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Abstract

In this paper, we study the optimal control problem for a continuous stirred
tank reactor (CSTR) that represents a reaction of the type “A → product”.
The reactor dynamics is described by a nonlinear system of ordinary differen-
tial equations controlled by two inputs: the inlet concentration and the inlet
temperature. We formulate the problem of maximizing the average product of
this reactor for a fixed consumption of the input component over a period of
time. This kind of isoperimetric optimal control problem is analyzed by using
the Pontryagin maximum principle with Lagrange multipliers. We show that
the optimal controls are bang-bang and propose an upper bound for the num-
ber of switchings for the linearized problem with periodic boundary conditions.
Numerical simulations confirm that our control strategy can be used to improve
the reactor performance over a specified period of time in comparison to the
steady-state operation.
Highlights

• Mathematical models of nonlinear reactions of the type “A → product”
are considered.

• Periodic modulations of the inlet concentration and the temperature are
used to control the reaction.

• Maximization of the reactor performance is treated as an isoperimetric
optimal control problem.

• A theoretical estimate of the optimal number of switchings is obtained,
and an algorithm for computing the control parameters is proposed.

• Simulation results illustrate the improvement of the performance by using
bang-bang controls.
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1. Introduction

The optimization of periodic processes has been already the subject of several
studies in chemical engineering and control theory (a survey of related works is
presented in Section 2). The majority of publications in this area (cf. [1, 17, 18])
deals with smooth (or even constant) controls, so that no optimization problems
with bang-bang strategies have been rigorously analysed up to now from the
mathematical viewpoint. In this paper, we will consider a chemical reaction
of the type “A → product” controlled by the inlet concentration CAi(t) of A
and the inlet temperature Ti(t) at time t1. An attractive goal is to maximize
the conversion of A to the product over a specified period of time t ∈ [0, tf ],
which can be formulated as the minimization of the outlet concentration CA(t)
provided that the mean consumption of A is fixed as C̄Ai:

1

tf

∫ tf

0

CA(t) dt→ min,

1

tf

∫ tf

0

CAi(t) dt = C̄Ai.

We assume here that the process is operated periodically, so that the inputs
and the state of the reactor are periodic functions of the period tf . To the
best of our knowledge, the above isoperimetric optimal control problem has not
been solved up to now for mathematical models of chemical reactions. In
order to evaluate the theoretical concept studied in this work, we selected one
of the most simple reactors applied in chemical reaction engineering, namely the
perfectly mixed continuously operated stirred tank reactor (CSTR). Analysing
this concentrated system allowed us to extract generally valid trends in the
most simple way exploiting analytical solutions. The selection of the model
parameters was based on exploiting available knowledge regarding the kinetics of
a standard liquid phase reaction, namely the hydrolysis of acetic acid anhydride.
The features of this reaction are quite typical and thus allow some generalization
with respect to main trends of periodic operation.

The main contributions of this paper can be summarized as follows.

• In Section 3, we formulate the problem of maximizing the performance
of a single homogeneous n-th order reaction by using a time-varying inlet
concentration (Problem 1). It is shown that each control satisfying the
optimality conditions is bang-bang, and the procedure for computing the
control parameters is described explicitly for the case n = 2. A numerical

1We will introduce dimensionless variables to simplify the notations in the sequel.
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example illustrates that our bang-bang control strategy ensures better
performance in comparison to the sinusoidal input modulation considered
in the paper [14] in terms of the nonlinear frequency response function.
In contrast to the approach of [11] dealing with a truncated Fourier series
for a square wave input, we analyze the optimality conditions rigorously
by taking into account the periodic boundary condition CA(0) = CA(tf ).

• The isoperimetric optimal control problem (Problem 2) is considered in
Section 4 for a nonlinear system of ordinary differential equations con-
trolled by two inputs (the inlet concentration of A and the inlet tempera-
ture). The optimality conditions are analysed by the Pontryagin maximum
principle with Lagrange multipliers (cf. [16]). In contrast to the results by
N. Watanabe et al. [18], we consider here a cost function which is convex,
but not strictly. We show that each optimal control is bang-bang and
propose an upper bound for the number of switchings N for the linearized
problem with periodic boundary conditions (Proposition 1). The switch-
ing times are defined by an auxiliary system of transcendental equations.
For the case of small switching times, these transcendental equations can
be approximated by polynomials. Our control design scheme is based on
expansions of the composition of flows corresponding to extremal inputs.

• The simulation results in Section 5 confirm that bang-bang controls with
two switchings can be used to improve the reactor performance over a
specified period of time tf in comparison to the steady-state operation.

2. Related Work

The paper by J. M. Douglas [1] was among the first theoretical studies, where
the effects of time-varying inputs were estimated for nonlinear reaction models.
A second-order isothermal reaction was considered there under the assumption
that the feed composition is modulated by the sine function, and the method of
small parameter was used to approximate the output behavior with correction
terms of different orders of magnitude. It was shown that the frequency re-
sponse of the system under consideration contains higher order harmonic terms
in additional to the fundamental component. It follows from the analysis of
the frequency response function that the average output value is close to the
corresponding steady-state value for very low and very high frequency inputs.
The case of simultaneous modulation of the feed composition and the flow rate
with sinusoidal functions was considered in the paper [1] as well. It was pointed
out that the maximum improvement in the conversion is obtained when both
amplitudes are large, and the phase shift is close to 180◦. The optimum design
problem is addressed in the book [2] in the sense of steady-state operations, when
the goal is to find the values of the design variables maximizing the profitability
of the process (e.g., the capital charge factor).

