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Parity violation effects in the Josephson junction of a p-wave superconductor
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The phenomenon of the parity violation due to weak interaction may be studied with super-
conducting systems. Previous research considered the case of conventional superconductors. We
here theoretically investigate the parity violation effect in an unconventional p-wave ferromagnetic
superconductor, and find that its magnitude can be increased by three orders of magnitude, as
compared to results of earlier studies. For potential experimental observations, the superconductor
UGe2 is suggested, together with the description of a possible experimental scheme allowing one to
effectively measure and control the phenomenon. Furthermore, we put forward a setup for a further
significant enhancement of the signature of parity violation in the system considered.

PACS numbers: 74.20.Rp,74.90.+n,11.30.Er,12.15.-y

I. INTRODUCTION

The electroweak theory, combining two fundamental
interactions – the electromagnetic and weak forces –
was introduced by Salam, Glashow and Weinberg in the
1960s1–3. It explains the nuclear beta-decay and weak ef-
fects in high-energy physics. One of the most prominent
properties of the electroweak theory is the spatial parity
violation (PV). This unique phenomenon distinguishes
the weak interaction from the electromagnetic one, there-
fore, it helps to investigate weak properties on an elec-
tromagnetic background. Firstly, PV was experimentally
detected in the beta decay of 60Co by Wu4 and collabo-
rators. Later, many other novel experiments for the PV
observation have been proposed and performed. Low-
energy PV experiments in atomic physics were carried
out with Cs atoms (see e.g.5–7). The PV effect has been
theoretically predicted to have a measurable influence on
the vibrational spectrum of molecules in Ref.8. Investi-
gations of PV effects enable tests of the standard model
of elementary particle physics and impose constraints on
physics beyond this model. The search for new efficient
ways to re-examine and investigate the PV phenomenon
is an ongoing research activity (see, for instance,9–12).

Another physical situation where PV effects can play
a noticeable role is the interaction of electrons with the
crystal lattice of nuclei in the solid state13,14. While the
relative contribution of the PV effect is lower in com-
parison to other investigation methods, PV experiments
with solids are of interest because of the compact size of
the experimental equipment. Possible solid-state systems
where one may study the PV contribution are supercon-
ductors (SC). Such systems would enable to study the
macroscopic manifestation of a quantum effect such as
the electroweak interaction. The idea that PV effects
can appear in SCs has been suggested by Vainstein and
Khriplovich13. They have realized that the electroweak
contribution is insignificantly small in conventional s-
wave SCs. However, it was predicted15, that the effect
can be increased by using SCs of other types, e.g. p-wave
SCs. Nowadays different unconventional SCs can be cre-
ated and are well understood16. Therefore, we estimate
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FIG. 1. Circular Josephson junction with two insulations,
placed into a magnetic field.

this effect to be observed in p-wave ferromagnetic SCs,
and put forward a novel method for its observation and
control. Our calculations yield a relative contribution
of PV enhanced by several orders of magnitude as com-
pared to the s-wave case. The PV effect may still not be
strong enough to be immediately measurable, however,
the results of this manuscript open the way for further
enhancements of the signature of PV.

The SC system for studying PV considered in the
present work is a circular Josephson junction in an ex-
ternal magnetic field. This system is described, e.g., in
Ref.17 and consists of a circular SC with two insulating
junctions (see Fig. 1). If the circular Josephson junction
is placed in an external magnetic field, the maximal value
of the SC current depends periodically on the magnetic
flux through the ring. This dependence is symmetric un-
der the reflection of the direction of the magnetic flux.
However, the presence of the PV terms in the electron-
nucleus interaction breaks this symmetry. We investigate
this effect in the case of unconventional p-wave SCs.

