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A new quantum eraser setup exploiting for the first time the time-energy complementarity relation
in the x-ray regime is investigated theoretically. Starting point is the interference process between
x-ray quanta driving two nuclear hyperfine transitions in a nuclear forward scattering setup. We
show that which-way information can be obtained by marking the scattering paths with orthogonal
polarization states, thus leading to the disappearance of the interference pattern. In turn, erasure
of the which-way information leads to the reappearance of the interference fringes. We put forward
two schemes using resonant scattering off nuclear targets and design which-way marking procedures
to realize the quantum eraser setup for x-ray quanta.

I. INTRODUCTION

In quantum mechanics, complementarity refers to the
principle stipulated by Niels Bohr back in 1927 [1]
that classical measurements cannot reveal all informa-
tion about a quantum system within a single experimen-
tal setup. Due to the inseparability between the quantum
system and the classical detector, some observables be-
come mutually exclusive, i.e., they are complementary.
The precise knowledge of one of them implies that all
possible outcomes of measuring the other observable are
equally probable. Although originally examples of com-
plementarity referred mostly to the position (particle-
like) and momentum (wave-like) attributes of a quan-
tum system, one can also connect for instance energy and
time, or different spin projections. Complementarity is
closely related to Heisenberg’s uncertainty relations [2]
that describe the limitations on the possible accuracy of
classical measurements of a quantum system. Over the
years, the dilemmas of complementarity gedankenexperi-
ments such as Einstein’s recoiling-slit two-slit experiment
[3] or Feynman’s electron-light scattering scheme [4] were
solved invoking the position-momentum uncertainty re-
lation [2], prompting the question whether complemen-
tarity is always enforced by the uncertainty relations. A
vivid theoretical debate [5–9] as well as several experi-
ments [10–12] showed that complementarity is more fun-
damental than the uncertainty relation, i.e., one can find
cases in which the effect of Heisenberg’s uncertainty re-
lations is not sufficient to justify the occurring comple-
mentarity.

Quantum interference, the key concept in complemen-
tarity (gedanken)experiments, occurs whenever a quan-
tum system can choose between several paths from a
common initial state |i〉 to the same final state |f〉. The
most famous interference experiment is Young’s double-
slit setup. As long as the path chosen by the parti-
cle through the double-slit remains unrevealed, one can
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observe interference fringes in a position measurement
somewhere behind the slits. According to the comple-
mentarity principle, a detector capable of determining
the path taken by the particle through the double-slit
(and supply which-way information) will destroy the in-
terference pattern. The physical mechanism via which
the interference is lost typically relies on random classi-
cal momentum kicks which are introduced by the detector
revealing which-way information in the system [3]. This
is however not always the case. In more recent quantum
optics experiments, the path chosen by the particle, this
time an atom or ion, can be marked by employing fur-
ther degrees of freedom related to their internal, quan-
tum structure. In this case, even if the acquisition of
which-way information involves a momentum kick, this
is a coherent quantum process rather than a classical
random one. While the interference disappears due to
this marking, one can later choose to “erase” the which-

way information and restore the interference behavior,
in a process first proposed in Ref. [13] and illustratively
called quantum eraser. If the instant of erasure is chosen
such that it occurs only after detection of the particle
(allowing determination of its earlier behavior as wave or
particle) one speaks of a delayed-choice quantum eraser
[14, 15].

The basic elements of a quantum eraser, as enumerated
in Ref. [16] are individual interfering quantum systems,
a method of introducing which-path information, and a
method of subsequently erasing this information in order
to restore the interference. Various realizations of the
quantum eraser in more or less traditional systems have
been reported so far. First experiments in this direction
employed entangled optical photon pairs for the study of
interference [16] and momentum-position complementar-
ity [17–19], while later on also more exotic systems have
been employed or envisaged, for instance, mesoscopic sys-
tems [20, 21], kaons [22], nuclear spins [23], continuous-
variable quantum erasing using field quadrature ampli-
tude and phases [24] or ultrafast quantum emitters in
microcavities [25]. We note that most of these setups ad-
dress the position-momentum complementarity, with few
exceptions [16, 22, 24].

The time-energy complementarity relation has as coun-
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terpart the time-energy uncertainty relation, ∆E∆t ≥
~/2. We recall that the latter, although generally ac-
cepted as valid, does not rely on the same mathematical
basis as other uncertainty relations, i.e., it is not a direct
mathematical consequence of the replacement of classical
numbers by operators. Time is not an operator in quan-
tum mechanics, it is just a parameter. Although from
the theoretical and philosophical side the debates on the
concept of time in quantum mechanics are ongoing [26–
29], there are only few experiments with quantum par-
ticles which do not involve time-related measurements.
A number of double-slit setups recording interference be-
tween paths differing in time rather than spatially have
been investigated both theoretically and experimentally.
These include a double-slit experiment in the time-energy
domain where the slits are related to different time win-
dows of attosecond duration [30–32], a streaking tempo-
ral double-slit in an orthogonal two-color laser field [33],
vacuum-mediated interference in atomic resonant fluores-
cence [34] or oscillations of Mössbauer neutrinos [35].

In this work, we investigate theoretically a different
quantum eraser setup exploiting the complementarity be-
tween time and energy in a so-far unexplored parameter
regime. The novelty arises from the use of hard x-ray
quanta instead of optical or infrared photons. Apart
from x-ray detection efficiencies close to 100%, shorter
wavelengths open the possibility to achieve much bet-
ter spatial resolutions down to the nanometer scale [36].
However, x-rays are no longer resonant to valence elec-
tron transitions in atoms or ions, but rather to inner shell
electron transitions in (highly) charged ions [37–39], or
transitions in atomic nuclei [40–44]. The latter bring the
advantage to provide clean quantum mechanical systems
well-isolated from their environment.

We envisage interference occurring in driving the 14.4
keV Mössbauer transition in 57Fe by x-rays from a syn-
chrotron radiation (SR) source. Under the presence of a
hyperfine magnetic field, the magnetic splitting of the
ground and first excited states will lead to the indis-
tinguishable excitation of two transitions as shown in
Fig. 1 and to the detection of an interference pattern.
Subsequent manipulations of the x-ray photon polariza-
tion in a marking procedure leads to the disappearance
of the interference. By appropriate quantum erasure of
the which-way information, the interference pattern can
be restored in a very similar manner as explained in
the original proposal [5]. Due to their long coherence
times, the use of nuclear transitions leads to very small
relative values for the energy transfer occurring in the
marking procedure compared to the actual photon en-
ergy, Etr/E ∼ 10−13. As it will be shown later on, an
important role is also played by the ratio between the nu-
clear transition width and the magnitude of the hyperfine
splitting, Γ0/∆E.

