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A complete physical description of membrane remodeling processes, such as fusion or fission, requires
knowledge of the underlying free energy landscapes, particularly in barrier regions involving collective
shape changes, topological transitions, and high curvature, where Canham-Helfrich (CH) continuum
descriptions may fail. To calculate these free energies using atomistic simulations, one must address not
only the sampling problem due to high free energy barriers, but also an orthogonal sampling problem of
combinatorial complexity stemming from the permutation symmetry of identical lipids. Here, we solve the
combinatorial problem with a permutation reduction scheme to map a structural ensemble into a compact,
nondegenerate subregion of configuration space, thereby permitting straightforward free energy calcu-
lations via umbrella sampling. We applied this approach, using a coarse-grained lipid model, to test the
CH description of bending and found sharp increases in the bending modulus for curvature radii below
10 nm. These deviations suggest that an anharmonic bending term may be required for CH models to give
quantitative energetics of highly curved states.
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Membrane remodeling is essential for many cellular
transport functions, notably fusion [1] and fission [2].
However, despite continued interest, the underlying
lipidic mechanisms and energetics are not fully understood.
Atomistic and near-atomistic molecular dynamics (MD)
simulations provide sufficient temporal and spatial reso-
lution to probe lipidic mechanisms. However, standard MD
fails to reach the high energy barriers (≫kBT) which often
dictate mechanisms and kinetics. Biasing methods are thus
required to address the sampling problem for high energy
barriers.
An additional and ubiquitous obstacle, in both describing

and biasing lipidic transitions, is the N! degeneracy of
lipid configuration space arising from the permutation
symmetry of N identical lipids. The same combinatorial
symmetry lies at the heart of the Gibbs paradox [3–5],
which is resolved by a 1=N! scaling of the partition
function, to account for physically indistinguishable
(degenerate) states.
In contrast to this straightforward analytical correction,

this permutation symmetry poses a severe challenge to
atomistic simulations and free energy calculations involv-
ing lipids: sampling the space of degenerate states (via
self-diffusion) shrouds the collective structural changes of
interest and precludes the use of lipidic collective coor-
dinate biasing schemes. Accordingly, special purpose
methods (that circumvent this hindrance) have been devel-
oped to direct lipidic transitions using boundary conditions
[6,7], external guiding potentials [8,9], probe particles [10],
density biasing [11,12], and single-lipid restraints [13,14].

Here, we describe and apply a rigorous method to directly
address this N! degeneracy, using permutation reduction
(PR) [15,16]. The method exploits permutation symmetry
by remapping structures from the full N! degenerate
configuration space into a nondegenerate, compact subre-
gion, thereby overcoming the notorious sampling problem
caused by long range lipid self-diffusion. Because the
Hamiltonian of the system is invariant under the permuta-
tion, the statistical ensemble of the system is unchanged.
Importantly, the rigorous definition of collective coordinates
also becomes possible for such diffusive systems, as is
essential for umbrella sampling free energy calculations.
Here we use and assess this approach to compute

membrane bending free energies. In the well established
Canham-Helfrich (CH) continuum model [17,18], which
treats a membrane as a thin elastic sheet, the bending free
energy of a tensionless membrane is

E ¼
Z nκ

2
ðH −H0Þ2 þ κ̄KG

o
dA; ð1Þ

whereH¼ð1=R1þ1=R2Þ, KG¼ 1=ðR1R2Þ is the Gaussian
curvature, and R1 and R2 are the principal curvature radii
for a midplane surface area element dA. The three empirical
constants κ, H0, and κ̄, are the bending modulus, sponta-
neous curvature, and Gaussian curvature modulus, respec-
tively. For symmetric lipid compositions,H0 ¼ 0, and for a
membrane with a fixed surface topology (or when one
principal curvature is zero) the KG term integrates to a
constant such that (1) reduces to
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E ¼
Z

