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This paper is devoted to the motion planning problem for control-affine systems by using trigonometric
polynomials as control functions. The class of systems under consideration satisfies the controllability
rank condition with the Lie brackets up to the second order. The approach proposed here allows to
reduce a point-to-point control problem to solving a system of algebraic equations. The local solvability
of that system is proved, and formulas for the parameters of control functions are presented. Our local
and global control design schemes are illustrated by several examples.
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1. Introduction

The motion planning problem for nonlinear systems has become an important research area over
the last three decades due to its significant geometric features and applications in robotics. In spite
of the number of studies, it still remains a challenging problem to construct control laws for general
classes of systems, and the development of new approaches attracts considerable interest from both
theoretical and applied points of view.

Let us briefly overview some related results in this area with a special emphasis on nonholo-
nomic systems. R. W. Brockett proposed an optimal control law that steers first-order Lie bracket
canonical systems (Brockett, 1981). The construction of such optimal controls is also shown in the
book (Bloch, 2003). In the paper (Murray & Sastry, 1990), an open-loop algorithm for steering
first- and higher-order chained form systems using sinusoidal inputs has been proposed. A related
method has been described in (Sussmann & Liu, 1991) for a more general class of driftless sys-
tems. In the paper (Liu, 1997), a family of highly oscillatory high amplitude inputs has been used
for solving the problem of approximate tracking for a driftless control system. Highly oscillatory
sinusoids are also applied in (Gurvits & Li, 1993) to compute time-periodic solutions for the non-
holonomic motion planning problem with obstacle avoidance. A method for steering chained form
systems by piecewise-constant inputs is presented in (Lafferriere & Sussmann, 1991). Such type of
controllers are used for the case of nilpotent systems as well as for the approximate steering prob-
lem of general nonholonomic systems. In the paper (Chumachenko & Zuyev, 2009), the steering
problem is solved for several examples of nonholonomic systems with piecewise-constant controls.
Sinusoidal and polynomial inputs that steer a three-input system in two-chained form are con-
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structed in (Bushnell, Tilbury, & Sastry, 1995). Note that a family of trigonometric polynomials is
applied for solving the steering problem for a class of distributed parameter systems with elastic
components in the book (Zuyev, 2015). A globally convergent steering algorithm, based on nilpotent
approximations, is proposed in the paper (Chitour, Jean, & Long, 2013) and developed in the mono-
graph (Jean, 2014). The concept of interpolation enthropy is introduced in the paper (Gauthier,
Jakubczyk, & Zakalyukin, 2010) to measure the asymptotics of the minimum length of admissible
curves connecting the endpoints for the motion planning problem. In particular, it is shown that
the entropy of a motion planning problem is equivalent to that of its nilpotent approximation.
Estimates of the enthropy and the metric complexity are obtained for generic motion planning
problems by constructing their nilpotent approximations in (Boizot & Gauthier, 2013). A Lie alge-
braic method for motion planning exploiting the generalized Campbell-Baker—-Hausdorff-Dynkin
formula is described in the paper (Duleba, Khefifi, & Karcz-Duleba, 2012).

To the best of our knowledge, only partial results are available for the control design of control-
affine systems with drift. In (Godhavn, Balluchi, Crawford, & Sastry, 1999), motion planning
algorithms with band-bang controls are presented for a class of Lagrangian systems with a cyclic
coordinate. Another time-state controller for such type of systems is developed in (Kiyota & Sam-
peio, 1998). In the paper (Bloch & Reyhanoglu, 1990), open-loop controls are obtained for a small
time locally controllable (STLC) system describing the motion of a knife edge on a flat surface.
The paper (Matsuno & Saito, 2000) is devoted to the study of a class of control-affine systems
with three states and two inputs. To produce a control law, the authors use a special chained-
form transformation. The steering problem is considered in the paper (Basto-Gongalves, 1999)
for control-affine systems under second-order STLC conditions. A discontinuous control law is
developed in (ur Rehman, 2005) to steer a class of control-affine systems with zero drift at the
origin. In the papers (Michalska & Torres-Torriti, 2003), an approach for solving the stabiliza-
tion problem by a time-varying feedback law is proposed with the use of sampling strategy and
nilpotent approximations of control-affine systems. The time-varying feedback law is constructed
there by a concatenation of piecewise constant controllers. The parameters of such piecewise con-
stant controllers are obtained from solving the “satisficing problem”. An important step in this
control design scheme requires the knowledge of solutions to the control-affine system with these
parameters. Sufficient Lie algebraic conditions for the stabilizability of control-affine systems have
been proposed in (Tsinias & Theodosis, 2015) by using sampled-data feedback laws and infinite
partitions of the time interval.

In this paper, we consider a class of control-affine systems whose vector fields together with their
first- and second-order Lie brackets satisfy Hormander’s condition. To solve a point-to-point con-
trol problem, we use a Volterra series development for solutions of the system with time-varying
trigonometric inputs. The main contribution of this work concerns the construction of steering con-
trols in Sections 3 and 4. This construction allows to compute the parameters of control functions
in terms of solutions to auxiliary algebraic equations (Theorems 2 and 4). To the best of our knowl-
edge, no solvability results have been available for this class of problems. Local solvability results
(Theorems 3 and 5) are proved by exploiting the degree theory, and solutions to the approximate
path-following problem are presented in Theorems 1 and 6. In Section 6, the results obtained are
applied to solving the motion planning problem for several mechanical examples. Some technical
details are presented in the Appendices.

2. Problem Statement and Approximation Theorem

Consider a control-affine system

i=1
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where z = (x1,...,2,)* is the state vector, u = (uq,...,un)* € R™ is the control, and “*” denotes
the transpose. All vector fields f; : D — R™ are assumed to be of class C® in a domain D.

For 2° € D and an admissible control u : [0,7] — R™, we denote by z(¢; 2°,u) € D the solution
of system (1) with initial data z|;—o = 2° and control u = u(t), 0 < t < 7. We also use the notation
B.(z) = {y € R"| ||z — y|| < €} for an e-neighborhood of a point x € R", p(x,v) = inf e, ||z — y|,
and Bc(v) = UyeyBe(y) for an e-neighborhood of a set v C R™. Here || - || is the Euclidean norm on
R™. To study the local steering problem, we introduce the class I whose elements are continuous
strictly increasing functions § : Rt — R* such that 6(0) = 0, Rt = [0, +0).

Problem 1. (Local Approximate Steering Problem) For a given z“ € D, ¢y > 0, and
¥ € B, (x%) C D, the goal is to construct a smooth control u® *"(t) € R™, defined on 0 < t <
T =71(x% 2%), such that the following conditions hold

(75 2%, 0™ — 2| < rfla® — 2], (2)

)=z <O (=% —a¥)  for allt €[0,7], (3)

w

(85 2, u®"

with a constant v < 1 and a function 6 € K.

It is clear that if system (1) is locally controllable at a point ¢ € D then, for small enough
€0 > 0 and any 2% € B, (2%), there exists a control u**" € L0, 7] such that condition (2)
holds with r = 0. However, in this paper we treat the construction of controllers in Problem 1 as
an algorithm that computes a smooth function u* %" (¢) in terms of solutions to certain algebraic
equations whose coefficients depend on the vector fields fo(z), fi(z), ..., fm(z), and, possibly, their
Lie brackets at a point x = 2. We will also extend such an algorithm in order to follow a given
curve -y in the state space D.

Problem 2. (Approximate Path-Following Problem) For a given curve v C D with the
endpoints 0 and z*, and a given € > 0, the goal is to construct a piecewise-smooth control u :
[0, T] — R™ such that ||z(T;2° u) — 27| < e and p(z(t;2°,u),v) < e for all t € [0, T).

For solving this problem, we use a partition 7 of v with a finite number of points 2/ € 7,
j=01,..,N:m:2° <2t < ... < N = 27, where “<” denotes the natural order on ~v. We
assume for the moment that there are n > 0 and ¢y > 0 such that Problem 1 is solvable for each
z® € By(v) and 2 € B, (z%) by a family of controls {u*"*"(-)}, and that the mesh of 7, defined as

A(m) = Jmax, |27 — 277Y], is small enough. Under these assumptions, we introduce the following
<<

definition.

Definition 1: A w-approzimating control is the function u, : [0, 7] — R™ defined as follows:

ur(t) = u®® (t) for t € [to, t1], to = 0, t; = (2, 1),
Uw(t) = uxixj+l(t — tj) fort € (tj,tj+1], tj+1 = tj + T(l’{.,:l)jJrl), j = 1,2, ...,N - 1,

where the family of controls ufcj%wjfl(t) (0 < t < 7(a, 271)) solves Problem 1, T = ty, 20 = 20
and 22 = 2(r(ad, 20 T); 2l w ) for j =0,1,..., N — 1 (see Fig. 1).

)

As we will show in the proof of Theorem 1, the above construction is well-defined if A(7) is small
enough.