In order to obtain quantum interference we exploit
the collective effects rising in nuclear forward scattering
(NFS) of SR on Mössbauer solid-state samples. Due to
the recoilless excitation and decay of the nuclear excited

(a) NFS setup (b) Quantum beats
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FIG. 1: (a) Typical NFS setup with magnetic field B. (b)
NFS time spectrum for a thin target with quantum beat pat-
tern (orange curve). (c) Nuclear level scheme of an individual
57Fe nucleus under hyperfine splitting. (d) Collective picture
with a common ground state G and excited levels E1 and E2

driven via the ∆M = 0 transitions.

state, as long as the initial and the final states are the
same for all nuclei in the sample, it is impossible to pin-
point which nucleus or nuclei were involved in the ex-
citation. In this respect, we have here the generalized,
N -scatterer version of Young’s interference experiment
with (optical) light scattered from two atoms [10]. The
collective excitation leads to directional scattering in the
forward direction allowing a spatial separation of the co-
herent (collective) and incoherent (without interference)
decays [45]. The collective coherent decay and conse-
quently the interference effects occur in the forward di-
rection. This high directionality is strongly related to the
ability of Mössbauer nuclei to absorb and re-emit photons
without recoil, which is hardly realizable in atomic sys-
tems. We present two versions of a quantum eraser setup
where the originally interfering paths are first marked via
orthogonal polarization states, leading to a wash-out of
the interference fringes. By applying a projection to a dif-
ferent polarization basis which acts as a quantum eraser,
the which-way information is lost and the interference
fringes reappear. We discuss the energy shifts implied by
the polarization marking and the relation between com-
plementarity and the uncertainty relation in our case.

The paper is structured as follows. Sec. II introduces
the concept of NFS and the theoretical formalism used to
describe the interference spectra in the collective decay.
Sec. III continues with the description of the polarization
marking techniques and describes two versions of quan-
tum erasure for the discussed setups. Numerical results
are presented here. The paper concludes with a summary
and discussion of the results.
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II. NUCLEAR FORWARD SCATTERING

A. Interference mechanisms

A typical NFS setup is shown in Fig. 1(a). The x-rays,
typically from a SR source monochromatized to the nu-
clear transition energy, propagate along the y-direction
and impinge on the nuclear sample with an incident an-
gle of 90◦. The radiation is linearly polarized with x-
(z-)polarized light denoted as σ-(π-)polarization by con-
vention [46]. The time spectrum of the resonantly scat-
tered radiation is detected in the forward direction [see
Fig. 1(b)]. The nuclear response occurs on a much longer
time scale than the x-ray pulse duration and the non-
resonant, electronic response, allowing for time gating of
the signal [47]. Due to the typically narrow nuclear res-
onances and the low brilliance of x-ray sources, at most
one nucleus can be excited in the sample per pulse.
The most used nuclear transition with the NFS tech-

nique is the one connecting the stable ground state of
57Fe (nuclear spin Ig = 1/2) with the the first excited
state (nuclear spin Ie = 3/2, mean lifetime τ=141 ns)
at 14.413 keV, as shown in Fig. 1(c). The recoilless na-
ture of this transition in solid-state nuclear targets leads
to the formation of a delocalized, collective excitation
which decays coherently into the forward direction lead-
ing to a relative speed-up and enhancement of the NFS
yield. The formation of the exciton can be interpreted
as an interference effect for the scattering of the resonant
photon or photons off a collection of N nuclei. As long
as the identity of the interacting nucleus is not revealed,
for instance via spin flip, recoil or an internal conversion
electron, the collective excitation occurs.
In the presence of a nuclear hyperfine magnetic field,

the ground and excited nuclear states undergo Zeeman
splitting according to their spin values as illustrated in
Fig. 1(c). Due to the Fourier limit of the temporally nar-
row incident x-ray pulses, several polarization-selected
hyperfine transitions can be simultaneously driven lead-
ing to well-known quantum beats in the NFS intensity
spectrum [45]. For instance, initially σ-(π-)polarized x-
rays couple to all ∆M = 0 (∆M = ±1) transitions pro-
vided the magnetic field B points along the z-direction.
Since only those photons are coherently scattered into the
forward direction for which the nucleus returns to its orig-
inal ground state Zeeman level, the σ-(π-)polarization is
conserved in the course of NFS with constant hyperfine
field B. In such a setup, the quantum mechanical state
of a single nucleus can in general be expressed as the
following superposition

|Ψ〉 =
2∑

i=1

(

cei |ei, 0〉+ cgi |gi, 0〉
)

+ c1|g1, 1ω1
〉

+ c2|g2, 1ω2
〉 , (1)

where |gi, 0〉 and |ei, 0〉 (i = 1, 2) represent the states in
ground and excited magnetic sublevels, respectively, with
the radiation field in vacuum, |gi, 1ωi

〉 (i = 1, 2) denote

the states after the reemission process in the course of
NFS involving one photon with either frequency ω1 or
ω2, and cgi , cei and ci (i = 1, 2) are the corresponding
probability coefficients. According to the full quantum
mechanical description, the two ∆M = 0 transitions do
not interfere for a single nucleus due to the different ini-
tial and final states involved. The beat pattern between
ω1 and ω2 evaluates in this case to

〈Ψ|E(−)
1 E

(+)
2 |Ψ〉 ∝ 〈g1, 1ω1

|a†1a2ei(ω1−ω2)t|g2, 1ω2
〉

∝ 〈1ω1
|a†1a2|1ω2

〉ei(ω1−ω2)t〈g1|g2〉
∝ ei(ω1−ω2)t 〈g1|g2〉

︸ ︷︷ ︸

=0

, (2)

where the field operators E
(±)
i are proportional to

aie
−iωit and a†ie

iωit, respectively, with ai and a†i being
the photon creation and annihilation operators belonging
to frequency ωi (i = 1, 2). The beat pattern disappears
for a single nucleus because the Zeeman levels g1 and g2
are orthogonal to each other, 〈g1|g2〉 = 0.
In an ensemble of many nuclei collective effects come

into play. In this case, the two ∆M = 0 transitions are
connected by the collective ground state which contains
nuclei on both hyperfine levels,

|G〉 = |g(1)1 〉 . . . |g(N1)
1 〉

︸ ︷︷ ︸

N1

|g(N1+1)
2 〉 . . . |g(N)

