction (PPI) analysis [302]. Source

regions for PPI analysis were based on areas whose BOLD response was related to BMI

(i.e., left putamen, amygdala, and insula).

During regulation, as compared to the craving phase, BMI was non-linearly (inverted

U-shaped) related to brain activity in left putamen, amygdala, and insula. Functional

connectivity of putamen and dorsolateral prefrontal cortex (dlPFC) was linearly associ-

ated with BMI, whereas connectivity of amygdala with pallidum and lingual gyrus was

39



non-linearly (U-shaped) related to BMI. Disinhibition correlated negatively with changes

in functional connectivity between amygdala and dorsomedial prefrontal (dmPFC) cortex

as well as caudate.

This is the �rst study showing quadratic relationships between food-related brain pro-

cesses and BMI, emphasizing the relevance of non-linear analyses in this context. The

inverted U-shaped relationship between BMI and brain activity in putamen, amygdala,

and insula indicates brain regulation of food craving to be re�ected by di�erences in

motivational signaling [184, 189, 303] regarding palatable but unhealthy food. It might

increase in the range of normal weight up to overweight/mild obesity but decrease in the

range of obesity. Di�erences in dietary restraint and accompanied variation in learned

associations of food with the negative consequences of its consumption might account for

the variation in brain responding [279, 304]. Connectivity analyses suggest that the need

for top-down (dlPFC) adjustment [193, 305] of striatal value representations or action se-

lection increases with BMI. The interplay between pleasantness signaling (pallidum [306])

but also visual processing (lingual gyrus [307]) and salience encoding (amygdala [183])

seems to be non-linearly a�ected by BMI, contributing to di�erences in neural craving

regulation. Disinhibition might hamper the interplay between self-monitoring (dmPFC

[191]) or eating-related strategic action planning (caudate [303]) and salience processing

(amygdala). Further studies - especially longitudinal ones - are needed to clarify whether

reported di�erences in brain regulation of food craving translate into e�ective weight man-

agement. Detected areas potentially represent targets for real-time fMRI neurofeedback

training [13�15] which may be added to obesity interventions. By providing individuals

with real-time information about brain activity in the detected regions or striato-frontal

networks, overweight and obese individuals may learn to self-regulate this neural activity

to more e�ectively change eating behavior. Therefore, our �ndings may help to develop

new directions in obesity treatment ([308], publication 2).
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3.2 German

Gegenwärtige Interventionsprogramme bei Adipositas haben meist nur geringe, kurzlebige

Änderungen des BMI zur Folge (∼5%) [31�37], und erneute Gewichtszunahme nach einer

Diät ist die Regel [286, 287]. Eine Ursache hierfür liegt in der Schwierigkeit, ungesunde

Essgewohnheiten zu ändern [38]. Ein tiefgehendes Verständnis von behavioralen Kon-

trollmechanismen ist deshalb erforderlich, um Interventionsprogramme zu verbessern und

langfristige Gewichtsreduktion zu realisieren. Einen Hauptanteil an ungesundem Essver-

halten und Adipositas hat Food Craving - ein starkes Verlangen nach bestimmten Speisen

[1]. Kognitive Verhaltensansätze, die diesem Verlangen entgegenwirken, scheinen vielver-

sprechend für die Adipositasbehandlung [288]. Um jedoch dem Food Craving e�ektiv ent-

gegenzuwirken, ist es wichtig, ein fundiertes Verständnis der biologischen Mechanismen

dieses Prozesses zu erlangen. Insbesondere ist es notwendig, die zugrundeliegenden Hirn-

mechanismen der Food Craving Regulation und Zusammenhänge mit dem Gewichtssta-

tus und Adipositas-assoziierten Persönlichkeitsmerkmalen zu verstehen. Vorangegangene

Studien deuten an, dass Food Craving durch ein Hirnnetzwerk abgebildet wird, welches

bei der Prozessierung Essens-bezogener Belohnung von Bedeutung ist [16, 201, 289, 290].

Vier miteinander verknüpfte Regionen bilden das Herzstück dieses Netzwerks: Amygdala

einschlieÿlich Hippocampus, Striatum, ventromedialer Präfrontalkortex einschlieÿlich Or-

bitofrontalkortex und Insula [16, 291]. Während der Regulation des Food Cravings wird

die Aktivität dieser Regionen durch übergeordnete Hirnstrukturen (dorsaler anteriorer cin-

gulärer Kortex, lateraler Präfrontalkortex) moduliert [4�7, 196�198]. Ungeklärt ist bisher

jedoch, welche Assoziationen zwischen neuronalen Korrelaten des Food Cravings und dem

Gewichtsstatus bestehen. Existierende bildgebende Untersuchungen sind inkonsistent

hinsichtlich der Zusammenhänge zwischen regulatorischer Hirnaktivität und BMI [4�9].