This work is organized as follows. In Section II we
discuss the description of the PV effect in solid state
(II. A), and present the possible superconducting system,
namely, a circular Josephson junction (II. B). In Section
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III, we develop a method for the possible observation and
control of the PV effect (III. A), and evaluate the mag-
nitude of the PV effect for a certain SC, namely, ura-
nium digermanide, UGe2 (III. B). In Subsection III. C,
we construct and solve the equations for the coexistence
of the ferromagnetic and superconducting phases. Sec-
tion IV discusses a scheme for a further improvement of
the measurement technique, which can lead to a signifi-
cant enhancement of the PV effect. Finally, we provide
a quantitative prediction of the PV effect in the system
considered.

II. PARITY VIOLATION IN
SUPERCONDUCTORS

A. Weak odd-parity interaction in superconductors

The weak odd-parity interaction in a crystal is given
by the operator13

W (~r) =
G

2
√
2m

∑

i

[

Zq~σ
(

~pδ(~r − ~Ri) + δ(~r − ~Ri)~p
)

+ κI
~Ii

(

~pδ(~r − ~Ri) + δ(~r − ~Ri)~p
)

(1)

+ iκI
~Ii~σ

(

~pδ(~r − ~Ri) + δ(~r − ~Ri)~p
)

]

,

where G is the Fermi constant18, Z is the nuclear charge
of crystal ions, m stands for the electron mass, q is the
weak charge, and ~p denotes the momentum of a Cooper
pair. Furthermore, Ii stands for the nuclear spin, κI is
the pre-factor of the weak interaction of electrons with
nuclear spins13. The summation goes over the crystal

sites, determined by the position vectors ~Ri. It is obvious
from this equation that if the pair spin is zero, σ = 0 (s-
or d-wave), only the second term is non-vanishing. This
case has been investigated before in Ref.15. In the p-wave
case19, the first term is also nonzero, and its approximate
magnitude is Z-times larger than that of the other terms.

Now, we describe our case of interest (σ = 1) in anal-
ogy with the σ = 0 case15. The first term of the effective
interaction is15

W
(1)
eff =

GZ3qR√
2

N

2m
[~p~σ + ~σ~p] , (2)

where the weak charge is

q = κ1p +
A− Z

Z
κ1n , (3)

expressed with the factors κ1p = 1
2 (1 − 4 sin2 θC) and

κ1n = − 1
2 , where the Cabibbo weak mixing angle20 is

given by sin2 θC = 0.22529. In the above equation, N and
A are the density and mass number of nuclei, respectively,
and

R = 4

(

aB
2Zr0

)2−2γ /

Γ2(2γ + 1) (4)

is the enhancement factor of relativistic effects at small
distances15, where γ = 1 − α2Z2/2, r0 ≈ 1.2 · A1/3 fm
is the nuclear radius, aB denotes the Bohr radius, and Γ
denotes the gamma function of real argument. R is on the
order of 10 for heavy elements. The effective term (2) has
to be added to the standard electromagnetic Lagrangian:

L = −m
√

1− v2 + e ~A~v − eφ−W
(1)
eff , (5)

where we use relativistic units. For the momentum of an
electron one obtains

~P =
∂L

∂~v
=

m~v√
1− v2

+ e ~A− GZ3qRN√
22m

2m∗~σ , (6)

where m∗ is the effective mass of the electron. The mass
ration m∗

m can exceed 102. The above weak modification
of the electron momentum is equivalent to the substitu-
tion

e ~A → e ~A− GZ3qRN√
2

m∗

m
~σ , (7)

to be performed in all equations. We apply this substi-
tution in the description of a superconducting ring.

Considering the case when the external magnetic field
does not penetrate into the SC, one can obtain the fol-
lowing expression for the magnetic flux in the supercon-
ducting ring:

2eΦ → 2eΦ− f, (8)

with Φ =
∮

d~r ~A and

f =
√
2GZ3qRN

m∗

m

∮

d~r~σ. (9)

This result can be used in any applications and for any
SC systems. In the following Section we apply this for
the circular Josephson junction. Let us discuss now the
loop integral in Eq. 9. In the case of p-waves, the pairing
spin is σ = 1. However, the integral

∮

d~r~σ(~r) (10)

is non-zero only if the mean spin vector (averaged over
the whole SC circle) is non-zero. Therefore, it is ad-
visable to use an unconventional SC, which possesses a
superconducting phase in coexistence with the ferromag-
netic phase. It allows one to control the effect by inducing
magnetization in the SC. Furthermore, because of the Z3

scaling of the weak flux f , it is advantageous to employ
heavy-element SCs. A possible material with these prop-
erties is uranium digermanide, UGe2

21–23.