2 〉
︸ ︷︷ ︸

N2

, (3)

where |g1〉 and |g2〉 denote the two ground magnetic sub-
levels and Ni is the number of nuclei on the ground state
|gi〉 (i ∈ 1, 2) with N1 +N2 = N . At room temperature,
typically N1 ≈ N2. The excited state on the other hand
can be described as a timed Dicke state [48]

|Eµ〉 =
1

√
Nµ

Nµ∑

n=1

eik·rn |g(1)1 〉 . . . |e(n)µ 〉 . . . |g(N)
2 〉 , (4)

in which the nth nucleus has been excited via the tran-
sition µ, with the notation µ = 1 for the transition
Mg = −1/2 → Me = −1/2 and µ = 2 for Mg = +1/2 →
Me = +1/2, depending on the initial ground state spin
projection Mg. The position of the excited nucleus is
given by rn and k represents the wave vector of the res-
onant incident x-ray field. The scattering channels with
∆M = 0 are equivalent in this system to the transitions
|G〉 → |E1〉 and |G〉 → |E2〉, as illustrated in Fig. 1(d).
We show in the following that interference effects can

occur in this setup (see Ref. [49]). Having at most one
excitation inside the nuclear ensemble, the general state
of the system can be written as

|Ψcoll〉 =
2∑

i=1

CEi
|Ei, 0〉+ CG|G, 0〉+ C1|G, 1ω1

〉

+ C2|G, 1ω2
〉 (5)

with CEi
, CG and Ci representing the probability ampli-

tudes for being in |Ei, 0〉, |G, 0〉 and |Gi, 1ωi
〉 (i = 1, 2),
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respectively. Following the same steps as in the case of a
single nucleus, we obtain

〈Ψcoll|E(−)
1 E

(+)
2 |Ψcoll〉 ∝ 〈G, 1ω1

|a†1a2ei(ω1−ω2)t|G, 1ω2
〉

∝ ei(ω1−ω2)t 〈G|G〉
︸ ︷︷ ︸

=1

. (6)

Here, we observe a beat pattern since the two ∆M = 0
transitions are connected via the common ground state
|G〉. This is equivalent with the coherent addition of
classical fields, that is introduced in the following.

B. Theoretical approach

The approach we are using follows Refs. [50–52] where
Maxwell’s equations are directly solved in time and space.
This kind of treatment allows us to easily incorporate
time-dependent interactions like sudden switchings of the
magnetic field. Actually, Ref. [51] provides a general way
of solving the problem of NFS in terms of a semiclas-
sical description, applicable to arbitrary time-dependent
interactions. Here, we rather present a reduced version
of the model, adapted to our purposes.

1. Wave equation

We describe the coherent nuclear scattering process
with a semiclassical approach where the electromagnetic
field is considered to behave classically whereas the nu-
clear system is treated quantum mechanically. In order
to facilitate the treatment of time-dependent hyperfine
interactions later, it is natural to solve the scattering
problem directly in space and time based on Refs. [50–
52]. Accordingly, the coherent propagation of the electro-
magnetic field through the resonant medium is thereby
described by Maxwell’s equation,

∂

∂y
E(y, t) = −2π

c
J(y, t), (7)

where the slowly-varying amplitude approximation has
been applied. Here, the amplitudes E(y, t) and J(y, t)
denote the electromagnetic field inside the nuclear tar-
get and the macroscopic current density induced by the
incident radiation, respectively. These amplitudes only
depend on the spatial coordinate y because absorption as
well as refraction occur along the propagation direction.
The boundary condition for E(y, t) is set by the incident
radiation field,

E(0, t) = Ein(t) . (8)

Once we have solved Eq. (7), the forward scattered
intensity spectrum behind the target is given by

I(t) = |E(L, t)|2 , (9)

where L denotes the thickness of the nuclear sample.

2. General solution

In order to solve Eq. (7) it is helpful to introduce di-
mensionless space and time variables ξ and τ , respec-
tively, via

ξ =
1

4
σRn0y ,

τ = Γ0t , (10)

where n0 is the number of resonant nuclei per unit vol-
ume, σR the total nuclear cross section of resonant ab-
sorption and Γ0 the full natural transition width. For the
special case of y = L, the spatial variable ξ is also known
as effective thickness of the resonant scattering.
Using these definitions and writing the macroscopic nu-

clear current density as a sum over all individual nuclear
current densities [50], it is possible to express Eq. (7) in
the following form

∂

∂ξ
E(ξ, τ) = −

∑

ℓ

Jℓ(k, τ)

∫ τ

−∞

dτ ′ J∗
ℓ (k, τ

′) ·E(ξ, τ ′) .

(11)
The occurring summation runs over all contributing hy-
perfine transitions ℓ, e.g., the ones depicted in Fig. 1(c)
for 57Fe. Each nuclear excitation and de-excitation via a
certain transition ℓ is described by the matrix elements
J∗
ℓ and Jℓ, respectively. The resulting wave equation

(11) is similar to a Schrödinger equation where time is
replaced by the dimensionless space variable ξ. Analo-
gously to perturbation theory it is possible to represent
the solution as a power series in ξ,

E(ξ, τ) =

∞∑

p=0

E(p)(ξ, τ) =

∞∑

p=0

(−ξ)p
p!

E(p)(τ) . (12)

The term p = 0 represents the boundary condition given
in Eq. (8) and reads

E(0)(ξ, τ) = Ein(τ) . (13)

All higher order terms are obtained from power matching
in ξ by inserting Eq. (12) into the wave equation (11),
leading to

E(p)(τ) =
∑

ℓ

Jℓ(k, τ)

∫ τ

−∞

dτ ′ J∗
ℓ (k, τ

′) ·E(p−1)(τ ′) .

(14)
Since the first order is in most cases the dominating

scattering contribution (in particular for thin samples or
in general for small interaction times), it is useful to write
down the explicit form of E(1),

E(1)(ξ, τ) = −ξ
∑

ℓ

Jℓ(k, τ) (J
∗
ℓ (k, 0) · ep) , (15)

where the incident radiation was considered to be a δ-like
pulse in time with arbitrary polarization ep.
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3. Static hyperfine field

In the case of static hyperfine interactions, it is possible
to express the time-dependent nuclear transition currents
J∗
ℓ and Jℓ in terms of the time-independent matrix ele-

ments of the current density operator j∗ℓ and jℓ, respec-
tively. Taking the explicit time evolution of the nuclear
spin states into account, we obtain