Zu dieser Wissenslücke hat möglicherweise der Fokus auf normalgewichtige und adipöse

Stichproben, wobei übergewichtige Personen vernachlässigt wurden, sowie die Annahme

linearer Zusammenhänge beigetragen. Nicht-lineare Assoziationen wurden bisher nicht

berücksichtigt, obwohl es Hinweise für quadratische Zusammenhänge gibt, die sich aus den

U-förmigen Assoziationen zwischen BMI and Verhalten, speziell Selbstkontrolle und Be-

lohnungssensitivität, ableiten [258, 265]. Um dieses Problem zu addressieren, untersuchten

wir neuronale Korrelate - BOLD Aktivität und funktionelle Konnektivität erhoben mit-

tels funktioneller Magnetresonanztomographie (fMRT) - der Regulation des Food Crav-

ings in einer ausgewogenen Stichprobe hungriger normalgewichtiger, übergewichtiger und

adipöser Frauen. Ziel war es, Zusammenhänge mit dem Gewichtsstatus (Fokus: quadratis-

che Zusammenhänge) und Adipositas-assoziierten Persönlichkeitsmerkmalen zu identi-

�zieren.

Zur Spezi�zierung bedeutsamer Persönlichkeitsmerkmale wurden Beziehungen zwischen

dem BMI und Adipositas-relevanten Persönlichkeitsmerkmalen charakterisiert und, basierend
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auf diesen Maÿen, ein BMI-Modell etabliert. Folgende Persönlichkeitsdimensionen, beruhend

auf validierten und gut etablierten Fragebögen zur Selbsteinschätzung, wurden für die

Analysen herangezogen: (a) Maÿe des Essverhaltens - (1) Kognitive Kontrolle des Essver-

haltens/ gezügeltes Essen, (2) Störbarkeit des Essverhaltens und (3) Erlebte Hungerge-

fühle - basierend auf den Konstrukten des Fragebogens zum Essverhalten [12, 292]; sowie

(b) allgemeine Persönlichkeitscharakteristika - (1) Sensitivität gegenüber Belohnungen

und (2) Sensitivität gegenüber Bestrafungen basierend auf den Skalen des Verhaltensak-

tivierungssystems (BAS ) und Verhaltenshemmsystems (BIS ) [10] sowie (3) Impulsivität

basierend auf der Barratt Impulsivitäts-Skala (BIS-11 ) [11, 293]. Assoziationen zwis-

chen BMI und den aufgeführten Persönlichkeitsmaÿen wurden in einer Stichprobe von

326 (145 Frauen, Analysen zu Maÿen des Essverhaltens) bzw. 192 (92 Frauen, Analysen

einschlieÿlich BIS/BAS Skalen und BIS-11 ) gesunden Probanden mithilfe multipler Re-

gressionsanalyse analysiert. Basierend auf vorhergehenden Befunden wurden quadratische

Zusammenhänge zwischen BMI und der Kognitiven Kontrolle des Essverhaltens (Moder-

ator: Störbarkeit des Essverhaltens) sowie BMI und Sensitivität gegenüber Belohnungen

(BAS ) getestet.

Wir konnten einen umgekehrt quadratischen Zusammenhang zwischen der Kognitiven

Kontrolle des Essverhaltens und dem BMI nachweisen, der durch das Niveau der Stör-

barkeit des Essverhaltens moderiert wurde: Bei niedriger Störbarkeit des Essverhaltens

war die Assoziation zwischen Kognitiver Kontrolle des Essverhaltens und BMI gut aus-

geprägt, während kein starker quadratischer Zusammenhang bei hoherStörbarkeit des

Essverhaltens beobachtet werden konnte. Auÿerdem wurden gegensätzliche Zusammen-

hänge zwischen BMI und der Sensitität gegenüber Belohnunegn (BAS ) bzw. Sensitiv-

ität gegenüber Bestrafungen (BIS ) bei Männern (negative Assoziationen) verglichen mit

Frauen (positive Assoziationen) gefunden. Wurde für Geschlecht kontrolliert, zeigte sich

ein umgekehrt quadratischer Zusammenhang zwischen der Sensitivität gegenüber Beloh-

nungen und dem BMI. Das �nale Regressionsmodell erklärt 27% der BMI-Varianz mittels

der Prädiktoren Kognitive Kontrolle des Essverhaltens, Störbarkeit des Essverhaltens (ein-

schlieÿlich deren Interaktion) sowie Sensitivität gegenüber Belohnungen und Sensitivität

gegenüber Bestrafungen (einschlieÿlich Geschlechts-Interaktionen).

