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Abstract

We consider model order reduction for bilinear descriptor systems using an in-
terpolatory projection framework. Such nonlinear descriptor systems can be
represented by a series of generalized linear descriptor systems (also called sub-
systems) by utilizing the Volterra-Wiener approach [Rugh, 1981]. Standard
projection techniques for bilinear systems utilize the generalized transfer func-
tions of these subsystems to construct an interpolating approximation. However,
the resulting reduced-order system may not match the polynomial parts of the
generalized transfer functions. This may result in an unbounded error in terms
of H2 or H∞ norms. In this paper, we derive an explicit expression for the poly-
nomial part of each subsystem by assuming a special structure of the bilinear
system which reduces to an index-1 linear descriptor system or differential alge-
braic equation (DAE) if the bilinear terms are zero. This allows us to propose
an interpolatory technique for bilinear DAEs which not only achieves interpola-
tion, but also retains the polynomial parts of the bilinear systems. The approach
extends the interpolatory technique for index-1 linear DAEs [Beattie/Gugercin,
2009] to bilinear DAEs. Numerical examples are used to illustrate the theoret-
ical results.

Keywords: Krylov subspace, Bilinear systems, Descriptor systems, Model
order reduction, Moment-matching, Transfer functions.

1. Introduction

The importance of model order reduction arises in the analysis of high order
mathematical models that describe complex dynamical systems. These high
order models are often expensive to analyze and therefore, they are replaced
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by reduced-order systems to simulate the approximate behavior of the actual5

system. Various approaches have been developed for model order reduction,
see, e.g., [1, 2, 3, 4]. In case of linear systems, balanced truncation [5], moment-
matching methods [6] and the iterative rational Krylov method [7] are well-
used and well-established model reduction methods. However, most practical
systems have nonlinearities and model reduction of such systems, particularly10

models described by differential algebraic equations (DAEs), also called descrip-
tor systems, are less developed and require further research.

In this paper, we investigate Krylov projection methods for bilinear descrip-
tor systems. In general, a bilinear descriptor system has the form

Eẋ(t) = Ax(t) +

m∑
i=1

N (i)x(t)ui(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output
vectors, respectively. The matrices E, A, N (i), i = 1, . . . ,m, B, C and D are
all real with dimensions determined by those of x(t), u(t) and y(t). Notice that
the bilinear terms in the system, involving the product of states and inputs,
make it a special class of nonlinear systems. Also, the matrix E might be
singular, but it is assumed that the matrix pencil αE − βA is regular, that is

det(αE − βA) 6= 0, for some (α, β) ∈ C2.

The generalized eigenvalues of the matrix pencil λE − A are defined by pairs
(αi, βi) ∈ C2\{0, 0} such that det(αiE − βiA) = 0. The pairs corresponding
to βi 6= 0 are the finite eigenvalues of the matrix pencil, given as λi = αi/βi,15

and on the other hand, the pairs corresponding to βi = 0, are called infinite
eigenvalues of the matrix pencil. In this paper, we also assume that the matrix
pencil λE − A is c-stable, that is all the finite eigenvalues of the matrix pencil
lie in the open left half plane. These assumptions are made in order to ensure
the existence and uniqueness of smooth solutions to the dynamical system for20

sufficiently smooth inputs. For more details, we refer to [8].
Moreover, if the matrix pencil λE −A is regular, then there exist nonsingu-

lar matrices X and Y , transforming the pencil into the Weierstrass canonical
form [9, 10]:

E = X

[
I 0
0 N

]
Y, A = X

[
J 0
0 J

]
Y,

where the Jordan matrix J is such that its eigenvalues coincides with the finite
eigenvalues of the matrix pencil, and N is a nilpotent matrix corresponding to
the infinite eigenvalues. If the index of nilpotency of N is ν > 0, then Nν = 0.
This nilpotency index is often called the index of the matrix pencil λE −A.25

For the nonlinear descriptor system (1), the problem of model order reduc-
tion is to derive another system with much smaller state-space dimension r � n,
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similar to (1), i.e.,

Erẋr(t) = Arxr(t) +

m∑
i=1

N (i)
r xr(t)ui(t) +Bru(t),

yr(t) = Crxr(t) +Dru(t)

(2)

such that the output behavior and some important properties of (1) are re-
tained by (2) for an admissible set of input functions u(t). The reduced-order
system (2) can be obtained via projections as follows:

� Construct basis matrices V ∈ Rn×r and W ∈ Rn×r for the subspaces V
and W respectively.30

� Approximate x(t) by V xr(t).