κ

2
H2dA ¼ κ

2
~H; ð2Þ

implying that bending fully dictates the energetics (and thus
mechanisms) of nontopological remodeling.
Determining accurate values for κ is nontrivial, and the

problem has been addressed from different angles (see [19],
and references therein). The most prominent simulation
schemes derive κ from thermal fluctuation spectra of height
[20] or lipid tilt [21]. Moreover, despite the widespread
use of CH models for highly curved structures (e.g., an
hourglass-shaped fusion stalk) [22,23], it is unclear whether
or not the harmonic approximation of constant κ is
sufficiently accurate in this regime. The first simulations
to test this approximation at higher curvatures [6,24] used
heavily coarse-grained lipid models, with conflicting
results; however, two recent studies have reported anhar-
monic behavior for binary [25] and ternary (raft-forming)
lipid mixtures [26]. We therefore apply our proposed
method to compute bending free energies and κ up to very
high curvatures to rigorously test the range of validity of the
harmonic approximation.
We will proceed in three steps. First, PR will be used to

derive a suitable collective bending coordinate from an
unbiased nonequilibrium trajectory. Second, using this
coordinate, PR will be used in conjunction with umbrella
sampling to compute a bending free energy profile. Finally,
we will compare our results with CH theory.
An initial unbending pathway xðtÞ, in the full dimen-

sional configurational space was derived from an unre-
strained molecular dynamics (MD) simulation [27] of a
membrane half-cylinder [Fig. 1(a)] that relaxes to a flat
sheet. The membrane comprises N ¼ 1066 dioleoylphos-
phatidylcholine (DOPC) lipids, modeled with the Martini
coarse-grained force field [28]. Simulations used periodic
boundary conditions; however, the membrane was periodic
only along its cylindrical axis. The line tension energy of
the two exposed edges was held constant by constraining
the box in the z dimension. (Full simulation details are
given in the Supplemental Material [29], which includes
Refs. [30,31].) During relaxation, lipids freely traveled
around the exposed edges to relieve tension asymmetry,
but no flip-flops through the membrane (with barriers of
≈30kBT [28]) occurred.
Next, we applied PR to the obtained trajectory xðtÞ. Here

the remapping was applied for each frame at time tj by
minimizing the 3N Euclidean distances to a reference
xref;PR [15,16]. To this end, a cost function

Cðπ;xÞ ¼ ∥π · xfαgðtjÞ − xref;PR
fαg ∥2

þ
X
i∈fαg

aθd0 ðjπ · xiðtjÞ − π�
j−1 · xiðtj−1Þj − d0Þ

ð3Þ

was minimized using a linear assignment algorithm with
OðN3Þ complexity, which yielded the optimal permutation
π�
j of lipid indices. Here, θd0 ðdÞ is a Heaviside step

function, a ¼ 500 nm2, frames are at 40 ps intervals,
and lipid positions are represented by one bead per lipid
(PO4 headgroup beads), indicated by the fαg subscripts.
The first (compactness) term of (3), is the squared con-
figuration space distance between a permuted labeling of
xfαgðtjÞ, and the reference xref;PR (here, a structure with an
intermediate curvature). The second (continuity) term in (3)
penalizes single-lipid displacements d > d0 such as swaps
of lipid molecules between the two leaflets, which give
rise to discontinuities in the trajectory. (Here, d0 ¼ 1.4 nm
was used.) The subsequent results were insensitive to the
particular choice of xref;PR and d0 (details are given in the
Supplemental Material [29]).
This permutation transformation enabled us to derive

via principal component analysis (PCA) a linear order
parameter ξ for subsequent umbrella sampling free energy
calculations [32]. Here, ξ½ ~xðtÞ� ¼ ð ~xfβgðtÞ − h ~xfβgiÞ · v1,
with v1 being the eigenvector with largest eigenvalue of
the 3Nβ × 3Nβ covariance matrix calculated from the
trajectory ~xðtÞ. To avoid boundary artifacts, only the 650
centermost PO4 beads were considered to define ξ,
indicated by subscripts β. As can be seen in Fig. 1, by
construction this projection defines ξ using the collective
coordinate which describes the largest collective atomic
motion for the membrane deformation. Moreover,
because ξ is linear, the applied umbrella potential