Der umgekehrt quadratische Zusammenhang zwischen Kognitiver Kontrolle des Essver-

haltens and BMI bei niedriger Störbarkeit des Essverhaltens deutet an, dass Essensein-

schränkungen bei Normalgewicht möglicherweise nicht notwendig sind und die Kognitive

Kontrolle des Essverhaltens damit niedrig ist. Mit steigendem BMI ist anzunehmen, dass

Maÿnahmen der Essensrestriktion relevant werden und damit die Kognitive Kontrolle des

Essverhaltens zunimmt (Maximum im Bereich Übergewicht/leichte Adipositas). Men-

schen mit Adipositas sind jedoch möglicherweise nicht in der Lage, genügend Ressourcen

zur Selbstkontrolle des Essensverzehrs aufzubringen [294�296] und Anstrengungen zur

Gewichtssteuerung und die Kognitive Kontrolle des Essverhaltens sinken. Angedeutet
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durch einen weniger stark ausgeprägten umgekehrt quadratischen Zusammenhang scheint

bei höherer Störbarkeit des Essverhaltens das Essverhalten bei Normalgewicht von mehr

Selbstkontrolle geprägt zu sein, wohingegen bei Übergewicht und Adipositas unkontrol-

liertes Essen zu dominieren scheint. Darüber hinaus deuten die gegensätzlichen Zusam-

menhänge zwischen der Sensitivität gegenüber Belohnungen und Sensitivität gegenüber

Bestrafungen und dem BMI bei Männern und Frauen Geschlechtsunterschiede in der

verstärkenden Wirkung von Essen [2, 297, 298] und der Bedeutung des Emotionsessens

(zur Kompensation von Bestrafungen) an [299, 300]; wobei Frauen möglicherweise stärker

empfänglich für diese Faktoren sind und der Gewichtsstatus damit anders beein�usst wird.

Unser BMI-Modell zeigte, dass fünf Faktoren zu Unterschieden im Gewichtsstatus der un-

tersuchten Stichprobe beitrugen: (1) Kognitive Kontrolle des Essverhaltens und (2) Stör-

barkeit des Essverhaltens als essens-spezi�sche Faktoren, (3) Sensitivität gegenüber Belo-

hungen und (4) Sensitivität gegenüber Bestrafungen als generelle Persönlichkeitsfaktoren,

sowie (5) das Geschlecht. Der Zusammenhang zwischen Impulsivität und Gewichtsstatus

bedarf weiterer Untersuchung. Da Impulsivität ein vielfältiges Konstrukt darstellt [246],

tragen manche Aspekte möglicherweise zu Adipostas bei während andere keine Rolle spie-

len. Verhaltensinterventionen bei Übergewicht oder Adipositas können von der vorliegen-

den detaillierten Beschreibung der Zusammenhänge zwischen dem Gewichtsstatus und

Persönlichkeitsmerkmalen pro�tieren, indem die Behandlung individuell - entsprechend

von Persönlichkeitsausprägungen und des Geschlechts des Patienten - angepasst werden

könnte. Minimaler Aufwand ist nötig, um die untersuchten Fragebögen im klinischen

Rahmen zu implementieren ([301] Publikation 1).

Der Fokus der fMRT-Studie dieses Dissertationsprojektes lag - neben dem Gewichtssta-

tus an sich - auf den oben spezi�zieren Persönlichkeitsmaÿen des Essverhaltens (Kognitive

Kontrolle des Essverhaltens, Störbarkeit des Essverhaltens). Diese Untersuchung war eine

Erweiterung der Studie von Hollmann et al. (2012) [5], welche hauptsächlich normal-

gewichtige Probanden einbezog. Nun wurde eine ausgewogen verteilte Stichprobe von 43

gesunden normalgwichtigen, übergewichtigen und adipösen Frauen untersucht (BMI: 19.4

� 38.8 ≥ 30 kg/m2, M 27.5 +/- 5.3 SD). Während 3T MR-Scans wurden den Proban-

den Essensbilder präsentiert, welche vorher individuell hinsichtlich Schmackhaftigkeit und

Gesundheitsstatus bewertet wurden. Die Probanden wurden instruiert, ihr Verlangen

nach diesen Speisen entweder zuzulassen oder zu regulieren. Mithilfe von Regressionsanal-

ysen wurden Zusammenhänge zwischen regulatorischer Hinraktivität (BOLD-Antwort)

sowie funktioneller Konnektivität und BMI bzw. Maÿen des Essverhaltens (Kognitive

