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This paper is devoted to the motion planning problem for control-affine systems by using trigonometric
polynomials as control functions. The class of systems under consideration satisfies the controllability
rank condition with the Lie brackets up to the second order. The approach proposed here allows to
reduce a point-to-point control problem to solving a system of algebraic equations. The local solvability
of that system is proved, and formulas for the parameters of control functions are presented. Our local
and global control design schemes are illustrated by several examples.
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1. Introduction

The motion planning problem for nonlinear systems has become an important research area over
the last three decades due to its significant geometric features and applications in robotics. In spite
of the number of studies, it still remains a challenging problem to construct control laws for general
classes of systems, and the development of new approaches attracts considerable interest from both
theoretical and applied points of view.

Let us briefly overview some related results in this area with a special emphasis on nonholo-
nomic systems. R. W. Brockett proposed an optimal control law that steers first-order Lie bracket
canonical systems (Brockett, 1981). The construction of such optimal controls is also shown in the
book (Bloch, 2003). In the paper (Murray & Sastry, 1990), an open-loop algorithm for steering
first- and higher-order chained form systems using sinusoidal inputs has been proposed. A related
method has been described in (Sussmann & Liu, 1991) for a more general class of driftless sys-
tems. In the paper (Liu, 1997), a family of highly oscillatory high amplitude inputs has been used
for solving the problem of approximate tracking for a driftless control system. Highly oscillatory
sinusoids are also applied in (Gurvits & Li, 1993) to compute time-periodic solutions for the non-
holonomic motion planning problem with obstacle avoidance. A method for steering chained form
systems by piecewise-constant inputs is presented in (Lafferriere & Sussmann, 1991). Such type of
controllers are used for the case of nilpotent systems as well as for the approximate steering prob-
lem of general nonholonomic systems. In the paper (Chumachenko & Zuyev, 2009), the steering
problem is solved for several examples of nonholonomic systems with piecewise-constant controls.
Sinusoidal and polynomial inputs that steer a three-input system in two-chained form are con-
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structed in (Bushnell, Tilbury, & Sastry, 1995). Note that a family of trigonometric polynomials is
applied for solving the steering problem for a class of distributed parameter systems with elastic
components in the book (Zuyev, 2015). A globally convergent steering algorithm, based on nilpotent
approximations, is proposed in the paper (Chitour, Jean, & Long, 2013) and developed in the mono-
graph (Jean, 2014). The concept of interpolation enthropy is introduced in the paper (Gauthier,
Jakubczyk, & Zakalyukin, 2010) to measure the asymptotics of the minimum length of admissible
curves connecting the endpoints for the motion planning problem. In particular, it is shown that
the entropy of a motion planning problem is equivalent to that of its nilpotent approximation.
Estimates of the enthropy and the metric complexity are obtained for generic motion planning
problems by constructing their nilpotent approximations in (Boizot & Gauthier, 2013). A Lie alge-
braic method for motion planning exploiting the generalized Campbell–Baker–Hausdorff–Dynkin
formula is described in the paper (Duleba, Khefifi, & Karcz-Duleba, 2012).

To the best of our knowledge, only partial results are available for the control design of control-
affine systems with drift. In (Godhavn, Balluchi, Crawford, & Sastry, 1999), motion planning
algorithms with band-bang controls are presented for a class of Lagrangian systems with a cyclic
coordinate. Another time-state controller for such type of systems is developed in (Kiyota & Sam-
peio, 1998). In the paper (Bloch & Reyhanoglu, 1990), open-loop controls are obtained for a small
time locally controllable (STLC) system describing the motion of a knife edge on a flat surface.
The paper (Matsuno & Saito, 2000) is devoted to the study of a class of control-affine systems
with three states and two inputs. To produce a control law, the authors use a special chained-
form transformation. The steering problem is considered in the paper (Basto-Gonçalves, 1999)
for control-affine systems under second-order STLC conditions. A discontinuous control law is
developed in (ur Rehman, 2005) to steer a class of control-affine systems with zero drift at the
origin. In the papers (Michalska & Torres-Torriti, 2003), an approach for solving the stabiliza-
tion problem by a time-varying feedback law is proposed with the use of sampling strategy and
nilpotent approximations of control-affine systems. The time-varying feedback law is constructed
there by a concatenation of piecewise constant controllers. The parameters of such piecewise con-
stant controllers are obtained from solving the “satisficing problem”. An important step in this
control design scheme requires the knowledge of solutions to the control-affine system with these
parameters. Sufficient Lie algebraic conditions for the stabilizability of control-affine systems have
been proposed in (Tsinias & Theodosis, 2015) by using sampled-data feedback laws and infinite
partitions of the time interval.

In this paper, we consider a class of control-affine systems whose vector fields together with their
first- and second-order Lie brackets satisfy Hörmander’s condition. To solve a point-to-point con-
trol problem, we use a Volterra series development for solutions of the system with time-varying
trigonometric inputs. The main contribution of this work concerns the construction of steering con-
trols in Sections 3 and 4. This construction allows to compute the parameters of control functions
in terms of solutions to auxiliary algebraic equations (Theorems 2 and 4). To the best of our knowl-
edge, no solvability results have been available for this class of problems. Local solvability results
(Theorems 3 and 5) are proved by exploiting the degree theory, and solutions to the approximate
path-following problem are presented in Theorems 1 and 6. In Section 6, the results obtained are
applied to solving the motion planning problem for several mechanical examples. Some technical
details are presented in the Appendices.

2. Problem Statement and Approximation Theorem

Consider a control-affine system

ẋ = f0(x) +

m∑
i=1

uifi(x), x ∈ D ⊆ Rn, m < n, (1)
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where x = (x1, . . . , xn)∗ is the state vector, u = (u1, . . . , um)∗ ∈ Rm is the control, and “∗” denotes
the transpose. All vector fields fi : D → Rn are assumed to be of class C3 in a domain D.

For x0 ∈ D and an admissible control u : [0, τ ]→ Rm, we denote by x(t;x0, u) ∈ D the solution
of system (1) with initial data x|t=0 = x0 and control u = u(t), 0 ≤ t ≤ τ . We also use the notation
Bε(x) = {y ∈ Rn | ‖x− y‖ < ε} for an ε-neighborhood of a point x ∈ Rn, ρ(x, γ) = infy∈γ ‖x− y‖,
and Bε(γ) = ∪y∈γBε(y) for an ε-neighborhood of a set γ ⊆ Rn. Here ‖ · ‖ is the Euclidean norm on
Rn. To study the local steering problem, we introduce the class K whose elements are continuous
strictly increasing functions θ : R+ → R+ such that θ(0) = 0, R+ = [0,+∞).

Problem 1. (Local Approximate Steering Problem) For a given xα ∈ D, ε0 > 0, and
xω ∈ Bε0(xα) ⊂ D, the goal is to construct a smooth control ux

αxω(t) ∈ Rm, defined on 0 ≤ t ≤
τ = τ(xα, xω), such that the following conditions hold

‖x(τ ;xα, ux
αxω)− xω‖ ≤ r‖xα − xω‖, (2)

‖x(t;xα, ux
αxω)− xα‖ ≤ θ (‖xα − xω‖) for all t ∈ [0, τ ], (3)

with a constant r < 1 and a function θ ∈ K.
It is clear that if system (1) is locally controllable at a point xα ∈ D then, for small enough

ε0 > 0 and any xω ∈ Bε0(x
α), there exists a control ux

αxω ∈ L∞[0, τ ] such that condition (2)
holds with r = 0. However, in this paper we treat the construction of controllers in Problem 1 as
an algorithm that computes a smooth function ux

αxω(t) in terms of solutions to certain algebraic
equations whose coefficients depend on the vector fields f0(x), f1(x), ..., fm(x), and, possibly, their
Lie brackets at a point x = xα. We will also extend such an algorithm in order to follow a given
curve γ in the state space D.

Problem 2. (Approximate Path-Following Problem) For a given curve γ ⊂ D with the
endpoints x0 and xT , and a given ε > 0, the goal is to construct a piecewise-smooth control u :
[0, T ]→ Rm such that ‖x(T ;x0, u)− xT ‖ < ε and ρ(x(t;x0, u), γ) < ε for all t ∈ [0, T ].

For solving this problem, we use a partition π of γ with a finite number of points xj ∈ γ,
j = 0, 1, ..., N : π : x0 ≺ x1 ≺ ... ≺ xN = xT , where “≺” denotes the natural order on γ. We
assume for the moment that there are η > 0 and ε0 > 0 such that Problem 1 is solvable for each
xα ∈ Bη(γ) and xω ∈ Bε0(xα) by a family of controls {uxαxω(·)}, and that the mesh of π, defined as

∆(π) = max
1≤j≤N

‖xj − xj−1‖, is small enough. Under these assumptions, we introduce the following

definition.

Definition 1: A π-approximating control is the function uπ : [0, T ]→ Rm defined as follows:

uπ(t) = ux
0x1

(t) for t ∈ [t0, t1], t0 = 0, t1 = τ(x0, x1),

uπ(t) = ux
j
τx
j+1

(t− tj) for t ∈ (tj , tj+1], tj+1 = tj + τ(xjτ , x
j+1), j = 1, 2, ..., N − 1,

where the family of controls ux
j
τx
j+1

(t) (0 ≤ t ≤ τ(xjτ , xj+1)) solves Problem 1, T = tN , x0
τ = x0,

and xj+1
τ = x(τ(xjτ , xj+1);xjτ , ux

j
τx
j+1

) for j = 0, 1, ..., N − 1 (see Fig. 1).

As we will show in the proof of Theorem 1, the above construction is well-defined if ∆(π) is small
enough.

Theorem 1: Let γ ⊂ D be a curve with the endpoints x0 and xT , and let positive numbers η,
ε0 be such that Problem 1 is solvable for each xα ∈ Bη(γ) ⊂ D and xω ∈ Bε0(x

α) by a family
of controls {uxαxω(·)}. Assume, moreover, that the constant r ∈ (0, 1) and the function θ ∈ K in
formulas (2), (3) may be chosen independently of xα ∈ Bη(γ).

Then, for any ε > ε1 > 0, there exists a ∆̄ = ∆̄(ε, ε1) > 0 such that, for any partition
π : x0 ≺ x1 ≺ ... ≺ xN = xT of γ with ∆(π) < ∆̄, the corresponding π-approximating control

3
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Figure 1. Approximate path-following trajectory x(t) = x(t;x0, uπ).

uπ(t) is well-defined on t ∈ [0, T ], and

‖x(tj ;x
0, uπ)− xj‖ < ε1, j = 0, 1, ..., N, (4)

ρ(x(t;x0, uπ), γ) < ε, t ∈ [0, T ], (5)

where tj and T are introduced in Definition 1.