In the paper [10], a CSTR model whose dynamical behavior is governed
by a system of two nonlinear ordinary differential equations with one control
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variable is considered. For the optimal control problem with periodic boundary
conditions, the first variation of the cost function is evaluated with the use of the
adjoint system of equations. If this first variation is nonzero for a given periodic
process, then the performance can be improved by using “the hill climbing
method in function space”, described in the paper. Some simulation results,
based on this method, are presented to illustrate the possibility of improving an
initial steady-state control.

A single non-isothermal reaction is considered in the paper [8] by assuming
that the coolant flow-rate is controlled within given bounds. The problem of
minimizing a quadratic cost functional is formulated without periodic boundary
conditions, and the candidates for optimal controls are chosen as polynomials or
bang-bang controls with unknown swiching times. Then an iterative scheme for
computing the control parameters is presented based on numerical integration
of the state equations and Rosenbrock’s method for unconstrained optimization.

The paper [17] exploits the second variation of the cost function in the
frequency domain for examples of chemical reactions involving at most two
control signals. To simplify the formula for the second variation, the authors
assumed that the control variations are sinusoidal functions with one principal
frequency. The process response has been also simulated for bang-bang controls
with the use of a numerical hill-climbing method, however, no results concerning
the computation of switching times have been presented.

The question whether the performance of an isothermal CSTR may be im-
proved by using periodic perturbations of a given steady-state control is studied
in the paper [18]. If a steady-state input is in the interior of the set of control
values, and if certain conditions on the transfer function of the linearized system
hold, then the above steady-state control is not optimal. In this case, sinusoidal
perturbations of the input with large frequencies can be used to improve the
reactor performance in comparison to its steady-state operation. It is shown
that, for the reaction of order n > 1, the reactor performance can be improved
by fluctuating the feed concentration only.

In the papers [6, 9, 15], an isothermal reaction scheme of the type “ν1A1 +
ν2A2 → product” with the power law rate r = kCn1

1 Cn2
2 is considered under the

assumption that the sum of the inlet concentrations of A1 and A2 is constant.
By applying Hölder’s inequality to the integral of the product concentration, a
priori estimates of the degree of conversion are obtained for different values of
n1 and n2 in [6]. In particular, the conversion cannot be improved with respect
to the steady-state operation if 0 < n1 < 1, 0 < n2 < 1, and n1 + n2 ≤ 1.
This property is also established in the paper [7] for an isothermal plug-flow
tube reactor model by exploiting the convexity of the function that generates
the solutions in the method of characteristics. The Legendre–Clebsch condition
is used in [15] to check the optimality of steady state operations of a CSTR. In
particular, it is shown that the steady-state operation is not optimal if ν1 > 1
for homogeneous systems. If the inlet concentrations are bang-bang controls
with a given period tf , and if there is only one switching point ts ∈ (0, tf ), then
ts is uniquely defined from the corresponding steady-state concentration. Un-
der these assumptions, the domains of conversion improvements and conversion
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deteriorations are constructed in the (n1, n2)-plane by using numerical simula-
tions in the paper [9]. It is pointed out that a reaction with a decreasing total
number of moles increases the region for conversion improvements.

The problem of maximizing the average production rate of a chemical reac-
tion can also be treated within the economic model predictive control (EMPC)
framework. A survey of recent results in this area is presented in [3]. In partic-
ular, the EMPC approach is applied for an irreversible second-order exothermic
reaction. The mathematical model of this reaction is represented by material
and energy balance equations, and the economic measure is defined as an integral
functional whose integrand is proportional to the square of the concentration
variable with the coefficient depending on the temperature. Such objective func-
tion is used to maximize the average production rate over a given finite time
horizon assuming that the input signal satisfies an integral constraint. Note
that the system trajectory is not required to be periodic for the above prob-
lem formulation. Chapter 4 of the monograph [4] deals with applications of
Lyapunov’s direct method for the EMPC design. A second-order exothermic
reaction is considered as an example, and a quadratic Lyapunov function with
respect to the deviation of the state from its stationary value is used in the
control design. The authors note that a contractive Lyapunov-based constraint
may be applied to the EMPC to ensure that the temperature converges to a
neighborhood of the optimal stead-state value. The case of a non-isothermal
CSTR with three parallel reactions is considered in the book [4] as well, and the
economic measure is chosen to penalize energy usage and reactant consumption,
credit the production rate of the desired product, and penalize the deviation of
the temperature from its median value.

In contrast to the above publications, in this paper we concentrate on an
isoperimetric formulation of the optimal control problem with periodic bound-
ary conditions, and we do not aim to penalize the deviation of the state vari-
ables from their steady-state values, assuming that large deviations may have
the potential to improve the efficiency of the conversion. To the best of our
knowledge, neither analytic expressions for the optimal control candidates nor
algebraic equations for computing the switching times have been obtained in
the literature so far.