J∗
ℓ (k, τ) = eiΩℓτ−τ/2j∗ℓ (k) ,

Jℓ(k, τ) = e−iΩℓτ−τ/2jℓ(k) , (16)

with

Ωℓ = (Mgǫg −Meǫe) /Γ0 (17)

describing the frequency correction due to magnetic hy-
perfine splitting in units of Γ0. Here, we assumed that the
magnetic field points along the z-direction, B = B0ez,
and introduced the factor ǫλ = µλB0/Iλ (λ ∈ {g, e})
standing for the energy splitting caused by the hyperfine
interactions, where the nuclear states are characterized
by their total spin quantum number Iλ with projections
Mλ and magnetic moments µλ. For instance, in the case
of 57Fe the two ∆M = 0 resonances are energetically
separated by ∆E = |ǫg − ǫe|. The amplitudes j∗ℓ and jℓ
appearing in Eqs. (16) denote the time-independent tran-
sition elements of the current density operators j† and j,
respectively. It is important to note that the directional-
ity of j∗ℓ and jℓ is strongly related to the polarization of
the incident light and the direction of the magnetic field
[51, 53].
Plugging the explicit time dependence of the nuclear

currents (16) into Eq. (15), the first order solution for
NFS in the presence of a static hyperfine field can be
written as

E(1)(ξ, τ) = −ξ
∑

ℓ

A
(1)
ℓ,I (k) e

−iΩℓτ−τ/2 . (18)

Accordingly, the single scattering events can be ex-
pressed as a coherent summation over all contributing
nuclear transitions ℓ where the summands factorize into
a time-dependent phase factor e−iΩℓτ−τ/2 and a time-

independent amplitude A
(1)
ℓ,I which is determined by

A
(1)
ℓ,I (k) = jℓ(k) (j

∗
ℓ (k) · ep) . (19)

4. Fast switchings of the magnetic field

In this paragraph the hyperfine interactions investi-
gated so far are generalized to the case where it is allowed
to switch the magnetic field off and on, as already dis-
cussed in Ref. [54] in the context of coherent storage of
x-ray photons. We consider therefore an initially applied
B-field to be switched off at time τ = τ0 and on again at
τ = τ1. Thereby, the magnetic field after τ1 is considered
to point in the same direction than the initial one.

Analogously to the case of static hyperfine interactions,
it is intended to express the nuclear currents Jℓ in terms
of the time-independent transition amplitudes jℓ. The
only difference in the calculation is that the time evolu-
tion of nuclear states splits up into three time sectors: I)
τ < τ0, II) τ0 < τ < τ1 and III) τ > τ1. In sector I,
the nuclear currents are again given by Eqs. (16) and the
first order solution reduces to Eq. (18).
In sector II, the magnetic field strength is zero and

the Zeeman levels become degenerated. Depending on
the moment τ0 when the magnetic field is turned off, we
obtain

Jℓ,II(k, τ) = e−iΩℓτ0−τ/2jℓ(k) . (20)

Using the explicit form of the nuclear currents the first
order scattering solution for τ0 < τ < τ1 evaluates to

E(1)(ξ, τ) = −ξ
∑

ℓ

A
(1)
ℓ,II(k) e

−τ/2 , (21)

with A
(1)
ℓ,II = A

(1)
ℓ,I e

−iΩℓτ0 .
In sector III, the analogous procedure is applied result-

ing in the following expression for the nuclear currents

Jℓ,III(k, τ) = e−iΩℓτ0−τ/2
∑

ℓ′

e−iΩℓ′ (τ−τ1)jℓ′(k) . (22)

Inserting this expression into Eq. (15), leads to the first
order scattering solution for τ > τ1,

E(1)(ξ, τ) = −ξ
∑

ℓ

A
(1)
ℓ,III(k) e

−iΩℓτ−τ/2 , (23)

where the time-independent amplitudes A
(1)
ℓ,III are given

by

A
(1)
ℓ,III(k) = jℓ(k) e

iΩℓτ1
∑

ℓ′

e−iΩℓ′τ0 (j∗ℓ′(k) · ep) . (24)

III. WHICH-WAY INFORMATION AND

QUANTUM ERASER

The occurrence of the quantum beat pattern in the
course of NFS can be explained in analogy to a double-
slit setup. Instead of the interference of two spatial path
ways like in a conventional double-slit experiment, the
quantum beat pattern in the course of NFS is caused by
the interplay between the frequency paths contributing to
the scattering process, e.g., ω1,...,6 in the case of 57Fe [see
Fig. 1(c)]. In the following we will restrict ourselves to
the interference of the two ∆M = 0 transitions, ω1 and
ω2. We put forward two versions of a quantum eraser
setup. The general idea of both is to first mark the origi-
nally interfering paths via orthogonal polarization states,
leading to a wash-out of the interference fringes. By ap-
plying a projection to a different polarization basis which
acts as a quantum eraser, the which-way information is
lost and the interference fringes reappear.
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FIG. 2: Quantum-eraser scheme 1. The σ-polarized syn-
chrotron pulse is resonantly scattered at target 1 (B1 ‖ ez)
via the two ∆M = 0 transitions. The high-speed shutter cuts
the SR pulse off such that the incoming radiation field at tar-
get 2 is solely the nuclear response of target 1. Following the
nuclear scattering off target 2 (B2 ‖ ey) a polarizer splits the
σ- and π-polarization components.

A. Scheme 1: Two targets in a collinear setup

The setup of scheme 1 is presented in Fig. 2, consisting
of two 57Fe targets with magnetic fields B1 and B2, re-
spectively, a high-speed shutter [55] behind the first tar-
get and a polarizer directly in front of the detectors. Sim-
ilar two-target setups, however without magnetic fields
have been experimentally demonstrated in Refs. [56–59].
In the following, we will describe the propagation of the
SR pulse through this setup step by step. The essential
building blocks of a quantum eraser will be identified and
the required conditions evaluated.

The incident SR pulse is considered to be σ-polarized
initially and the magnetic field at target 1 is chosen
to point along the z-direction such that only the two
∆M = 0 transitions are driven. For the considered
B-field geometry the σ-polarization is conserved in the
course of the nuclear resonance scattering. Within the
applied hyperfine field, target 1 adopts essentially the
role of the double slit in the original quantum eraser pro-
posal [5], imprinting the quantum beat pattern on the
scattered field.

Fig. 3(a) shows the time spectrum of the forward scat-
tered intensity directly behind target 1. Due to the two
scattering paths in frequency space the quantum beat in-
terference pattern appears in the time spectrum. Apart
of the interference between the ∆M = 0 channels, the
dynamical beat modulation caused by multiple scattering
events inside the sample occurs in the intensity spectrum.
In the calculation presented in Fig. 3(a), an effective tar-
get thickness for sample 1 of ξ1 = 7 has been considered.