Proof. Without loss of generality, we assume that

ε1 < min{ε0, η}, θ(ε1) < ε− ε1, (6)

otherwise we take a smaller ε1 such that conditions (6) hold. As the continuous function θ ∈ K is
strictly increasing on R+ and θ(0) = 0, then the inverse function θ−1(s) is well-defined on some
semi-interval s ∈ [0, ε̄), ε̄ ≤ +∞. We choose the following value for ∆̄ = ∆̄(ε, ε1) > 0:

∆̄ =

{
min

{(
1
r − 1

)
ε1, ε0 − ε1

}
, if ε− ε1 ≥ ε̄,

min
{(

1
r − 1

)
ε1, ε0 − ε1, θ

−1(ε− ε1)− ε1

}
, if ε− ε1 < ε̄.

(7)

Let π : x0 ≺ x1 ≺ ... ≺ xN = xT be a partition of γ such that ∆(π) < ∆̄. We prove by induction
that the π-approximating control uπ(t), introduced in Definition 1, is well-defined. It follows from
formula (7) that ‖x0 − x1‖ < ∆̄ < ε0, and thus the control uπ(t) = ux

0x1

(t) is well-defined for
t ∈ [0, t1], t1 = τ(x0, x1). We denote x1

τ = x(t1;x0, ux
0x1

) and observe that

‖x1
τ − x1‖ ≤ r∆(π) < r∆̄ ≤ (1− r)ε1 < ε1 (8)

because of inequality (2) and formula (7). Assume that the control uπ(t) has been already defined

for 0 ≤ t ≤ tj , and that xjτ = x(tj ;x
0, uπ) ∈ Bε1(xj) for some j ∈ {1, 2, ..., N −1}. Then the control

ũ(t) = ux
j
τx
j+1

(t) is well-defined for 0 ≤ t ≤ τ(xjτ , xj+1) as ε1 < η and

‖xjτ − xj+1‖ ≤ ‖xjτ − xj‖+ ‖xj − xj+1‖ < ε1 + ∆̄ ≤ ε0. (9)

Now we extend uπ(t) to the segment 0 ≤ t ≤ tj+1 = tj + τ(xjτ , xj+1) by assuming uπ(t) = ũ(t− tj)
for t ∈ (tj , tj+1]. Then we estimate the distance between xj+1

τ = x(tj+1;x0, uπ) and xj+1 by using
inequalities (2), (9) and formula (7):

‖xj+1
τ − xj+1‖ ≤ r‖xjτ − xj+1‖ < r

(
ε1 + ∆̄

)
≤ ε1. (10)
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Thus, by applying the above process for j = 1, 2, ..., N − 1, we construct the control uπ(t) for
all t ∈ [0, T ], T = tN . Note that the corresponding solution x(t) = x(t;x0, uπ) of system (1) is

well-defined on t ∈ [0, T ] as x(t) = x(t− tj ;xjτ , ux
j
τx
j+1

) for t ∈ [tj , tj+1], and inequality (65) follows
from estimates (8), (10).

To complete the proof, we consider an arbitrary t ∈ [tj , tj+1] (0 ≤ j ≤ N − 1), and use the
triangle inequality together with inequalities (3), (65), (9):

ρ(x(t), γ) ≤ ‖x(t)− xj‖ ≤ ‖x(t)− xjτ‖+ ‖xjτ − xj‖ < θ(‖xjτ − xj+1‖) + ε1 < θ(ε1 + ∆̄) + ε1.

Thus, to prove that ρ(x(t), γ) < ε, it suffices to show that

θ(ε1 + ∆̄) ≤ ε− ε1. (11)

If ε̄ = sups∈R+ θ(s) ≤ ε − ε1 then inequality (11) is satisfied with any ∆̄ > 0. Otherwise, as the
function θ ∈ K is strictly increasing on R+, inequality (11) is equivalent to ∆̄ ≤ θ−1(ε−ε1)−ε1. The
above inequality is satisfied, provided that conditions (6) hold and ∆̄ > 0 is given by formula (7).
As 0 ≤ j ≤ N − 1 and t ∈ [tj , tj+1] may be taken arbitrarily, we have proved that ρ(x(t), γ) < ε
for all t ∈ [0, T ].

Remark 1: The proof of Theorem 1 remains valid for general systems of the form ẋ = f(x, u),
x ∈ D, u ∈ U , as the main idea is just based on the group property: the translation of a trajectory
is a trajectory for time-invariant control systems.

As we see, Theorem 1 justifies the possibility of reducing the approximate steering problem to
successive concatenations of local controllers. Such local controllers will be constructed in this paper
by exploiting the representation of solutions of system (1) by the Volterra series. Namely, if u(t)
(0 ≤ t ≤ τ) is an admissible control for system (1), then the corresponding solution x(t;x0, u) may
be approximated by the Volterra series as follows (Nijmeijer & van der Schaft, 1990; Lamnabhi-
Lagarrigue, 1996):

x(t;x0, u)=x0+

m∑
i=0

fi(x
0)

t∫
0

ui(s)ds+

m∑
i,j=0

∂fi(x)

∂x
fj(x)

∣∣∣∣
x=x0

t∫
0

s∫
0

ui(s)uj(p) dp ds

+

m∑
i,j,l=0

∂

∂x

(∂fi(x)

∂x
fj(x)

)
fl(x)

∣∣∣
x=x0

t∫
0

v∫
0

s∫
0

ui(v)uj(s)ul(p) dp ds dv +R(t;x0, u), t ∈ [0, τ ],

(12)

where we introduce an artificial control u0 ≡ 1 for convenience of notation, ∂fi(x)
∂x is the Jacobian

matrix, and R(t;x0, u) is the remainder.
In Sections 3 and 4, we will present solutions to the local steering problem within the class of

trigonometric polynomials as control inputs. Then we will show how such controls can be used for
solving the path-following problem in Section 4.

3. Controllability Conditions with the First-Order Lie Brackets

For the local steering problem, our goal is to propose a control algorithm that steers system (1) from
a given initial point xα ∈ D to a small neighborhood of a target point xω ∈ D at some time τ > 0.
In order to solve this problem explicitly, we assume that there are sets of indices S0 ⊆ {1, 2, ...,m},
S1 ⊆ {1, 2, ...,m}, and S2 ⊆ {1, 2, ...,m}2 such that |S0|+|S1|+|S2| = n. Without loss of generality,
we assume that the elements of S2 are ordered such that i < j for each pair (i, j) ∈ S2.

5
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Definition 2: Control system (1) satisfies the (S0, S1, S2)-rank condition at a point x ∈ D if

span {fi(x), [f0, fj ](x), [fk, fl](x) | i ∈ S0, j ∈ S1, (k, l) ∈ S2} = Rn. (13)

Here, and in the sequel, [fi, fj ](x) =
∂fj(x)

∂x
fi(x)− ∂fi(x)

∂x
fj(x) denotes the Lie bracket of vector

fields fi(x) and fj(x).
Note that if system (1) satisfies the (S0, S1, S2)-rank condition at a point xα ∈ D and f0(xα) = 0,

then system (1) is small time locally controllable (STLC) at xα due to Proposition 7.4 of (Sussmann,
1987).

We consider the following family of controls:

uk(t) =
∑
i∈S0

δkivi +
∑
i∈S1

δkiai sin

(
2πKit

τ

)
+

∑
(i,j)∈S2

aij

{
δki cos

(
2πKijt

τ

)
+ δkj sin

(
2πKijt

τ

)}
,

(14)
where k = 1, 2, ...,m, vi, ai, aij are real coefficients, Ki and Kij are nonzero integers, and δki is the
Kronecker delta. For given xα, xω ∈ D and τ > 0, we will define the vector of coefficients

a =
(
(vi)i∈S0

, (ai)i∈S1
, (aij)(i,j)∈S2

)∗ ∈ Rn

and parameters K =
(
(Ki)i∈S1

, (Kij)(i,j)∈S2

)∗ ∈ (Z \ {0})|S1|+|S2| for formula (14) by using the
following system of algebraic equations

τ

(
f0(xα) +

∑
i∈S0

vifi(x
α)

)
+
τ2

2
V20 +

τ2

2π
V21 = xω − xα (15)

with

V20 =
∂f0(xα)

∂x
f0(xα) +

∑
i∈S0

vi

(
∂f0(xα)

∂x
fi(x

α) +
∂fi(x

α)

∂x
f0(xα)

)
+

∑
(i,j)∈S0

2

vivj
∂fj(x

α)

∂x
fi(x

α),

V21 =
∑

(i,j)∈S1×S0

vjai
Ki

[fi, fj ](x
α)−

∑
i∈S1

ai
Ki

[f0, fi](x
α)−

∑
(i,j)∈S2

aij
Kij

[f0, fj ](x
α)+

+
∑

(i,j,k)∈S2×S0

vkaij
Kij

[fj , fk](x
α) +

1

2

∑
(i,j)∈S2

a2
ij

Kij
[fi, fj ](x

α),

(16)

where ∂fi(xα)
∂x stands for the Jacobian matrix ∂fi(x)

∂x evaluated at x = xα.
To formulate the basic result concerning the local steering problem, we need a non-resonance

assumption concerning integer parameters Kl and Kij .

Assumption 1: For each l, q ∈ S1 and (i1, j1) ∈ S2, (i2, j2) ∈ S2 such that l 6= q and (i1, j1) 6=
(i2, j2), the following inequalities hold: |Kl| 6= |Kq| 6= |Ki1j1 | 6= |Ki2j2 |.

Theorem 2: Assume that, for xα, xω ∈ D and positive numbers τ , ε, ε1, the vectors a ∈ Rn and
K ∈ (Z \ {0})|S1|+|S2| satisfy the system of algebraic equations (15) and Assumption 1, and that
the following conditions hold:∥∥∥∥∂fi(x)

∂x

∥∥∥∥ ≤M1,

∥∥∥∥∂2fij(x)

∂2x

∥∥∥∥ ≤M2, for all x ∈ B̄ε(xα) ⊂ D, i = 0,m, j = 1, n, (17)

6
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M0

M1

{
eM1Ū − 1

2

(
(M1Ū + 1)2 + 1

)}
+ M2M2

0

√
n

4M3
1

{(
eM1Ū − 2

)2
+ 2M1Ū − 1

}
≤ ε1, (18)

Ū ≤ 1
M1

ln
(
M1ε
M0

+ 1
)
, (19)

where

Ū =

1 +
∑
i∈S0

|vi|+
∑
i∈S1

|ai|+
√

2
∑

(i,j)∈S2

|aij |

 τ, M0 = max
0≤i≤m

‖fi(xα)‖. (20)

Then ‖x(τ ;xα, u)− xω‖ ≤ ε1 and ‖x(t;xα, u)− xα‖ ≤ ε for all t ∈ [0, τ ], where the control u(t)
(0 ≤ t ≤ τ) is given by formula (14).

Here B̄ε(x
α) stands for the closure of Bε(x

α), and ∂2fij(x)
∂2x is the Hessian matrix of the j-th

component of fi(x). The proof of Theorem 2 is given in Section 5.