� Ensure the Petrov-Galerkin condition:

WT

(
EV ẋr(t)−AV xr(t)−

m∑
i=1

N (i)V xr(t)ui(t)−Bu(t)

)
= 0.

As a result, the state matrices associated with the reduced-order system (2) are
given by

Er = WTEV, Ar = WTAV, N (i)
r = WTN (i)V,

Br = WTB, Cr = CV.

Clearly, for a given system, the reduced-order system obtained via projection
depends on the choice of V and W , or equivalently, on the subspaces V and W.
If the matrix E is the identity matrix or nonsingular, these basis matrices and
the resulting reduced-order system can be computed by extending the standard35

balanced truncation and interpolatory projection methods from linear to bilin-
ear systems [11, 12, 13, 14, 15, 16, 17, 18]. The bilinear version of balanced
truncation involves the solutions of two generalized Lyapunov equations, which
are known to be computationally complex [14]. However, in [19, 20] effective
methods for solving these Lyapunov equations are suggested. Its extension to40

the descriptor case also is an open problem, though. However, in this work, we
focus on interpolatory projection methods for descriptor systems.

Recently, for linear descriptor systems it was shown [21] that it is necessary
for interpolatory techniques to compute a reduced-order system which not only
interpolates the actual transfer function of the system, but also retains its poly-45

nomial part in order to ensure a bounded error in terms of the H2-norm. We
extend this observation to bilinear descriptor systems. The idea is to compute
a reduced-order system for a given bilinear DAE system such that the general-
ized transfer functions associated with the reduced-order and the actual bilinear
systems not only interpolate at some predefined interpolation points, but also50

match their corresponding polynomial parts. This involves, first, identifying the

3



generalized transfer functions of the bilinear DAE system which is possible by
using the Volterra series representation [22]. Secondly, we construct the basis
matrices V and W , where the first k generalized transfer functions are used,
similar to the standard interpolatory subspaces [15]. Subsequently, we identify55

the polynomial part of each generalized transfer function and finally project the
bilinear DAE system to obtain the required reduced-order system.

It is not straightforward to identify explicitly the polynomial parts of the
generalized transfer functions. In this paper, we assume a special structure of
bilinear systems which allows us to compute explicitly a constant polynomial60

part of each generalized transfer function. The special structure reduces to
an index-1 linear DAE system, if the bilinear terms are zero. In Section 2,
we first discuss interpolatory techniques for such index-1 linear DAE systems.
Its extension with the required modifications to the special class of bilinear
DAE systems is shown in Section 3, where an expression for the polynomial65

part of each generalized transfer function is also derived. In Section 4, we
discuss computational issues arising in the interpolatory technique proposed in
Section 3. Finally, in Section 5, we present numerical results to illustrate the
implementation of our approach.

2. Interpolatory Model Reduction for Linear DAEs70

In this section, we briefly review interpolatory projection methods for model
reduction of linear descriptor systems. Note that the system (1) reduces to a
linear descriptor system for N (i) = 0:

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(3)

For the ease of presentation, we mostly assume single-input single-output sys-
tems in this paper, although the results can be extended to the multi-input
multi-output case, see Section 4.3. This means that B, CT represent column
vectors and D is a scalar. Also, we denote the transfer function of (3) by G(s) :=
C(sE −A)−1B +D which can be decomposed into strictly proper (Gsp(s)) and75

polynomial (P(s)) parts, i.e., G(s) = Gsp(s) + P(s).
The problem of reducing the above linear descriptor system by interpolatory

projection has been considered recently in [21]. Therein, it was shown that
the standard interpolatory techniques for model reduction of linear DAEs will
generically produce an interpolating ODE system (reduced-order) and will not
necessarily match the polynomial part of the DAE system. This may result
in an unbounded H2 error. To overcome this issue, an idea was proposed to
identify explicitly the polynomial part of the transfer function and to ensure
that the reduced-order system retains this polynomial part by using modified
interpolatory subspaces for projection [21]. For special descriptor systems of
index 1, this can be achieved without modifying the standard interpolatory
subspaces [21]. The approach is based on the idea given in [23, 24], where
the reduced transfer function Gr(s) = Cr(sEr − Ar)