3. Modulation of the Inlet Concentration

Let us first consider a homogeneous isothermal reaction of the type “A →
product” (cf. [12, 14]):

dCA
dt

=
F

V
(CAi − CA)− CnAk0e

−EA/(RT ), (1)

where CA is the reactant A concentration, CAi is the inlet concentration of A,
t is the time, n is the order of the reaction, V is the reactor volume, F is the
volumetric flow-rate of the reaction stream, T is the temperature, k0 is the
preexponential factor in the Arrhenius equation, EA is the activation energy,
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and R is the universal gas constant. The differential equation (1) admits a
steady-state solution CA(t) = C̄A > 0 for CAi(t) = C̄Ai = const and F = const
if

C̄Ai
C̄A

= 1 +
V C̄n−1

A

F
k0e
−EA/(RT ). (2)

By introducing the dimensionless time τ = Ft/V and dimensionless variables

x =
CA − C̄A
C̄A

, u =
CAi − C̄Ai

C̄Ai

(
1 +

V C̄n−1
A

F
k0e
−EA/(RT )

)
, (3)

we rewrite the material balance equation (1) in the following form:

dx

dτ
= −x− α

(
(x+ 1)n − 1

)
+ u, α =

V C̄n−1
A

F
k0e
−EA/(RT ), (4)

where the parameter α evaluates the ratio of the time given to the reaction
(the mean residence time V/F ) over the time needed be the reaction (expressed
by the rate expression parameters and concentration). It corresponds to the
frequently used Damköhler number Da (see, e.g., [5]). If the control parameter
u is fixed to some constant value ū, then differential equation (4) admits a
steady-state solution x(τ) = const. In particular,

x(τ) =
ū

1 + α
for n = 1, (5)

and

x(τ) = −2α+ 1

2α
±

√(
2α+ 1

2α

)2

+
ū

α
for n = 2. (6)

We are interested in maximizing the conversion of A to the product in compar-
ison to these particular solutions by using time-varying inputs u(τ). For this
purpose we introduce the class of admissible controls, which consists of all mea-
surable functions u(τ) ∈ [umin, umax] depending on τ ∈ [0, τf ], where τf > 0
and umin < umax are given numbers. We also assume that the mean value of
the control ū is fixed and formulate the following optimal control problem.

Problem 1. Given τf > 0 and ū ∈ [umin, umax], find an admissible control
û : [0, τf ]→ [umin, umax] that minimizes the cost

J =
1

τf

∫ τf

0

x(τ) dτ (7)

among all solutions x(τ) of the differential equation (4) corresponding to the
class of admissible controls u(τ) such that

x(0) = x(τf ),
1

τf

∫ τf

0

u(τ) dτ = ū. (8)
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To solve this isperimetric optimal control problem, we apply the Pontryagin
maximum principle with the Hamiltonian

H(p0, p, x, u, η) = p0x− p
(
x+ α

(
(x+ 1)n − 1

)
− u
)

+ η(u− ūτf ), p0 ≤ 0. (9)

If û(τ) is an optimal control for the above problem on τ ∈ [0, τf ] and x̂(τ) is
the corresponding solution of equation (4), then there exist constants p0 ≤ 0,
η, and a continuous function p : [0, τf ] → R, (p0, p(τ), α) 6= 0, such that û(τ)
maximizes the Hamiltonian H(p0, p(τ), x̂(τ), u, η) for each τ ∈ [0, τf ] along the
trajectory (x̂(τ), p(τ)) (see, e.g., [16]). Here p(τ) satisfies the adjoint equation:

dp

dτ
= − ∂H

∂x

∣∣∣∣
x=x̂(τ)

= −p0 + p
(

1 + nα(x̂(τ) + 1)n−1
)
. (10)

The general solution of the differential equation (10) is

p(τ) =

(
p(0)− p0

∫ τ

0

exp

{
−
∫ s

0

(
1 + nα(1 + x̂(v))n−1

)
dv

}
ds

)
× exp

{∫ τ

0

(
1 + nα (1 + x̂(s))

n−1
)
ds

}
.

(11)

We see that the maximum of H given by formula (9) is achieved for the following
function

û(τ) =

{
umax, p(τ) + η > 0,
umin, p(τ) + η < 0.

(12)

Thus, each optimal control u = û(τ) for Problem 1 is bang-bang (piecewise
constant) on τ ∈ [0, τf ]. If p(τ) is monotone, we conclude that each optimal
control û(τ) has at maximum one switching on τ ∈ [0, τf ], i.e. û(τ) may be
represented either as

û(τ) =

{
umax, τ ≤ τ∗ =

τf (ū−umin)
umax−umin ,

umin, τ > τ∗,
(13)

or

û(τ) =

{
umin, τ ≤ τ∗ =

τf (umax−ū)
umax−umin ,

umax, τ > τ∗,
(14)

Here the switching time τ∗ ∈ [0, τf ] is defined from the isoperimetric condition∫ τf
0
û(τ) dτ = ūτf .
One can check that the differential equation (4) with u = const is integrable

in elementary functions if n = −1; 1/2; 1; 2. It was already reported in the
papers [6] and [14] that no efficiency improvement of the first-order reaction
(n = 1) can be achieved by using time-varying controls in comparison to the
steady-state operation.