Remark 2: By using the Taylor expansion, we conclude that condition (18) is equivalent to
M0(M2

1 +M2M0
√
n)

6
Ū3 +O(Ū4) < ε1, for small values of Ū given by formula (20).

To study the solvability of algebraic equations (15), we introduce new variables

wi = τvi, ãi = − τ2ai
2πKi

, ãij =
τ2a2

ij

4πKij
, κij =

√
|Kij |, (21)

and denote column vectors w = (wi)i∈S0
∈ Rn0 , ã =

(
(ãk)k∈S1

(ãij)(i,j)∈S2

)
∈ Rn1 , ξ =

(
w
ã

)
∈ Rn,

n0 = |S0|, n1 = |S1|+ |S2|. As each κij is the square root of a positive integer in (21), we will use

the notation κij ∈ N1/2, where N1/2 =

∞⋃
k=1

{
√
k}. We also introduce the n× n-matrix

A(xα) =
(
(fi)i∈S0

, [f0, fj ]j∈S1
, [fk, fl](k,l)∈S2

)
, (22)

whose columns are formed by the vector fields from the rank condition (13) evaluated at x = xα.
Then we exploit formulas (77) and (21) to rewrite algebraic equations (15) in the following form:

A(xα)ξ = xω − xα − τf0 −
τ2

2

∂f0

∂x
f0 −

τ

2

∑
i∈S0

wi

(
∂f0

∂x
fi +

∂fi
∂x

f0

)
− 1

2

∑
(i,j)∈S0

2

wiwj
∂fj
∂x

fi

+
1

τ

∑
(i,j)∈S1×S0

wj ãi[fi, fj ] +
τ√
π

∑
(i,j)∈S2

√
|ãij |
κij

[f0, fj ]−
1√
π

∑
(i,j,k)∈S2×S0

wk
√
|ãij |

κij
[fj , fk],

(23)

where all fi(x), ∂fi(x)
∂x , and [fi, fj ](x) are evaluated at x = xα. If ξ =

(
w
ã

)
∈ Rn is a solution of

algebraic equation (23) with some κij > 0, then formulas (21) imply that

vi =
wi
τ
, ai = −2πKiãi

τ2
, aij =

2κij
√
π|ãij |
τ

sign ãij , Kij = κ2
ij sign ãij

satisfy equations (15).

7
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We will prove the following local solvability result for system (23).

Theorem 3: Let the (S1, S2, S3)-rank condition (13) be satisfied at a point xα ∈ D, and let

‖A−1(xα)‖2 · ‖f0(xα)‖ ·

 ∑
(i,j)∈S1×S0

‖[fi, fj ](xα)‖2
1/2

<
1

2
. (24)

Then, for any small enough ε0 > 0 and any xω ∈ Bε0(xα), the system of algebraic equations (23)
has a solution ξ ∈ Rn with some τ = O(ε0) and κij ∈ N1/2, (i, j) ∈ S2 such that ‖ξ‖ = O(ε0) and

κij 6= κi′j′ for each (i, j) 6= (i′, j′) ∈ S2.

Proof. If the (S1, S2, S3)-rank condition (13) is satisfied, then the matrix A(xα) given by (22) is
non-degenerate, and

‖A(xα)ξ‖ ≥ ‖ξ‖
‖A−1(xα)‖

≥ c(‖w‖+ ‖ã‖), c =

√
2

2‖A−1(xα)‖
, for all ξ =

(
w
ã

)
∈ Rn. (25)

In order to prove the solvability of equations (23), we show that there exist positive numbers τ ,
ε0, κ̄, εw, εa such that

c(‖w‖+‖ã‖) > ε0+τk0+τ2k1+τk2‖w‖+k3‖w‖2+
k5

τ
‖ã‖·‖w‖+(τk4+k6‖w‖)

√
‖ã‖
κ̄

for all ξ ∈ ∂W,
(26)

where W = {ξ ∈ Rn | ‖w‖ < εw, ‖ã‖ < εa},

k0 = ‖f0(xα)‖, k1 =
1

2

∥∥∥∥∂f0(xα)

∂x
f0(xα)

∥∥∥∥ , k2 =
1

2

(∑
i∈S0

∥∥∥∥∂f0(xα)

∂x
fi(x

α) +
∂fi(x

α)

∂x
f0(xα)

∥∥∥∥2
)1/2

,

k3 =
1

2

 ∑
(i,j)∈S0

2

∥∥∥∥∂fj(xα)

∂x
fi(x

α)

∥∥∥∥2
1/2

, k4 =
|S2|1/4√

π

 ∑
(i,j)∈S2

‖[f0, fj ](x
α)‖2

1/2

,

k5 =

 ∑
(i,j)∈S1×S0

‖[fi, fj ](xα)‖2
1/2

, k6 =
|S2|1/4√

π

 ∑
(i,j,k)∈S2×S0

‖[fj , fk](xα)‖2
1/2

.

Let us first consider the limiting case κ̄ →∞. Then inequality (26) takes the form

gτ (‖ã‖, ‖w‖) > ε0 + τk0 + τ2k1, (27)

with gτ (p, q) = (c− τk2)q+ cp−k3q
2− k5

τ
pq. To show that inequality (27) holds for all ξ =

(
w
ã

)
∈

∂W , it suffices to find positive numbers τ , ε0, εw, εa such that

inf
ξ∈∂W

gτ (‖ã‖, ‖w‖) = inf
(p,q)∈lp∪lq

gτ (p, q) > ε0 + τk0 + τ2k1, (28)

where lp : p ∈ [0, εa], q = εw, lq : p = εa, q ∈ [0, εw].

8
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We see that gτ (p, q) is increasing along lp and lq if

∂gτ (p, εw)

∂p
= c− k5εw

τ
≥ 0 and

∂gτ (εa, q)

∂q
= c− τk2 −

k5

τ
εa − 2k3q ≥ 0 for q ∈ [0, εw]. (29)

If these conditions are satisfied, then formula (28) is reduced to

inf
(p,q)∈lp∪lq

gτ (p, q) = min {gτ (0, εw), gτ (εa, 0)} = min{(c−τk2)εw−k3ε
2
w, cεa} > ε0+τk0+τ2k1. (30)

In particular, conditions (29) hold for

εw =
c

k5
τ, εa =

τ

k5

(
c− k2k5 + 2k3c

k5
τ

)
. (31)

With this choice of εa and εw, the inequalities (c − τk2)εw − k3ε
2
w > ε0 + τk0 + τ2k1 and cεa >

ε0 + τk0 + τ2k1 from formula (30) will be satisfied if

d :=
c2

k5
− k0 > 0 (32)

and

τ − γ1τ
2 >

ε0
d
, τ − γ2τ

2 >
ε0
d
, (33)

where γ1 =
k1k

2
5 + c(k2k5 + k3c)

k2
5d

, γ2 = γ1 +
k3c

2

k2
5d
. Note that condition (24) implies that d > 0 in

formula (32). To satisfy conditions (33), we observe that τ − γτ2 >
τ

2
for τ ∈

(
0,

1

2γ

)
, γ > 0.

This inequality implies that both conditions in (33) are satisfied for positive γ1 ≤ γ2 if

ε0 <
1

2γ2
and

2ε0
d
≤ τ ≤ 1

2γ2
. (34)

We note also that εa and εw are positive in formulas (31) if and only if

0 < τ <
ck5

k2k5 + 2k3c
. (35)

Thus, by putting together the inequalities in (34) and (35), we conclude that, for any positive ε0

such that ε0 < min

{
1

2γ2
,
d

4γ2
,

dck5

2(k2k5 + 2k3c)

}
, inequality (28) holds with τ =

2ε0
d

and positive

numbers εa, εw given by formulas (31). It means also that property (26) is satisfied provided that

κ̄ >

√
εa(k4τ + k6εw)

δ
, δ = min{(c− τk2)εw − k3ε

2
w, cεa} − ε0 − τk0 − τ2k1 > 0. (36)

Then we choose the parameters κij ≥ κ̄ such that κij ∈ N1/2 for each (i, j) ∈ S2 and κij 6=
κi′j′ whenever (i, j) 6= (i′, j′).

Under our choice of parameters ε0, τ , εa, εw, κij , property (26) implies that ‖A(xα)ξ‖ >
Φxω(ξ), for each ξ ∈ ∂W, for each xω ∈ Bε0(x

α), where Φxω(ξ) denotes the right-hand side of

9
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equation (23). Thus, the vector fields A(xα)ξ and Ψ(ξ) = A(xα)ξ −Φxω(ξ) are homotopic on ∂W ,
so the rotation of Ψ(ξ) on ∂W is equal to sign |A(xα)| 6= 0 (Krasnosel’skij & Zabrejko, 1984). Then
the principle of nonzero rotation implies that there exists a ξ ∈ W such that Ψ(ξ) = 0 (Zabrejko,
1997, Theorem 1), which completes the proof.

4. Second-Order Rank Condition: Nonholonomic Systems

In this section, we consider a driftless control system

ẋ =

m∑
k=1

ukfk(x), x ∈ D ⊆ Rn, m < n. (37)

Although the solvability of motion planning problems for nonholonomic systems has been already
established under rather general controllability assumptions (Liu, 1997; Jean, 2014), our aim is to
propose an explicit control design scheme and perform all necessary computations analytically. For
this purpose we restrict our analysis to a class of bracket generating systems of step 3.

Let S2 ⊆ {1, 2, ...,m}2 and S3 ⊆ {1, 2, ...,m}3 be subsets of indices such that |S2|+ |S3| = n−m.
Without loss of generality, we assume that the elements of sets S2 and S3 are ordered as j1<j2 for
all (j1, j2)∈S2, and l2<l3 whenever (l1, l2, l3)∈S3.

Definition 3: Control system (37) satisfies the (S2, S3)-rank condition at a point x ∈ D if

span {fi(x), [fj1 , fj2 ](x), [[fl1 , fl2 ], fl3 ] (x) | i = 1, 2, ...,m, (j1, j2) ∈ S2, (l1, l2, l3) ∈ S3} = Rn. (38)

In order to solve Problem 1, we apply the following family of control functions:

uk(t) = ak+
∑

(i,j)∈S2

aij

(
δki cos

2πKijt

τ
+δkj sin

2πKijt

τ

)
+

∑
(i,j,l)∈S3

aijl

(
δki cos

2πK1ijlt

τ
+δkj sin

2πK2ijlt

τ
+δklcos

2πK1ijlt

τ
sin

2πK2ijlt

τ

)
,

k = 1, 2, ...,m, t ∈ [0, τ ],

(39)

where ak, aij , aijl are real coefficients, Kij , K1ijl, K2ijl are nonzero integer parameters. To define

the vector of coefficients a=
(
ak|k∈{1,...,m} , aij |(i,j)∈S2

, aijl|(i,j,l)∈S3

)∗
∈Rn, and parameters K =(

Kij |(i,j)∈S2
, K1ijl,K2ijl|(i,j,l)∈S3

)∗
∈ (Z\{0})|S2|+2|S3| for formula (39), we introduce the following

system of algebraic equations

τ

m∑
k=1

fk(x
α)ak +

τ2

4π

∑
(i,j)∈S2

[fi, fj ](x
α)
a2
ij

Kij
+

τ3

16π2

∑
(i,j,l)∈S3

[[fi, fj ], fl] (xα)
a3
ijl

K2
2ijl −K2

1ijl

+
τ2

2
Ω(a, xα, τ) = xω − xα,

(40)

where the expression for Ω is given in Appendix B. We also need an extra non-resonance assumption
on the frequencies of the sine and cosine functions, so that there are no low-order resonances among
the frequency multipliers Kij , K1ijl, K2ijl, and K1ijl ±K2ijl.