Theorem 1: Let v C D be a curve with the endpoints 2° and x*, and let positive numbers 7,
€0 be such that Problem 1 is solvable for each x® € By(y) C D and z¥ € B, (z) by a family
of controls {u®"*"(-)}. Assume, moreover, that the constant r € (0,1) and the function 6 € K in
formulas (2), (3) may be chosen independently of x* € By (7).

Then, for any ¢ > €1 > 0, there exists a A = A(e,e1) > 0 such that, for any partition
m:al <zt <. < 2N =2l of v with A(m) < A, the corresponding T-approximating control
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Figure 1. Approximate path-following trajectory x(t) = 2(t; z°, ur).

ux(t) is well-defined on t € [0,T], and

ot 2%, ue) — 2] < &1, j=0,1,.., N, (4)
p(x(t; 2% ux),v) <e, te[0,T], (5)

where t; and T are introduced in Definition 1.

Proof. Without loss of generality, we assume that
e1 < minfeo,n}, O(e1) <e —e, (6)

otherwise we take a smaller £; such that conditions (6) hold. As the continuous function 6 € K is
strictly increasing on Rt and 6(0) = 0, then the inverse function 6~ '(s) is well-defined on some
semi-interval s € [0, &), & < +00. We choose the following value for A = A(e,e1) > 0:

A {min}(i—l)el,eo—sl}, ife —eq > ¢, 7)

~ 1 min (%—1)51,60—51,9*1(6—51)—61}, ife—e1 <&

Let 7: 20 < 2! < ... < 2" = 27 be a partition of v such that A(m) < A. We prove by induction
that the m-approximating control u,(t), introduced in Definition 1, is well-defined. It follows from
formula (7) that [|2° — z'|| < A < €, and thus the control u.(t) = u** (t) is well-defined for
t €[0,t1], t; = 7(2°, 2'). We denote z} = x(t1;2°, u*"*") and observe that

|zl — 2| < rA(r) < rA < (1 —71)ey < g (8)

because of inequality (2) and formula (7). Assume that the control u,(t) has been already defined
for 0 <t <t;, and that 27 = z(t;; 2%, u,) € B, (27) for some j € {1,2,..., N —1}. Then the control

J i+l j

a(t) = u " (t) is well-defined for 0 <t < 7(x%,2971) as g1 < 1 and

e — 27| < |2 — 27| + [la7 — 27 <e1 + A < e0. 9)

Now we extend u,(t) to the segment 0 < t < t; 1 =t; + 7(z7,29T!) by assuming u.(t) = a(t —t;)

for t € (t;,tj4+1]. Then we estimate the distance between It = z(tj41;2% ur) and 297! by using
inequalities (2), (9) and formula (7):
|22t — 27T < rfjal — 27T <7 (e1 + A) < e (10)
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Thus, by applying the above process for j = 1,2,...,N — 1, we construct the control u,(t) for
all t € [0,T)], T = tn. Note that the correspondlng solutlon x(t) = z(t;2° uy) of system (1) is
well-defined on t € [0,T] as x(t) = z(t — t;; 2l ut ) for t e [tj,tj+1], and inequality (65) follows

from estimates (8), (10).
To complete the proof, we consider an arbitrary
6

€ [tj,tjy1] (0 < j < N —1), and use the
triangle inequality together with inequalities (3), (65), (

t
); (9):
p(x(t),7) < lla(t) — 27| < lla(t) — 2| + [l — 27| < O(||a] —277H)) +e1 < b(e1 + A) + 1.
Thus, to prove that p(z(t),v) < €, it suffices to show that
O(c1 + A) < e —e1. (11)

If £ = supyep+ 0(s) < € — &1 then inequality (11) is satisfied with any A > 0. Otherwise, as the
function # € K is strictly increasing on RT, inequality (11) is equivalent to A < #~*(e—&1)—¢1. The
above inequality is satisfied, provided that conditions (6) hold and A > 0 is given by formula (7).
As0<j <N —1andtE€ [tj,tj+1] may be taken arbitrarily, we have proved that p(x(t),7) < €
for all t € [0, 7. O

Remark 1: The proof of Theorem 1 remains valid for general systems of the form & = f(z,u),
x € D, u € U, as the main idea is just based on the group property: the translation of a trajectory
is a trajectory for time-invariant control systems.

As we see, Theorem 1 justifies the possibility of reducing the approximate steering problem to
successive concatenations of local controllers. Such local controllers will be constructed in this paper
by exploiting the representation of solutions of system (1) by the Volterra series. Namely, if wu(t)
(0 <t < 7) is an admissible control for system (1), then the corresponding solution z(t; 2%, u) may
be approximated by the Volterra series as follows (Nijmeijer & van der Schaft, 1990; Lamnabhi-
Lagarrigue, 1996):

t t s

x(t;mo,u):mo—l—Zfix /uZ d+z Bfl f] //U/z s)u;(p) dp ds
=0 0

4,7=0 0

(12)

m aZ
+Zax<f f](

,5,0=0

t
0///1“ v)u;(s)u(p) dpds dv + R(t; 2% ), t€[0,7],
000

Ofi(x)

an 18 the Jacobian

where we introduce an artificial control ug = 1 for convenience of notation,
matrix, and R(¢;2°,u) is the remainder.

In Sections 3 and 4, we will present solutions to the local steering problem within the class of
trigonometric polynomials as control inputs. Then we will show how such controls can be used for
solving the path-following problem in Section 4.

3. Controllability Conditions with the First-Order Lie Brackets

For the local steering problem, our goal is to propose a control algorithm that steers system (1) from
a given initial point % € D to a small neighborhood of a target point * € D at some time 7 > 0.
In order to solve this problem explicitly, we assume that there are sets of indices Sy C {1,2,...,m},
S1 C{1,2,....,m},and Sy C {1,2,...,m}? such that |Sp|+|S1|+|S2| = n. Without loss of generality,
we assume that the elements of Sy are ordered such that ¢ < j for each pair (¢,7) € Sa.
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Definition 2: Control system (1) satisfies the (Sy, S1, S2)-rank condition at a point x € D if

span{fi(x), [fo, fil(x), [fx, il(x) | i € So, j € S, (k1) € Sa} = R"™, (13)

Here, and in the sequel, [f;, f;](z) = af]( )fl( ) — afl( )fj( ) denotes the Lie bracket of vector
fields f;(z) and f;(z).
Note that if system (1) satisfies the (Sp, S1, S2)-rank condition at a point z* € D and fo(z%) = 0,

then system (1) is small time locally controllable (STLC) at ® due to Proposition 7.4 of (Sussmann,
1987).

We consider the following family of controls:

. 2w Kt 2Kt . 27Kt
t) = Z5kivi+z5kiaism( WTl ) - Z a;j {&m‘COS( 7_” >+5kj51n< 7_” >},

1€So €51 (4,7)€S2

(14)
where k = 1,2,...,m, v;, a;, a;; are real coefficients, K; and K;; are nonzero integers, and dy; is the
Kronecker delta. For given %,z € D and 7 > 0, we will define the vector of coefficients

a = ((vi)iesy: (@i)ies,, (aij) i jes,) € R"

and parameters K = ((K;)ies, , (Kij)(i,j)esz)* e (Z\ {0})!51+1%:] for formula (14) by using the
following system of algebraic equations

72 72
7 <f0(xa) + Z Uif"(xa)> + ?V20 + gvm =¥ — (15)
ZES()
with
8fo( dfo(x ofi(z) . . 4 ofi(x®) . 4
Vao = i+ Su (B e+ P e ) ¢ F e e,
i€So (i,5)€80>
V;Q; a; o Qi
V= ) el £l = D0 e il = Y0 2o fila®)+
(4,7)€S1 xS0 Ki icS " (4,5)€S> Kij
2
Uk ij 1 agj o
+ Z K, ][fjafk]( )+§ Z Kij[fuf]](x ),
.. 1] - )
(4,4,k)ES2X Sy (4,7)€S>
(16)
where % stands for the Jacobian matrix 8f (x) evaluated at x = ¢

To formulate the basic result concerning the local steering problem we need a non-resonance
assumption concerning integer parameters K; and K;.

Assumption 1: For each l,q € S1 and (i1, j1) € Sa, (i2,j2) € So such that I # q and (i1, j1) #
(i2,72), the following inequalities hold: | K| # |Kq| # | Ki,j,| # [ Kiyjs |-

Theorem 2: Assume that, for x*, x* € D and positive numbers T, €, €1, the vectors a € R"™ and

K € (Z\ {0})I%H1%:] satisfy the system of algebraic equations (15) and Assumption 1, and that
the following conditions hold:

Hafi(x) ‘32fij($)
Ozx 0%z

< M,

< My, forallz € B.(x*)C D, i=0,m, j=1,n, (17)
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B _ 5 _ 2 _
Mo [0 — LMD +1)% +1) | + 22N {(eMlU ~2) 4200 - 1} <e,  (18)
< + 1) , (19)

where

U= 14> Jul+ > lal+v2 D Jayl| 7, My= max [|f;()]. (20)

: ; 0<i<
1€So 1€51 (i,j)ESQ

Then ||x(1;2% u) — 2| < e1 and ||z(t; 2%, u) — z%| < e for all t € [0, 7], where the control u(t)
(0 <t <7)is given by formula (14).