The role of the shutter behind target 1 is to select a
certain time window of the scattered field. This time
window can be controlled by the shutter properties like
the diameter, the width of the slit or the position of the
latter, and by the applied rotation frequency [55]. In
Fig. 3(b) for instance, we assumed that only photons
emitted from t0 = 7 ns until t1 = 74 ns are able to
pass the shutter and to reach the second target. The
choice of t0 > 0 also cuts off the broadband SR pulse
which behaves essentially δ-like in time in comparison
to the nuclear response. In frequency space, the high-
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(b) Shutter + Target 2
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FIG. 3: (a) NFS intensity spectrum |E(ξ, τ )|2 directly behind
target 1. The scattering via the two ∆M = 0 transitions
results in the characteristic quantum beat pattern. Due to the
shutter only photons emitted in the time window from 7 ns
until 74 ns [region between blue dashed lines in (a), blue curve
in (b)] reach target 2. (b) The magnetic field B2 is chosen
such that the interference between the ∆M = 0 frequency
components is destroyed in the intensity spectrum |E(ξ, τ )|2

(red curve) directly behind target 2. Effective thicknesses of
ξ1 = ξ2 = 7 and a maximal scattering order of pmax = 19
have been considered in the calculations.

speed shutter creates two spectrally narrow x-ray pulses
at frequencies ω1 = ω0 − Ω2Γ0 and ω2 = ω0 + Ω2Γ0, re-
spectively, by inverting the two ∆M = 0 absorption dips.
Note that due to the broadband nature of SR light and
the narrow nuclear transition widths, typically at most a
single resonant x-ray photon is involved in the scattering
process, either with frequency ω1 or ω2.
The magnetic field at the second iron target points

along the y-axis which is the direction of propagation.
This is known as the Faraday geometry and in this case
only ∆M = ±1 transitions are allowed according to an-
gular momentum conservation. Photons emitted via the
∆M = +1 and ∆M = −1 are right and left circularly po-
larized, respectively. The idea to delete the interference
pattern imprinted at target 1 is to tune the strengths of
the magnetic fields B1 and B2 such that the spectrally
narrow peaks impinging on target 2 are marked with or-
thogonal circular polarizations. One choice is to set the

conditions ω
(1)
1 = ω

(2)
3 and ω

(1)
2 = ω

(2)
6 , resulting in

B1

B2
=
µg/Ig + µe/Ie
µg/Ig − µe/Ie

, (25)

where µg and µe denote the magnetic moments of the
ground and the excited states, respectively. In terms of
the nuclear magneton µn, the magnetic moments of 57Fe
are given by µg = 0.09044µn and µe = −0.1549µn [60].

In the same manner, one can impose ω
(1)
1 = ω

(2)
5 and

ω
(1)
2 = ω

(2)
4 which can be realized by

B1

B2
=
µg/Ig − 3µe/Ie
µg/Ig − µe/Ie

. (26)

However, for both cases a small chance remains to drive

off-resonant transitions, e.g. ω
(2)
4 and ω

(2)
5 in case 1, or

ω
(2)
3 and ω

(2)
6 in case 2, respectively. Perfect cancellation
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FIG. 4: The σ- (orange curve) and π-components (blue curve)
of the intensity spectrum |E(ξ, τ )|2 are shown together with
the unpolarized signal (red dotted line) from Fig. 3. While
the left graph covers the region from 0 to 500 ns, the right
graph zooms into the time window between 80 and 190 ns. In
the calculations scattering orders up to pmax = 19 have been
taken into account.

of the quantum beat pattern can be achieved only if these
off-resonant interactions are totally negligible.

The intensity spectrum behind target 2 shown in

Fig. 3(b) is calculated with Zeeman splittings of ǫ
(1)
g ≈

48 Γ0 and ǫ
(1)
e ≈ −27 Γ0 at target 1, and ǫ

(2)
g ≈ 28 Γ0

and ǫ
(2)
e ≈ −16 Γ0 at target 2, corresponding to the case

where ω
(1)
1 = ω

(2)
5 and ω

(1)
2 = ω

(2)
4 . Moreover, an effective

thickness of ξ2 = 7 has been considered. As can be seen
from Fig. 3(b), for photons interacting with both targets
the which-way information is successfully obtained, de-
stroying the interference pattern. The condition of dou-
ble interaction is certainly fulfilled at times larger than t1
such that the quantum beat completely disappears in this
region. Only the dynamical beat signature remains in the
intensity spectrum except for small oscillations coming
from interactions with off-resonant transitions.

One may wonder at this point whether the disappear-
ance of the interference pattern is simply due to a change
in energy of the individual scattering paths introduced by
the marking procedure. We recall that this was the topic
of a vivid argument on uncertainty over complementarity
for quantum eraser experiments in the momentum-space
domains in Refs. [5–9]. Also in our case, we have to ad-
mit that the marking procedure might apply an energy
“kick” to the scattered photon: each resonant absorption
and reemission of an x-ray photon introduces an energy
uncertainty on the order of the natural transition width
Γ0 leading to a correspondingly uncertain emission time.
In turn, the period of the quantum beat, i.e., the mag-
nitude of the interference fringe, is determined by the
hyperfine splitting ∆E. The resolution of the quantum
beats may therefore be diminishing the larger the ratio
Γ0/∆E leading to a wash-out of the interference pattern
[61]. We would like however to point out that although
an energy “kick” is applied in the marking procedure,
this cannot be the complete reason why the interference
pattern is disappearing. Let us consider for the moment a
collinear setup with two targets both under the action of
the same magnetic field. Also in this case, the absorption
and reemission of the x-ray photon in the second target

introduces an energy uncertainty on the order of the nat-
ural transition width Γ0, but since no marking via orthog-
onal polarizations has occurred, the interference pattern
persists. This has been discussed in Refs. [46, 54]. Thus,
there is more to obtaining which-way information than
mere random energy “kicks” to justify the disappearance
of interference. This is why it is also possible to restore
at a latter point the interference pattern by erasing the
which-way information.
After the successful marking of the scattering paths

with orthogonal polarizations the question arises, how to
erase again the which-way information obtained by the
resonant scattering off the second target? Since the two
scattering paths are marked with circular polarizations,
a polarizer projecting on the linear polarization basis eσ
and eπ destroys the orthogonality and restores the in-
terference pattern as shown in Fig. 4. The left graph of
Fig. 4 presents the intensity spectrum at detector 1 (or-
ange curve) and detector 2 (blue curve) over the whole
time range employed in Fig. 3, whereas the right graph of
Fig. 4 zooms into the time region between 80 ns and 190
ns. In the latter, the relative shift between the σ- and
the π-components of a quarter of a beating period can be
clearly seen. The σ- and π-polarized parts take the role
of the fringes and anti-fringes introduced in Ref. [5].
The small oscillations in Fig. 3(b) show that the mark-

ing via orthogonal polarizations can be slightly distorted
due to the off-resonant interactions. In order to mini-
mize the latter, the incoming spectrally narrow peaks as
well as the absorption lines need to be well separated
in frequency space. This corresponds to shrinking the
ratio Γ0/∆E as much as possible, e.g., by using a very
large magnetic splitting ∆E which leads to a large de-
tuning for the off-resonant transitions. A large magnetic
splitting ∆E in turn involves high magnetic fields. In the
calculations presented in Figs. 3 and 4, for instance, mag-
netic field strengths of B1 ≈ 39 T and B2 ≈ 23 T have
been considered in order to obtain the intended hyperfine
splittings. Since such high magnetic field strengths are
difficult to realize in laboratory, it is worth to explore if a
quantum eraser scenario is also feasible in a setup where
a strong internal hyperfine field can be employed, e.g. by
using antiferromagnetic FeBO3 crystals.