Kontrolle des Essverhaltens, Störbarkeit des Essverhaltens) untersucht. Funktionelle Kon-

nektivität wurde mittels PPI-Analyse (psychophysiological interaction analysis) ausgew-

ertet [302]. Die Quellregionen der PPI-Analysen basierten auf Arealen, deren BOLD-

Antwort mit dem BMI zusammenhing (linkes Putamen, linke Amygdala und Insula).
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Während der Regulationsphase, im Vergleich zur Phase des Zulassens, zeigte sich ein

nicht-linearer (umgekehrt quadratischer) Zusammenhang zwischen dem BMI und der Hir-

naktivität des linken Putamens, der linken Amygdala sowie der linken Insula. Die funk-

tionelle Konnektivität zwischen Putamen und dorsolateralem Präfrontalkortex hing linear

mit dem BMI zusammen, wohingegen die der Amygdala mit Pallidum sowie Gyrus lin-

gualis nicht-linear (quadratisch) mit dem BMI assoziiert war. Die Störbarkeit des Essver-

haltens korrelierte negativ mit Änderungen der funktionellen Konnektivität von Amygdala

und dorsomedialem Präfrontalkortex sowie Nucleus caudatus.

Dies ist die erste Studie, welche quadratische Zusammenhänge zwischen Essens-assoziierten

Hirnprozessen und dem BMI demonstrieren konnte. Damit wird die Notwendigkeit von

nicht-linearen Untersuchungen in diesem Kontext betont. Der umgekehrt quadratis-

che Zusammenhang zwischen BMI und Hirnaktivität in Putamen, Amygdala und In-

sula deutet an, dass die Hirnregulation des Verlangens nach Essen im hungrigen Zus-

tand durch eine Zunahme des motivationalen Signals [189, 303] bezüglich schmackhafter

aber ungesunder Speisen im Bereich des Normalgewichts bis hin zum Übergewicht/ le-

ichte Adipositas ansteigt, im Bereich der Adipositas jedoch wieder abnimmt. Verant-

wortlich dafür sind möglicherweise Unterschiede in der Kontrolle des Essverhaltens und

damit verbundene Varianz in gelernten Assoziationen zwischen bestimmten Speisen und

den negativen Konsequenzen des Verzehrs [279, 304]. Konnektivitätsanalysen deuten an,

dass die Notwendigkeit einer übergeordneten Regulierung (dorsolateraler Präfrontalko-

rtex [193, 305]) striatärer Wert-Repräsentationen oder Handlungsauswahl mit höherem

BMI ansteigt. Das Zusammenspiel der Prozessierung von Schmackhaftigkeit (Pallidum

[306]) sowie visueller Attribute (Gyrus lingualis [307]) und Salienz (Amygdala [183])

scheint nicht-linear mit dem BMI zusammenzuhängen, wodurch Unterschiede in der neu-

ronalen Regulation des Food Cravings entstehen könnten. Die Störbarkeit des Essver-

haltens beeinträchtigt andererseits unter Umständen das Wechselspiel zwischen Selbst-

beobachtung (dorsomedialer Präfrontalkortex [191]) bzw. Essens-relatierter strategis-

cher Handlungsplanung (Nucleus caudatus [303]) und Salienzprozessierung (Amygdala).

Weitere Untersuchungen - vor allem Langzeitstudien - sind nötig, um zu klären, ob die

berichteten Unterschiede hinsichtlich der Hirnregulation des Food Cravings e�ektiv zur

Gewichtssteuerung beitragen. Die in dieser Studie gefundenen Regionen stellen poten-

tiell Ziele für Echtzeit-fMRT Neurofeedback-Anwendungen dar [13�15], welche Adiposi-

tasinterventionen ergänzen könnten. Mittels Echtzeit-Information (Neurofeedback) über

die Hirnaktivität in den berichteten Regionen oder striatär-frontalen Netzwerken kön-

nten übergewichtige und adipöse Patienten lernen, diese Aktivierung selbstständig zu

regulieren, um damit Änderungen im Essverhalten zu generieren. Erkenntnisse dieser

Studie können damit dazu beitragen, neue Wege in der Adipositasbehandlung zu gehen

([308] Publikation 2).
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Brain regulation of food craving: relationships with weight status and eating 

behavior  

 

Supplementary Material 

 

Supplementary material provides details about relationships between BMI and characteristics of 

eating behavior measured by the Three-Factor Eating Questionnaire
1 (Figure Ia: BMI vs. 

Disinhibition, Figure Ib: BMI vs. Cognitive Restraint). It further includes task-related analyses of 

the BOLD response across all subjects (independent of BMI or eating behavior) (section II). The 

supplementary material provides information on the performed regression analyses (Table III) 

and strategy use during the regulation phase (Table IV). Moreover, it contains a graphical 

visualization of the relationship between brain activity and craving intensity (Figure X). 