Let us consider now the optimal control problem for the differential equa-
tion (4) with n = 2:

dx

dτ
= −αx2 − (1 + 2α)x+ u. (15)
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For this case, based on [6], an improvement by using periodic modulations of the
input concentration can be expected. Recall that the steady-state solutions of
this differential equations with u(τ) = ū are given by formula (6). The solutions
x = x̂(τ) corresponding to the control u = û(τ) of the form (13) can be written
as follows:

x̂(τ) =

{
vmax−2α−1

2α − vmax
α(1+C1eτvmax ) , vmax =

√
(1 + 2α)2 + 4αumax, τ ≤ τ∗,

vmin−2α−1
2α − vmin

α(1+C2e
(τ−τf )vmin )

, vmin =
√

(1 + 2α)2 + 4αumin, τ > τ∗.

(16)
The constants C1 and C2 are defined by the conditions x̂(0) = x̂(τf ) and x̂(τ∗−
0) = x̂(τ∗ + 0):

vmax
1 + C1

− vmin
1 + C2

=
vmax − vmin

2
,

vmax
1 + C1eτ

∗vmax
− vmin

1 + C2e(τ∗−τf )vmin
=
vmax − vmin

2
.

(17)

The controls (14) can be considered analogous to the case (13) by replacing
umax with umin.

In order to illustrate the efficiency of our control design scheme, let us con-
sider the second-order reaction (n = 2) represented by equation (1) with the
following parameters:

C̄Ai = 1
mol

m3
(mean inlet concentration of reactant A);

k = k0e
−EA/(RT ) = 10−3 m3

s ·mol
(rate constant);

τc =
V

F
= 102 s (contact time).

These parameter values have been used in the paper [14] for the frequency
response analysis of nonlinear reactors with a sinusoidal input. The steady-
state concentration C̄A > 0 corresponding to the above C̄Ai is obtained from the
algebraic equation (2): C̄A ≈ 0.916 mol

m3 . If M is the maximum magnitude of the

dimensionless input concentration CAi−C̄Ai
C̄Ai

, then the control u ∈ [umin, umax]

in formula (3) is constrained by

umax = −umin = M(1 + α),

where α = kτcC̄A ≈ 0.0916. We consider the isoperimetric optimal control
problem for the differential equation (15) with the cost (7) and constraints (8)
with ū = 0, i.e., we assume that the same average amount of A is used for all
admissible inputs as in the steady-state. We analyse candidates for the optimal
control u = û(τ) and the optimal trajectory x = x̂(τ) on τ ∈ [0, τf ] given by
formulas (13) and (16), respectively. We take the dimensionless time period τf =
2π and M = 0.75, so that τ∗ = π, umax ≈ 0.8187, and the parameters C1, C2

of the function x̂(τ) are computed from the system of algebraic equations (17):

C1 ≈ 9.5708, C2 ≈ −252.87.
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The time plot of the corresponding solution x̂(τ) of the differential equation (15)
is shown in Fig. 1 together with the horizontal line corresponding to the cost

Ĵ =
1

τf

∫ τf

0

x̂(τ) dτ ≈ −0.018.

We see that Ĵ < 0, so the proposed control u = û(τ) gives better conversion of
A to the product in comparison with the steady-state operation.

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

1 2 3 4 5 6

x̂, Ĵ

τ

Figure 1: The graph of x̂(τ) (solid line) and the value of Ĵ (dotted line).

On the one hand, our reactor performance improvement due to the bang-
bang control of form (13) can be expressed in absolute units and percents as
follows:

∆C1 =
1

τf

∫ T∗

0

CA(τ) dτ − C̄A = Ĵ C̄A ≈ −0.0166
mol

m3
, ∆C1/C̄A ≈ −1.81%.

As in the paper [14], the minus sign indicates that the mean outlet concentration
of A for a time-varying input is less than the steady-state outlet concentration.

On the other hand, the performance improvement with a sinusoidal input of
the dimensionless amplitude M and the dimensionless frequency ω = 2π/τf = 1
can be estimated by the nonlinear frequency response function (see, e.g., [14]):

∆C2 = 2

(
M

2

)2

G2(ω,−ω)C̄A ≈ −0.0099
mol

m3
, ∆C2/C̄A ≈ −1.08%,

where G2(ω,−ω) is the asymmetrical second-order frequency response func-
tion [14, Formula (14-26)]:

G2(ω,−ω) = − kτcC̄A(1 + kτcC̄A)2

(1 + 2kτcC̄A)((1 + 2kτcC̄A)2 + ω2)
.
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As ∆C1 and ∆C2 are negative, we conclude that both bang-bang and sinu-
soidal periodic controls can be used to improve the performance of the reactor in
comparison with its steady-state operation. However, the inequality ∆C1 < ∆C2

indicates that the bang-bang strategy results in better performance for the case
considered.