Here B.(x®) stands for the closure of B.(x®), and % is the Hessian matrix of the j-th
component of f;(x). The proof of Theorem 2 is given in Section 5.

Remark 2: By using the Taylor expansion, we conclude that condition (18) is equivalent to
Mo(M? + MaMy+/n)
6

To study the solvability of algebraic equations (15), we introduce new variables

U3 4+ O(U*) < ¢y, for small values of U given by formula (20).

2 2.2
_ TQ; _ TCQ;
W; = TV, Q5 = _Ffé‘, Qi5 = - I{” =1/ ’sz‘ (21)
) iJ

and denote column vectors w = (w;)ies, € R™, a = fak)kesl e R™m, ¢ = ) € R™,
(@5) )5 a
no = |So|, n1 = |S1]| + |S2|. As each ;; is the square root of a positive integer in (21), we will use
oo

the notation s;; € Ny /9, where Ny /5 = U {\/E} We also introduce the n x n-matrix
k=1

A(z®) = ((fi)ieso, fo, filjesss i filwnes,) (22)

whose columns are formed by the vector fields from the rank condition (13) evaluated at = = 2.
Then we exploit formulas (77) and (21) to rewrite algebraic equations (15) in the following form:

o w o T 8f0 T 8fO afl 8f
i ey (23)
1 \ az Wk N/ Qg |
+= 3wl il = Y ' Zlfo f5] - > il i, fl
T . f ﬁ . ij
(z,])GSl><SO ( ,])GSQ ( ,],k)eSQXSO
where all f;(x), 8@56), and [f;, fi](x) are evaluated at x = 2. If £ = (7"5) € R" is a solution of

algebraic equation (23) with some s;; > 0, then formulas (21) imply that

Cwp o 2K _ gy/mlag| Ko = 52 sion s
Vi =, 0= — o, @i =~ signdyy, Ky = s sign ay;

satisfy equations (15).
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We will prove the following local solvability result for system (23)

Theorem 3: Let the (S1,S2,S3)-rank condition (13) be satisfied at a point x* € D, and let
1/2

AT @I oI | > I fill@)IP ] <

(i,j)eSl XSO

(24)

N | —

@), the system of algebraic equations (23)

Then, for any small enough ¢y > 0 and any ¥ € B, (
= O(ep) and

has a solution § € R"™ with some T = O(€) and s € Ny 9, (1, ) € S2 such that ||£]|
sij # iy for each (i, ) # (i',5") € Sa.
Proof. 1f the (Si,S2,S3)-rank condition (13) is satisfied, then the matrix A(z%) given by (22) is

V2 e forall§ = (75) eR™.  (25)

o e _v2
|A(z%)E|| > AL ()] > c([lw]| + flal]), c = A 1(zo

In order to prove the solvability of equations (23), we show that there exist positive numbers 7

non-degenerate, and

€0, X, €y, € such that
. ks -
(ol 1al) > eo-+ otk sl +Rslfu+ 5 ol + o) A2 ot € € oy
(26)

2) 1/2

where W = {€ € R" | ||w]| < €w, ||d]| < €a},

,k2=;<2

00(@) oy 4 217 gfa>fo<a:a)

e Ohols™)
o = 1fola®)l, b = 2” o) fy ) B RS
lESO
o\ 12 ) 1/2
| af . So| /4 .
19 L) o= S e
(4.9)€S (4,5)€S2
1/2 1/2
o a2 _|52|1/4 ay |2
R D D A I e B SR [T A
(4,3,k)€S2%So

(1,])651 X So

Let us first consider the limiting case > — co. Then inequality (26) takes the form
gr(llall, llwl)) > eo + ko +7%k1, (27)

k
with g, (p,q) = (¢ —Tk2)q+ cp— k3q® — —Spq. To show that inequality (27) holds for all £ = (Z) IS
T

OW , it suffices to find positive numbers 7, €g, €, €, such that

g-(p,q) > €0 + Tho + 72k1, (28)

inf all,||wl]) = inf
ot gr(lall Jol) = inf

where [, : p € [0,€], ¢ =€w, lg: p=¢€q, q€[0,€y)
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We see that g (p, ¢) is increasing along [, and [, if

agT(p7 ew) — e ksew
T

ap >0 an

T as k
d W:C—Tk2—5ea—2k3q20 for ¢ € [0,€,]. (29)
T

If these conditions are satisfied, then formula (28) is reduced to

( ;nlf l 9r(p,q) = min {g,(0,€,), g-(€4,0)} = min{(c—Tkg)ew—kgefu,cea} > eo+Tko+72k;. (30)
p,q)€lp,Ulg

In particular, conditions (29) hold for

€ _£T € _l 0—7]{:2]{:5_‘_2]{307'
w — ) a—k5 k‘5 .

e (31)

With this choice of €, and €,, the inequalities (¢ — Tka)e, — k3e2, > € + Tho + 72k1 and ce, >
€0 + Tko + 72k1 from formula (30) will be satisfied if

2
di=— —ky>0 (32)
ks
and
7—7172>%0,7'*V272>%07 (33)
k1k? koks + k k3c?
where v = 1R5 + Ci:;d 5+ 36), Yo =7+ kBTCd Note that condition (24) implies that d > 0 in
5 5
1
formula (32). To satisfy conditions (33), we observe that 7 — 72 > g for T € <O, 2) , v > 0.
Y
This inequality implies that both conditions in (33) are satisfied for positive 3 < g if
1 2¢€0 1
< — and — <7< —. 34
'Sy T ST S, Y
We note also that €, and €, are positive in formulas (31) if and only if
Ck5
O<rT< ———. 35
T ks + 2kse (35)

Thus, by putting together the inequalities in (34) and (35), we conclude that, for any positive €

. 1 d dcks ) . ) 2¢€0 ...
h that ¢y < _ lity (28) hold th 7 = — and t
suc at €g < min { 372" Iya’ 2(haks + 2Fac) } , inequality (28) holds with 7 - and positive

numbers €,, €, given by formulas (31). It means also that property (26) is satisfied provided that

ok ke€w .
7> Vel 4T5+ o )7 6 = min{(c — Tka)ew — kzes, cea} — €0 — Tho — 72k1 > 0. (36)

Then we choose the parameters s;; > > such that s;; € Ny, for each (1,7) € Sz and s #
s whenever (i, ) # (7, 7).

Under our choice of parameters ey, T, €q, €w, 3;j, property (26) implies that [[A(z®)¢| >
Dy (§), for each € € OW, for each z¥ € B, (z%), where ®,.(§) denotes the right-hand side of
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equation (23). Thus, the vector fields A(x*)¢ and ¥ (§) = A(x*)§ — P, () are homotopic on OW,
so the rotation of ¥(&) on OW is equal to sign |A(xz®)| # 0 (Krasnosel’skij & Zabrejko, 1984). Then
the principle of nonzero rotation implies that there exists a £ € W such that ¥(£) = 0 (Zabrejko,
1997, Theorem 1), which completes the proof. O

4. Second-Order Rank Condition: Nonholonomic Systems

In this section, we consider a driftless control system
m
j::Zukfk(az), r€DCR" m<n. (37)

Although the solvability of motion planning problems for nonholonomic systems has been already
established under rather general controllability assumptions (Liu, 1997; Jean, 2014), our aim is to
propose an explicit control design scheme and perform all necessary computations analytically. For
this purpose we restrict our analysis to a class of bracket generating systems of step 3.

Let S C {1,2,...,m}? and S5 C {1,2, ..., m}® be subsets of indices such that |S2| + |S3| = n—m.
Without loss of generality, we assume that the elements of sets So and Ss3 are ordered as j; <jo for
all (jl,jz)ESQ, and l2<l3 whenever (ll,lz,l3)€S3.