B. Circular Josephson junction

Our suggested experimental setup for the observation
of the PV effect in SC is a circular Josephson junction
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FIG. 2. The well-known dependence of the maximal current
Jmax (in units of J0) on the magnetic flux eΦ (in units of ~),
with values ∆ = 100 and D = 0.5. Jmax is calculated accord-
ing to Eq. (14). Both energy and temperature are measured
in units of Kelvin. See e.g. Ref.17 on the discussion of this
function.

(JJ). A linear JJ is created by two SCs, separated by a
thin insulator material. It was predicted by Josephson24

that the insulator does not prevent the appearance of a
superconducting current, however, the properties of the
current depend on the thickness and material of this in-
sulator. Nowadays JJs have a wide spectrum of appli-
cations connected with atomic physics and quantum op-
tics25. We consider the point-contact limit of the JJ, i.e.
we assume that the insulator is infinitely thin. However,
all derivations presented here can be easily extended for
other JJ models, since the PV effect breaks the symmetry
in any case.

The current in the JJ in the point contact approxima-
tion is given by the expression26

J(φ) = J0∆

tanh

(

∆
2π

√

1−D sin2(φ/2)

)

√

1−D sin2(φ/2)
sinφ , (11)

where D is the angle-averaged transmission probability,
and ∆ stands for the gap parameter. The phase is defined
by

φ = δ0 + 2e

∫

Ads , (12)

where the integral is to be taken across the junction17

and δ0 is an unknown constant phase. This expression is
valid both in the clean and dirty limits of the SC.

If one now constructs a circular JJ by two identical JJ a
and b connected in parallel (see Fig. 1), only the following
phase difference between these junctions is observable:

δb − δa = 2e

∮

Ads , (13)

where the circular integral is to be taken along the loop,
and thus δb − δa = 2eΦ. As noted above, we can only
control the phase difference, thus one can write, following
Ref.17: δa = δ0+ eΦ and δa = δ0− eΦ. The total current
in the circular JJ as a function of the magnetic flux is
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FIG. 3. The periodic dependence Jmax(ωt) without the inclu-
sion of the weak interaction.

then given by the expression

Jtot(Φ) = J0∆ (14)

×









tanh

(

∆
2π

√

1−D sin2((δ0 + eΦ)/2)

)

√

1−D sin2((δ0 + eΦ)/2)
sin(δ0 + eΦ)

+

tanh

(

∆
2π

√

1−D sin2((δ0 − eΦ)/2)

)

√

1−D sin2((δ0 − eΦ)/2)
sin(δ0 − eΦ)









.

This expression still depends on the arbitrary phase δ0.
One may however determine the maximal value of the
current Jmax. The behavior of the maximal current can
be calculated numerically for a certain gap parameter ∆
and a diffusion parameter D. The dependence of Jmax

on eΦ is shown in Fig. 2 for the values ∆ = 100 (in units
of temperature) and D = 0.5.

The dependence of Jmax on Φ is invariant under the
change of the sign of Φ. Due to the presence of the the
weak odd-parity interaction, as shown in the previous
Section, one has to substitute Φ in all equations as

2eΦ → 2eΦ− f , (15)

where f is the positive admixture of the weak parity-
violating term. Thus the real dependence of the maximal
current on the magnetic flux is given by

J real
max(Φ) = Jmax(eΦ− f/2) , (16)

and it is not symmetric with respect to the change of the
sign of Φ. The main purpose of this work is to present
the case in which this asymmetry can be measured. In
the following Sections we discuss the calculation and a
possible measurement method for the value of f .