4. Non-Isothermal Reaction

In this section, we assume that a non-isothermal reaction of the type “A→
product” is characterized by the steady-state inlet concentration of the reactant
C̄Ai and the steady-state outlet concentration C̄A for some constant temperature
in the reactor T̄ and constant volumetric flow-rate F̄ . In the dimensionless
variables

x1(τ) =
CA − C̄A
C̄A

, x2(τ) =
T − T̄
T̄

, τ = Ft/V, (18)

such a reaction of order n is governed by the following differential equations [12,
13]:

dx1/dτ = k1e
−κ − φ1x1 − k1(x1 + 1)ne−κ/(x2+1) + u1,

dx2/dτ = k2e
−κ − φ2x2 − k2(x1 + 1)ne−κ/(x2+1) + u2,

(19)

where x1(τ) is the dimensionless outlet concentration of A, x2(τ) is the di-
mensionless temperature in the reactor, the input u1(τ) is applied to control
the inlet concentration of A (and/or the flow-rate), and u2(τ) corresponds to
the temperature of the inlet stream. The dimensionless control variables and
parameters of system (19) can be expressed as follows:

u1(τ) = k1Φe−κ + (1 + k1e
−κ)(1 + Φ)

CAi(τ)− C̄Ai
C̄Ai

,

u2(τ) = βΦ + (1 + β)(1 + Φ)
Ti(τ)− T̄i

T̄i
,

(20)

k1 = k0C̄
n−1
A

V

F̄
, k2 =

∆HRk0C̄
n
AV

ρcpT̄ F̄
, κ =

EA
RT̄

, Φ =
F − F̄
F̄

,

φ1 = Φ + 1, φ2 = φ1 +
U0Aw
ρcpF̄

, β = k2e
−κ +

U0Aw(T̄ − Tj)
ρcpF̄ T̄

.

(21)

Here Ti(τ) is the temperature of the inlet stream (and T̄i is its steady-state
value), Tj is the temperature of the heating/cooling fluid, CAi(τ) is the inlet
concentration of A, F is the volumetric flow-rate of the reaction stream, ∆HR

is the reaction heat, U0 is the overall heat transfer coefficient, Aw is the surface
area for heat exchange, ρ is the density, and cp is the heat capacity.

System (19) has an equilibrium x1 = x2 = 0 with u1 = u2 = 0 that corre-
sponds to the steady state of the reactor.
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4.1. Pontryagin Maximum Principle

For a given time horizon τf > 0, we assume that the class of admissible
controls Uτf for system (19) consists of all measurable functions u : [0, τf ]→ R2

such that umini ≤ ui(τ) ≤ umaxi for τ ∈ [0, τf ], i = 1, 2. Our goal is to maximize
the productivity of the reactor, which means the minimization of the mean value
of x1(τ) over the period τ ∈ [0, τf ] by using the admissible controls with a fixed
mean value of u1(τ). To be more precise, we consider the following isoperimetric
optimal control problem in this section.

Problem 2. Given τf > 0, ū1, x0
i , u

min
i , umaxi , i = 1, 2, the goal is to find

a control û(·) ∈ Uτf that minimizes the cost

J =
1

τf

∫ τf

0

x1(τ) dτ

along the solutions (x1(τ), x2(τ)) of system (19) corresponding to the admissible
controls u(·) ∈ Uτf such that

1

τf

∫ τf

0

u1(τ) dτ = ū1, xi(0) = xi(τf ) = x0
i , i = 1, 2. (22)

According to the Pontryagin maximum principle for problems with isoperi-
metric constraints [16, Theorem 4.1], if û(τ) is an optimal control on τ ∈ [0, τf ]
for Problem 2 and x̂(τ) is the corresponding solution of system (19), then there
exist constants p0 ≤ 0, η1, and continuous functions pi : [0, τf ] → R, i = 1, 2,
such that (p0, p1(τ), p2(τ), η1) 6= 0 and û(τ) maximizes the Hamiltonian

H(x, u, p0, p, η1) = p0x1 + p1

(
k1e
−κ − φ1x1 − k1(x1 + 1)ne−κ/(x2+1) + u1

)
+ p2

(
k2e
−κ − φ2x2 − k2(x1 + 1)ne−κ/(x2+1) + u2

)
+ η1(u1 − ū1τf )

(23)
for each τ ∈ [0, τf ] along the trajectory (x̂(τ), p(τ)). Here, the pi(τ) satisfy the
adjoint equations:

dp1/dτ = − ∂H
∂x1

= −p0 + φ1p1 + n(k1p1 + k2p2)(x1 + 1)n−1e−κ/(x2+1),

dp2/dτ = − ∂H
∂x2

= φ2p2 +
κ(k1p1 + k2p2)(x1 + 1)n

(x2 + 1)2
e−κ/(x2+1), p0 ≤ 0.

By computing the pointwise maximum of H with respect to ui ∈ [umini , umaxi ]
in formula (23), we conclude that the optimal controls are bang-bang:

û1(τ) =
umax1 + umin1

2
+
umax1 − umin1

2
sign (p1(τ) + η1),

û2(τ) =
umax2 + umin2

2
+
umax2 − umin2

2
sign p2(τ), τ ∈ [0, τf ].

(24)
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4.2. Control of the Linearized System

Let us linearize the differential equations (19) in a neighborhood of the equi-
librium point x1 = x2 = 0:

dx

dτ
= Ãx+u, x =

(
x1

x2

)
∈ R2, u =

(
u1

u2

)
∈ [umin1 , umax1 ]×[umin2 , umax2 ], (25)

where

Ã =

(
−φ1 − nk̃1 −κk̃1

−nk̃2 −φ2 − κk̃2

)
, k̃1 = k1e

−κ , k̃2 = k2e
−κ .