Definition 3: Control system (37) satisfies the (S2, S3)-rank condition at a point x € D if

span {fl(x)’ [fjmsz](x)v [[flla le]’ fls] (‘/L‘) |Z = 1727 ey M, (jlaj2) € 527 (l17l2al3) € 53} =R" (38)

In order to solve Problem 1, we apply the following family of control functions:

2r Kt 2Kt
ug(t) = ap+ E a,-j(&u-cos +0p; sin ”)
(7’7])632
2w K4t 2w Kot 2w K15t 2w Kot
+ E aljl<5kzcosilwl+5kjSinM+6leOS i 1z51 sin m 2ijl )7 (39)
T

(4,5,L)€Ss5
k=1,2,...,m, t€[0,7],

where ay, a;;, a;j are real coefficients, Kjj, K15, K5 are nonzero integer parameters. To define

*
the vector of coefficients a= <ak]k€{1w’m} , aij\( ) €R", and parameters K =

id)ess » Yiitl i giyes,
(Kij‘(i,j)ESQ s Kuijis K%ﬂ’(i,j,l)esg) € (Z\{0})1%21+21%! for formula (39), we introduce the following
system of algebraic equations

m 7_2 3

P> faar+ o 3 U il > Z oo 31, ] (%) 2

k=1 T (i)ess Kij G1)ES Zigt - Ll (40)
7_2

where the expression for € is given in Appendix B. We also need an extra non-resonance assumption
on the frequencies of the sine and cosine functions, so that there are no low-order resonances among
the frequency multipliers Kij’ Klijh KQijla and Klijl + K2ijl-

10
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Assumption 2: If ¢;j, ci4ji, - . ., Caiji are any integers such that Z(i,j)GSQ leij| + Z(i7j7l)633(|clijl| +
lcaiji| + |esizi| + |caiji|) > 0 and

Z cii Kij + Z ((crigt + esii + casjt) Kiji + (c2ij1 + c3iji — caiji) Kaiji) = 0,

(’L',j)ESz (irjrl)es?»
then
< Z |cij|+ Z lcviji| > 3> 07"( Z |cij|+ Z lcviji| =3 and Z |cij| > 0>.
(4.5)€S2 (i,5,0) € Ss, (4,4)€S> (i,5,1) € S, (4,5)€S2
1<v<4 1<v<4

Our basic result concerning solutions of the local steering problem for nonholonomic case is as
follows.

Theorem 4: Assume that, for x%, 2% € D and positive numbers T, €, €1, the vectors a € R"™ and
K € (Z\ {0D)I%1H2%] satisfy the system of algebraic equations (40) and Assumption 2, and that
the following conditions hold:

dfi 0? fin o° fzk
< M < M- < M.
‘ o (m)H = 1, ‘ Or2 ( 2, Z ax ax%n = 3
(41)
forallacGBg(x yCD,1<i<m, 1<k<n,
) ) i} M2 Ma(eMT _ 132 MoMi My (MU —1) (3032 + 2M;0)
¢(U) _ \/HMOUB(BMIU o 1) 0 3(67 ) + ( 7) 4
U? 12U (42)
2
Ml(Ml —E2MOM2) } <e,
U< 4n (le + 1) (43)

where

U= > lal+v2 Y layl+3 > lail | 72 Mo = max ||fi(a®)]. (44)

; 1<i<m
=1 (i’j)GSQ (i,j,k)633

Then ||z(1;2% u) — 2¥|| < e1 and |x(t;z% u) — 2% < e forallt € [0,7], where the control
u(t) (0 <t <r7)is given by formula (39).

The proof of this result is contained in Section 5.

Remark 3: For small values of U, condition (42) is reduced to the following one:

VMo M3 (2M? 4 12M3 My My + 4 My My + 3n/2 My M, Ms)
12

o(U) = U4+ 0(U° <ep.  (45)

A crucial assumption of Theorem 4 is that the coefficients of control (39) satisfy the system of
algebraic equations (40). To prove the solvability of system (40), we introduce new variables

*
~— ~ ~.. N.. n
a= <“k’|ke{1,...,m} s @il jes, ‘W|(z’,j,l>ess) €R

11
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*
d ters KT = | K K& K. € NI%:I+28s]
and parameters ( i (i,j)eSQ’ 1451 2ijl (i,j,l)eS3 winere
; for k = 1,2 a0 (i) € So, G ] for (i,7,1) € S
Qp = Tap I0Or K = 1, 4,...,MT, aij: A or (2, € o9, aiﬂ: 3 3 or (7,7, € D3,
AT Kij 1672 (K2ijl - Klijl)
K5 = |Kij| for (i,7) € S2,  K.J,; = | Kyl for (4,5,1) € S5, v =1,2.

In new variables, we write system (40) in the following form:

D arfr(@)+ D aylfi L@+ Y agllfe i) A @) 4@, 2%) = 2 — 2%, (46)
k=1

(Z7])ESZ (Zajal)eSS

where Q(a, 2°) does not contain terms of order less than 4/3 with respect to @ (see Appendix B).
We assume that the (S2,.S3)-rank condition is satisfied, therefore, the matrix

Fa)=(Aia®), -, fne®), Ui 510 s - U £ 5] @) s, ) (47)

is non-degenerate at x = x®. Then we define the integers ij' and Kf; b
sumption 2. Thus, if @ is a solution of system (46) for given 2%, 2% € D, then the components of a
solution of system (40) are:

K;; Jl according to As-

ar =7 ta; for k=1,2,...,m, a;; = 27~ 'sign(a;;), /7TK$|&U| for (i,7) € So,

(48)
_ 2 2\~ .
aiji = 2V 22T 1</(K;;jl - K;ﬂ )aij for (i,7,1) € Ss,
Kjj = Ksign(a;) for (i,7) € So, Ky = K, for (4,5,1) € S3, v=1,2, (49)
where sign(a;;) = 1 if a;; > 0 and sign(a;;) = —1 otherwise. So, the solvability problem for

system (40) is reduced to the study of system (46). The formula for Q(a,z) in Appendix B implies
that there exists a function C'(z) > 0, which is continuous in D, such that

1Qa, )| < C(x)|a||*? for allz € D, e Bi(0) C R™. (50)

We derive the following corollary of Theorem 4 for solving Problem 1.

Theorem 5: Assume that the rank condition (38) holds at x = x® € D and that inequalities (41)
are satisfied in Be(x®) for some € > 0. Then, for any r € (0,1) and 7 > 0, there exist eg > 0 and
0 € K such that:

1) for any x* € Be,(x%), there exists a solution a € R™ of algebraic system (40) with some
K € (Z\ {0})I5:14215] that satisfy Assumption 2;

2) if u(t) is the control given by formula (39) with the above a € R™ and K € (Z\ {0})!%21+2I%],
then

(T3 2% u) — || < rlla® — |, (51)
|lx(t; %, u) — 2% < O(||lz* — 2¥|]) for all t €[0,7]. (52)

Proof. Let 2% € D, e > 0, r € (0,1), and 7 > 0 be given. To prove assertion 1), we note that
solutions of algebraic systems (40) and (46) are related by transformations (48). We choose a

12
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vector Kt € NI%2I+21%l in such a way that Assumption 2 is satisfied. Then we rewrite system (46)
as ®(a) = 0, where

®(a)=a+F " (z)(Qa, z®)+z—z*).

In the trivial case ¥ = x®, it is easy to see that a = 0 € R™ is a root of algebraic equations (46).

If ||z — 2*|| > 0 is small enough, we will use the principle of nonzero rotation to prove that the
equation ®(a) = 0 has a root a € B;(0) for some d > 0. For this purpose, we show that the
maps ®(a) and ¥(a) = a are homotopic on the sphere Sy = 0B4(0). A sufficient condition for the
homotopy equivalence reads as follows, cf. (Krasnosel’skij & Zabrejko, 1984):

|®(a) —all < ||al]| for all a € Sy. (53)
We estimate the left-hand side of inequality (53) by using estimate (50) and assuming that d < 1:
[®(a@) —all < [|[F~ @) (1@, 2] + [+ = 2[)) < [F~H ()] (C(wa)d4/3 + [l — m“H)-

Thus, inequality (53) follows from the conditions

Hxa - wa < fhge (d)7 d<1, (54)
where
o (d) = 0 O(a®)dt (55)
=) = 1G] |

We see that the function pize(d) is positive and increasing on d € (0, dypqaz), Where

3 3
dmaa: = min d::wx, 1 5 d:rrmx == < > ) :U’/xf’ (d;?r’mx
{1} TF T @C@)

) = 0. (56)

As pize(d) is strictly concave on RT and pz«(0) = 0, conditions (54) are satisfied with ||z% — 2

“Il =

W, 0 < d < dpqq, or, equivalently, if
d_MH%a—wa <d (57)
- Mo (dmax) max:
Thus we conclude that if
oné B wa < paze (dmaz ), (58)

then condition (53) holds on the sphere Sy of radius d given by formula (57). Thus, the maps ®(a)
and ¥(a) = a are homotopic on the sphere Sy, and the rotation of ®(a) is equal to 1. Applying the
principle of nonzero rotation, we conclude that there exists an @ € B4(0) such that ®(a) = 0; see,
e.g., (Krasnosel’skij & Zabrejko, 1984). Then we define the vectors a€R” and K € (Z\ {0})/521+21%
by formulas (48), (49) and observe that the system of algebraic equations (40) and Assumption 2
are satisfied. This completes the proof of assertion 1).