−1Br + Dr interpolates
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G(s) = C(sE − A)−1B + D with Dr 6= D, unlike for standard interpolation
methods where Dr = D. In the following, we review this idea of interpolating
with Dr 6= D for linear index-1 descriptor systems [21]. Consider a linear
descriptor system of index 1,

E11ẋ1(t) + E12ẋ2(t) = A11x1(t) +A12x2(t) +B1u(t),

0 = A21x1(t) +A22x2(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t) +Du(t),

(4)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 . By the index-1 assumption, the matrices
A22 and E11−E12A

−1
22 A21 are invertible. For an index-1 descriptor system, the

polynomial part P(s) is constant and can be determined by the following result.

Lemma 2.1. [21]. Let G(s) be the transfer function of the linear descriptor
system (4) in which A22 and E11 −E12A

−1
22 A21 are both nonsingular. Then the

polynomial part of G(s) can be written as

P = CMB +D, (5)

where

M = lim
s→∞

(sE −A)−1 =

[
0 E−1A E12A

−1
22

0 −A−122

(
I +A21E

−1
A E12A

−1
22

)] (6)

with EA = E11−E12A
−1
22 A21 and s := 2πf being the Laplace variable in which80

f is the frequency and  is the imaginary unit.

To ensure a bounded error, the reduced transfer function Gr(s) = Ĝsp(s) +

P̂(s) should not only interpolate G(s), but also match the constant part, P̂(s) =
P(s) = P. This means that the problem reduces to identify Ĝsp(s), which

interpolates Gsp(s). Note that it is easy to identify an interpolating Ĝsp(s),85

once we have an explicit expression for Gsp(s). However, the goal is to identify
an interpolating Gr(s) without explicitly constructing Gsp(s) utilizing a special
structure of the matrices E and A. The following theorem provides a possible
solution.

Theorem 2.1. [21, 23] Let G(s) be the transfer function of the linear descriptor90

system (3). Assume that the interpolation points σ and µ are given such that
sE−A and sEr −Ar are invertible for s = σ, µ. Define the projection matrices
V ∈ Cn×r and W ∈ Cn×r such that

� range (V ) = Kq
(
(σE −A)−1E, (σE −A)−1B

)
,

� range (W ) = Kq
(
(µE −A)−TET , (µE −A)−TCT

)
,95

where Kq(A,B) = span
{
B,AB, . . . ,Aq−1B

}
. Also, let F ∈ Cn×1 and G ∈ Cn×1

be solutions to
FTV = (er1)T and WTG = er1 (7)
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in which, er1 is the first column of the r× r identity matrix. Then, projection of
the intermediate system G̃(s) = C̃(sẼ − Ã)−1B̃ + D̃,

Ẽ = E, Ã = A+GD̂FT , B̃ = B −GD̂, C̃ = C − D̂FT , D̃ = P,

where D̂ = P−D, results in a reduced-order system Gr(s) = Cr(sEr−Ar)−1Br+
Dr, in which:

Er = WT ẼV, Ar = WT ÃV, Br = WT B̃, Cr = C̃Vr, Dr = D̃.

Assuming that Er is invertible, the polynomial parts of Gr(s) and G(s) match,
that is Dr = P. Also, Gr(s) satisfies the following interpolation conditions:

G(l)(σ) = G(l)r (σ), G(l)(µ) = G(l)r (µ), l = 0, . . . , q − 1,

Moreover, if σ = µ, then

G(l)(σ) = G(l)r (σ), l = 0, . . . , 2q − 1.