10
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Assumption 2: If cij, c1ijl, . . . , c4ijl are any integers such that
∑

(i,j)∈S2
|cij |+

∑
(i,j,l)∈S3

(|c1ijl|+
|c2ijl|+ |c3ijl|+ |c4ijl|) > 0 and∑

(i,j)∈S2

cijKij +
∑

(i,j,l)∈S3

(
(c1ijl + c3ijl + c4ijl)K1ijl + (c2ijl + c3ijl − c4ijl)K2ijl

)
= 0,

then( ∑
(i,j)∈S2

|cij |+
∑

(i, j, l) ∈ S3,
1 ≤ ν ≤ 4

|cνijl| > 3
)

or
( ∑

(i,j)∈S2

|cij |+
∑

(i, j, l) ∈ S3,
1 ≤ ν ≤ 4

|cνijl| = 3 and
∑

(i,j)∈S2

|cij | > 0
)
.

Our basic result concerning solutions of the local steering problem for nonholonomic case is as
follows.

Theorem 4: Assume that, for xα, xω ∈ D and positive numbers τ , ε, ε1, the vectors a ∈ Rn and
K ∈ (Z \ {0})|S2|+2|S3| satisfy the system of algebraic equations (40) and Assumption 2, and that
the following conditions hold:∥∥∥∥∂fi∂x

(x)

∥∥∥∥ ≤M1,

∥∥∥∥∂2fik
∂x2

(x)

∥∥∥∥ ≤M2,
1

6

∑
|α|=3

∣∣∣∣ ∂3fik(x)

∂xα1

1 · · · ∂x
αn
n

∣∣∣∣ ≤M3,

for all x ∈ B̄ε(xα) ⊂ D, 1 ≤ i ≤ m, 1 ≤ k ≤ n,
(41)

φ(Ū) =
√
nM0Ū

3(eM1Ū − 1)

M2
0M3(eM1Ū − 1)2

Ū2
+
M0M1M2

(
eM1Ū − 1

)
(3n3/2 + 2M1Ū)

12Ū
+

+
M1(M2

1 + 2M0M2)

6

}
≤ ε1,

(42)

Ū ≤ 1
M1

ln
(
M1ε
M0

+ 1
)
, (43)

where

Ū =

 m∑
i=1

|ai|+
√

2
∑

(i,j)∈S2

|aij |+ 3
∑

(i,j,k)∈S3

|aijk|

 τ, M0 = max
1≤i≤m

‖fi(xα)‖. (44)

Then ‖x(τ ;xα, u) − xω‖ ≤ ε1 and ‖x(t;xα, u) − xα‖ ≤ ε for all t ∈ [0, τ ], where the control
u(t) (0 ≤ t ≤ τ) is given by formula (39).

The proof of this result is contained in Section 5.

Remark 3: For small values of Ū , condition (42) is reduced to the following one:

φ(Ū) =

√
nM0M

2
1 (2M2

1 + 12M2
0M1M3 + 4M0M2 + 3n3/2M0M1M2)

12
Ū4 +O(Ū5) < ε1. (45)

A crucial assumption of Theorem 4 is that the coefficients of control (39) satisfy the system of
algebraic equations (40). To prove the solvability of system (40), we introduce new variables

ã=
(
ãk|k∈{1,...,m} , ãij |(i,j)∈S2

, ãijl|(i,j,l)∈S3

)∗
∈Rn

11
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and parameters K+ =

(
K+
ij

∣∣∣
(i,j)∈S2

, K+
1ijl,K

+
2ijl

∣∣∣
(i,j,l)∈S3

)∗
∈ N|S2|+2|S3|, where

ãk = τak for k = 1, 2, ...,m, ãij=
τ2a2

ij

4πKij
for (i, j) ∈ S2, ãijl=

τ3a3
ijl

16π2
(
K2

2ijl −K2
1ijl

) for (i, j, l) ∈ S3,

K+
ij = |Kij | for (i, j) ∈ S2, K+

νijl = |Kνijl| for (i, j, l) ∈ S3, ν = 1, 2.

In new variables, we write system (40) in the following form:

m∑
k=1

ãkfk(x
α)+

∑
(i,j)∈S2

ãij [fi, fj ](x
α)+

∑
(i,j,l)∈S3

ãijl[[fi, fj ], fl] (xα)+Ω̃(ã, xα) = xω − xα, (46)

where Ω̃(ã, x0) does not contain terms of order less than 4/3 with respect to ã (see Appendix B).
We assume that the (S2, S3)-rank condition is satisfied, therefore, the matrix

F (xα)=
(
f1(xα), . . ., fm(xα), [fi, fj ](x

α)|(i,j)∈S2
, [[fi, fj ], fl] (xα)|(i,j,l)∈S3

)
(47)

is non-degenerate at x = xα. Then we define the integers K+
ij and K+

1ijl,K
+
2ijl according to As-

sumption 2. Thus, if ã is a solution of system (46) for given xα, xω ∈ D, then the components of a
solution of system (40) are:

ak = τ−1ãi for k = 1, 2, ...,m, aij = 2τ−1sign(ãij)
√
πK+

ij |ãij | for (i, j) ∈ S2,

aijl = 2
3
√

2π2τ−1 3

√
(K+

2ijl
2 −K+

1ijl
2
)ãijl for (i, j, l) ∈ S3,

(48)

Kij = K+
ij sign(ãij) for (i, j) ∈ S2, Kνijl = K+

νijl for (i, j, l) ∈ S3, ν = 1, 2, (49)

where sign(ãij) = 1 if ãij ≥ 0 and sign(ãij) = −1 otherwise. So, the solvability problem for

system (40) is reduced to the study of system (46). The formula for Ω̃(ã, x) in Appendix B implies
that there exists a function C(x) > 0, which is continuous in D, such that

‖Ω̃(ã, x)‖ ≤ C(x)‖ã‖4/3 for all x ∈ D, ã ∈ B̄1(0) ⊂ Rn. (50)

We derive the following corollary of Theorem 4 for solving Problem 1.

Theorem 5: Assume that the rank condition (38) holds at x = xα ∈ D and that inequalities (41)
are satisfied in B̄ε(x

α) for some ε > 0. Then, for any r ∈ (0, 1) and τ > 0, there exist ε0 > 0 and
θ ∈ K such that:

1) for any xω ∈ Bε0(x
α), there exists a solution a ∈ Rn of algebraic system (40) with some

K ∈ (Z \ {0})|S2|+2|S3| that satisfy Assumption 2;
2) if u(t) is the control given by formula (39) with the above a ∈ Rn and K ∈ (Z \ {0})|S2|+2|S3|,

then

‖x(τ ;xα, u)− xω‖ ≤ r‖xα − xω‖, (51)

‖x(t;xα, u)− xα‖ ≤ θ(‖xα − xω‖) for all t ∈ [0, τ ]. (52)

Proof. Let xα ∈ D, ε > 0, r ∈ (0, 1), and τ > 0 be given. To prove assertion 1), we note that
solutions of algebraic systems (40) and (46) are related by transformations (48). We choose a

12
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vector K+ ∈ N|S2|+2|S3| in such a way that Assumption 2 is satisfied. Then we rewrite system (46)
as Φ(ã) = 0, where

Φ(ã)=ã+F−1(xα)(Ω̃(ã, xα)+xα−xω).

In the trivial case xω = xα, it is easy to see that ã = 0 ∈ Rn is a root of algebraic equations (46).
If ‖xα − xω‖ > 0 is small enough, we will use the principle of nonzero rotation to prove that the
equation Φ(ã) = 0 has a root ã ∈ Bd(0) for some d > 0. For this purpose, we show that the
maps Φ(ã) and Ψ(ã) = ã are homotopic on the sphere Sd = ∂Bd(0). A sufficient condition for the
homotopy equivalence reads as follows, cf. (Krasnosel’skij & Zabrejko, 1984):

‖Φ(ã)− ã‖ < ‖ã‖ for all ã ∈ Sd. (53)

We estimate the left-hand side of inequality (53) by using estimate (50) and assuming that d ≤ 1:

‖Φ(ã)− ã‖ ≤ ‖F−1(xα)‖
(
‖Ω̃(ã, xα)‖+ ‖xα − xω‖

)
≤ ‖F−1(xα)‖

(
C(xα)d4/3 + ‖xα − xω‖

)
.

Thus, inequality (53) follows from the conditions

‖xα − xω‖ < µxα(d), d ≤ 1, (54)

where

µxα(d) =
d

‖F−1(xα)‖
− C(xα)d4/3. (55)

We see that the function µxα(d) is positive and increasing on d ∈ (0, dmax], where

dmax = min
{
d+
max, 1

}
, d+

max =

(
3

4‖F−1(xα)‖C(xα)

)3

, µ′xα(d+
max) = 0. (56)

As µxα(d) is strictly concave on R+ and µxα(0) = 0 , conditions (54) are satisfied with ‖xα−xω‖ =
µxα(dmax)d

dmax
, 0 < d < dmax, or, equivalently, if

d =
dmax

µxα(dmax)
‖xα − xω‖ < dmax. (57)

Thus we conclude that if

‖xα − xω‖ < µxα(dmax), (58)

then condition (53) holds on the sphere Sd of radius d given by formula (57). Thus, the maps Φ(ã)
and Ψ(ã) = ã are homotopic on the sphere Sd, and the rotation of Φ(ã) is equal to 1. Applying the
principle of nonzero rotation, we conclude that there exists an ã ∈ Bd(0) such that Φ(ã) = 0; see,
e.g., (Krasnosel’skij & Zabrejko, 1984). Then we define the vectors a∈Rn and K ∈ (Z\{0})|S2|+2|S3|

by formulas (48), (49) and observe that the system of algebraic equations (40) and Assumption 2
are satisfied. This completes the proof of assertion 1).
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Under our choice of the coefficients a ∈ Rn of control (39), the expression Ū in formula (44) is
estimated as follows:

Ū ≤
m∑
k=1

|ãk|+ 2
√

2π
∑

(i,j)∈S2

√
K+
ij |ãij |+ 6

3
√

2π2
∑

(i,j,l)∈S3

3

√
(K+

2ijl
2 −K+

1ijl
2
)|ãijl| ≤

≤
m∑
k=1

|ãk|1/3 + 2
√

2π
∑

(i,j)∈S2

√
K+
ij |ãij |

1/3 + 6
3
√

2π2
∑

(i,j,l)∈S3

3

√
(K+

2ijl
2 −K+

1ijl
2
)|ãijl|,

where we have used formulas (48) and the inequality ‖ã‖ < d ≤ 1. Furthermore, by applying
Hölder’s inequality with exponents