13
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Under our choice of the coefficients a € R™ of control (39), the expression U in formula (44) is
estimated as follows:

m
_ 2
O <Y fanl+2van 3 Kyl +6v2m 30 Juh, - KDl <

k=1 (4,)ES2 (4,3,1)€S3
m

2 20~
< a4 ovam S ([ layl P evar S G, - KD lal,
k=1 (4,5) €S> (4,5,1)€Ss

where we have used formulas (48) and the inequality ||a|| < d < 1. Furthermore, by applying
Hoélder’s inequality with exponents (6 §) and exploiting condition (57), we get

5
U < Cifjal]'/? < Crd'f? = i —r i, (59)
2/5\ 5/6
Cy = <m+ 99/5:3/5 Z( )652(K+)3/5 + 28/536/5,:4/5 Z(i,j,l)esg (K;]f Kf;ng) ) . (60)

provided that condition (58) holds.

It remains to show that assertion 2) follows from Theorem 4. Indeed, for given r € (0,1) and
e > 0, our goal is to find an ¢y > 0 such that the conditions of Theorem 4 hold with ; = r||z®* —z¥||
if ||z — a*|| < 9. Condition (43) follows from inequality (59) if

(61)

Sz — 22| V/3 1 <M15 )
< —1In
M

< — +1
Malaég (dmar) My

It is easy to see that the function #(U), given by formula (42), is increasing on Rt (as all its
Taylor coefficients at U = 0 are non-negative). Hence, by exploiting inequalities (58) and (59), we
conclude that condition (42) holds with e; = r||z® — z*|| if

& (Cld%i’xuxa — |13

<rfla® — 2% < rpge (dmaz)- (62)
Malc{xg(dmar) >

Let € be the positive root of the equation jqﬁ

2@ 1/3

T (dmam

d1/3 _1/3
(Clmaxﬂ = r. It follows from the Taylor

expansion (45) that

€ 1728Mia (dmaz) r® as r—0
n3/2012d4 MBMS (2M2 + 12M2 M, My + 4My My + 3n3/2 My M, My)”

max

Now we choose

3 — T dmax 1\4
€0 = min {eo, oo (dmaz), H 36('3(1 ) In3 < 106 + 1> } > 0. (63)
iwl 1 Omazx M

Let ||z — 2¥|| < €o, and let x(t; %, u) be the solution of system (37) corresponding to the control
u = u(t) given by formula (39) with the coefficients a € R™ and parameters K € (Z\ {0})/521+21%
from assertion 1). The assumptions of Theorem 4 are satisfied because of inequalities (61) and (62),
which proves condition (51). It is easy to see that estimate (52) is satisfied with the following

14
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function 6 = 0, (s) of class K:

1/3
0o (s) = % (exp {WSUS} — 1) . (64)
! fize" (dmaz)
Cld}v{gxsl/g

Indeed, let us denote s = ||z% — 2%|| < €, then U < because of inequality (59), and

M:lv/”?) (dmaz)

condition (43) of Theorem 4 holds with & = 6, (s). Thus, Theorem 4 implies that
|lx(t; 2% u) — 2% < &= 0za(||z® —2%|) forallte]0,7],

which completes the proof. O

We will show below that the construction of local controllers in Theorem 5 can be used to satisfy
the conditions of Theorem 1 for solving the approximate path-following problem.

Theorem 6: Let v C D be a curve with the endpoints x° and x', and let the rank condition (38)
be satisfied at each x € y. Then, for any T > 0 and € > €1 > 0, there exists a A > 0 such that, for
any partition m: 20 <zt < .. < 2N =z of v with A(m) < A, the corresponding T-approzimating
control ur(t) is well-defined on t € [0,T], T = N7, and

le(irsa® up) — 23] <1, j=1,2,...N, (65)
pla(t; 2’ ux),y) <e, te[0,T]. (66)

Here the control ur(t) is constructed as in Definition 1 by using the concatenation of local controllers
u(t) = u® T (t) of form (39) whose coefficients are defined by the system of algebraic equations (40).

Proof. As the rank condition (38) holds on v C D and all the vector fields f;(x) are of class C3(D),
there exists an 7 > 0 such that I' = B, (y) C D and condition (38) also holds at each z € I'. For
a compact subset I' of domain D, we choose a positive € such that Dy = Bs(I') C D. Then the
numbers

ofi

O fir
M = Moy =
= (g |52 @) e = (e | T ]),
(67)
1 3 f;
M3 = —max | sup ifz—k(x)a , 1<i1<m, 1<k<n,
i,k x€Dy |a|:3 afbl P amnn

are finite by the Weierstrass theorem. We see that the conditions of Theorem 5 are satisfied for
each % € T with the above choice of Mj, Ms, and Ms. Let us now fix arbitrary r € (0,1), 7 > 0,
and show that the number ¢y > 0 and function 6 € I in Theorem 5 may be chosen independently
of z¢ €T

Since all the vector fields appearing in the rank condition (38) are continuous on the compact
I' C D, there exists a vector KT & NI%21+2I5s] gatisfying Assumption 2 such that the matrix F(z®)
is non-degenerate for each #® € I'. As in the proof of Theorem 5, we fix such K+ e NIS2[+2I5: and
introduce the function u(d) = ci — ¢9d*?, where ¢ = sup ||[F~ ()| > 0, ¢ = supC(z) > 0. It

1

zel’ zel’
follows from the construction of u(d) that

u(d) < pgo(d) forall z* €T, d>0, (68)

15
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_ _ 3 \3
and u(d) > 0 is strictly increasing on d € (0, dmaz], dmez = min {1, (4 > } . Following the
C1C9

proof of Theorem 5 with the use of inequality (68), we conclude that its assertions 1) and 2) remain
true for each z* € I' and 2% € B, (x®) if, instead of formula (63), we define

. “ 7 N(dmax) 3 M
= , (d ) —1 +1 >0, 69
€9 = min {60 w(dmaz) NBCB s n o (69)
1 (cudifie”
where €q is the positive root of the equation —¢ 1;1& = r, the constants C1 and M; are
€0 1% / (dmax)

given by formulas (60) and (67), respectively, and

My = max sup || fi(x)] > 0. (70)
I<i<m ger

Thus, expression (69) defines the constant ¢y > 0 for Theorem 5 independently of z* € I'. It
remains to verify that there exists a 8 € KC such that the estimate

0z0(s) < 0(s), scRT, (71)

holds for each ® € I" and 6+ (s) given by formula (64). Indeed, straightforward computations with
the use of inequality (68) show that the function

o MO MlCldAl/g 1/3
0(8) = M (exp {Iul/%WS -1 (72)
- 3
satisfy property (71), where My is defined in (70), d = min {1, — > 0.
Rk 0 . e )

Thus, we have shown that formulas (69) and (72) define the constant ¢y > 0 and function 6§ € K
for Theorem 5 independently of x* € I
Now the assertion of Theorem 6 follows from Theorem 1. O

In Section 6, we demonstrate the approach of Theorem 6 with several examples, where the system
of algebraic equations (40) will be solved numerically.

5. Auxiliary Results and Proofs

To prove Theorem 2, we rewrite the Volterra series (12) by using the first-order Lie brackets as
follows:

m t m 0 t t
;2% u) = 2%+ fo(2®) [ up(s)ds + L Mfi(xo) ui(s)ds [ w;(s)ds+

3 20BN [ [ s = wsh )} dvds + Roft), ¢ € (0.7,

1<j

where Ra(t) is the sum of the last two terms of formula (12).
We need two auxiliary lemmas from the papers (Zuyev, 2016) and (Zuyev, Grushkovskaya, &
Benner, 2016).