Remark 2.1. The reduced transfer function Gr(s) is not only interpolating G(s)
with Dr 6= D (unlike for standard interpolation methods), but also matches the
polynomial part of G(s), that is Dr = P. This is possible by first computing the
constant polynomial part P of G(s), then constructing the intermediate system
G̃(s) with D̃ = P, and subsequently, applying oblique projection to G̃(s) with100

standard interpolatory subspaces V and W associated with G(s).

Remark 2.2. Theorem 2.1 does not require the explicit computation of F and
G in order to compute the reduced-order system. The expressions for WTG and
FTV can be substituted directly from (7).

Remark 2.3. In case of Hermite interpolation with m distinct interpolation
points (i.e., using σi and µi, i = 1, . . . ,m), the conditions on F and G become

FTV = [ 1, 1, . . . , 1︸ ︷︷ ︸
m times

] and WTG = [ 1, 1, . . . , 1︸ ︷︷ ︸
m times

]T .

3. Interpolatory Model Reduction for Bilinear Descriptor Systems105

In this section, we extend the interpolatory technique with Dr 6= D as
discussed for index-1 linear DAEs to a special class of bilinear descriptor systems.
Consider a bilinear descriptor system, where the matrix pencil λE − A has a
structure analogous to the index-1 linear DAE, given in (4). That is,

E11ẋ1(t) + E12ẋ2(t) = A11x1(t) +A12x2(t) +

2∑
i=1

N1ixi(t)u(t) +B1u(t),

0 = A21x1(t) +A22x2(t) +

2∑
i=1

N2ixi(t)u(t) +B2u(t),

y(t) = C1x(t) + C2x2(t) +Du(t),

(8)
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where A22 and E11−E12A
−1
22 A21 are invertible. In frequency domain, the input-

output representation of the bilinear system is given by the Volterra series rep-
resentation of the system. Each term of the Volterra series can be considered
as a subsystem of the bilinear descriptor system and involves generalized multi-
variate transfer functions. The structure of these multivariate transfer functions
corresponding to the kth subsystem in the so-called regular form is given as

H(s1, . . . , sk) = C(skE−A)−1N(sk−1E−A)−1N · · ·N(s1E−A)−1B+Dδ(k−1),
(9)

where δ(l) = 1, if l = 0, and δ(l) = 0, otherwise. The next lemma shows that
each subsystem of (8) has a constant polynomial part.

Lemma 3.1. Let H(s1, . . . , sk) be defined as in (9), that is the regular multi-
variate Laplace transform of the degree-k kernel associated to Σ, where A22 and
E11 − E12A

−1
22 A21 are both nonsingular. Then, the constant polynomial part of

H(s1, . . . , sk) is given by

Dk = C(MN)k−1MB +Dδ(k − 1), (10)

where M is as defined in (6).

Proof. Let F (Sk) = F (s1, . . . , sk) be the multivariable function

F (Sk) = (skE −A)−1N(sk−1E −A)−1N · · ·N(s1E −A)−1B, (11)

then the polynomial part of H(Sk) is given by

Dk = C lim
Sk→∞

F (Sk) +Dδ(k − 1). (12)

Note that for k = 1, (11) reduces to the linear case and using (6) we have

lim
S1→∞

F (s1) = lim
s1→∞

(s1E −A)−1B = MB. (13)

It is easy to see from (12) that (10) holds for k = 1 (analog to the linear case).
Now for k = j ≥ 1, assume that

lim
Sj→∞

F (Sj) = (MN)j−1MB. (14)

We need to show that the above equation holds for k = j + 1. Note that

F (Sj+1) = (sj+1E −A)−1NF (Sj).

Taking the limit Sj+1 →∞, we have

lim
Sj+1→∞

F (Sj+1) = lim
sj+1→∞

(sj+1E −A)−1N lim
Sj→∞

F (Sj)

= lim
sj+1→∞

(sj+1E −A)−1N(MN)j−1MB,

7



where the last equation follows from (14). Now, we define

BMN = N(MN)j−1MB

and use (6) to obtain

lim
Sj+1→∞

F (Sj+1) = lim
sj+1→∞

(sj+1E −A)−1BMN = MBMN = (MN)jMB.