III. A POSSIBLE METHOD FOR THE
MEASUREMENT OF THE f-PARAMETER

A. Method

It can be challenging to directly observe the small
asymmetry of the dependence of J real

max on eΦ, therefore,
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we suggest to employ a time-periodic magnetic field in-
stead of a static one. As mentioned before, one can com-
pute the phase-independent maximal Josephson current
Jmax(eΦ). Let eΦ0 be the first positive root of this ex-
pression. If we now introduce a periodic component to
the magnetic field,

eΦ(t) = eΦ0 +
a

2
sinωt , (17)

Jmax(ωt) also depends periodically on time with the pe-
riod T = 2π/ω, where ω is the angular frequency of the
oscillating field. Roots of this function are reached ev-
ery half of the period, i.e. with a π/ω periodicity. The
typical shape of this function, calculated for the case of
Jmax(eΦ) shown on Fig. 2, is presented on Fig. 3.

Let us now incorporate the weak interaction into this
system. One can see that the weak interaction can be
controlled ("switched on/off") by introducing the mag-
netization in our SC ferromagnetic circular JJ, since the
PV contribution is proportional to the average spin of
the Cooper pairs [see the integral of the spin over a circle
in Eq. (9)]. The periodic field coefficient a is chosen to be
greater than the weak factor f , however, it is comparable
to it: a = xf, x ' 1.

Now the roots of Jmax(ωt) are not exactly π/ω-periodic
any more. This behavior is shown on Fig. 4. Further-
more, in the limit x → 1, the roots become almost 2π/ω
- periodic. This non-periodic behavior of roots can be
observed experimentally, since it can be dynamically con-
trolled by the periodic magnetic field.

As an alternative, one may also do the measurement at
some certain phase δ0 rather than at a maximal Joseph-
son current. Here we can introduce again the oscillations
of the magnetic field around the first root eΦ0 of the total
current Jtot(δ0, eΦ). In this case, the current changes its
sign during the total period T = 2π/ω. If we take a = f
after switching on the weak interaction, with magnetiza-
tion being present in the SC, the total current function
will be always of the same sign, as it is shown on Fig. 5.

B. Estimation of the effect

In the present Section we evaluate the value of the
admixture f to the magnetic flux through the JJ ring [see
Eqs. (8), (9)] to provide an estimate of the magnitude of
the PV effect in SCs.

In the case of a ferromagnetic SC we can assume that
pairs are polarized along the loop, therefore, their polar-
ization can have two different opposite directions. This
assumption yields for the loop integral

∮

d~r~σ(~r) = η

∮

dr , (18)

with the mean spin value η, which has to be determined
by a self-consistent solution of the equations for super-
conductivity and ferromagnetism in this material. This
is performed in the following Section.
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FIG. 4. The periodic dependence Jmax(ωt) with the weak
interaction included, for the parameters a = xf , x =1.5, 1.1,
1.01, respectively.

Now we give an estimation of the PV effect. The PV
admixture f is expressed with the mean spin η as

f =
√
2GZ3RqN

m∗

m
η

∮

dr . (19)

Assuming a round JJ, the loop integral simply yields
∮

dr = 2πL, the mean spin value η is to be calculated in
the next section, and the remaining factors are known:
G

πα3 = 10−13, Z = 92. The relativistic enhancement pa-
rameter is R ≈ 11, the value of the effective mass at
the ambient pressure is in the interval27 m∗

m = 2.3 . . . 25,

thus we may assume m∗

m = 25. The density of nuclei

is28,29 N = 0.25 ·108 cm−1. Then, in dimensionless units
(~ = 1), the final value of f is

f = 2π · 6.9 · 10−4Lη, (20)

where the length L is measured in units of cm. This
result is 3 orders of magnitude larger than the value of
the admixture factor in the case of an s-wave heavy SC15.
To observe this effect one may use the method with the
oscillating magnetic field, as described in the previous
Section.