(a)

(b)

(c)

FIG. 1. The permuted DOPC unbending trajectory ~xðtÞ at 0 ns
(a) and 80 ns (b). Solvent is not shown and PO4 beads used for PR
are shown as spheres. Lipid headgroups (PO4 and NC3 beads) are
colored blue (dark) except for a central patch of green (light)
lipids which illustrate how PR preserves lipid sorting throughout
the unbending process. The red, green and blue arrows in (a) and
(b) indicate the system x, y, and z axes, respectively. (c) (main)
The PCA derived collective coordinate ξ for ~xðtÞ. (inset) The
leading PCA mode v1. (inset center) The average permuted
structure h ~xðtÞi between 0 and 80 ns. The 650 PO4 beads used for
PCA (indices fβg) are colored blue (dark) and those not
considered are gray (light). The linear mode v1 is illustrated
for three cases as h ~xðtÞi þ ξ · v1 with ξ ¼ f−20; 0; 20g nm, from
bottom to top, respectively.
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Vumbð ~xÞ ¼ ðk=2Þ½ξð ~xfβgÞ − ξð ~xref
fβgÞ�2, where k is the force

constant, restrains only one (collective) degree of freedom
in the system and, in this sense, introduces the smallest
possible bias towards a particular reaction coordinate.
Crucially, Vumbð ~xÞ takes structures that have been per-

muted by the same PR rule used to derive ~xðtÞ and ξ. To
fulfill this requirement, and to prevent the system from
escaping the restraints by lateral diffusion perpendicular to
v1, PR was applied at 40 ps intervals during the umbrella
sampling MD simulations. These PR corrections cause small
discontinuities in configuration space with resulting jumps in
the potential energy of σVumb

< 1 kJ=mol. (see Supplemental
Material [29] for details).
The umbrella ensemble comprised 16 windows (indices

l) taking their reference and initial structures ~xref;l from
~xðtÞ, spaced approximately evenly in ξ between −22 and
38 nm. All umbrellas used k ¼ 1.0 kJ=ðmol nm2Þ. During
MD simulations, PR used the unbending average h ~xðtÞi
[shown in Fig. 1(c)(inset)(center)] as xref;PR and d0 ¼
1.4 nm (for details of the simulation protocol, see the
Supplemental Material [29]).
Following 50 ns of equilibration and 450 ns of produc-

tion MD per window, we computed the potential of mean
force (PMF) EðξÞ [see Fig. 2(a)] using the weighted
histogram analysis method (WHAM) [33,34]. The resulting
small statistical uncertainty of the PMF (σE < 2kBT) and
the short autocorrelation times for ξ (10–20 ns) indicate that
sufficient sampling was obtained across the studied range
of curvature and illustrate the utility of this approach for
precise free energy calculations of biologically relevant
high energy and curvature states. The most highly curved
membranes adopted parabolic rather than cylindrical
shapes [e.g., structure 2 of Fig. 2(a)], with H being highest
at the center. We ascribe this effect to the H ¼ 0 (on
average) boundary conditions imposed by the free edges
[gray lipid headgroups in Fig. 1(c)(inset)]. Subsequent
curvature calculations, detailed in the Supplemental
Material [29], account for these noncylindrical shapes.
For comparison with the CH description of bending,

EðξÞ was recast according to (2), as Eð ~HÞ, a function of
midplane curvature. Figure 2(b) shows that Eð ~HÞ (black
points, green quadratic fit) is nonlinear, indicating that the
membrane stiffens with increasing curvature, and that
the harmonic approximation (linear, red component) indeed
becomes inaccurate at high curvature.
This nonlinearity is accounted for by adding a quartic

bending term ðμ=4ÞH4 to the integrand of (2) [6,26,35–37]
and integrating to obtain a sum of quadratic and quartic
energy terms,