We will assume that the matrix Ã is nonsingular for the sequel.
Then the adjoint equations corresponding to Problem 2 for system (25) take

the following form:

dp(τ)

dτ
= −Ã∗p(τ)−

(
p0

0

)
, p(τ) =

(
p1(τ)
p2(τ)

)
∈ R2. (26)

Here the asterisk denotes the transpose. As it has been shown in the previous
subsection, each optimal control û(τ) can be represented in the form (24), where
p1(τ) and p2(τ) are the components of a solution to system (26):(

p1(τ)
p2(τ)

)
= e−τÃ

∗
p̄−

(
Ã∗
)−1

(
p0

0

)
, (27)

with some vector p̄ ∈ R2.
Proposition 1. Let

D = (φ1 + φ2 + nk̃1 + κk̃2)2 − 4(φ1φ2 + φ1κk̃2 + nφ2k̃1) > 0. (28)

Then each control ûi(τ) of the form (24) with pi(τ) given by (27), i = 1, 2, has
at maximum 2 switchings in the interval [0, τf ].

Proof. If condition (28) is satisfied, then the matrix −Ã∗ has two distinct
real eigenvalues:

λ1,2 =
φ1 + φ2 + nk̃1 + κk̃2

2
±
√
D

2
.

Thus, there exists an invertible 2× 2-matrix P such that

−Ã∗ = P

(
λ1 0
0 λ2

)
P−1,

and formula (27) can be rewritten as

p1(τ) = c1P11e
λ1τ + c2P12e

λ2τ −
(
Ã∗
)−1

11
p0,

p2(τ) = c1P21e
λ1τ + c2P22e

λ2τ −
(
Ã∗
)−1

21
p0, c1, c2 = const.

(29)

12



Here Pij and
(
Ã∗
)−1

ij
denote the components of P and

(
Ã∗
)−1

, respectively.

If pi(τ) = const, then the control ûi(τ) in (24) has no switchings in τ [0, τf ],
otherwise the switching times τ are defined by the equation

pi(τ) = −ηi, (30)

where we put η2 = 0 for the convenience of notation, i = 1, 2. We rewrite
equation (30) with respect to the new variable y = eλ1τ > 0 by using (29) as
follows:

F (y) ≡ y + cyµ = q, (31)

where c, q, and µ = λ2/λ1 6= 1 are real parameters. Without loss of generality,
we have assumed here that c1Pi1 6= 0, since otherwise we may replace λ1 with λ2.
The function F (y) has at most one critical point y∗ > 0 defined by the equation
F ′(y∗) = 1 + cµy∗µ−1. Thus, the function F (y) is either strictly monotone on
the segment I with the endpoints y1 = 1 and y2 = eλ1τf , or there is a unique
extremum point y∗ in I. These arguments imply that equation (31) has at most
2 solutions on I, which completes the proof of Proposition 1.

We see that each of the two controls û1(τ) and û2(τ) has at maximum 2
switchings if the conditions of Proposition 1 are satisfied, hence, the corre-
sponding vector function û(τ) ∈ R2 has no more than 4 switchings.

To find the candidates for solutions to Problem 2, we introduce a family of
bang-bang controls ũ(τ) with N switchings in [0, τf ], 0 ≤ N ≤ 4. Let

0 = τ0 < τ1 < ... < τN+1 = τf ,

and let
ũ(τ) = uj for τ ∈ [τj , τj+1), (32)

where

uj ∈
{(

umin1

umin2

)
,

(
umin1

umax2

)
,

(
umax1

umin2

)
,

(
umax1

umax2

)}
= U,

for each j = 0, 1, ..., N . The solution x(τ) of system (25) corresponding to the
inital condition x(0) = x0 and control ũ(τ) can be represented as follows:

x(τ) = e(τ−τj)Ãx(τj) + e(τ−τj)Ã
∫ τ−τj

0

e−sÃds uj

= e(τ−τj)Ãx(τj) + Ã−1
(
e(τ−τj)Ã − I

)
uj , τ ∈ [τj , τj+1], j = 0, 1, ..., N.

This formula implies that

x(τf ) = eτf Ãx0 + Ã−1
N∑
j=0

e(τf−τj+1)Ã
(
e(τj+1−τj)Ã − I

)
uj .

The periodic boundary condition x(0) = x(τf ) is thus reduced to the following:

N∑
j=0

(
e∆jÃ − I

) N∏
i=j+1

e∆iÃ

uj = Ã
(
I − eτf Ã

)
x0, (33)

13



and the isoperimetric constraint in (22) takes the form

N∑
j=0

∆ju
j
1 = τf ū1,

N∑
j=0

∆j = τf , (34)

where ∆j = τj+1 − τj > 0, and uj1 ∈ {umin1 , umax1 } denotes the first coordinate
of uj , j = 0, 1, ..., N . In the scalar form, the relations (33) and (34) represent a
system of 4 equations with respect to N+1 unknowns (∆0,∆1, ...,∆N ), provided
that τf > 0, x0 ∈ R2, ū1 ∈ R1, and (u0, u1, ..., uN ) ∈ UN+1 are given.