Since the flux, in units of ~, is given by

eΦ =
eπL2

~
B , (21)

the time-dependent part of the magnetic field is deter-
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FIG. 5. The periodic dependence Jtot(δ0, ωt). The first plot
shows the case when the weak interaction is not included,
and the next two plots are for the case when the weak inter-
action is included, with the parameters a = xf , x = 1.5, 1.1,
respectively.

mined by

eΦ0 +
a

2
sin t =

eπL2

~
(B0 +Bt sin t) . (22)

In case of a ' f , the expression for the amplitude Bt, in
units of Tesla is [cf. Eq. (15)]

0.152 · 1020L2Bt '
f

2
, (23)

where L is given in cm. Inserting our estimate for f [see
Eq. (20)], it follows:

Bt = 4.5 · 10−23 η

L
[T ]. (24)

As an example, for a typical size of L = 0.1 µm, the
result is Bt = 4.5 · 10−18η [T]. We discuss this result in
the concluding Section after showing in the following that
η can indeed reach its maximal value, ηmax = 1.

C. Calculation of the mean spin value

For the calculation of the mean spin value η of Cooper
pairs we use a model for the coexistence of superconduc-
tivity and ferromagnetism of Ref.30, described there for

the case of an isotropic material. We extended this for-
malism for anisotropic materials. The analytical deriva-
tions are similar to those of Ref.30, however, for complete-
ness, we present them here, together with the description
of the numerical algorithm used.

In this model, the Hamiltonian is given as

H =
∑

kσ

(ǫ − µ− σM)c+kσckσ (25)

− 1

2ν

∑

kk′,σσ′

V (kk′)c+kσc
+
−kσ′c−k′σ′ck′σ,

where σ = ±1 denotes single-particle spin states, k is the
single-particle momentum, ǫ denotes the non-magnetic
part of the quasi-particle energy, c+kσ and ckσ are quasi-
particle creation and annihilation operators, respectively.
Furthermore, µ is the chemical potential, ν is the sam-
ple volume, V stands for the pairing potential, and the
magnetization is M = U(n+ − n−)/2, defined in terms
of the Stoner parameter U and number of pairs with the
spin in the direction of the magnetization (n+) and in the
opposite direction (n−). The Stoner parameter depends
on the pressure, but it is independent of the tempera-
ture. In the ferromagnetic phase, only the pairs with
spins parallel to the field can exist. We introduce two
gap parameters ∆± for spins in the direction of magne-
tization (+) and in the opposite direction (−).

In Ref.30, the Matsubara Green’s functions31 for this
Hamiltonian are constructed, and, after summation over
Matsubara frequencies, the equations are obtained for the
magnetization, number of particles and gap parameters.
By replacing all summations by continuum integrals in

dimensionless energy units, rescaled by the factor ~
2

2m∗
,

one receives the equations

M =
U

64π3

∫ ∞

0

dǫ0

∫ π

0

dθ

∫ 2π

0

dφ sin(θ)
√
ǫ0 (26)

×
(

ǫ− tanh(E−/2T )

E−

− ǫ+ tanh(E+/2T )

E+

)

,

1 =
V

64π3

∫ ǫF++ω+

ǫF+−ω+

dǫ0

∫ π

0

dθ

∫ 2π

0

dφ (27)

(√
ǫ0 sin

3 θ

E+
tanh(E+/2T )

)

,

1 =
V

64π3

∫ ǫF−+ω−

ǫF−−ω−

dǫ0

∫ π

0

dθ

∫ 2π

0

dφ (28)

(√
ǫ0 sin

3 θ

E−

tanh(E−/2T )

)

,

1 =
1

32π3

∫ ∞

0

dǫ0

∫ π

0

dθ

∫ 2π

0

dφ sin(θ)
√
ǫ0 (29)

×
(

2− ǫ− tanh(E−/2T )

E−

− ǫ+ tanh(E+/2T )

E+

)

,

where the following quantities have been introduced:

ǫF± = µ ± M , ǫ± = ǫ − ǫF±, E± =
√

ǫ2± + sin2 θ∆2
±,

and ω± = 0.01ǫF±. The integration over the variables
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ǫ0, θ and φ corresponds to an integration over the three-
dimensional momentum of the pair. Equation (26) is the
expression for the magnetization in the ferromagnetic SC.
Eq. (27), together with Eq. (28), presents the gap equa-
tion for pairs polarized in or opposite to the direction of
the magnetization. Finally, Eq. (29) expresses the con-
servation of the number of pairs.