B. Scheme 2: Interferometer-like setup

Instead of using two targets in a sequence, it is also
possible to realize a quantum eraser scheme by employ-
ing an x-ray interferometer setup involving two spatially
separated targets, one in each interferometer arm. The
general idea is to directly apply a time delay in one of the
arms such that a relative phase is imprinted. Consider-
ing for instance a geometry where only the two ∆M = 0
transitions, ω1 and ω2, are driven, it turns out that a
time delay in one of the arms produces a phase shift for
each frequency component exactly opposite in sign. How
this phase shift can be employed to destroy and recover
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FIG. 5: Quantum-eraser scheme 2. The incoming x-ray pho-
ton is split into its σ- and π-polarized components by a po-
larizer [63, 64]. The split beams are later on mixed with the
help of two mirrors [65] and a beam splitter (BS). In each arm
a nuclear 57Fe target is inserted. The two targets experience
the magnetic fields B1 and B2, respectively. A relative time
delay between arm 1 and 2 is introduced.

the quantum beat pattern of NFS is explained in the fol-
lowing.

The x-ray interferometer we are considering is
schematically presented in Fig. 5. In comparison to a
conventional Mach-Zehnder-interferometer, a peculiarity
here is the polarizer at the beginning which splits the
σ-polarized component from the π-polarized part. After
the polarizer, the split beam interacts with two nuclear
samples, one in each interferometer arm, in the presence
of the magnetic fields B1 and B2, respectively. The
π-polarized pulse furthermore experiences a time delay
∆τ in comparison to the σ-polarized counterpart, before
reaching target 2. Finally, both spatially separated arms
come together at a beam splitter (BS) [62] where they
are recombined.

The interferometer system composed of a polarizer,
two mirrors, two spatially separated nuclear targets and
finally a beam splitter (BS) as shown in Fig. 5 can be
theoretically described in the following way [66]

(

E
(1)
out−1

E
(1)
out−2

)

=
1

2

(
1 i
i 1

)

︸ ︷︷ ︸

“BS”

(
−1 0
0 −1

)

︸ ︷︷ ︸

“mirrors”

(
ψ1 0
0 ψ2

)

︸ ︷︷ ︸

“targets”

×
(
|σ〉〈σ| 0

0 |π〉〈π|

)(
1 i
i 1

)

︸ ︷︷ ︸

“polarizer”

(
Ein

0

)

.

(27)

Here, Ein represents the incoming synchrotron pulse and

E
(1)
out−1 and E

(1)
out−2 the output at detector 1 and 2, re-

spectively, in the single scattering approximation. Con-
sidering the synchrotron pulse initially in an arbitrary
linear polarization state, as given by the superposition

Ein(τ) = (αeσ + βeπ) δ(τ), (28)

with α, β ∈ R and normalization α2 + β2 = 1, and per-
forming the matrix multiplications occurring in Eq. (27),
we obtain

(

E
(1)
out−1

E
(1)
out−2

)

=
1

2

(
−αE(1)σ(ξ, τ) + βE(1)π(ξ, τ)

−iαE(1)σ(ξ, τ)− iβE(1)π(ξ, τ)

)

.

(29)

Here, E(1)σ and E(1)π denote the first order contribu-
tions originating from the initially σ- and π-polarized
component, respectively. Important to remark is that
we only consider thin targets in this section such that
the single scattering approximation is always the domi-
nating contribution of the forward scattered field. More-
over, the time delay ∆τ was not yet been accounted for
in Eqs. (27) and (29). It is later on incorporated into the

nuclear response E(1)π coming from target 2.

So far, the description in Eq. (29) is rather general,
neither the incident radiation pulse nor the B-field ge-
ometry has been fixed. Since we consider two spatially
separated nuclear targets, the magnetic fields at each
individual sample can be chosen independently of each
other. In the following, we now first choose the magnetic
fields B1 and B2 such that only the ∆M = 0 transi-
tions are driven in both targets. Explicitly, this can be
achieved by a magnetic field B1 at target 1 parallel to the
z-axis andB2 at target 2 parallel to the x-axis. The mag-
nitudes of both are furthermore assumed to coincide. In
order to evaluate the terms E(1)σ and E(1)π correspond-
ing to the scattered field from each individual target, we
employ the description of NFS introduced in Sec. II B
where a semi-classical wave equation is used. Moreover,
we label the transitions Mg = −1/2 → Me = −1/2 and
Mg = +1/2 → Me = +1/2 in the following via ℓ = −2
and ℓ = 2, respectively. According to Eq. (18), the first
order solutions for the considered geometry can be writ-
ten as

E(1)σ(ξ, τ) = −ξ
{

A
(1)σ

ℓ=−2,I(k)e
iΩ2τ +A

(1)σ

ℓ=2,I(k)e
−iΩ2τ

}

× e−τ/2 (30)

and

E(1)π(ξ, τ) = −ξ
{

A
(1)π

ℓ=−2,I(k)e
iΩ2(τ−∆τ) +A

(1)π

ℓ=2,I(k)

× e−iΩ2(τ−∆τ)
}

e−(τ−∆τ)/2 , (31)

where the amplitudes A
(1)σ

ℓ,I and A
(1)π

ℓ,I are defined in

Eq. (19) with ep = eσ and ep = eπ, respectively. Us-
ing the expressions for the nuclear hyperfine currents j∗ℓ
and jℓ [51, 53], the amplitudes can be explicitly evalu-
ated. Furthermore, the time delay ∆τ is incorporated
into the scattered field E(1)π originating from target 2
[see Eq. (31)].

Inserting the NFS solutions of the individual targets
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[Eqs. (30) and (31)] into Eq. (29), leads to

E
(1)
out−1(ξ, τ) = −ξ fLM

4

{

eiΩ2τ (−αeσ + β′eiΦeπ) + e−iΩ2τ

× (−αeσ + β′e−iΦeπ)
}

e−τ/2 ,

E
(1)
out−2(ξ, τ) = iξ

fLM
4

{

eiΩ2τ (αeσ + β′eiΦeπ) + e−iΩ2τ

× (αeσ + β′e−iΦeπ)
}

e−τ/2 , (32)

where we have introduced the phase Φ = Ω2∆τ and the
coefficient β′ = βe∆τ/2. Moreover, fLM represents the so-
called Lamb-Mössbauer factor describing the probability
for a recoilless scattering event. As seen from Eqs. (32),
the π component experiences a relative phase shift of Φ in
comparison to the σ-polarized part in the case of ℓ = −2,
while the phase shift is of opposite sign for ℓ = 2.