16
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Lemma 1: Let D C R™ be a closed convex domam and let x(t) € D, 0<t<T, be the solution of
system (1) corresponding to initial value z(0) = 2° € D and control u € C[0, 7]. If the vector fields

folx), fi(z), ..., fm(x) satisfy assumptions

H Ofi(x) 0% fij(x)
2

ox x

’SMl,'

‘ < MQ; 1= 07m7 .7: 17”7 (74)

in D with some positive constants My and M, then the remainder Ro(T) of the Volterra expan-
sion (73) satisfies the following estimate:

M 1
|Ra(r)ll < 57 {eMlUT —  ((MUT+1)* + 1)} +
1

(75)
My M? My(M? + My M,
2 03\/5{ (eMlUT _ ) 4 2M1U7' _ 1} 0( 1 + 2 0\/7) U37_3 + O(U4T4).
A 6
_ (0
Here My = max ||fi(”)ll, U =1 +0rgg<xTZ i (£)

Lemma 2: Let z(t) € D CR", 0 <t <, be a solution of system (37) with a control u € C[0, ],
and let ||fi(z') — fi(2")|| < My||z" — 2", My >0, forall 2',2" € D, i=1,2,....,m. Then

M,

2o CMIUt _ T
[z(t) — z(0)]| < Ml( 1), telo,7], (76)
where My = max || fi((0))[, U = max > [us(t)|

Proof of Theorem 2. By substituting controls (14) into formula (73) with 20 = 2% € D and
computing the integrals, we obtain

7_2 7_2
a(ria®u) =2 + 71 (fo(xa) + Uifi(xa)> + 5 Vao + o5 Var + Ra(7), (77)
i€

where the terms V5o and Vo are given by formulas (16) provided that Assumption 1 holds. For
given 2%,z € D and 7 > 0, we assume that the vector a = ((v;)ics,, (ai)ics, , (aij)(i,j)652)* eR"
satisfies the system of algebraic equations (15) and K € (Z \ {0})!%11+1%] satisfies Assumption 1.
Then formulas (15) and (77) imply that x(7; 2%, u) = 2“ + Ra(7), where z(t; %, u) is the solution
of system (1) with the control u = wu(t) of form (14). Thus, it suffices to prove that

[Ro(T)]| < &1 (78)
and

le(t;a®,u) — ol <&, te0,7]. (79)

17
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We estimate the sum of components |u;(t)| in formula (14) as follows:

Z lui(t)] < Z lvi| + Z la;| |sin <27TKt>‘ ( Z ]aij] < cos (2777_K”t>‘ +

1€50 €S, 1,J)€S>2

<Y ol + ) lal+ V2 Y ayl.

i€Sy €S (i,j)ESQ

o (254))

m
Hence, Ut = <1 + max Z |ul(t))> T< |1+ Z |vi| + Z las| + V2 Z laij| | 7= U, where
- 1 1€So 1€5, (4,5)€S2
U is given in (20). As the right-hand side of inequality (75) is stricly increasing with respect
to U € RT and Ut < U, inequality (78) follows from condition (18) because of Lemma 1 with
D = B.(z%). To show that inequality (79) holds, we apply a modification of estimate (76) for
system (1). Indeed, the assertion of Lemma 2 for system (1) can be formulated as follows:

M _
latsa®,u) 2% < TR0 1), v e o7, (80)

where U, My, and M; are defined in (17) and (20). Now inequality (79) follows from conditions (19)
and (80). O
In order to prove Theorem 4, we rewrite formula (12) by using the Lie brackets as follows:

\w

t T
z(t;a u) =z +ka x”) [ ug(s ds+ fzafj x // wj(T)u;i(s) — wi(T)uj(s))dsdr
= 0 Z<J 0
t T s

+§Zz (1fi. fi]. £i] (2° / / (wa(7) (s ()usp) = wils)us (p)) ) dpds dr-+G(0)+R(2).
000

1<j =1

(81)

The proof of this fact is presented in Appendix A together with the expression for G(t), and the
remainder R(t) is estimated by the following lemma.

Lemma 3: Let D C R"™ be a closed convex domain, and let x(t) € D, 0<t<r, be a solution of
system (37) corresponding to the initial value £(0) = 2° € D and control u € C[0,7]. Assume that
the vector fields fi(x),..., fm(x) satisfy conditions

O fik 1
‘ 02 (@H < My, 6||Z
al|=3

P fin(z)

o [
0x" - - Oxy

Hafi <Mz, 1<i<m,1<k<n, (89

oz (CU)H < My,

with some positive constants My, My, Ms, for all € D. Then the remainder of the Volterra
expansion (12) satisfies the estimate:

7 7 MU 3/2 7
ViMy(eMU — 1) | M2Ms(eMU —1)2  MoMiMM, (e - 1) (3n%/2 + 20, U)
[R@)| < = = + - +
U U2 12U

My (M2 + 2MoMs)
+ 6

}U4t4 if 0<Ut<U,

18
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(e @)+ -+ [um(®)1).

here My = (20)), U =
where Mo = max [|fi(z7)]]. e

Proof. Let us denote by RZ(NH)(:E) the remainder term for the N-th order Taylor expansion of
fi(x) at a point 2° € D. If f;(z) is of class CN*! in a convex domain D then R%VH)(JC) may be

represented in the Lagrange form of the remainder as follows:

vt 1 IO N arps ;
BU@ = 2 o A A Ay =y =0, 0 € Ban @),
la|=N+1 1

a=(ay,...,an), la| =a1 + ... + an.
(84)
To prove the assertion of Lemma 3, we use the integral representation of system (37) with initial
conditions x(0) = 2 and the Taylor expansion for f; (x)

uiw){fik(x% + o)

NE
—

ou(t) =+ Y [ o) fn(ofe))doaf +
0

r=x°

@
Il
—

Ofj(x)

. ) (fi(a")

r=x0°

N
Il
i

X
Y
NE
o\d
<
<S
—~
[V2)
~—
N\
Sh
8
o
S~—
+
|~ ~—
MS O\m
N3
IS
<
O
/N
S
—
&
vo
+
Q:Uﬁ
=
0
—~
V2)
=
N—
QL
Vo)
N—

IS8

)
\—/

+

+ RO @(p)dp) + R <w<s>>)

<
Il
—

o

0% fir(z)
% or?

—~
—
N

. (Z Uj(8)<fj(x°)+ ! (x(s)))ds) +R§§j)(x(v))}dv,

Jj=1

0 fir(x)
ox

is treated as a row vector. After several transformation, expression (85)

where the gradient
takes form (12) with

By estimating the absolute value of Ry(t) term by term in (86) with the use of (84), we get:
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M M. M3
[R(8)] < Ms| Ax(@)|PUL + =5 (| A2 (t) |PU22 + = | Ax()[U°+
(87)
MoMy M. MZM:
+ g AU + = A (1) PUPE,
_ 1 2 f
where My = — sup ilf—k(x)a . The Cauchy-Schwarz inequality implies that
$ED |a‘:2 81’1 A 8%‘77,”
M, < n;/ﬁMz (88)
The norm of Az(t) = x(t) — 2 is estimated by Lemma 2 as follows:
Mo ot
Ax(t)|| < — -1 t>0.
|Az@)] < 37 (e ), t>0 (89)
As the function 9(8) = ¢ — 1 is convex, it follows from (89) that
My <€M1(’7 - 1) _
Az(t)] < = Ut, 0<Ut<U. 90
A(O) <~y Ut 0<Uts (90)

Component-wise estimates (87) together with inequalities (88), (90), and U2 < UUt, 0 < Ut < U
imply estimate (83) for the Euclidean norm of R(t). O

Proof of Theorem 4. By substituting the control u = u(t) of form (39) into the Volterra series (81)
with 20 = 2% € D, we get:

m 2 a?.
a(ria®u) =2 + 7Y ful@a+ D Ui file)
k=1 (i.)€S2 *

7 o ajy 7 o
t16-2 > lfa £l il (= Vi 2 g a2t ) +R(7),

— K2 2
(i,j,l)653 2’L]l Kll]l

(91)

provided that Assumption 2 is satisfied (the explicit formula for € is in Appendix B). It is easy to
see that the system of algebraic equations (40) is equivalent to the following condition in terms of
representation (91):

x(r;2% u) = 2% + R(T).

Therefore, if the vectors a € R" and K € (Z\ {0})%:1+21%l satisfy the system of algebraic equa-
tions (40) and Assumption 2, then it remains to show that

M,
IR <er and T2 —1)<e tefo], (92)
1

m
because of Lemma 2 with D = B.(z®), where U = max g lu;(t)| < U/7, the constants M; are
sm
===
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given in formulas (41) and (44). To complete the proof, we conclude that conditions (92) follow
from Lemma 3 and inequalities (42), (43). O

6. Examples

6.1 Ball on the plane

Consider a unit ball rolling on the plane. As it was shown in (Li & Canny, 1990), the kinematic
equations take the following form:

T = uy f1(w) + vz fo(z), (93)

where = = (x1,x9,x3,24,25)%, fi(x) = (0,secx1,—sinx5,—cos:z5,tgx1)*, fa(z) = ( —
1,0,—cosw5,sinx5,0)*. Here (x1,72) € R? and (23,74) € R? define the Gaussian frames, and
r5 € (—7%,5) is the angle of contact. The controls u; and uy are related to components of the
angular velocity. By computing the first- and the second-order Lie brackets, we observe that

span{fl (X), fQ(X), [fl, fg](X), [[fl, fg], fl] (X), [[fl, fQ], fg] (X)} = R5,

for all # € R® such that z1 # 5 (mod 7). Thus, the (S, S3)-rank condition (Definition 3) is satisfied
with Sy = {(1,2)} and S5 = {(1,2,1),(1,2,2)} forallz € D, D = {x € R%| |z1| < 7/2}. Following
the approach of Section 4 for steering system (93) from =% € D to ¥ € D, we use controls of the

form (39):
2m Kot 2r Ko191t 2rKq121t 27 K199t
u1(t) = a1 + a2 cos Ukt +a121(1+sin 1ol )cos iaets +a122605%7
! (94)
Kyt 2w K101t 2w K100t 2w Kay99t
uz(t) = ag + a2 sin 12 + a9 Sinw—k(lmz(l—i-cos 1122 )sin T 2122 7
T T

with the coefficients a = (a1,a9,a12,a121,0122)* € R5 and parameters K =
(Klg,Kllgl,K2121,K1122,K2122)* S (Z \ {0})5 For any % € D and z“ € D such that ||$a — wa
is small enough, there exists a solution a € R® of the system of algebraic equations (40) with some
K € (Z\ {0})” satisfying Assumption 2 by Theorem 5.