In an isotropic case, considered before in Ref.30, the
relation ǫ = ǫ0 holds. However, for anisotropic materials,

during the change of the summation over ~k to three di-
mensional integration, the angular integrals in spherical
coordinates remain the same, however, the radial vari-
ables are changed:

k2 = k20

(

( c

a
sin θ cosφ

)2

+
(c

b
sin θ sinφ

)2

(30)

+
(c

c
cos θ

)2
)

,

with a, b, c being the crystal cell parameters. Thus,
we have 3 integrals over k0, θ and φ, which change to
integrals over ǫ0, θ and φ, and the energy in all equations
depends on the angles:

ǫ = ǫ0

(

( c

a
sin θ cosφ

)2

+
(c

b
sin θ sinφ

)2

(31)

+
(c

c
cos θ

)2
)

.

Finally, we arrive to 4 equations, Eqs. (26-29), for 4
the variables M,∆±, µ, with U , V and T as parame-
ters. These equations have to be solved self-consistently.
The sought-after mean spin value is given by η = 2M/U .
The Stoner parameter U is determined by the Curie tem-
perature TC at a certain pressure32. We obtain it by a
self-consistent solution of Eqs. (26) and (29) with δ ≡ 0
and assuming the condition that the magnetization ap-
pears at temperatures T < TC only. The method of this
solution is similar to the method for the calculation of
η presented below. The pairing parameter V is deter-
mined by the condition that at temperatures below the
critical SC temperature, T < Tsc, the following should
hold: ∆ 6= 0, and at T > Tsc there is no superconductiv-
ity (∆ = 0).

We use the following algorithm for the self-consistent
solution of the full set of equations [Eqs. (26)-(29)] to
evaluate η for certain values of U and V (parameters
of the SC): (i) With the help of Eq. (27) [or Eq. (28)]
one can construct the function ∆(k) in such a way that
∆± = ∆(µ ± M). It is possible to do so since both
equations depend on the combinations µ ± M only. (ii)
By Eqs. (26) and (29) we can construct the equations

M = ∓U

2
W (µ±M) , (32)

0 5 10 15
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20
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40
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FIG. 6. The p–T phase diagram for UGe2
33. The lower curve

10 × Tsc(p) corresponds to the critical temperature of super-
conductivity, the upper one to the Curie critical temperature
of ferromagnetism, TC(p).

where

W (k) = 1− 1

16π3

∫ ∞

0

dǫ0

∫ π

0

dθ

∫ 2π

0

dφ
√
ǫ0 sin θ

×
(

1− ǫ± tanh(E±/2T )

E±

)

. (33)

Let us take x = µ − M , yielding two simple equations,
namely:

M =
U

2
W (x) , M = −U

2
W (x+ 2M) , (34)

which deliver the final equation for x,

W (x) = −W (x+ UW (x)) . (35)

From x we can obtain the values of all parameters as
follows:

M =
U

2
W (x) , µ = x+M , (36)

∆− = ∆(x) , ∆+ = ∆(x+ 2M) .

Let us note that these equations have a solution with
M 6= 0 in the case when U > Uc only. Uc is the critical
value of the Stoner parameter and it depends on T .

Using this numerical algorithm we provide calculations
for the cell parameters of UGe2, namely, a = 14.928 pm,
b = 4.116 pm, c = 4.036 pm28. We perform calcula-
tions for different pressures and temperatures both in
the region of the coexistence of ferromagnetic and su-
perconductive phases33 as well as in the pure ferromag-
netic region (see Fig. 6). It appears (see Fig. 7) that at
all pressures between 9 and approximately 12 kbar, the
value of η is almost unity for all temperatures T < Tsc,
however, above 12 kbar, η decrees with the increase of
the pressure. These numerical results show that at some
pressures in the region of interest where TC is much larger
than Tsc, η is equal to unity.