We will use the formula

e∆jÃ = I + ∆jÃ+
∆j

2

2
Ã2 +O(∆j

3)

to introduce a polynomial approximation of condition (33) for small ∆j :

N∑
j=0

∆j

(
I +

∆j

2
Ã

) N∏
i=j+1

(
I + ∆iÃ+

∆i
2

2
Ã2

)
uj = −τf Ã

(
I +

τf
2
Ã
)
x0.

(35)
If, for given τf > 0, x0 ∈ R2, ū1 ∈ R1, (u0, u1, ..., uN ) ∈ UN+1, the system of

algebraic equations (34) and (35) has a solution (∆0,∆1, ...,∆N ) with positive
components, then the piecewise constant function u = ũ(τ) given by (32) with

τ0 = 0 and τj =
∑j−1
i=0 ∆i, j = 1, 2, ..., N + 1, is considered as an approximation

of a possible optimal control for Problem 2 (with N switchings in the linearized
case). The switching times {τj} may be defined exactly by solving equation (33)
instead of (35). As it follows from the above considerations, each optimal con-
trol (in the sense of Problem 2) can be obtained for system (25) by using this
procedure with N ≤ 4, if the conditions of Proposition 1 are satisfied.

5. Simulation Results

As an example, we consider the hydrolysis reaction of acetic acid anhydride
to acetic acid:

(CH3CO)2O + H2O→ 2 CH3COOH.

We assume the following realistic parameters for this example, cf. [12]:

k0 = 139390 s−1, EA = 44.35
kJ

mol
,

∆HR = −55.5
kJ

mol
, ρcp = 4.186

kJ

K · l
, R = 8.3144598

J

K ·mol
,

V = 0.384 l, F̄ = 0.00175
l

s
,

C̄A = 0.8662
mol

l
, C̄Ai = 3.640

mol

l
,

T̄ = 331.93K, T̄i = 295.15K.

14



We take the order n = 1, for which no improvement is achievable by means of
periodic input modulations in the isothermal case. The above values are used to
compute the dimensionless parameters by (21) for the non-isothermal adiabatic
case (Aw = 0) with a constant flow-rate (F = F̄ ) as follows:

Φ = 0, φ1 = φ2 = 1, κ ≈ 16.07, k1 ≈ 3.059 · 107, k2 ≈ −1.058 · 106,

k1e
−κ ≈ 3.21, k2e

−κ ≈ −0.111.
(36)

We assume that the reaction is controlled by both the inlet concentration
Ci(τ) ∈ [C̄A − ∆CAi, C̄A + ∆CAi] and the inlet temperature Ti(τ) ∈ [T̄i −
∆Ti, T̄i + ∆Ti], where we take ∆CAi = C̄A and ∆Ti = 20K for the simula-
tion. This implies the following constraints on the controls u1(τ) and u2(τ) by
using (20):

umax1 = −umin1 =
(1 + k1e

−κ)∆CAi
C̄A

≈ 4.21,

umax2 = −umin2 =
(1 + k2e

−κ)∆Ti
T̄i

≈ 0.06.

(37)

We see that the condition (28) of Proposition 1 holds for the linearized sys-
tem (25):

D ≈ 2.03 > 0.

In order to illustrate the possibility of improving the performance of the
nonlinear reaction governed by equations (19), we apply a control u = ũ(τ) of
the form (32) with N = 2 switchings for x0 = 0, τf = 0.628, ū1 = 0.107, and

u0 = u2 =

(
umax1

umax2

)
, u1 =

(
umin1

umin2

)
. (38)

Note that our choice of the time horizon τf corresponds to the dimensionless
frequency ω = 2π/τf ≈ 10. To define the switching times τ1 and τ2, we first
compute their initial approximations τ∗1 and τ∗2 for the linearized problem by
solving equations (33) and (34):

τ∗1 = ∆0 ≈ 0.204, τ∗2 = τ∗1 + ∆1 ≈ 0.51. (39)

Then the constraints (22) are satisfied for the solution x(τ) of the nonlinear
system (19) if the parameters in (32) are chosen as follows:

τ1 ≈ 0.2, τ2 ≈ 0.506. (40)

We have computed these values by solving the equation x(τf ) = x(0) = x0 with
respect to (τ1, τ2) in a neighborhood of (τ∗1 , τ

∗
2 ) numerically by using the fsolve

function in Maple.
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Figure 2: Bang-bang controls ũ1(τ) (solid line) and ũ2(τ) (dashed line) for system (19).
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Figure 3: Trajectory of nonlinear system (19) for x(0) = x0 and u = ũ(τ).

The control ũ(τ) defined by formula (32) and the corresponding trajectory
x(τ) of the nonlinear system (19) is shown in Fig. 2 and Fig. 3, respectively. As
we observe in Fig. 2, the chosen control scenario corresponds to the simultaneous
swiching of ũ1(t) and ũ2(t) at t = τ1 and t = τ2. The mean value of the control
ũ2(τ) is ū2 = 1

τf

∫ τf
0
ũ2(τ)dτ ≈ 0.00153. The control system (19) admits the

following equilibrium state for (u1, u2) = (ū1, ū2): x̄1 ≈ 0.0649, x̄2 ≈ 0.0075.
We compute the cost corresponding to the control u = ũ(τ):

J =
1

τf

∫ τf

0

x1(τ)dτ ≈ −0.10672.
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Number of Mean controls Steady-state Cost
switchings (ū1, ū2) (x̄1, x̄2) J = 1

τf

∫ τf
0
x1(τ)dτ

N = 2 (0.107, 0.0015) (0.0649, 0.0075) −0.1067 < x̄1

N = 3 (0.560,−0.012) (−0.0445, 0.0077) −0.2252 > x̄1

N = 4 (−0.312, 0.0082) (−0.0707,−0.0004) −0.0698 > x̄1

Table 1: Simulation results for system (19) with bang-bang controls (32).