Thus, (12) implies that (10) holds.

Lemma 3.1 suggests that if

N =

[
N11 N12

0 0

]
, where N11 ∈ Rn1×n1 and N12 ∈ Rn1×n2 , (15)

then Dk = 0 for k > 1 and P = D1 = CMB+D. This means that only the first110

subsystem has polynomial part and all other subsystems have zero polynomial
parts. The next subsection addresses the issue of retaining the polynomial part,
D1, in the first subsystem of the reduced bilinear system.

3.1. Interpolating a bilinear descriptor system and retaining D1

We begin with outlining the standard interpolatory projection, where Dr =115

D.

Theorem 3.1. [15] Consider arbitrary interpolation points σi, µi ∈ C such
that sE −A and sEr −Ar are invertible for s = σi, µi, i = 1, . . . , k. Define the
projection matrices V and W as follows:

range
(
V (1)

)
= Kq

(
(σ1E −A)−1E, (σ1E −A)−1B

)
,

range
(
V (i)

)
= Kq

(
(σiE −A)−1E, (σiE −A)−1NV (i−1)

)
, i = 2, . . . , k,

range
(
W (1)

)
= Kq

(
(µ1E −A)−TET , (µ1E −A)−TCT

)
,

range
(
W (i)

)
= Kq

(
(µiE −A)−TET , (µiE −A)−TNTW (i−1)

)
, i = 2, . . . , k,

range (V ) =

k⋃
i=1

{
range

(
V (i)

)}
, range (W ) =

k⋃
i=1

{
range

(
W (i)

)}
.

Assume V and W are full column rank matrices. Construct the reduced-order
system matrices as:

Er = WTEV, Ar = WTAV, Nr = WTNV,
Br = WTB, Cr = CV, Dr = D,

then

H(Sk) = Hr(Sk) +O ((s1 − µ1)q · · · (sk − µk)q(s1 − σ1)q · · · (sk − σk)q) .

8



Remark 3.1. It was shown in [15] that the choice of the projection matrices V120

and W in Theorem 3.1 also yields the matching of additional moments which
involve WTEV and WTNV .

Our aim is to utilize the basis matrices V and W as given in Theorem 3.1
and extend the approach used in Theorem 2.1 to the bilinear descriptor system
(8), with N21 = N22 = 0 as in (15). The following theorem provides a possible125

solution.

Theorem 3.2. Let V and W be as defined in Theorem 3.1 and assume that the
structure of the matrix N is as in (15). Also, let F ∈ Cn×1 and G ∈ Cn×1 be
solutions to

FTV = (er1)T and WTG = er1, (16)

where r is the order of the reduced-order system. Then, projection of the inter-
mediate system Σ̃(Ẽ, Ã, Ñ , B̃, C̃, D̃)

Ẽ = E, Ã = A+GD̂FT , Ñ = N,

B̃ = B −GD̂, C̃ = C − D̂FT , D̃ = CMB +D,

where D̂ = CMB, results in a reduced-order system Σr(Er, Ar, Nr, Br, Cr, Dr)130

in which

Er = WT ẼV, Ar = WT ÃV, Nr = WT ÑV,

Br = WT B̃, Cr = C̃Vr, Dr = D̃.

Assuming nonsingular Er, the polynomial parts of the first subsystem associated
with the reduced and original bilinear systems are matched. Also

H(Sk) = Hr(Sk) +O ((s1 − µ1)q · · · (sk − µk)q(s1 − σ1)q · · · (sk − σk)q) .

Proof. For the first subsystem, the result reduces to Theorem 2.1. However, for
the sake of completeness, we derive its proof in the following:

H(σ1)−Hr(σ1) = C
(
(σ1E −A)−1B − V (σ1Er −Ar)−1Br

)
− D̂ + D̂FTV (σ1Er −Ar)−1Br.

(17)

We now consider

V (σ1Er −Ar)−1Br = V (σ1Er −Ar)−1WT (B −GD̂)

= V (σ1Er −Ar)−1WT (σ1E −A−GD̂FT )(σ1E −A)−1B.