Let us first discuss the simplest scenario with zero time
delay, ∆τ = 0. In this case β′ reduces to β and the phase
Φ is identically zero such that the factor eiΦ evaluates to
one. The polarization response of each frequency com-
ponent follows the superposition state of the incident ra-

diation Ein. Taking the modulus squared of E
(1)
out−1 and

E
(1)
out−2, respectively, the intensity spectra at each detec-

tor have the same form given by,

I
(1)
out(ξ, τ) = ξ2

f2
LM

8

{

1 + cos(2Ω2τ)
}

e−τ . (33)

As can be seen from Eqs. (33), in the case of ∆τ = 0 the
quantum beat pattern represented by the cosine term is
preserved in the intensity output. Since the interferome-
ter arms are characterized by orthogonal polarizations in
the considered scenario, there is no interference term be-
tween arm 1 and arm 2 occurring in the intensity spectra.
For this reason, the signals at detectors 1 and 2 coincide
and it is sufficient to discuss only one of the outputs
whenever talking about intensities in the following.

In order to switch off the quantum interference between
the two hyperfine transitions ℓ = −2 and ℓ = 2, a nonzero
time delay ∆τ can be employed. The idea is to choose
∆τ such that the two scattering channels in frequency
space, ℓ = −2 and ℓ = 2, are marked by orthogonal po-
larization states, e.g., left and right circularly polarized.

Therefore, the condition β′

α eiΦ = ±i needs to be fulfilled.
Since α and β are chosen to be real, the only possible
solution is to set Φ = (2n + 1)π/2 (n = 0, 1, 2, . . . ) and
β′ = α. Choosing for instance n = 0, the phase re-
quirement Φ = π/2 can be achieved by a time delay of
∆τ = π/(2Ω2) corresponding to a quarter of the beating
period. In order to get completely rid of the quantum
beat, the initial polarization has to be slightly rotated
away from 45◦ in order to compensate for the exponential
decay term e−∆τ/2 (β′ = α). Taking the normalization
α2 + β2 = 1 and the condition β′ = α into account, it is
possible to fix the incident polarization in dependence of

the time delay ∆τ ,

α(∆τ) =

√

1

e−∆τ + 1
,

β(∆τ) =

√

1

e∆τ + 1
. (34)

Specifying Eqs. (32) to the conditions Φ = π/2 and
β′ = α, leads to the following field amplitudes at detector
1 and 2, respectively,

E
(1)
out−1(ξ, τ) = −ξαfLM

4

{

eiΩ2τ (−eσ + ieπ) + e−iΩ2τ

× (−eσ − ieπ)
}

e−τ/2 ,

E
(1)
out−2(ξ, τ) = iαξ

fLM
4

{

eiΩ2τ (eσ + ieπ) + e−iΩ2τ

× (eσ − ieπ)
}

e−τ/2 . (35)

Since the phase shift Φ is of opposite sign for the two
frequency slits ℓ = −2 and ℓ = 2, each slit is marked by
orthogonal polarization states, in Eqs. (35) for instance,
e− for ℓ = −2 and e+ for ℓ = 2 in the case of Eout−1,
and vice versa in the case of Eout−2. As the orthogo-
nal polarizations store the which-way information of the
scattering process, the interference between the ∆M = 0
hyperfine transitions should vanish in the intensity spec-
tra at the detectors. In order to prove this, we calculate

I
(1)
out−1 and I

(1)
out−2 in the same manner as for zero time

delay, resulting in

I
(1)
out(ξ, τ) = ξ2

f2
LM

8
e−τ . (36)

In comparison to Eqs. (33), the quantum beats repre-
sented by the cosine function disappeared as expected.
In Fig. 6, we show numerical results of the intensity

spectra at detector 1 for the cases Φ = 0 [Fig. 6(a)] and
Φ = π/2 [Fig. 6(b)]. Scattering orders up to pmax = 14
have been included in the calculations. A Zeeman split-
ting of Ω2 ≈ 28 [Γ0] (corresponding to the internal hy-
perfine field in FeBO3) has been considered, resulting in
a time delay ∆t = 7.8 ns for the special case of Φ = π/2.
Furthermore, the numerical results correspond to an ef-
fective target thickness ξ = 1 and an incident polarization
characterized by α = 0.717 and β = 0.697 determined via
the condition β′ = α for the case of Φ = π/2. Fig. 6(a)
shows that the quantum interference between the fre-
quency slits ℓ = −2 and ℓ = 2 is preserved for ∆τ = 0 as
already pointed out in Eq. (33).
In the case of Φ = π/2, the frequency paths ℓ = −2 and

ℓ = 2 should not interfere anymore, because the marking
via the orthogonal polarizations e− and e+, respectively,
contains the which-way information (in frequency space)
of the scattering process [see Eqs. (35)]. This behavior
is clearly recovered in Fig. 6(b) where the intensity spec-
trum is determined by a simple exponential decay (red
curve) instead of the quantum beat interference pattern.
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FIG. 6: Quantum eraser via a relative time delay. (a) The individual targets exhibit the quantum beat pattern due to
interference between the two ∆M = 0 transitions. (b) Employing a time delay corresponding to Φ = π/2 marks the scattering
paths with orthogonal polarizations, destroying the interference. (c) The which-way information is erased and the interference
is recovered by projecting onto the linear polarization basis, eσ and eπ.