(
6, 6

5

)
and exploiting condition (57), we get

Ū ≤ C1‖ã‖1/3 ≤ C1d
1/3 = C1d1/3max‖xα−xω‖1/3

µ
1/3

xα (dmax)
, (59)

C1 =
(
m+ 29/5π3/5

∑
(i,j)∈S2

(K+
ij )

3/5 + 28/536/5π4/5
∑

(i,j,l)∈S3
(K+

2ijl
2 −K+

1ijl
2
)
2/5)5/6

, (60)

provided that condition (58) holds.
It remains to show that assertion 2) follows from Theorem 4. Indeed, for given r ∈ (0, 1) and

ε > 0, our goal is to find an ε0 > 0 such that the conditions of Theorem 4 hold with ε1 = r‖xα−xω‖
if ‖xα − xω‖ < ε0. Condition (43) follows from inequality (59) if

C1d
1/3
max‖xα − xω‖1/3

µ
1/3
xα (dmax)

≤ 1

M1
ln

(
M1ε

M0
+ 1

)
. (61)

It is easy to see that the function φ(Ū), given by formula (42), is increasing on R+ (as all its
Taylor coefficients at Ū = 0 are non-negative). Hence, by exploiting inequalities (58) and (59), we
conclude that condition (42) holds with ε1 = r‖xα − xω‖ if

φ

(
C1d

1/3
max‖xα − xω‖1/3

µ
1/3
xα (dmax)

)
≤ r‖xα − xω‖ < rµxα(dmax). (62)

Let ε̄0 be the positive root of the equation
1

ε̄0
φ

(
C1d

1/3
maxε̄

1/3
0

µ
1/3
xα (dmax)

)
= r. It follows from the Taylor

expansion (45) that

ε̄0 ≈
1728µ4

xα(dmax)

n3/2C12
1 d4

maxM
3
0M

6
1

(
2M2

1 + 12M2
0M1M3 + 4M0M2 + 3n3/2M0M1M2

)3 r3 as r → 0.

Now we choose

ε0 = min

{
ε̄0, µxα(dmax),

µxα(dmax)

M3
1C

3
1dmax

ln3

(
M1ε

M0
+ 1

)}
> 0. (63)

Let ‖xα − xω‖ < ε0, and let x(t;xα, u) be the solution of system (37) corresponding to the control
u = u(t) given by formula (39) with the coefficients a ∈ Rn and parameters K ∈ (Z \ {0})|S2|+2|S3|

from assertion 1). The assumptions of Theorem 4 are satisfied because of inequalities (61) and (62),
which proves condition (51). It is easy to see that estimate (52) is satisfied with the following

14
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function θ = θxα(s) of class K:

θxα(s) =
M0

M1

(
exp

{
M1C1d

1/3
max

µ
1/3
xα (dmax)

s1/3

}
− 1

)
. (64)

Indeed, let us denote s = ‖xα − xω‖ < ε0, then Ū ≤ C1d
1/3
maxs1/3

µ
1/3
xα (dmax)

because of inequality (59), and

condition (43) of Theorem 4 holds with ε̄ = θxα(s). Thus, Theorem 4 implies that

‖x(t;xα, u)− xα‖ ≤ ε̄ = θxα(‖xα − xω‖) for all t ∈ [0, τ ],

which completes the proof.

We will show below that the construction of local controllers in Theorem 5 can be used to satisfy
the conditions of Theorem 1 for solving the approximate path-following problem.

Theorem 6: Let γ ⊂ D be a curve with the endpoints x0 and xT , and let the rank condition (38)
be satisfied at each x ∈ γ. Then, for any τ > 0 and ε > ε1 > 0, there exists a ∆̄ > 0 such that, for
any partition π : x0 ≺ x1 ≺ ... ≺ xN = xT of γ with ∆(π) < ∆̄, the corresponding π-approximating
control uπ(t) is well-defined on t ∈ [0, T ], T = Nτ , and

‖x(jτ ;x0, uπ)− xj‖ < ε1, j = 1, 2, ..., N, (65)

ρ(x(t;x0, uπ), γ) < ε, t ∈ [0, T ]. (66)

Here the control uπ(t) is constructed as in Definition 1 by using the concatenation of local controllers
u(t) = ux

αxω(t) of form (39) whose coefficients are defined by the system of algebraic equations (40).

Proof. As the rank condition (38) holds on γ ⊂ D and all the vector fields fi(x) are of class C3(D),
there exists an η > 0 such that Γ = B̄η(γ) ⊂ D and condition (38) also holds at each x ∈ Γ. For
a compact subset Γ of domain D, we choose a positive ε̄ such that D0 = B̄ε̄(Γ) ⊂ D. Then the
numbers

M1 = max
i

(
sup
x∈D0

∥∥∥∥∂fi∂x
(x)

∥∥∥∥) , M2 = max
i,k

(
sup
x∈D0

∥∥∥∥∂2fik
∂x2

(x)

∥∥∥∥) ,
M3 =

1

6
max
i,k

 sup
x∈D0

∑
|α|=3

∣∣∣∣ ∂3fik(x)

∂xα1

1 · · · ∂x
αn
n

∣∣∣∣
 , 1 ≤ i ≤ m, 1 ≤ k ≤ n,

(67)

are finite by the Weierstrass theorem. We see that the conditions of Theorem 5 are satisfied for
each xα ∈ Γ with the above choice of M1, M2, and M3. Let us now fix arbitrary r ∈ (0, 1), τ > 0,
and show that the number ε0 > 0 and function θ ∈ K in Theorem 5 may be chosen independently
of xα ∈ Γ.

Since all the vector fields appearing in the rank condition (38) are continuous on the compact
Γ ⊂ D, there exists a vector K+ ∈ N|S2|+2|S3| satisfying Assumption 2 such that the matrix F (xα)
is non-degenerate for each xα ∈ Γ. As in the proof of Theorem 5, we fix such K+ ∈ N|S2|+2|S3| and

introduce the function µ(d) =
d

c1
− c2d

4/3, where c1 = sup
x∈Γ
‖F−1(x)‖ > 0, c2 = sup

x∈Γ
C(x) > 0. It

follows from the construction of µ(d) that

µ(d) ≤ µxα(d) for all xα ∈ Γ, d ≥ 0, (68)
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and µ(d) > 0 is strictly increasing on d ∈ (0, d̄max], d̄max = min

{
1,

(
3

4c1c2

)3
}
. Following the

proof of Theorem 5 with the use of inequality (68), we conclude that its assertions 1) and 2) remain
true for each xα ∈ Γ and xω ∈ Bε0(xα) if, instead of formula (63), we define

ε0 = min

{
ε̂0, µ(d̄max),

µ(d̄max)

M3
1C

3
1 d̄max

ln3

(
M1ε̄

M0
+ 1

)}
> 0, (69)

where ε̂0 is the positive root of the equation
1

ε̂0
φ

(
C1d̄

1/3
maxε̂

1/3
0

µ1/3(d̄max)

)
= r, the constants C1 and M1 are

given by formulas (60) and (67), respectively, and

M0 = max
1≤i≤m

sup
x∈Γ
‖fi(x)‖ > 0. (70)

Thus, expression (69) defines the constant ε0 > 0 for Theorem 5 independently of xα ∈ Γ. It
remains to verify that there exists a θ ∈ K such that the estimate

θxα(s) ≤ θ(s), s ∈ R+, (71)

holds for each xα ∈ Γ and θxα(s) given by formula (64). Indeed, straightforward computations with
the use of inequality (68) show that the function

θ(s) =
M0

M1

(
exp

{
M1C1d̂

1/3

µ1/3(d̄max)
s1/3

}
− 1

)
(72)

satisfy property (71), where M0 is defined in (70), d̂ = min

{
1,

3

4 infx∈Γ (‖F−1(x)‖C(x))

}
> 0.

Thus, we have shown that formulas (69) and (72) define the constant ε0 > 0 and function θ ∈ K
for Theorem 5 independently of xα ∈ Γ.

Now the assertion of Theorem 6 follows from Theorem 1.

In Section 6, we demonstrate the approach of Theorem 6 with several examples, where the system
of algebraic equations (40) will be solved numerically.

5. Auxiliary Results and Proofs

To prove Theorem 2, we rewrite the Volterra series (12) by using the first-order Lie brackets as
follows:

x(t;x0, u) = x0 +

m∑
k=0

fk(x
0)

∫ t

0
uk(s)ds+

1

2

m∑
i,j=0

∂fj(x
0)

∂x
fi(x

0)

∫ t

0
ui(s)ds

∫ t

0
uj(s)ds+

+
1

2

∑
i<j

[fi, fj ](x
0)

∫ t

0

∫ s

0
{uj(s)ui(v)− ui(s)uj(v)} dv ds+R2(t), t ∈ [0, τ ],

(73)

where R2(t) is the sum of the last two terms of formula (12).
We need two auxiliary lemmas from the papers (Zuyev, 2016) and (Zuyev, Grushkovskaya, &

Benner, 2016).
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Lemma 1: Let D̃ ⊂ Rn be a closed convex domain, and let x(t) ∈ D̃, 0 ≤ t ≤ τ , be the solution of
system (1) corresponding to initial value x(0) = x0 ∈ D̃ and control u ∈ C[0, τ ]. If the vector fields
f0(x), f1(x), ..., fm(x) satisfy assumptions∥∥∥∥∂fi(x)

∂x

∥∥∥∥ ≤M1,

∥∥∥∥∂2fij(x)

∂2x

∥∥∥∥ ≤M2, i = 0,m, j = 1, n, (74)

in D̃ with some positive constants M1 and M2, then the remainder R2(τ) of the Volterra expan-
sion (73) satisfies the following estimate:

‖R2(τ)‖ ≤ M0

M1

{
eM1Uτ − 1

2

(
(M1Uτ + 1)2 + 1

)}
+

+
M2M

2
0

√
n

4M3
1

{(
eM1Uτ − 2

)2
+ 2M1Uτ − 1

}
=
M0(M2

1 +M2M0
√
n)

6
U3τ3 +O(U4τ4).

(75)

Here M0 = max
0≤i≤m

‖fi(x0)‖, U = 1 + max
0≤t≤τ

m∑
i=1

|ui(t)|.

Lemma 2: Let x(t) ∈ D̃ ⊂ Rn, 0 ≤ t ≤ τ , be a solution of system (37) with a control u ∈ C[0, τ ],
and let ‖fi(x′)− fi(x′′)‖ ≤M1‖x′ − x′′‖, M1 > 0, for all x′, x′′ ∈ D̃, i = 1, 2, ...,m. Then

‖x(t)− x(0)‖ ≤ M0

M1
(eM1Ũt − 1), t ∈ [0, τ ], (76)

where M0 = max
1≤i≤m

‖fi(x(0))‖, Ũ = max
0≤t≤τ

m∑
i=1

|ui(t)|.