Note that Pσ = V (σEr − Ar)−1WT (σE − A −GD̂FT ) is an oblique projector
onto range(V ) and let z ∈ range(V ), then Pσz = z. This implies,

V (σ1Er −Ar)−1Br = Pσ1
(σ1E −A)−1B = (σ1E −A)−1B. (18)

9



Thus, the equation (17) becomes

H(σ1)−Hr(σ1) = −D̂ + D̂FT (σ1E −A)−1B.

Now from (16), we have FT (σ1E −A)−1B = 1 and this proves the matching at
σ1 for the first subsystem. Similarly, H(µ1) = Hr(µ1) holds. Next, we consider
the second subsystem

H(σ1, σ2)−Hr(σ1, σ2) = C
(
(σ2E −A)−1N(σ1E −A)−1B

− V (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br
)

+ D̂FTV (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br.
(19)

Since

V (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br︸ ︷︷ ︸
zr

= V (σ2Er −Ar)−1WTNV (σ1Er −Ar)−1Br,

this leads to

V zr = V (σ2Er −Ar)−1WTN(σ1E −A)−1B,

by using (18). Now using (16), the above equation becomes

V zr = V (σ2Er −Ar)−1WT
(

(σ2E−A)−GD̂FT
)

(σ2E −A)−1N(σ1E −A)−1B

= Pσ2
(σ2E −A)−1N(σ2E −A)−1B = (σ2E −A)−1N(σ1E −A)−1B.

Employing the above relation in (19), we have

H(σ1, σ2)−Hr(σ1, σ2) = D̂FT (σ2E −A)−1N(σ1E −A)−1B.

From (16), we know FT (σ2E −A)−1N(σ1E −A)−1B = 0. Hence, H(σ1, σ2) =
Hr(σ1, σ2). Similarly, H(µ1, µ2) = Hr(µ1, µ2). Analogously, we can deal with
subsystems of higher order and higher derivatives.135

3.2. Interpolating a bilinear descriptor system and retaining the polynomial
parts of the first k subsystems

So far, we have discussed how an interpolatory technique can retain the
polynomial part of the first subsystem in the reduced bilinear system by as-
suming that the higher order subsystems have zero polynomial parts. In this
section, we consider a general case where the higher order subsystems also have
non-zero polynomial parts. The goal is to construct a reduced bilinear system
that retains the polynomial parts (non-zero) of the first k subsystems associated
with the original bilinear system, in addition to interpolating these subsystems.
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As discussed in the preceding section, the structure of the kth subsystem of the
reduced bilinear system can be written as

Hr(s1, . . . , sk) =Cr(skEr −Ar)−1Nr(sk−1Er −Ar)−1Nr · · ·
· · ·Nr(s1Er −Ar)−1Br +Dk,

(20)

in which Er is nonsingular and Dk is the polynomial part of the kth subsystem
of the original bilinear system. This means that the reduced bilinear system
ensures matching of the polynomial parts of the first k subsystems corresponding140

to the original bilinear system. However, we also need to ensure interpolation for
these subsystems. The following theorem provides our main result for achieving
this.

Theorem 3.3. Let V and W be as defined in Theorem 3.1 and define interme-
diate matrices:145

Ẽ = E, Ã = A+ LA, Ñ = N − LN ,

B̃ = B − LB , C̃ = C − LC ,
where LA, LN , LB and LC are solutions to the following equations:

WTLB =
[
D̂1(eq1)T , D2(eq

2

1 )T , . . . , Dk(eq
k

1 )T
]T
, (21a)

LCV =
[
D̂1(eq1)T , D2(eq

2

1 )T , . . . , Dk(eq
k

1 )T
]
, (21b)

LAV =
[
LB(eq1)T , LN

[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
, (21c)

WTLA =
[
LTC(eq1)T , LTN [W 1(Iq ⊗ (eq1)T ), . . . ,W k−1(Iqk−1 ⊗ (eq1)T )]

]T
(21d)

in which D̂1 = D1 −D and eq
j

1 is the first column of the identity matrix of the
size qj × qj. Then, projection of the intermediate system results in a reduced-
order system:

Er = WT ẼV, Ar = WT ÃV, Nr = WT ÑV,

Br = WT B̃, Cr = C̃V,
150

that satisfies

H(Sk) = Hr(Sk) +O ((s1 − µ1)q · · · (sk − µk)q(s1 − σ1)q · · · (sk − σk)q) .