In order to restore the quantum interference by eras-
ing the which-way information, a projection on the linear
polarization basis (for instance with a polarizer) can be
employed behind the beam splitter. Projecting on the σ-
and π-polarization basis erases the which-way informa-
tion stored in the orthogonal polarizations e− and e+,
reproducing the quantum beat pattern. The resulting
intensity spectra are presented in Fig. 6(c). Following
the lines of the quantum eraser concept [5], the relatively
shifted intensity spectra for the σ and π components can
be interpreted as fringes and anti-fringes.
So far, we considered the time delay ∆τ would be in-

troduced by an external element, e.g., a time-delay line

[67–70]. Instead of using an external element, fast switch-
ings of the magnetic field at target 2 can be employed to
coherently store the incident field for a while [54]. The
hyperfine interaction for the case of a magnetic field in-
stantaneously turned off and on again is described in de-
tail in Ref. [54]. We consider the case where the magnetic
field B2 is switched off at time τ0 and on again at τ1. For
both τ < τ0 as well as τ > τ1, B2 points along the x-
axis. Specifying Eqs. (18), (21) and (23) to this case
and following the procedure as it has been employed for
a sudden turn off of the magnetic field in Ref. [54], we
finally obtain the following scattering output (in first or-
der) coming from target 2,

E(1)π(ξ, τ) =







−ξ fLM

2

{

eiΩ2τ + e−iΩ2τ
}

e−τ/2eπ for τ < τ0

−ξ fLM

2

{

eiΩ2τ0 + e−iΩ2τ0
}

e−τ/2eπ for τ0 < τ < τ1

−ξ fLM

2

{

eiΩ2(τ−τ1+τ0) + e−iΩ2(τ−τ1+τ0)
}

e−τ/2eπ for τ > τ1

. (37)

Turning the magnetic field instantaneously off at a
time instant τ0 = (2n+1)π/(2Ω2) (n = 0, 1, 2, . . . ) which
corresponds to a minimum of the quantum beat, results
in a strongly suppressed emission at times τ0 < τ < τ1
where B2 = 0. After switching the magnetic field on
again at τ1, the initial emission spectrum is recovered
with an amplitude decreased by the exponential decay
factor e−(τ1−τ0)/2. By using this storage scheme, a time
delay ∆τ = τ1 − τ0 (corresponding to the storage time)
can be induced in comparison to the scattered field from
target 1. Plugging Eq. (30) and Eq. (37) into Eqs. (29),
leads for times τ > τ1 qualitatively to the same behav-
ior as an external time delay line as given in Eqs. (32)
with the replacement β′ 7→ β. Choosing a setup with
∆τ = π/(2Ω2) and an incident linear polarization of 45◦

(α = β = 1/
√
2) marks the two frequency slits (ℓ = −2

and ℓ = 2) by orthogonal polarization states, accomplish-
ing the destruction of the interference pattern as shown

in Fig. 7(b). In order to restore the interference ability
between the two scattering path ways, it is possible to
either make use of a polarizer to project on the σ- and
π-polarization basis as done in Fig. 6(c) or to apply a sec-
ond magnetic field switching introducing another relative
time delay of π/(2Ω2). The latter scenario is illustrated
in Fig. 7(c) where the cancellation of the interference
pattern and its subsequent recovery can be followed in
dependence on the sequence of magnetic field switchings.

IV. SUMMARY AND DISCUSSION

In this article we propose two quantum eraser schemes
potentially shifting time-energy complementarity tests
towards so-far unexplored parameter regimes in the hard
x-ray domain. This implementation using for the first
time nuclear systems instead of atoms would allow to
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(c) Erasing, Φ = 0
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FIG. 7: Quantum eraser via an intrinsic storage scheme. The first-order intensity spectrum |E
(1)
out−1|

2 is shown along with
the time sequence of magnetic field switchings. The initial quantum beats (a) are first annihilated via a relative phase shift
Φ = π/2 (b) and subsequently restored by erasing the which-way information via a second storage sequence, introducing an
additional π/2 phase shift (c).

test the universality of the quantum eraser concept for
a new energy regime and degree of complexity. The es-
sential idea of both schemes is to cancel the quantum in-
terference between two nuclear hyperfine transitions by
marking the scattering paths with orthogonal polariza-
tions. The knowledge of the which-way information leads
to the cancellation of the quantum beat pattern in the
NFS time spectrum. By using a polarizer projecting on
the linear polarization basis, the which-way information
can be erased and the beat pattern is restored.
In the first scheme we make use of a nuclear forward

scattering setup with two collinear targets and a high-
speed shutter in between. In general, the presence of
magnetic fields would lead to a quantum beat pattern in
the NFS intensity spectrum caused by the interference of
simultaneously driven nuclear hyperfine transitions. Our
results show that by choosing the right B-field strengths
and directions at target 1 and 2, it is possible to mark
the scattering paths in frequency space by right- and left-
circular polarizations, respectively, given that the scat-
tered x-ray photon interacted with both targets. In this
case the quantum beat disappears; however, it can be
later on restored with the help of a polarizer. Similarly
to the debate on uncertainty over complementarity for
quantum eraser experiments in the momentum-space un-
certainty relation [5–9], it appears that also in the case
of energy and time, the disappearance of the quantum
beat pattern can be related but cannot be fully explained
by small energy changes or “kicks” of the transition fre-
quency in the marking procedure. A quantum eraser
experiment in the x-ray regime could prove that these
“kicks” are not random and the interference pattern can
be restored by simply erasing the gathered which-way in-
formation. According to Ref. [9], this would show that
complementarity is a more fundamental concept than the
uncertainty principle. Finally, experimentally scheme 1
is challenging because of two reasons: (i) the marking
procedure involves high magnetic field strengths, e.g.,
B1 ≈ 39 T and B2 ≈ 23 T as assumed in Fig. 3, which
additionally should be tunable over a certain parameter

region; (ii) the magnetic field at target 2 is considered
to be in the so-called Faraday geometry pointing in the
propagation direction of the incident pulse.

In the second scheme we consider an interferometer-
like setup with one 57Fe target in each interferometer
arm and a polarization-sensitive element at the entrance
(see Fig. 5). A time delay ∆τ in one of the interfer-
ometer arms leads to a relative phase shift between the
resonantly driven ∆M = 0 transitions. In the case of an
external delay element, our analysis shows that choos-
ing ∆τ and the incident polarization in dependence of
the Zeeman splitting, the which-way information of the
scattering process can be gained. We have furthermore
shown that the external delay element can be replaced by
a sequence of sudden magnetic field switchings leading to
a similar phase shift between the contributing frequency
components. By choosing appropriate switching times
the marking as well as the erasing steps of a quantum
eraser can be achieved. In contrast to an external time
delay line, the intrinsic photon storage requires no ad-
justment of the incident polarization away from 45◦ [see
Eqs. (34)] to accomplish the erasing scheme. Moreover,
time delays longer than a few ns seem to be easier feasi-
ble and additional degrees of control abilities like B-field
rotations are accessible, in comparison to external time
delay lines. However, in order to apply switchings of
the magnetic field at all, special iron samples without in-
trinsic Zeeman splitting like stainless steel are necessary.
Turning magnetic fields of a few Tesla rapidly off and on
may be realized according to Ref. [71] by two methods:
(i) high-voltage snapper capacitors can be employed to
regulate the pulse currents in magnetic coils; (ii) with the
help of the lighthouse effect [47] the nuclear sample can
be quickly moved out of the region where the magnetic
field is applied. In contrast, the scenario with an exter-
nal time delay element does not require any switching
schemes, opening the possibility to make use of the high
intrinsic hyperfine field occurring in magnetized FeBO3

targets.
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