Proof of Theorem 2. By substituting controls (14) into formula (73) with x0 = xα ∈ D and
computing the integrals, we obtain

x(τ ;xα, u) = xα + τ

(
f0(xα) +

∑
i∈S0

vifi(x
α)

)
+
τ2

2
V20 +

τ2

2π
V21 +R2(τ), (77)

where the terms V20 and V21 are given by formulas (16) provided that Assumption 1 holds. For
given xα, xω ∈ D and τ > 0, we assume that the vector a =

(
(vi)i∈S0

, (ai)i∈S1
, (aij)(i,j)∈S2

)∗ ∈ Rn

satisfies the system of algebraic equations (15) and K ∈ (Z \ {0})|S1|+|S2| satisfies Assumption 1.
Then formulas (15) and (77) imply that x(τ ;xα, u) = xω +R2(τ), where x(t;xα, u) is the solution
of system (1) with the control u = u(t) of form (14). Thus, it suffices to prove that

‖R2(τ)‖ ≤ ε1 (78)

and

‖x(t;xα, u)− xα‖ ≤ ε, t ∈ [0, τ ]. (79)
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We estimate the sum of components |ui(t)| in formula (14) as follows:

m∑
i=1

|ui(t)| ≤
∑
i∈S0

|vi|+
∑
i∈S1

|ai|
∣∣∣∣sin(2πKit

τ

)∣∣∣∣+
∑

(i,j)∈S2

|aij |
(∣∣∣∣cos

(
2πKijt

τ

)∣∣∣∣+

∣∣∣∣sin(2πKijt

τ

)∣∣∣∣)
≤
∑
i∈S0

|vi|+
∑
i∈S1

|ai|+
√

2
∑

(i,j)∈S2

|aij |.

Hence, Uτ =

(
1 + max

0≤t≤τ

m∑
i=1

|ui(t)|)

)
τ ≤

1 +
∑
i∈S0

|vi|+
∑
i∈S1

|ai|+
√

2
∑

(i,j)∈S2

|aij |

 τ = Ū , where

Ū is given in (20). As the right-hand side of inequality (75) is stricly increasing with respect
to U ∈ R+ and Uτ ≤ Ū , inequality (78) follows from condition (18) because of Lemma 1 with
D̃ = B̄ε(x

α). To show that inequality (79) holds, we apply a modification of estimate (76) for
system (1). Indeed, the assertion of Lemma 2 for system (1) can be formulated as follows:

‖x(t;xα, u)− xα‖ ≤ M0

M1
(eM1Ūt/τ − 1), t ∈ [0, τ ], (80)

where Ū , M0, and M1 are defined in (17) and (20). Now inequality (79) follows from conditions (19)
and (80). �

In order to prove Theorem 4, we rewrite formula (12) by using the Lie brackets as follows:

x(t;x0, u) = x0 +

m∑
k=1

fk(x
0)

t∫
0

uk(s)ds+
1

2

∑
i<j

[fi, fj ](x
0)

t∫
0

τ∫
0

(uj(τ)ui(s)− ui(τ)uj(s))ds dτ

+
1

3

∑
i<j

m∑
l=1

[[fi, fj ], fl] (x0)

t∫
0

τ∫
0

s∫
0

(
ul(τ)

(
uj(s)ui(p)− ui(s)uj(p)

))
dp ds dτ+G(t)+R(t).

(81)

The proof of this fact is presented in Appendix A together with the expression for G(t), and the
remainder R(t) is estimated by the following lemma.

Lemma 3: Let D̃ ⊂ Rn be a closed convex domain, and let x(t) ∈ D̃, 0 ≤ t ≤ τ , be a solution of
system (37) corresponding to the initial value x(0) = x0 ∈ D̃ and control u ∈ C[0, τ ]. Assume that
the vector fields f1(x), . . . , fm(x) satisfy conditions∥∥∥∥∂fi∂x

(x)

∥∥∥∥ ≤M1,

∥∥∥∥∂2fik
∂x2

(x)

∥∥∥∥ ≤M2,
1

6

∑
|α|=3

∣∣∣∣ ∂3fik(x)

∂xα1

1 · · · ∂x
αn
n

∣∣∣∣ ≤M3, 1 ≤ i ≤ m, 1 ≤ k ≤ n, (82)

with some positive constants M1, M2, M3, for all x ∈ D̃. Then the remainder of the Volterra
expansion (12) satisfies the estimate:

‖R(t)‖ ≤
√
nM0(eM1Ū − 1)

Ū

M2
0M3(eM1Ū − 1)2

Ū2
+
M0M1M2

(
eM1Ū − 1

)
(3n3/2 + 2M1Ū)

12Ū
+

+
M1(M2

1 + 2M0M2)

6

}
U4t4 if 0 ≤ Ut ≤ Ū ,

(83)
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where M0 = max
1≤i≤m

‖fi(x0)‖, U = max
t∈[0,τ ]

(
|u1(t)|+ · · ·+ |um(t)|

)
.

Proof. Let us denote by R
(N+1)
i (x) the remainder term for the N -th order Taylor expansion of

fi(x) at a point x0 ∈ D̃. If fi(x) is of class CN+1 in a convex domain D̃ then R
(N+1)
ik (x) may be

represented in the Lagrange form of the remainder as follows:

R
(N+1)
i (x) =

1

(N + 1)!

∑
|α|=N+1

∂|α|fi(θ)

∂θα1

1 · · · ∂θ
αn
n

∆x1
α1 · · ·∆xnαn , ∆xj = xj − x0

j , θ ∈ B̄‖∆x‖(x0),

α = (α1, ..., αn), |α| = α1 + ...+ αn.
(84)

To prove the assertion of Lemma 3, we use the integral representation of system (37) with initial
conditions x(0) = x0 and the Taylor expansion for fik

(
x
)
:

xk(t) = x0
k +

m∑
i=1

t∫
0

ui(v)fik(x(v))dv=x0
k +

m∑
i=1

t∫
0

ui(v)

{
fik(x

0) +
∂fik(x)

∂x

∣∣∣∣
x=x0

×

(
m∑
j=1

v∫
0

uj(s)

(
fj(x

0) +
∂fj(x)

∂x

∣∣∣∣
x=x0

( m∑
l=1

s∫
0

ul(p)
(
fl(x

0)

+R
(1)
l (x(p))

)
dp
)

+R
(2)
j (x(s))

)
ds

)
+

1

2

 m∑
j=1

v∫
0

uj(s)
(
fj(x

0) +R
(1)
j (x(s))

)
ds

∗

× ∂2fik(x)

∂x2

∣∣∣∣
x=x0

 m∑
j=1

v∫
0

uj(s)
(
fj(x

0) +R
(1)
j (x(s))

)
ds

+R
(3)
ik (x(v))

}
dv,

(85)

where the gradient
∂fik(x)

∂x
is treated as a row vector. After several transformation, expression (85)

takes form (12) with

Rk(t) =

m∑
i=1

t∫
0

R
(3)
ik (x(v))ui(v)dv+

m∑
i,j=1

∂fik(x)

∂x

∣∣∣∣
x=x0

t∫
0

v∫
0

R
(2)
j (x(s))ui(v)uj(s)dsdv

+

m∑
i,j,l=1

∂fik(x)

∂x

∂fj(x)

∂x

∣∣∣∣
x=x0

t∫
0

v∫
0

s∫
0

R
(1)
l (x(p))ui(v)uj(s)ul(p)dpdsdv

+

m∑
i,j=1

f∗j (x0)
∂2fik(x)

∂x2

∣∣∣∣
x=x0

∫ t

0

(∫ v

0
uj(s)ds

)( m∑
l=1

∫ v

0
ul(s)R

(1)
l (x(s))ds

)
ui(v)dv

+
1

2

m∑
i=1

∫ t

0

 m∑
j=1

∫ v

0
uj(s)R

(1)
j

∗
(s)ds

 ∂2fik(x)

∂x2

∣∣∣∣
x=x0

 m∑
j=1

∫ v

0
uj(s)R

(1)
j (s)ds

ui(v)dv.

(86)

By estimating the absolute value of Rk(t) term by term in (86) with the use of (84), we get:
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|Rk(t)| ≤M3‖∆x(t)‖3Ut+
M1M̄2

2
‖∆x(t)‖2U2t2 +

M3
1

6
‖∆x(t)‖U3t3+

+
M0M1M2

3
‖∆x(t)‖U3t3 +

M2
1M2

6
‖∆x(t)‖2U3t3,

(87)

where M̄2 =
1

2
sup
x∈D̃

∑
|α|=2

∣∣∣∣ ∂2fik(x)

∂xα1

1 · · · ∂x
αn
n

∣∣∣∣ . The Cauchy–Schwarz inequality implies that

M̄2 ≤
n
√
n

2
M2. (88)

The norm of ∆x(t) = x(t)− x0 is estimated by Lemma 2 as follows:

‖∆x(t)‖ ≤ M0

M1

(
eM1Ut − 1

)
, t ≥ 0. (89)

As the function ψ(β) = eβ − 1 is convex, it follows from (89) that

‖∆x(t)‖ ≤
M0

(
eM1Ū − 1

)
M1Ū

Ut, 0 ≤ Ut ≤ Ū . (90)

Component-wise estimates (87) together with inequalities (88), (90), and U2t2 ≤ ŪUt, 0 ≤ Ut ≤ Ū
imply estimate (83) for the Euclidean norm of R(t).

Proof of Theorem 4. By substituting the control u = u(t) of form (39) into the Volterra series (81)
with x0 = xα ∈ D, we get:

x(τ ;xα, u) = xα + τ

m∑
k=1

fk(x
α)ak +

τ2

4π

∑
(i,j)∈S2

[fi, fj ](x
α)
a2
ij

Kij

+
τ3

16π2

∑
(i,j,l)∈S3

[[fi, fj ], fl] (xα)
a3
ijl

K2
2ijl −K2

1ijl

+
τ2

2
Ω(a, xα, τ)+R(τ),

(91)

provided that Assumption 2 is satisfied (the explicit formula for Ω is in Appendix B). It is easy to
see that the system of algebraic equations (40) is equivalent to the following condition in terms of
representation (91):

x(τ ;xα, u) = xω +R(τ).