 

I Relationships between BMI and characteristics of eating behavior 

 

A                                                                            B 

               

 

Figure I Relationships between BMI and characteristics of eating behavior. (A) Positive 

linear correlation between BMI and Disinhibition. (B) Inverted U-shaped relationship between 

BMI and Cognitive Restraint. Dashed lines indicate 95% confidence intervals. 

A Appendix

A.1 Supplemental material Dietrich et al., 2016
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II Task-related BOLD responses across all subjects (independent of BMI or eating 

behavior) 

 

We designed a flexible factorial model including the factors ADMIT_TASTY, ADMIT_NOT_TASTY, 

REGULATE_TASTY, REGULATE_NOT_TASTY and a subject factor which accounts for 

interindividual variance. Contrasts were built  to (1) identify regions that were more or less 

activated during REGULATION trials in contrast to ADMIT trials (main effects of REGULATION) 

and to (2) identify areas which were more or less activated during TASTY trials in contrast to 

NOT TASTY trials (main effects of TASTINESS). Further, the following REGULATION*TASTINESS 

interactions of interest were tested: ADMIT_TASTY > ADMIT_NOT_TASTY (i.e., craving response 

specific to hedonic food), ADMIT_TASTY > REGULATE_TASTY (i.e., craving response devoid of 

volitional regulatory influences), REGULATE_TASTY > REGULATE_NOT_TASTY (i.e., volitional 

regulation response specific to hedonic food), REGULATE_TASTY > ADMIT_TASTY (i.e., volitional 

regulation response devoid of craving influence). To assess, whether the above mentioned main 

effects were driven by a certain condition or stimulus type, the following interactions were 

tested as well: REGULATE_NOT_TASTY > ADMIT_NOT_TASTY, ADMIT_NOT_TASTY < 

REGULATE_NOT_TASTY. Table I gives an overview of performed tests. 

 

Table I  Tested main effects and interactions of BOLD activation across all subjects. 

Main effects: 

Main effects of regulation: 

REGULATE_TASTY + REGULATE_NOT_TASTY > ADMIT_TASTY + ADMIT_NOT_TASTY 

REGULATE_TASTY + REGULATE_NOT_TASTY < ADMIT_TASTY + ADMIT_NOT_TASTY 

Main effects of tastiness: 

ADMIT_TASTY + REGULATE_TASTY > ADMIT_NOT_TASTY + REGULATE_NOT_TASTY 

ADMIT_TASTY + REGULATE_TASTY < ADMIT_NOT_TASTY + REGULATE_NOT_TASTY 

Interactions of interest 

REGULATE_TASTY > ADMIT_TASTY 

REGULATE_NOT_TASTY > ADMIT_NOT_TASTY 

ADMIT_TASTY > REGULATE_TASTY 
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ADMIT_NOT_TASTY > REGULATE_NOT_TASTY 

ADMIT_TASTY > ADMIT_NOT_TASTY 

REGULATE_TASTY > REGULATE_NOT_TASTY 

 

REGULATION Analysis of the main effects of REGULATION revealed increased activation in 

frontal (bilateral IFG/ anterior insula, bilateral dmPFC, left dlPFC, right frontal pole), parietal (left 

inferior parietal lobule/ temporo-parietal-junction) and temporal (bilateral superior/ middle 

temporal gyrus) cortices and in cerebellum (Table II, Figure II). These effects were mainly driven 

by the BOLD response towards tasty cues, as the interaction REGULATE_TASTY > ADMIT_TASTY 

(regulation devoid of craving influences concerning tasty food) showed a comparable BOLD 

pattern, although partly left-lateralized (Table II, Figure V), whereas the contrast focusing on 

non-tasty food (REGULATE_NOT_TASTY > ADMIT_NOT_TASTY) revealed lower effect size BOLD 

activation in the same but much smaller prefrontal clusters and no parietal/temporal brain 

activation (Table II, Figure VI). Analysis of the main effects of REGULATION revealed decreased 

activation in bilateral vmPFC including left OFC, but also parietal cortical areas (bilateral 

postcentral gyri/left inferior parietal lobule, left parietal operculum), and left inferior temporal 

gyrus including fusiform gyrus (Table II, Figure III). These effects were primarily driven by tasty 

stimuli, as the interaction ADMIT_TASTY > REGULATE_TASTY (craving devoid of volitional 

regulation influences concerning tasty food) was characterized by a similar, though more 

extended activation pattern, including additionally limbic structures (left amygdala/ 

hippocampus), as well as occipital and midline cortical areas (left lateral occipital cortex/ 

precuneus/posterior cingulate cortex) (Table  II, Figure VII),  whereas the contrast focusing on 