Proof. Consider the first subsystem at s1 = σ1:

H(σ1)−Hr(σ1) = C
(
(σ1E −A)−1B − V (σ1Er −Ar)−1Br

)
+ LCV (σ1Er −Ar)−1Br − (D1 −D︸ ︷︷ ︸

D̂1

). (22)

Since V (σ1Er − Ar)
−1Br = V (σ1Er − Ar)

−1WT (B − LB) and from (21c),
LA(σ1E −A)−1B = LB , this yields

V (σ1Er −Ar)−1Br = V (σ1Er −Ar)−1WT ((σ1E −A)− LA)(σ1E −A)−1B.
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Now, introducing the oblique projector

Pσ = V (σEr −Ar)−1WT ((σE −A)− LA)

and utilizing Pσz = z for z ∈ range(V ), we get

V (σ1Er −Ar)−1Br = Pσ1
(σ1E −A)−1B = (σ1E −A)−1B. (23)

Using this in (22), we get

H(σ1)−Hr(σ1) = LC(σ1E −A)−1B − D̂1.

From (21b), LC(σ1E − A)−1B = D̂1. Hence, H(σ1) = Hr(σ1). Similarly,
H(µ1) = Hr(µ1) holds. Now, consider the second subsystem

H(σ1, σ2)−Hr(σ1, σ2) = C
(
(σ2E −A)−1N(σ1E −A)−1B

− V (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br
)

+ LCV (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br −D2.
(24)

Hence,

V (σ2Er−Ar)−1Nr(σ1Er−Ar)−1Br︸ ︷︷ ︸
ẑr

=V (σ2Er−Ar)−1WT (N−LN )V (σ1Er−Ar)−1Br
= V (σ2Er −Ar)−1WT (N − LN )(σ1E −A)−1B,

where the last equation follows from (23). Now, (21c) implies

LA(σ2E −A)−1N(σ1E −A)−1B = LN (σ1E −A)−1B.

Thus,

V ẑr = V (σ2Er −Ar)−1WT ((σ2E −A)− LA) (σ2E −A)−1N(σ1E −A)−1B,

= Pσ2(σ2E −A)N(σ2E −A)−1B = (σ2E −A)N(σ1E −A)−1B.

We make use of the above equality in (24) to obtain

H(σ1, σ2)−Hr(σ1, σ2) = LC(σ2E −A)−1N(σ1E −A)−1B −D2.

From (21b), we know that LC(σ2E − A)−1N(σ1E − A)−1B = D2. Therefore,
H(σ1, σ2) = Hr(σ1, σ2). Similarly, H(µ1, µ2) = Hr(µ1, µ2). Using analogous
steps, we can also deal with higher subsystems and higher derivatives.

4. Computational Issues and Time-Domain Representation of the
Reduced-Order System155

In this section, we discuss the computational issues associated with the inter-
mediate system Σ̃, the time-domain representation of the reduced-order system,
and an extension of the proposed technique to multi-input multi-output bilinear
systems.
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4.1. Computational issues160

Before we proceed towards investigating computational issues, we discuss
the condition for the existence of a simultaneous solution of two given linear
systems in the following lemma which helps us determining the condition for
the existence of the solutions of (21a)–(21d).

Lemma 4.1. Consider the matrices Ai,Bi ∈ Rn×r, i = {1, 2} and X ∈ Rn×n,
where n ≥ r, that satisfy the following two linear equations:

AT1X = BT1 , (25a)

XA2 = B2. (25b)

If AT1 B2 = BT1 A2, then there exists an X that satisfies (25a) and (25b), else it165

is not possible to determine an X, satisfying both (25a) and (25b).