Therefore, if the vectors a ∈ Rn and K ∈ (Z \ {0})|S2|+2|S3| satisfy the system of algebraic equa-
tions (40) and Assumption 2, then it remains to show that

‖R(τ)‖ ≤ ε1 and
M0

M1
(eM1Ut − 1) ≤ ε, t ∈ [0, τ ], (92)

because of Lemma 2 with D̃ = B̄ε(x
α), where U = max

1≤i≤m

m∑
i=1

|ui(t)| ≤ Ū/τ, the constants Mi are
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given in formulas (41) and (44). To complete the proof, we conclude that conditions (92) follow
from Lemma 3 and inequalities (42), (43). �

6. Examples

6.1 Ball on the plane

Consider a unit ball rolling on the plane. As it was shown in (Li & Canny, 1990), the kinematic
equations take the following form:

ẋ = u1f1(x) + u2f2(x), (93)

where x = (x1, x2, x3, x4, x5)∗, f1(x) =
(
0, secx1,− sinx5,− cosx5, tg x1

)∗
, f2(x) =

(
−

1, 0,− cosx5, sinx5, 0
)∗

. Here (x1, x2) ∈ R2 and (x3, x4) ∈ R2 define the Gaussian frames, and
x5 ∈ (−π

2 ,
π
2 ) is the angle of contact. The controls u1 and u2 are related to components of the

angular velocity. By computing the first- and the second-order Lie brackets, we observe that

span
{

f1(x), f2(x), [f1, f2](x),
[
[f1, f2], f1

]
(x),

[
[f1, f2], f2

]
(x)
}

= R5,

for all x ∈ R5 such that x1 6= π
2

(
modπ

)
. Thus, the (S2, S3)-rank condition (Definition 3) is satisfied

with S2 = {(1, 2)} and S3 = {(1, 2, 1), (1, 2, 2)} for all x ∈ D, D = {x ∈ R5 | |x1| < π/2}. Following
the approach of Section 4 for steering system (93) from xα ∈ D to xω ∈ D, we use controls of the
form (39):

u1(t) = a1 + a12 cos
2πK12t

τ
+ a121

(
1 + sin

2πK2121t

τ

)
cos

2πK1121t

τ
+ a122 cos

2πK1122t

τ
,

u2(t) = a2 + a12 sin
2πK12t

τ
+ a121 sin

2πK2121t

τ
+ a122

(
1 + cos

2πK1122t

τ

)
sin

2πK2122t

τ
,

(94)

with the coefficients a = (a1, a2, a12, a121, a122)∗ ∈ R5 and parameters K =
(K12,K1121,K2121,K1122,K2122)∗ ∈ (Z \ {0})5. For any xα ∈ D and xω ∈ D such that ‖xα − xω‖
is small enough, there exists a solution a ∈ R5 of the system of algebraic equations (40) with some
K ∈ (Z \ {0})5 satisfying Assumption 2 by Theorem 5.

As an example, let us fix xα =
(
0, 0, π36 ,

π
36 ,

π
36

)∗
, xω =

(
π
36 ,

π
36 , 0, 0, 0

)∗
, and τ = 1. It is easy to

check that Assumption 2 is satisfied with

K12 = 1, K1121 = 3, K2121 = 5, K1122 = 12, K2122 = 19, (95)

and a numerical solution of the system of algebraic equations (40) with these parameters is

a1 ≈ 0.07, a2 ≈ −0.08, a12 ≈ −0.56, a121 ≈ −7.7, a122 ≈ −0.37. (96)

To illustrate that the above controls solve the local approximate steering problem (Problem 1), we
solve the Cauchy problem for system (93) numerically with the initial condition x(0) = xα and the
controls represented by (94), (95), (96) (see Fig. 2). The value of ‖x(τ)−xω‖ from Fig. 2, f) can be
used to evaluate the relative accuracy of our local steering algorithm: r̃ = ‖x(τ)− xω‖/‖xα − xω‖ ≈
0.027 < 1. Note that a theoretical upper bound for r̃ is given by the r constant in (2) (Problem 1
formulation). This constant can be estimated from Theorem 4 as r = φ(Ū)/‖xα − xω‖, where
the computation of φ(Ū) by formula (42) is based on the coefficients a of the control (94) and
the upper bounds of the derivatives of fi(x). Similarly, the maximal overshoot is estimated by
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Figure 2. a)–e): components xi(t) of the solution of system (93) with the initial condition x(0) = xα and controls (94);
f): time-plot of ‖x(t)− xω‖

inequality (3): ‖x(t) − xα‖ ≤ θ(‖xα − xω‖) for all t ∈ [0, τ ], where the right-hand side can be
estimated as θ(s) = θxα(s) by formula (64) from the proof of Theorem 5.

6.2 Rigid body with oscillators

Consider a control system

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2
2u1 − x2

1u2, x ∈ R3, u ∈ R2. (97)

These equations describe the motion of a planar rigid body with two oscillators (Yang, Krish-
naprasad, & Dayawansa, 1996; Carinena, Clemente-Gallardo, & Ramos, 2003). The vector fields
of system (97) are: f1(x) = (1, 0, x2

2)∗, f2(x) = (0, 1,−x2
1)∗, [f1, f2](x) = (0, 0,−2(x1 + x2))∗,

[[f1, f2], f1](x) = (0, 0, 2)∗. As one can see, the first-order Lie bracket does not generate the re-
maining direction if x1 = −x2. However, control system (97) satisfies the (S2, S3)-rank condition
(Definiton 3) with S2=∅ and S3={(1, 2, 1)}:

span{f1(x), f2(x), [[fi, fj ], fl](x) | (i, j, l) ∈ S3} = R3 for all x ∈ D = R3.

In this section, we apply controls (39) to solve the approximate path-following problem for sys-
tem (97) from the point x0 = (1, 0, 0)∗ to xT = (1, 0, 5π)∗ along the helix γ = {(cos s, sin s, s)∗ | s ∈
[0, 5π]}. The conditions of Theorem 6 are satisfied, and we illustrate its assertion for τ = 1 and a uni-
form partition of the curve γ with N = 200, such that xj =

(
cos(0.025πj), sin(0.025πj), 0.025πj

)∗
,

j = 0, 200. For this purpose we construct the π-approximating control for t ∈ [0, 200] in the sense
of Definition 1 and Theorem 1:

uπ(t) = ux
0x1

(t) for t ∈ [0, 1], uπ(t) = ux
j−1
τ xj (t− j + 1) for t ∈ (j − 1, j], j = 2, 200, (98)

where ux
j−1
τ xj (t) are defined by formula (39) with K1121 = 2, K2121 = 3, for all j ∈ 1, 200:

u
xj−1
τ xj

1 (t) = aj1 + aj121 cos 4πt
(
1 + sin 6πt

)
, u

xj−1
τ xj

2 (t) = aj2 + aj121 sin 6πt, t ∈ [0, 1].

Here aj1, aj2, aj121 satisfy algebraic equations (46), that is aj1 = xj1 − x
j−1
1 , aj2 = xj2 − x

j−1
2 , and aj112
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Figure 3. The trajectory of system (97) with controls (98) (left figure) and the helix γ (right figure).

is a real solution of the following cubic equation:

xj3 − x
j−1
3 = aj1x

j−1
2

2 − aj2x
j−1
1

2
+ aj1a

j
2

(
xj−1

2 − xj−1
1

)
+
aj112

π

(aj1
3
− 3aj2

5

)(
xj−1

1 + xj−1
2

)
+

1

3
aj1a

j
2(aj2 − a

j
1) +

aj112

π
(aj1 + aj2)

(
aj1
6

+
aj2(5− 12π)

40π

)
+
aj121

2

π2

(
11aj1
192

− 381aj2
1600

)
+
aj121

3

40π2
.

Fig. 3 illustrates the nature of assertions of Theorems 1 and 6: the trajectory of system (97) with
controls (98) remains in some small ε-neighborhood of the helix γ for all t ∈ [0, T ], and closely
approaches the target xT at T = 250.

6.3 Underwater vehicle

In this subsection, we illustrate the possibility of using local controllers of Section 3 for the control
design scheme described in Theorem 1. For this purpose, we consider the equations of motion for
an autonomous 3D underwater vehicle:

ẋ = f0(x) + f1(x)u1 + f2(x)u2 + f3(x)u3, x = (x1, . . . , x6)∗ ∈ R6, u = (u1, u2, u3)∗ ∈ R3, (99)

where x1, x2, x3 are the coordinates of the center of mass, and x4, x5, x6 specify the Euler angles,

f0(x)=(0, 0, 0, u0 cosx4tg x5,−u0 sinx4, u0 cosx4 secx5)∗, f2(x) = (0, 0, 0, 1, 0, 0)∗,

f1(x) = (cosx5 cosx6, cosx5 sinx6,− sinx5, 0, 0, 0)∗, f3(x)=(0, 0, 0, sinx4tg x5, cosx4, sinx4 secx5)∗.

Note that system (99) is a modification of the equations considered in (Nalamura & Savant, 1991)
for the case when the angular velocity component along the x3 axis is not controlled (u0 = const).
So, our controls are the translational velocity u1 = v along the Ox1 axis and two angular velocity
components: u2 = ω1 and u3 = ω2. It is easy to see that

span{f1(x), f2(x), f3(x), [f0, f1](x), [f1, f3](x), [f2, f3](x)} = R6,

for all x∈R6 such that x5 6=π
2

(
modπ

)
, so that the (S0, S1, S2)-rank condition (Definition 2) holds

with S0 = {1, 2, 3}, S1 = {1}, S2 = {(1, 3), (2, 3)} for all x ∈ D = {x ∈ R6 | |x5| < π
2 }. We illustrate

the possibility of solving the path-following problem (Problem 2) for system (99) by using controls
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of the type (14):

u1(t) = v1 + a1 sin

(
2πK1t

τ

)
+ a13 cos

(
2πK13t

τ

)
, u2(t) = v2 + a23 cos

(
2πK23t

τ

)
,

u3(t) = v3 + a13 sin

(
2πK13t

τ

)
+ a23 sin

(
2πK23t

τ

)
,

(100)

with the vector of coefficients a = (v1, v2, v3, a1, a13, a23)∗ ∈ R6 and parameters K =
(K1,K13,K23)∗ ∈ (Z \ {0})3.

In particular, to steer system (99) with u0 = 0.25 from the origin to the target point xT =
(0, 0, 1, 0, 0, 0)∗ along the segment γ = {(0, 0, x3, 0, 0, 0)∗ |x3 ∈ [0, 1]}, we construct the control
uπ(t) as in Definition 1 and Theorem 1 for the partition of γ with xj = (0, 0, j/4, 0, 0, 0)∗, j = 0, 4.
At each step j = 1, 2, 3, 4, we apply controls of the form (100) for (j − 1)τ < t ≤ jτ , τ = 0.1, with
the following parameters:

Step j = 1 : v1 = 0, v2 ≈ 0.087, v3 ≈ 0.001, a1 = 0, a13 ≈ −17.724, a23 ≈ 8.395;

Step j = 2 v1 ≈ 0.766, v2 ≈ 0.072, v3 ≈ −0.0003, a1 ≈ 2.781, a13 ≈ −17.336, a23 ≈ 7.879;

Step j = 3 v1 ≈ 0.772, v2 ≈ 0.077, v3 ≈ 0, a1 ≈ 4.923, a13 ≈ −17.312, a23 ≈ 7.924;

Step j = 4 v1 ≈ 0.771, v2 ≈ 0.076, v3 ≈ 0, a1 ≈ 8.713, a13 ≈ −17.313, a23 ≈ 7.923.