As an example, let us fix 2% = (0,0, 367 369 %)*, v = (;—6, %,0,0,0)*, and 7 = 1. It is easy to
check that Assumption 2 is satisfied with

K2 =1, Knio1 =3, Koi21 =9, Kii22 =12, Koi22 = 19, (95)
and a numerical solution of the system of algebraic equations (40) with these parameters is
a] ~ 007, ao ~ —0.08, alp ~ —0.56, a1 ~ —7.7, a2 ~ —0.37. (96)

To illustrate that the above controls solve the local approximate steering problem (Problem 1), we
solve the Cauchy problem for system (93) numerically with the initial condition x(0) = z® and the
controls represented by (94), (95), (96) (see Fig. 2). The value of ||z(7) —2*| from Fig. 2, f) can be
used to evaluate the relative accuracy of our local steering algorithm: 7 = ||z(7) — z¥||/||lz® — 2¥|| =
0.027 < 1. Note that a theoretical upper bound for 7 is given by the r constant in (2) (Problem 1
formulation). This constant can be estimated from Theorem 4 as r = ¢(U)/||z% — 2*||, where
the computation of ¢(U) by formula (42) is based on the coefficients a of the control (94) and
the upper bounds of the derivatives of f;(x). Similarly, the maximal overshoot is estimated by
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Figure 2. a)—e): components z;(t) of the solution of system (93) with the initial condition xz(0) = z® and controls (94);
f): time-plot of ||z(t) — z*||

inequality (3): ||z(t) — x| < 6(||]z* — 2¥||) for all ¢ € [0, 7], where the right-hand side can be
estimated as 6(s) = 6, (s) by formula (64) from the proof of Theorem 5.

6.2 Rigid body with oscillators

Consider a control system
T1 = uy, Tg = Ug, T3 = :E%ul — $%U2, T € Rg, u € R2. (97)

These equations describe the motion of a planar rigid body with two oscillators (Yang, Krish-
naprasad, & Dayawansa, 1996; Carinena, Clemente-Gallardo, & Ramos, 2003). The vector fields
of system (97) are: fi(z) = (1,0,23)%, fa(z) = (0,1, —z)*, [f1, fo](z) = (0,0, —2(z1 + x2))%,
[[f1, f2], fi](x) = (0,0,2)*. As one can see, the first-order Lie bracket does not generate the re-
maining direction if 1 = —xz9. However, control system (97) satisfies the (Ss,.S3)-rank condition
(Definiton 3) with So=0 and S3={(1,2,1)}:

span{ f1(x), fo(x), [[fi, f;], fil (x) | (4, 4,1) € S3} = R3 forallz € D =R3.

In this section, we apply controls (39) to solve the approximate path-following problem for sys-
tem (97) from the point 2% = (1,0,0)* to 7 = (1,0,57)* along the helix v = {(cos s,sin s, s)* | s €
[0, 57]}. The conditions of Theorem 6 are satisfied, and we illustrate its assertion for 7 = 1 and a uni-
form partition of the curve v with N = 200, such that 2/ = ( cos(0.02573), sin(0.02575),0.02575)",
j = 0,200. For this purpose we construct the m-approximating control for ¢ € [0,200] in the sense
of Definition 1 and Theorem 1:

ur(t) = u®% (t) forte[0,1], up(t) =u® “(t—j+1) forte (j—1,7], j=2,200, (98)
where u® %’ (t) are defined by formula (39) with K121 = 2, Ka191 = 3, for all j € 1,200:

J=1g3 J—140
A A

Uy (t) = al + aly, cos 4mt(1 +sin6rt), uy ©(t) = al + al,, sin6rt, te0,1].

J j=1 J

_ j—1
1~ 21 5 Gy =I5 — Ty

Here a{, aé, a{21 satisfy algebraic equations (46), that is a{ =z , and a{12
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Figure 3. The trajectory of system (97) with controls (98) (left figure) and the helix v (right figure).

is a real solution of the following cubic equation:

j j—1 jog-12 5 =12 | g/ j—1 j—1 a{u ay 30% j—1 j—1
vy—ah =ajry  —agr] taja(ey —a )+ 2 35 (1 +a3)

. . . . 2 . . . 3
1 . . . J . . J J(5—-12 J 114’ 381a? J
n ga{a]z(a% —ad)+ a;_lZ (@l + al) (al + ay( ) i 191 a1 P i 191

6 407 2 192 1600 40m2”

Fig. 3 illustrates the nature of assertions of Theorems 1 and 6: the trajectory of system (97) with
controls (98) remains in some small e-neighborhood of the helix « for all ¢ € [0,T], and closely
approaches the target 27 at T' = 250.

6.3 Underwater vehicle

In this subsection, we illustrate the possibility of using local controllers of Section 3 for the control
design scheme described in Theorem 1. For this purpose, we consider the equations of motion for
an autonomous 3D underwater vehicle:

&= folx) + fi(x)uy + fo(z)us + f3(z)us, == (z1,...,26)* € RS u= (ur,us,u3)* €R> (99)
where x1, x9, 3 are the coordinates of the center of mass, and x4, x5, x¢ specify the Euler angles,

fO(x):(O>O>O7u0 COs 3:4tgx5, —Ug sinx4,u0 COS 4 S€C 1’5)*, f2(x) = (070>O> 17070)*7

fi(x) = (cos x5 cos xg, cos x5 sin xg, — sin 5,0, 0,0)*, f3(x)=(0,0,0, sin x4tg x5, cos x4, sin x4 sec z5)*.

Note that system (99) is a modification of the equations considered in (Nalamura & Savant, 1991)
for the case when the angular velocity component along the x3 axis is not controlled (up = const).
So, our controls are the translational velocity u; = v along the Ox; axis and two angular velocity
components: ug = w1 and uz = ws. It is easy to see that

Spa‘n{fl(x)7 fZ(x)a f3(CC), [f07 fl](x)v [fl) f3](.’1§')7 [f?) f3]($)} = R67
for all z€R® such that z5#% (mod ), so that the (Sp, S1,S2)-rank condition (Definition 2) holds

with So = {1,2,3}, S1 = {1}, S2 = {(1,3),(2,3)} for all z € D = {z € R®||x5| < Z}. We illustrate
the possibility of solving the path-following problem (Problem 2) for system (99) by using controls
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of the type (14):

u1(t):v1+alsin< K >+a13cos< mKi3 ),uQ(t):112+a23<:os< wKo3 )’

T T T

21 K3t 21 Kost
us(t) zvg—l—algsin( hiat )—l—aggsin( TR >,
T T

with the vector of coefficients a = (v1,v2,v3,a1,a13,a23)" € RS and parameters K =
(K1, K13, K23)" € (Z\ {0})°.

In particular, to steer system (99) with ug = 0.25 from the origin to the target point 27 =
(0,0,1,0,0,0)* along the segment v = {(0,0,23,0,0,0)* |z3 € [0,1]}, we construct the control
uy(t) as in Definition 1 and Theorem 1 for the partition of v with 27 = (0,0,5/4,0,0,0)*, j = 0, 4.
At each step j = 1,2, 3,4, we apply controls of the form (100) for (j — 1)7 <t < j7, 7 = 0.1, with
the following parameters:

(100)

Stepj=1: v =0,v2 = 0.087,v3 = 0.001,a; = 0,a13 ~ —17.724, as3 ~ 8.395;

Step 7 =2 v1 &~ 0.766, v2 ~ 0.072,v3 = —0.0003, a1 ~ 2.781,a13 ~ —17.336, as3 ~ 7.879;
Step j =3 v1 = 0.772,v2 =~ 0.077,v3 = 0, a1 ~ 4.923,a13 ~ —17.312, as3 ~ 7.924;

Stepj =4v; =0.771,v9 = 0.076,v3 = 0,a1 =~ 8.713, a13 =~ —17.313, ass =~ 7.923.