non-tasty food (ADMIT_NOT_TASTY > REGULATE_NOT_TASTY) showed differences in the left 

postcentral gyrus only (Table II, Figure VIII). 
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TASTINESS Analysis of the main effects of TASTINESS revealed increased condition independent 

widespread activation in  bilateral vmPFC, posterior cingulate cortices, dorsal striatum, and 

thalamus as well as in clusters of the medial temporal lobe (left fusiform/ parahippocampal 

gyrus), bilateral inferior temporal gyri, and cerebellum (Table II, Figure IV). These effects were 

driven by the ADMIT condition, as the contrast ADMIT_TASTY > ADMIT_NOT_TASTY (craving for 

tasty food) mostly reflects the above mentioned activation patterns (Table II, Figure IX). 

REGULATE trials did not add considerable variance to the main effects of tastiness, as their 

contrast (REGULATE_TASTY > REGULATE_NOT_TASTY) did not reveal significant differences. 

BOLD response was not decreased contrasting TASTY stimuli with NOT TASTY stimuli 

independent of condition (analysis of main effects of TASTINESS). 

 

During craving and especially during craving for food with a high hedonic value participants 

showed increased activation of areas critical for subjective value computation (vmPFC, posterior 

cingulate),
2,3

 eating-related incentive motivation and memory retrieval (hippocampal formation, 

amygdala, dorsal striatum),
4–7

 as well as food-related sensory processing (postcentral gyrus, 

parietal operculum, fusiform gyrus, inferior temporal gyrus, lateral occipital cortex).
5,8,9

 

Importantly, only hedonic food stimuli activated regions that play a role in incentive value 

encoding (vmPFC, posterior cingulate, hippocampus, amygdala) or creation of incentive states 

(striatum),
10

 emphasizing the usage of individually rated stimulus material in food-related tasks. 

The positive association of craving intensity and activation in hippocampus/ amygdala 

emphasizes their role in incentive value encoding.
6,7,32

 During regulation (in comparison to 

craving), prefrontal areas associated with executive control (dlPFC, IFG, IPL)2,11 as well as self-
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monitoring (dmPFC)
12

 showed increased activation. These regions were especially activated 

during regulation of craving for hedonic food, as craving regulation is presumably more relevant 

in case of attractive unhealthy food. Nevertheless, also non-hedonic food activated executive 

control regions in this task. We assume that instructing participants to regulate their desire for 

food to some extent induced brain activity associated with, e.g., rule or strategy 

representation
11

 regarding dietary restriction independent of hedonic value. The above 

mentioned results across all participants are in line with previous findings, proving conceptual 

validity of the study design.
13–19

 

 

Table II Contrasts of experimental conditions across all subjects. 

Brain region 
MNI peak 

coordinates 
Peak z-value k 

Main effects REGULATION  

REGULATE_TASTY + REGULATE_NOT_TASTY > ADMIT_TASTY + ADMIT_NOT_TASTY 

Left IFG  

(pars opercularis/pars triangularis)/  

 anterior insula 

-54, 21, 3 

-57, 21, 12 

-45, 27, -6 

7.26 

6.63 

6.56 

503 

Right IFG 

(pars opercularis/pars triangularis)/  

 anterior insula 

42, 18, 3 

57, 24, 9 

30, 24, -9 

6.39 

5.89 

5.65 

512 

Left/right 

dmPFC 

-9, 57, 33 

6, 18, 45 

-6, 36, 51 

5.44 

5.09 

5.06 

545 

Left dlPFC 

-42, 3, 45 

-48, 9, 45 

-51, 18, 39 

5.69 

5.35 

4.43 

174 
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Right frontal pole 

39, 39, 36 

39, 48, 24 

21, 60, 24 

5.06 

4.95 

4.65 

342 

Left TPJ/IPL 

Left STG/MTG 

 

-57, -54, 24 

-48, -39, 3 

-57, -36, 0 

4.94 

4.76 

4.58 

285 

Right TPJ 
57, -48, 30 

63, -42, 18 

4.55 

3.48 
103 

Right STG/MTG 
48, -30, -3 

63, -30, -3 

4.75 

3.90 
90 

Right cerebellum 
27, -81, -33 

9, -84, -27 

4.87 

3.26 
84 

REGULATE_TASTY + REGULATE_NOT_TASTY < ADMIT_TASTY + ADMIT_NOT_TASTY 

Left postcentral gyrus 

Left IPL 

 

-60, -18, 27 

-48, -33, 42 

-24, -42, 42 

6.62 

5.62 

3.39 

390 

Left 

parietal operculum 

-33, -6, 18 

-27, -3, 24 

-21, -3, 39 

5.27 

4.43 

4.00 

180 

Right postcentral gyrus 66, -9, 30 5.20 62 

Left OFC 

Left/right vmPFC 

 