The above parameters are obtained by solving the system of algebraic equations (15) with xα =
x((j−1)τ), xω = xj , and the integer parameters being chosen as K1 = 3, K13 = 1, K23 = −2 (these
parameters clearly satisfy Assumption 1). We see in Fig. 4 that the controller proposed is able to
solve the approximate path-following problem for system (99) with the accuracy ‖x(T ) − xT ‖ <
ε1 ≈ 0.002 at the final time T = 0.4.

Figure 4. Components of the solution of system (99) with the control u = uπ(t): a) (x1(t), x2(t), x3(t)), b) (t, x4(t)), c) (t, x5(t)),

d) (t, x6(t)).

7. Conclusion

In this paper, we have proposed an explicit reduction of the motion planning problem to systems
of algebraic equations for classes of bracket generating systems of steps 2 and 3. To the best of our
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knowledge, no general results concerning the solvability of such algebraic systems of an arbitrary
dimension have been published so far. On the one hand, it has been already proved in (Liu,
1997) that any trajectory of the Lie bracket extension can be approximated by trajectories of the
original system with highly oscillatory inputs. On the other hand, we do not use any sequence
of trigonometric polynomials with unbounded amplitudes and frequencies here. It should be also
emphasised that our construction provides explicit formulas for controls and does not use any
specific changes of coordinates (e.g., canonical coordinates corresponding to the P. Hall basis).
Thus, our solvability result provides a novel contribution towards the justification of the use of
trigonometric controls for local and global steering problems. Note that the proofs of Theorems 3
and 5 are based on the degree theory, as the standard implicit function theorem is not applicable
(the nonlinear part of the corresponding vector function is not differentiable at ã = 0).
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Appendix A. Representation of the Volterra series using the Lie brackets

Lemma 4: Formula (12) for the solution of system (37) with initial condition x|t=0 = x0 can be
rewritten in the form (81) with

G(t)=
1

2

m∑
i,j=1

∂fi(x)

∂x
fj(x)

∣∣∣∣
x=x0

t∫
0

ui(s)ds

t∫
0

uj(s)ds+
1

6

m∑
i,j,l=1

∂

∂x

(∂fi(x)

∂x
fj(x)

)

× fl(x)
∣∣∣
x=x0

t∫
0

ui(s)ds

t∫
0

uj(s)ds

t∫
0

ul(s)ds+
1

6

∑
i<j

m∑
l=1

(∂fl(x)

∂x
[fi, fj ](x)

+2
∂

∂x
([fi, fj ](x)) fl(x)

)∣∣∣
x=x0

t∫
0

ul(s)ds

t∫
0

τ∫
0

(uj(s)ui(p)−ui(s)uj(p))dpds.

(A1)
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Proof. Indeed, straightforward computations show that

m∑
i,j=1

∂fi(x)

∂x
fj(x)

t∫
0

τ∫
0

ui(τ)uj(p)dpdτ =
1

2

m∑
i,j=1

∂fi(x)

∂x
fj(x)

t∫
0

ui(s)ds

t∫
0

uj(s)ds

+
1

2

m∑
i,j=1

∂fi(x)

∂x
fj(x)

t∫
0

τ∫
0

(
ui(τ)uj(p)− uj(τ)ui(p)

)
dpdτ =

1

2

m∑
i,j=1

∂fi(x)

∂x
fj(x)

t∫
0

ui(s)ds

t∫
0

uj(s)ds

+
1

2

∑
i<j

[fi, fj ](x)

t∫
0

τ∫
0

(
uj(τ)ui(s)− uj(τ)ui(p)

)
dpdτ.

Analogously, using the formula

6

t∫
0

τ∫
0

s∫
0

ui(τ)uj(s)ul(p)dpdsdτ=

t∫
0

ui(s)ds

t∫
0

uj(s)ds

t∫
0

ul(s)ds+

t∫
0

uj(s)ds

×
t∫

0

s∫
0

(
ui(s)ul(p)− ul(s)ui(p)

)
dsds+

t∫
0

ul(s)ds

t∫
0

s∫
0

(
ui(s)uj(p)− uj(s)ui(p)

)
dsds

+ 3

t∫
0

τ∫
0

s∫
0

ui(τ)
(
uj(s)ul(p)−ul(s)uj(p)

)
dpdsdτ +

t∫
0

τ∫
0

s∫
0

uj(τ)
(
ul(s)ui(p)−ui(s)ul(p)

)
dpdsdτ

+

t∫
0

τ∫
0

s∫
0

ul(τ)
(
uj(s)ui(p)−ui(s)uj(p)

)
dpdsdτ ,

we transform the remaining part of (12) and obtain expression (81) with G(t) defined by (A1).
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Appendix B. Formulas for Ω(a, x, τ ) and Ω̃(ã, x)

Ω(a, x, τ)=

m∑
i,j=1

∂fi(x)

∂x
fj(x)

{
aiaj +

∑
(q,r)∈S2

aqr
πKqr

(aiδjr − ajδir)

+
∑

(q,r,s)∈S3

aqrs
π

(
ai

(
δjr
K2qrs

+
δjsK2qrs

K3qrs

)
− aj

(
δir
K2qrs

+
δisK2qrs

K3qrs

))
+
τ

2

m∑
i,j,l=1

∂

∂x

(∂fi(x)

∂x
fj(x)

)
fl(x)

2

3
aiajal +

∑
(q,r)∈S2

(
aqr

π2K2
qr

σ
(2)
1 (a) +

aqr
πKqr

σ
(2)
2 (a)

+
a2
qr

4π2K2
qr

σ
(1)
1 (a) +

a2
qr

2πKqr
σ

(1)
2 (a) +

∑
(k,p)∈S2
(k,p)6=(q,r)

(
aqr
πKqr

akp
πKkp

σ
(1)
3 (a) +

aqrakp
π2

σ
(1)
4 (a)

))

+
1

π2

∑
(q,r,s)∈S3

aqrsσ(2)
3 (a) + a2

qrsσ
(1)
5 (a) +

∑
(k,p,z)∈S3

(q,r,s)6=(k,p,z)

aqrsakpzσ
(1)
6 (a)


+

1

π2

∑
(q,r)∈S2
(k,p,z)∈S3

akpz

(
aqr
Kqr

σ
(1)
7 (a) + aqrKqrσ

(1)
8 (a) + aqrσ

(1)
9 (a)

)}
,

where K3qrs = K2
2qrs−K2

1qrs, σ
(2)
k are quadratic forms with respect to ai, and σ

(1)
s are linear forms

with respect to ai, i = 1,m:

σ
(2)
1 (a) = aiajδlq + ajalδiq − 2aialδjq, σ

(2)
2 (a) = aiajδlr − ajalδir,
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σ
(2)
3 (a) = aiaj

(
δlq
K2

1qrs

+
πδlr
K2qrs

+
πδlsK2qrs

K3qrs

)
+ ajal

(
δiq
K2

1qrs

− πδir
K2qrs

− πδisK2qrs

K3qrs

)
− 2aialδjq

K2
1qrs

,

σ
(1)
1 (a) = ai(δjqδlq + 3δjrδlr) + al(δiqδjq + 3δirδjr)− 2aj(δiqδlq + 3δirδlr),

σ
(1)
2 (a) = ai(δjrδlq − δjqδlr) + al(δirδjq − δiqδjr),

σ
(1)
3 (a) =

K2
kpδjr

K2
kp −K2

qr

(aiδlp − alδip)− ajδirδlp, σ
(1)
4 (a) =

aiδjqδlk − alδiqδjk
K2
kp −K2

qr

,

σ
(1)
5 (a) =

1

4K2
1qrs

(aiδjqδlq + alδiqδjq − 2ajδiqδlq) +
3

4K2
2qrs

(aiδjrδlr + alδirδjr − 2ajδirδlr)

+
δjr

4K2
2qrs −K2

1qrs

(aiδls + alδis)−
K2

1qrs + 5K2
2qrs

8K3qrs
(aiδjsδls + alδisδjs − 2ajδisδls)

−
3δjsK

2
2qrs

K3qrs(K1qrs2 − 4K2
2qrs)

(aiδlr + alδir)−
aj

K3qrs
(δirδls + δisδlr),

σ
(1)
6 (a) =

δjq
K2

1kpz −K2
1qrs

(aiδlk + alδik) +
δjrK2kpz

K2qrs(K2
2kpz −K2

2qrs)
(aiδlp + alδip)

+
K2kpz(

(K1kpz +K2kpz)2 −K2
2qrs

)(
(K1kpz −K2kpz)2 −K2

2qrs

) (δjr(K3kpz −K2
2qrs)

K2qrs
(aiδlp

+alδip)−
δjzK2qrs(3K

2
1kpz +K2

2kpz −K2
2qrs)

K3kpz
(aiδlr + alδir)

)
+
δjsK2kpz

2
(aiδlz + alδiz)

×

(
(K1qrs−K2qrs)

2−K3kpz

(K1qrs−K2qrs)
(
(K1kpz+K2kpz)2−(K1qrs−K2qrs)2

)(
(K1kpz−K2kpz)2−(K1qrs−K2qrs)2

)
+

(K1qrs+K2qrs)
2−K3kpz

(K1qrs+K2qrs)
(
(K1kpz+K2kpz)2−(K1qrs+K2qrs)2

)(
(K1kpz−K2kpz)2−(K1qrs+K2qrs)2

))

− aj
(

δirδlp
K2qrsK2kpz

+
δisδlzK2qrsK2kpz

K3qrsK3kpz
+
K2kpz(δirδlz + δizδlr)

K2qrsK3kpz

)
,

σ
(1)
7 (a) =

δjrK2kpz

K2
2kpz −K2

qr

(aiδlp + alδip)−
δjrK2kpz(K

2
qr −K3kpz)(

(K1kpz+K2kpz)2−K2
qr

)(
(K1kpz−K2kpz)2−K2

qr

)(aiδlz

+ alδiz)− aj
(
K2kpz

K3kpz
(δirδlz + δlrδiz) +

δirδlp + δlrδip
KqrK2kpz

)
,

σ
(1)
8 (a) =

δjp
K2kpz(K2

qr −K2
2kpz)

(aiδlr + alδir)

−
δjzKqrKkpz(3K

2
1kpz +K2

2kpz −K2
qr)

K3kpz

(
(K1kpz+K2kpz)2−K2

qr

)(
(K1kpz−K2kpz)2−K2

qr

)(aiδlr + alδir),

σ
(1)
9 (a) =

ai(δjqδlk − δlqδjk) + al(δjqδik − δiqδjk)
K2

1kpz −K2
qr

.
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The expression for Ω̃(ã, x) is as follows:

Ω̃(ã, x) =

m∑
i,j=1

∂fi(x)

∂x
fj(x)

{
ãiãj

2
+

∑
(q,r)∈S2
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