To compare this result to the bang-bang controls with a higher number of
switchings N , we present trajectories of system (19) with N = 3 (Fig. 4) and
N = 4 (Fig. 5). The numerical data for these simulations are summarized in
Table 1. All the computations are performed by using the fourth order Runge–
Kutta method with the integration step size of 3 · 10−5 to numerically solve
system (19) with controls of the form (32).

As J < x̄1 for the case N = 2, we conclude that bang-bang inputs (32)
ensure better performance of the conversion of acetic acid anhydride to acetic
acid in comparison to the steady-state operation with the same mean values
of the controls (ū1, ū2). To estimate this improvement in absolute units, we
observe that the dimensionless values x̄1 and J correspond to the following
outlet concentrations of A by formulas (18):

Cx̄1
= (1 + x̄1)C̄A ≈ 0.8099

mol

l
, CJ = (1 + J)C̄A ≈ 0.7737

mol

l
.

Thus, in the non-isothermal adiabatic case imposed to two inlet perturba-
tions, the absolute improvement with respect to the steady-state operation of the
first-order reaction is

∆C = CJ − Cx̄1
≈ −0.0362

mol

l
,

and the relative improvement is

∆C/Cx̄1
≈ −4.47% (41)

for the control with N = 2 switchings. This result can be compared with the
response of system (19) for two trigonometric inputs of the same frequency and
zero phase shift:

u]i(τ) = ūi +
umaxi − umini

2
cos(ωτ), τ ∈ [0, τf ], ω = 2π/τf , i = 1, 2. (42)

The cost functional evaluated along the solution x](t) = (x]1(t), x]2(t)) of sys-
tem (19) with controls (42) and the initial data x](0) = x0 is

J] =
1

τf

∫ τf

0

x]1(τ)dτ ≈ −0.0842.
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The above cost corresponds to the absolute improvement of the performance

∆C] = (1 + J])C̄A − Cx̄1
≈ −0.0166

mol

l
,

and the relative improvement with respect to the steady-state operation by
using the trigonometric inputs is

∆C]/Cx̄1
≈ −2.05%. (43)

In this case, as ∆C < ∆C] in formulas (41) and (43), the bang-bang controls
ensure better performance than the sinusoidal controls of the form (42) for
the first-order reaction. It should be emphasized that the periodic boundary
condition x(0) = x(τf ) does not hold for sinusoidal inputs in general, while
our control design scheme guarantees that the conditions (22) of Problem 2 are
satisfied.

–0.002

0

0.002

0.004

0.006

x2

–0.4 –0.3 –0.2 –0.1

x1

Figure 4: Trajectory x(τ) with N = 3 switchings.

Note that a higher number of switchings N > 2 in controls of the form (32)
does not necessarily lead to the improvement of the performance, according to
Table 1. The cost J evaluated along each of the trajectories, shown in Fig. 4
and Fig. 5, is larger than the corresponding steady-state value.

A crucial point of our control design is that the trajectories of the continuous-
time nonlinear system (19) satisfy the periodic boundary conditions, which is
proved rigorously by the derivation of equations (33)–(34) and illustrated by
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Figure 5: Trajectory x(τ) with N = 4 switchings.

Figs. 4–5. It should be noted that we do not use any kind of sampling or
optimization software packages in comparison to model predictive control ap-
proaches.

6. Conclusions

In this paper, we have proposed a control design scheme for maximizing the
performance of a non-isothermal CSTR imposed to two forced inlet modulations
over a given period of time τf . In contrast to the publications dealing with
nonlinear frequency response functions, we apply bang-bang controls resulting
from the Pontryagin maximum principle with the periodic boundary conditions
x(0) = x(τf ). The controls and the solution x(τ) can be extended periodically on
each segment τ ∈ [kτf , (k+1)τf ], k = 1, 2, ... , so that the moving average values
1
τf

∫ τ+τf
τ

xi(s) ds do not depend on τ . The basic feature of our construction

relies on the computation of the switching times from equations (33) and (34).
As the example in Section 5 shows, the switching times (39) for the linearized
control system (25) may be considered as a good approximation of the switching
times (40) for system (19). The sensitivity of our control design scheme
to uncertainties still remains to be analyzed. This question is closely related
to the stability of periodic solutions x(τ) to the open-loop system (19) with
controls (32). The stability analysis for this class of nonlinear time-varying
systems with discontinuous right-hand sides (see, e.g., [19, 20]) appears to be
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more challenging than just a question of stability for the equilibrium x = 0 with
u = 0.

We do not consider the robustness issues and the question of optimizing
the period τf (or, equivalently, the dimensionless frequency ω = 2π/τf ) in this
paper, leaving these problems for future work.
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