-21, 36, -12 

-12, 42, -12 

9, 30, -6 

4.60 

4.58 

4.54 

465 

Left fusiform gyrus 

Left ITG 

-36, -33, -15 

-42, -45, -15 

-51, -57, -6 

4.27 

4.13 

3.73 

113 

Main effects TASTINESS 

ADMIT_TASTY + REGULATE_TASTY > ADMIT_NOT_TASTY + REGULATE_NOT_TASTY 

Left/right -9, -51, 18 6.50 711 
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posterior cingulate cortex/ 

precuneus 

-6, -54, 9 

27, -57, 12 

6.19 

5.13 

Left/right 

vmPFC 

-12, 45, -6 

0, 42, -15 

6, 51, -9 

5.84 

4.88 

4.85 

508 

Left/right 

dorsal striatum 

 

Left thalamus 

 

-21, 6, 18 

21, 15, 15 

-21, -15, 18 

 

5.49 

5.34 

5.30 

1552 

Left 

lateral occipital cortex 

-36, -75, 27 

-33, -69, 12 

-39, -66, 18 

5.10 

4.36 

3.21 

85 

Left fusiform/parahippocampal gyrus 

Left ITG 

Left cerebellum 

-24, -33, -24 

-51, -48, -9 

-18, -63, -36 

4.40 

4.19 

4.17 

265 

Right ITG 
57, -57, -12 

42, -51, -6 

4.37 

3.49 
56 

ADMIT_TASTY + REGULATE_TASTY < ADMIT_NOT_TASTY + REGULATE_NOT_TASTY 

- - -  

Interactions 

REGULATE_TASTY > ADMIT_TASTY 

Left IFG  

(pars opercularis/pars triangularis)/ 

anterior insula 

-51, 21, 3 

-33, 11, -6 

-48, 33, -9 

6.20 

6.07 

5.57 

450 

Right IFG 

(pars opercularis/pars triangularis)/ 

 anterior insula 

42, 18, 3 

33, 21, 0 

39, 21, -6 

6.57 

6.26 

6.13 

992 

Left/right 

dmPFC 

-6, 36, 48 

6, 18, 45 

5.34 

6.22 
642 
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9, 36, 51 4.85 

Left dlPFC 

-48, 9, 45 

-42, 3, 45 

-42, 24, 33 

5.36 

5.29 

3.86 

164 

Left TPJ/IPL -57, -54, 27 4.82 51 

Left STG/MTG -48, -39, 3 4.06 62 

REGULATE_NOT_TASTY > CRAVE_NOT_TASTY 

Left IFG  

(pars opercularis/pars triangularis)/ 

anterior insula 

-42, 27, 0 

-54, 21, 3 

-57, 21, 15 

5.22 

5.15 

4.82 

245 

Left dmPFC 
-12, 57, 30 

-6, 48, 36 

4.56 

3.83 
63 

Left dlPFC 
-45, -3, 45 

-36, 6, 45 

4.16 

3.23 
65 

Right IFG 

(pars opercularis/pars triangularis)/  

 anterior insula 

48, 9, 0 

54, 24, 3 

4.02 

3.75 
65 

ADMIT_TASTY > REGULATE_TASTY 

 

Left postcentral gyrus 

 

-60, -18, 27 

-48, -18, 24 

-60, -12, 15 

5.97 

4.82 

4.51 

335 

Left parietal operculum 

-36, -6, 18 

-24, 3, 24 

-24, -12, 33 

5.85 

5.08 

4.12 

322 

Left vmPFC 

Left OFC 

Right postcentral gyrus 

-12, 42, -12 

-24, 39, -9 

66, -6, 27 

5.43 

4.58 

4.96 

860 

Right ITG 

 

48, -42, -12 

39, -21, -18 

4.91 

4.04 
83 
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Right fusiform gyrus 39, -30, -15 3.58 

Left fusiform gyrus 

Left ITG 

Left hippocampus/ 

amygdala 

-36, -33, -15 

-42, -45, -15 

-30, -15, -15 

-21, -3, -12 

4.74 

4.49 

4.20 

237 

Left lateral occipital cortex 

 

Left precuneus, posterior cingulate 

cortex 

-33, -66, 24 

-36, -60, 3 

-15, -51, 12 

 

4.27 

3.81 

4.16 

 

107 

ADMIT_NOT_TASTY > REGULATE_NOT_TASTY 

Left postcentral gyrus 
-60, -18, 30 

-48, -36, 45 

4.68 

4.63 
185 

ADMIT_TASTY > ADMIT_NOT_TASTY 

Left/right  

posterior cingulate cortex 

vmPFC 

dorsal striatum 

 