The above parameters are obtained by solving the system of algebraic equations (15) with z¢ =
2((j—1)7), 2% = 27, and the integer parameters being chosen as K1 = 3, K13 = 1, Ko3 = —2 (these
parameters clearly satisfy Assumption 1). We see in Fig. 4 that the controller proposed is able to
solve the approximate path-following problem for system (99) with the accuracy |z(T) — 27| <
€1 ~ 0.002 at the final time T" = 0.4.

x4 )
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= RV
— it ’
e
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x3(t)
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Figure 4. Components of the solution of system (99) with the control u = ur (¢): a) (z1(t), z2(t), z3(t)), b) (¢, z4(t)), ¢) (¢, 25(¢)),

d) (¢, z6(t))-

7. Conclusion

In this paper, we have proposed an explicit reduction of the motion planning problem to systems
of algebraic equations for classes of bracket generating systems of steps 2 and 3. To the best of our
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knowledge, no general results concerning the solvability of such algebraic systems of an arbitrary
dimension have been published so far. On the one hand, it has been already proved in (Liu,
1997) that any trajectory of the Lie bracket extension can be approximated by trajectories of the
original system with highly oscillatory inputs. On the other hand, we do not use any sequence
of trigonometric polynomials with unbounded amplitudes and frequencies here. It should be also
emphasised that our construction provides explicit formulas for controls and does not use any
specific changes of coordinates (e.g., canonical coordinates corresponding to the P. Hall basis).
Thus, our solvability result provides a novel contribution towards the justification of the use of
trigonometric controls for local and global steering problems. Note that the proofs of Theorems 3
and 5 are based on the degree theory, as the standard implicit function theorem is not applicable
(the nonlinear part of the corresponding vector function is not differentiable at a = 0).
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Appendix A. Representation of the Volterra series using the Lie brackets

Lemma 4: Formula (12) for the solution of system (37) with initial condition x|i—o = x° can be
rewritten in the form (81) with
af( ) / / 1 dfi(x)
G-2 Y 2 / wlids [uysasg Y (P pia)
2 < —0 6 £ Ox
1,7=1 =z 0 i,5,0=1
t t t dh(a
Xfl o x"/uz dS/Uj ds/ul d+ ZZ( l fl?f]]( ) (Al)
0 0 0 1<j l=1

o= xo/t“’ /t/T (uj(s)ui(p)—ui(s)u;(p))dpds.
0 00
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Proof. Indeed, straightforward computations show that

t T
$- 2uts // i = 13200 /uz /

INES 1 4,7=1 0
1 t T a t
+ 5 // ui(T)uj(p) — uj(T)u;(p))dpdr = 5 fl /uz /
4,j=1 00 2,j=1 0
t T
Sl fila / [ ws(yus(s) s (r)us(o) dp.
’L<] 00

Analogously, using the formula

t T

6 / / / wi(7)u; (s)uy (p)dpdsdr= / wi(s)ds [ u
0 0

0 0 0

\“
—
»
~—
U
»
O\H‘
S
—~
»
~—
3
»

_|_
O\w
—~
~—

U
»

S

X/t/ e ())deH/tul(s)ds/t/(ui(s)“j(p)—“j(S)ui(p))dsds
0 0 5 =

+3 0/
+///“l 7) (uj(s)ui(p)—ui(s)u;j(p))dpdsdr,
0 0 0

we transform the remaining part of (12) and obtain expression (81) with G(t) defined by (Al). O

ul(p)—ul(s)uj(p))dpdsd7+///uj(T)(ul(s)ui(p)—ui(s)ul(p))dpdsdT
00 0

R o\\]
o O\m
@
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Appendix B. Formulas for Q(a,z,7) and Q(a, x)

az g aj(sir)

Qa,z,7)= Zaf’( )fj { a;aj + Z

i’jzl (q T 652
Qgrs < ( 5]'7' 5jsK2qrs ) ( Oir 5isK2qrs ) >
+ a; + —a; +
(q,?",SZ)ESS m KQQTS K3qrs ’ K2qfrs K3q'rs
T = 0 (0fi(x 4 (o
5 2 (@) he) § e <2Kao)uo+w§qé)m>
i,j,lzl ( 652 T

2 a2
Gqr (1) Aqr (1) Agr  Qkp (1) Agrlkp (1)

(kzp)ESZ
(k,p)#(q,m)

T 2 agrs0s” (a) + ajy 08 (a) + > grstiip=05" (a)

(q,m,8)€S3 (k,p,2)€S3
(a,m9)7(k,p, 2)

1 Agr
+ X(W4;aww+wﬁwﬁw+wﬁmﬁ}
qr

(g,r)€S2
(k,p,z)ES3

(1)

2 .
where K345 = KQZQTS K3 ) are quadratic forms with respect to a;, and o5 are linear forms

1qrs7
with respect to a;, i = 1, m:

2
0'%2) (a) = aiajdlq + ajaldl-q — Qaialéjq, Ué )(a) = aiajdlr — ajaldir,
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U§2)<a) = a;a; ( 5lq + oy 4 ﬂ-(SZSKQQ'I‘S> +aja < 52'(1 70; . WdisK2qrs) _ 2aia15jq’

2 2 2
Klqrs K2q7“5 K3q7’5 Klqrs KQQTS K3q7’5 Klqrs

o\ (@) = ai(6;q014 + 36;201) + ar(8ig0jq + 36i2012) — 2a;(Siqbiq + 30ir01),
05 (a) = ai(8j:014 — 8jq0ur) + ar(8ir65q — S1g05r),

(1) . Kl%pdjr aiéjqdlk — aldiqéjk

aiélp — aldip) — ajéirdlp, 0'4(11)(@) =

oV (a) = 2 :
Klzp - KgT K/%p - Kgr
1 3
Ué%a) = 1K? (@i6jq01q + Wigdjq — 2a;6iq01q) + W(ai‘sjr‘slr + ;005 — 20501y
1grs 2qrs
5; K} . +5K3
9" (g5 S — 48— 2ATS 5. 6 8l — 20:0:.0
" 4K22qrs - K12qrs (al s * “ 18) 8K3qr‘s (al g8%ts + @10s J% (I] ' ZS)
36j5K22qu Qaq
- 01 + 18ir) — —2—(8ir61 + 615011,
K3qrs<K1qr82 _ 4K22q7~5)( iOlr l zr) K3qrs( irOls s lr)
(1) g 0jr Kogp
0g ' (a) = —5———— (a0 + a;d;x) + (a;ibpp + a16ip)
0 K12kpz - K12qrs ' ’ K2‘1T3(K22kpz - K22qrs) o *
n K2kpz 5jr(K3k;pz - K22qrs) (a'él
((Klkpz + K?kpz)2 - K22q7~3) ((Klkpz - K2kpz)2 - KQQQTS) Kqus B

82 Kogrs(3K3, .+ K3, — K3 5:. K
+al5ip) Iz 2(17"5( 1kpz 2kpz 2qrs) (aialr + Cll(sir) + 75N 2kpz (ai(slz + al(;iz)
K3kpz 2
% (Klqrs_Kqus)z_K?)kpz
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(1) 5er2kpz 6jTK2kPZ(KqT - K3kp2)
or ' (a) = ——— (a0 + a19ip) — (a;0
! K22kpz _Kgr o v ((Klkpz+K2kpz)2*Kgr)((Klkpz*K%pz)Q*Kgr) o
Kogp: 0irO1p + 0170;
5:.) — as PZ (5. § RYIY ZwTitp | b
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- K2kpZ(Kgr - K22kpz)
B 5szqukpz(3K12kpz + K22kpz - KST)
K3k‘pz ((Klkpz+K2kpZ)2_Kgr) ((KlkPZ_KZkPZ)Q_Kgr)
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M,y _ @i(8jq0 — dig0jk) + ar(Sjq0ik — digdj)
09 (a’) - KQ _ K2 :
1kpz qr
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The expression for (@, z) is as follows:

- = 0 7 i ~
Oa,x) = gi$)fj {a e ’Lﬂ‘ (@idjr — a;0ir)
qr

i,j:l q 'r GSZ
+ +
4 Z dl/gﬁ a; 5]7" + 6 Kqus . (~l i + 0i K2qrs
rs
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m ~ ~
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+ 3 5, (G )i S gamars 3 | =5 o @
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jagr " @)y L gl )y, dar - Jagrary'* 1y, -
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? TquT " (K, ;})2#%15;2) \/m
. ~ o~ ~ o~ + 2
n Slgn(aqrakpﬂaqrakp’l/? O_(l) (&))> + ( 1/3 8 KSqrs 2/3 3 4K3qrs
+ 7+ 4 117"5 qrs
W\/[m ( 7)653

4K5 K3, o AK, G| 1/2
~1/3~1/3 3 3qrs* >3k 1)/~ ~1/3 3k ‘a | (1)~
+ Z a’q'r(sa’k:pz 2 = O¢ (a’)> + ( Z akpz 7r5pz ( \;}Tqr 07 (a’)

(k,p,z)633 Q7T)ES2
(a,m,8)#(k,p,2) (k,p,2)€S3

N 3/2 (1)~ D - 1)~
+ |aqr|1/2K;T / aé )(a) + 81gn(aqr)\aqT|1/2\/Kq+raé )(a)> }, where K3J:1rs = (K;qm)2
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