IV. POSSIBLE EXPERIMENTAL SETUP TO
INCREASE THE PARITY VIOLATION EFFECT

We assumed in the previous derivations that the in-
duced magnetic field is constant along the loop. How-
ever, the required periodic component of the magnetic
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FIG. 7. The dependence of the mean spin η on pressure and
temperature in the regions T < Tsc (below the first red curve)
and Tsc < T < TC (between the red curves). The data on
Tsc(p) and TC(p) are taken from Ref.33.

field can be increased if the magnetic field is only present
in the region around the Josephson junctions (see Fig. 8).
To make this statement clear, we rewrite Eq. (22) as

eΦ0 +
a

2
sin t =

∫ ∫

dS
e

~
(B0 +Bt sin t)

=
eS

~
(B0 +Bt sin t) , (37)

where S is the effective area (part of the loop area, see
Fig. 8), where the field is given by (B0+Bt sin t). There-
fore, in the limit a → f+, the expression for the periodic
component of the magnetic field is

Bt = 1.4 · 10−22 ηL

S
[T] . (38)

This expression explains why the localization of the mag-
netic field by the decrease of the total flux increases the
required magnetic field. By choosing a large ratio L/S
one may reach conditions satisfying the restrictions of ex-
isting experimental techniques. A large value of the ratio
may be archived, e.g., by implementing a superconduct-
ing solenoid at the field-free part of the loop (i.e. at the
right side of Fig. 8). Furthermore, the ratio Bt/B0 ≈ L,
therefore, the large size of the loop provides also an im-
provement of the effect.

V. DISCUSSION AND CONCLUSIONS

We have shown in Subsection III.C that the maximal
mean spin value can be equal to unity, η = 1, for Cooper
pairs in the unconventional ferromagnetic SC at some
certain conditions, namely, in the region where Tsc ≪ TC.
Thus we can finally obtain the amplitude of the periodic
magnetic field required for the estimation presented in

Subsection III.B [cf. Eq. (24)]:

Bt = 4.5 · 10−23 1

L
, (39)

���

�

FIG. 8. The circular Josephson junction with an external
magnetic field present in the effective area S in the vicinity
of the SIS junctions only.

where L is given in units of cm and Bt in units of Tesla.
As an example, for the size of the circular Josephson
junction L = 0.1 µm, one obtains the value

Bt = 4.5 · 10−18 [T] . (40)

Thus, the PV effect is 3 orders of magnitude stronger
than in the case of the earlier theoretical works13,14.
These magnetic fields are close to the range of Super-
conducting QUantum Interference Devices (SQUIDs, see
e.g. Ref.34). The observation of PV might be disturbed
by the appearance of spontaneous currents caused by bro-
ken time-reversal symmetry (see, e.g., Ref.35). Future re-
search may explore effective ways for a further enhance-
ment and control of the PV effect.

Furthermore, the effect can be significantly improved
by employing the experimental scheme described in Sec-
tion IV. For instance, without the implementation of this
model, the magnetic field is

Bt = 1.4 · 10−22 ηL

S
[T] (41)

= 4.5 · 10−18 [T]|η=1, L=0.1µm,S=πL2 ;

then, by increasing the length of the loop to L = 1 mm at
unchanged S, Bt is augmented by 4 orders of magnitude:

Bt = 4.5 · 10−14[T]|η=1, L=1mm,S=πL2
o
, Lo=0.1µm . (42)

Therefore, the PV effect is now 7 orders of magnitude
larger than in the case of the earlier proposals13,14. As
a result, we anticipate that PV effects in SC can be ob-
served in future. Such measurements will open the way
to investigate the PV phenomenon by relatively compact
experimental setups, and offer one to study electroweak
effects in a macroscopic system.
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