-9, -54, 18 

-12, 42, -12 

-21, -6, 21 

 

6.65 

5.27 

4.69 

2864 

Left fusiform gyrus 

Left hippocampus 

Left parahippocampal gyrus 

-24, -33, -24 

-33, -27, -6 

-36, -27, -18 

5.16 

5.10 

4.23 

226 

Left MTG 
-51, -12, -18 

-60, -12, -12 

4.74 

4.38 
59 

Left cerebellum -15, -57, -21 4.21 72 

Right ITG 54, -51, -12 4.04 91 

REGULATE_TASTY > REGULATE_NOT_TASTY 

- - - - 

Results are p<.05 FWE cluster-level corrected (voxel level p < .001); k = cluster size; dlPFC dorsolateral prefrontal 

Cortex, dmPFC dorsomedial prefrontal Cortex, IFG Inferior Frontal Gyrus, IPL Inferior Parietal Lobule, ITG Inferior 

Temporal Gyrus, MTG Middle Temporal Gyrus, TPJ Temporo-Parietal Junction, STG Superior Temporal Gyrus, 

vmPFC ventromedial prefrontal cortex 
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Main Effects 

 

 

Figure II    Main effects of REGULATION: REGULATE_TASTY + REGULATE_NOT_TASTY > 

ADMIT_TASTY + ADMIT_NOT_TASTY (threshold: p<.001 voxel level, p<.05 FWE cluster level). 

 

 

Figure III    Main effects of REGULATION: REGULATE_TASTY + REGULATE_NOT_TASTY < 

ADMIT_TASTY + ADMIT_NOT_TASTY (threshold: p<.001 voxel level, p<.05 FWE cluster level). 

 

 

Figure IV    Main effects of TASTINESS: ADMIT_TASTY + REGULATE_TASTY > ADMIT_NOT_TASTY 

+ REGULATE_NOT_TASTY (threshold: p<.001 voxel level, p<.05 FWE cluster level). 

 

 

 



11 

 

Interactions  

 

 

Figure V   Interaction:  REGULATE_TASTY > ADMIT_TASTY (threshold: p<.001 voxel level, p<.05 

FWE cluster level). 

 

 

Figure VI   Interaction:  REGULATE_NOT_TASTY > ADMIT_NOT_TASTY (threshold: p<.001 voxel 

level, p<.05 FWE cluster level). 

 

 

Figure VII   Interaction: ADMIT_TASTY > REGULATE_TASTY (threshold: p<.001 voxel level, p<.05 

FWE cluster level). 
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Figure VIII Interaction: ADMIT_NOT_TASTY > REGULATE_NOT_TASTY (threshold: p<.001 voxel 

level, p<.05 FWE cluster level). 

 

 

Figure IX    Interaction: ADMIT _TASTY > ADMIT_NOT_TASTY (threshold: p<.001 voxel level, 

p<.05 FWE cluster level). 

 

III Performed regression analyses 

 

Table III  Regression analyses of BOLD activation and psychophysiological interactions (PPI). 

Regression analyses of BOLD response: ∑ = 12 

contrast 

REGULATE_TASTY > ADMIT_TASTY 

REGULATE_TASTY > REGULATE_NOT_TASTY 

ADMIT_TASTY > ADMIT_NOT_TASTY 

ADMIT_TASTY > REGULATE_TASTY 

regressors of interest 

BMI, BMI², CR, DIS, regulation success 

BMI, BMI², CR, DIS, regulation success 

craving intensity 

craving intensity 

Regression analyses of PPI: ∑ = 12 

contrast 

REGULATE_TASTY > ADMIT_TASTY 

(source regions: putamen, amygdala, insula) 

regressors of interest 

BMI, BMI², CR, DIS 
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IV Strategy use during regulation 

 

Table IV Applied regulation strategies. Indicated are the numbers of subjects (separated 

for normal weight, overweight, and obese participants) using a specific strategy. The application 

of several strategies was possible during the experiment. 

Strategy normal weight (n=15) overweight (n=14) obese (n=14) 

imagination of long-term 

consequences of consumption 

10 13 10 

distraction 3 - - 

imagination of unappetizing 

ingredients, consistency, or 

preparation  

2 2 5 

other strategies 3 4 3 

 

 

V Relationship between brain activity and craving intensity 

 

 

Figure X    Relationship between activity in right hippocampus including amygdala and craving 

ratings during ADMIT_TASTY > ADMIT_NOT_TASTY. Threshold: p<.001 voxel level, p<.05 FWE 

cluster level. 
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