E ¼ E2 þ E4 ¼ κ
2
H2 þ μ

4
H4; ð4Þ

where H2 ¼ ~H ¼ R
H2dA and H4 ¼

R
H4dA. (The asso-

ciated quartic KG terms [35,38,39] are safely neglected

because KG ¼ 0.) In Fig. 2(b), the linear component E2

yields κ, and the excess nonlinear energy E4 gives the
quartic modulus μ. [For details of the change of coordinates
ξ → ðH2; H4Þ and of computing κ and μ, see the
Supplemental Material [29].] Finally, from κ and μ, a
curvature dependent, effective bending modulus can be
defined as κeff ¼ κ þ ðμ=2ÞH2 or, equivalently, κeff ¼
κð1þ ½RμH�2Þ, where the distance Rμ ¼

ffiffiffiffiffiffiffiffiffiffi
μ=2κ

p
indicates

the length scale where κ increases [6,26].
Next, we asked how κeff depends on tail saturation, tail

length, and headgroup polarity. Figure 3 and Table I
compare κ, μ, and Rμ for pure dioleoylphosphatidylethanol-
amine (DOPE), distearoylphosphatidylcholine (DSPC),
dipalmitoylphosphatidylcholine (DPPC), and dimyristoyl-
phosphatidylcholine (DMPC) membranes, all in the liquid
disordered Lα phase [28,40].
At low curvatures, the saturated lipids DMPC, DPPC,

and DSPC showed κ increases of about 8kBT for each
increase in tail length (one bead represents approximately 4
carbons); this trend is known from micropipette aspiration
experiments [41] and continuum mechanics [42]. Also, the
decrease of κ from DSPC to DOPC is in line with aspiration
experiments showing that unsaturated alkyl chains decrease

(a)

(b)

FIG. 2. (a) The bending free energy (PMF) EðξÞ for DOPC
from 16 × 450 ns umbrella sampling simulations. EðξÞ was
recovered using WHAM and the error bars are the standard
deviations of 30 bootstrapped PMFs. (b) The bending free energy
Eð ~HÞ as a function of the Helfrich curvature integral ~H. Points lie
at the umbrella window means h ~Hi and error bars are 95%
confidence intervals. The quadratic fit is shown in green (solid
line), and its linear component, the harmonic Helfrich approxi-
mation, in red (dashed line). Two snapshots (1 and 2) in (a) depict
the range of bending in the ensemble and arrows in (a) and (b)
show the ξ and ~H values. For structure 2, R ¼ 4.6 nm at its center.
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κ [41]. Because DOPE is in the inverse hexagonal (HII)
phase at 310 K [43], whereas DOPC forms (Lα) bilayers, no
direct comparison of their elastic properties is available.
However, the smaller κ seen in our simulations for DOPE
suggests that PE headgroup dehydration at the upper
(negative intrinsic curvature) leaflet is more favorable than
for DOPC, consistent with the smaller hydration shells of
the PE headgroups, which imply smaller hydration repul-
sion. At low curvature, our κ results also agree with
previous simulation results [7,21,44–52] (a table is pre-
sented in the Supplemental Material [29]).
At high curvature, when R is ca. twice the membrane

thickness, κeff increases for all five lipids (see Fig. 3), most
prominently for DOPC, DOPE, and DSPC (all have 14
beads per lipid); however, the effect decreases for shorter
tails, as the saturated PC series (DSPC, DPPC, DMPC)
shows. For DMPC the effect is relatively small. The Rμ

values in Table I also corroborate the location and strength
of the anharmonic increases in κeff . The differences in Rμ

between DOPC, DOPE, and DSPC are too small to suggest
that headgroup polarity or chain saturation significantly
alter the anharmonicity. But together, these trends suggest
that the observed anharmonicity is chiefly a function
of lipid tail length. This onset of stiffening at R≲ 10 nm
also qualitatively agrees with recent results obtained by

Vidal et al., who simulated a 1∶1 (Martini) DPPC/DOPE
mixture [25].
To validate our PR approach, we used two additional

methods to extract κ at the curvature extremes (for DOPC):
cylindrical tethers (CT) [6,25], with radii R from 4.6–
8.6 nm, and height fluctuation (HF) spectroscopy for a flat
periodic sheet (R ≈ 200 nm for q ¼ 0.16 nm−1) [20].
These methods gave κCT ¼ 42.1� 0.9 (at R ¼ 4.6 nm)
and κHF ¼ 30.6� 1.9 kBT, respectively, confirming the
anharmonic trend of Fig. 3. For R < 7 nm, κCT values were
larger than κPReff by about 5 kBT, slightly outside our
estimated uncertainties. In the weak curvature regime,
κHF was larger than κPReff by about 7 kBT; however, HF is
known to overestimate κ (see [49]) for small and midsized
membranes that cannot probe sufficiently large wave-
lengths (small q). In contrast, a recent field theoretical
simulation scheme gave κ ¼ 19� 4 kBT [52], which is 5
kBT less than 23.9 kBT computed here, further suggesting
that κHF is an overestimate. Finally, we verified that κeff was
independent of the particular choice of parameters d0 and k
as well as the definition of ξ. In only one case, using a
single leaflet ξ, κ, and μ increased by 18% and 76%,
respectively. For full descriptions of the CT/HF results and
controls, see the Supplemental Material [29].
Two lines of reasoning indicate that the physical, micro-

scopic origin of increasing κeff involves frustrated tail
packing of the positive (intrinsic) curved leaflet. First,
the absence of this effect in HII monolayers [53] suggests
that any κeff increase should arise from positive curvature.
Second, the CT simulations in [6], using a soft, highly
coarse-grained lipid model showed no evidence of anhar-
monicity, suggesting that the effect might originate from
stronger repulsions in the more physical model used here.
Such an imbalance between tail repulsion and headgroup
attraction, emerging at high curvature, would depend
sensitively on the position of the pivotal plane [54] and
should also increase with bilayer thickness.
To summarize, in this Letter we have applied a permutation

symmetry reduction scheme to lipid membranes, rendering
the biologically relevant, high curvature regime accessible to
umbrella sampling free energy calculations. We have applied
this approach to test the harmonic bending approximation of
the CH model and observed a sharp increase in the bending
modulus κ at curvature radii below 10 nm. This breakdown
of the harmonic approximation suggests that an additional
bending term (and its corresponding modulus μ) is required
for the CH model to give quantitative energetics of highly
curvedmembranes.Moreover, these refinements are essential
for CH models to predict kinetics, which are exponentially
sensitive to barrier heights. Beyond the present study of
bending, many topological processes (poration, fusion stalk
formation) remain both poorly understood and inaccessible to
CH descriptions, but should be accessible to PR based free
energy calculations. More generally, PR could help elucidate
collective phenomena for other classes of soft or interfacial

FIG. 3. Midplane (curvature) radius dependent bending moduli,
κeffðRÞ. Points lie at the mean minimum curvature radius hRmini
of each umbrella window. Error bars are 95% confidence
intervals. Note that κeffðRÞ ¼ κ at large R. The legend depicts
Martini lipids and their constituent coarse-grained beads. The
bead types are: gray solid or open; saturated or unsaturated
carbon chain (approximately 4 carbons per bead), green; glycerol,
blue; PO4, orange solid or open; NC3 or NH3 (choline or amine).

TABLE I. Computed values of κ, μ, and Rμ, all at T ¼ 310 K.

Lipid κ½kBT� μ½kBT nm2� Rμ [nm]

DOPC 23.9� 1.3 614� 109 3.59� 0.32
DOPE 16.9� 1.5 514� 66 3.89� 0.27
DSPC 37.7� 1.7 891� 169 3.44� 0.33
DPPC 29.5� 0.9 498� 64 2.91� 0.18
DMPC 22.7� 0.7 220� 70 2.20� 0.35
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systems that possess permutation symmetry including col-
loids, nanoparticles, thin films, and (bio)polymers.
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