Proof. We first recall an important property of the Kronecker product and vec-
torization

vec
(
X̃Ỹ Z̃

)
= (Z̃T ⊗ X̃) vec

(
Ỹ
)
,

where vec (·) denotes the reshaping of a matrix into a column vector by putting
each column of the matrix at the bottom of the previous column. See, e.g,
[25, 26] for more details on the Kronecker product. Using the vec (·) operation
on both sides of (25a) and (25b) leads to[

In ⊗AT1
AT2 ⊗ In

]
Xv =

[
vec
(
BT1
)

vec (B2)

]
, (26)

where Xv = vec (X) and Iq is the identity matrix of size q × q. Next, we define
the matrix

M =

AT
2 ⊗ Ir 0
P ⊗ Ir 0

0 Ir ⊗AT
1

0 Ir ⊗Q

,
where P,Q ∈ R(n−r)×n such that the matrix M is invertible. Multiplying M on
both sides of (26) yields

AT2 ⊗AT1
P ⊗AT1
AT2 ⊗AT1
AT2 ⊗Q


︸ ︷︷ ︸

A

Xv =


(AT2 ⊗ Ir) vec

(
BT1
)

(P ⊗ Ir) vec
(
BT1
)

(Ir ⊗AT1 ) vec (B2)
(Ir ⊗Q) vec (B2)

 =


vec
(
BT1 A2

)
(P ⊗ Ir) vec

(
BT1
)

vec
(
AT1 B2

)
(Ir ⊗Q) vec (B2)


︸ ︷︷ ︸

B

(27)

Now by using the Kronecker-Capelli theorem [27], the linear system in (27) has
a solution if and only if:

rank (A) = rank ([A,B]) . (28)

Clearly, the first and third row blocks of the matrix A are the same. Therefore,
P and Q can be chosen such that the rank of the matrix A is equal to r(2n− r)
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which is equal to the number of rows, having removed the third row block of
the matrix A. In order to have the same rank for the matrix [A,B], the first
and the third row blocks of the matrix B should also be the same. This leads
to the following condition:

BT1 A2 = AT1 B2. (29)

One can verify that if the above condition (29) is fulfilled, then rank ([A,B])
is also equal to r(2n − r). This means that the system (27) has a solution, if
r ≤ n.

On the other hand, if the condition (29) is not satisfied, then rank ([A,B])170

is also equal to r(2n− r) + 1, implying that the system (27) does not have any
solution. Hence, it is not possible to determine an X that satisfies both (25a)
and (25b).

Coming back to computational issues related to the solutions of (21a)–(21d),
LB and LC are independent of other unknowns, therefore they can be easily
computed. However, the main issue lies in the computation of LA and LN .
These matrices require the simultaneous solution of (21c) and (21d) for given LB
and LC . Next, using Lemma 4.1, we derive a necessary and sufficient condition,
called the compatibility condition to ensure the existence of the simultaneous
solution. This follows by equating the right hand sides of (21c) and (21d) after
pre-multiplying by WT and post-multiplying by V , respectively:

WT
[
LB(eq1)T , LN

[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
= [LTC(eq1)T , LTN [W 1(Iq ⊗ (eq1)T ), . . . ,W k−1(Iqk−1 ⊗ (eq1)T )]]TV.

(30)

The following theorem guarantees that the above compatibility condition is
satisfied.175

Theorem 4.1. Assume LB and LC satisfy (21a) and (21b), respectively, and
let LN ∈ Rn×n satisfy

WTLNV = T

 D2 · · · Dk+1

...
. . .

...
Dk+1 · · · D2k

 T T , (31)

where T =
k−1∑
i=0

(er1+qi)
T ⊗ eki+1, r = q + · · · + qk is the order of the reduced-

order system and Dj is the polynomial part of the jth subsystem. Then, the
compatibility condition (30) is satisfied.

Proof. Consider the first row of the block matrix given in (30):(
W 1
)T [

LB(eq1)T , LN
[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
= eq1LCV.
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To show that the above equation holds, we use (21a) and (31)(
W 1
)T [

LB(eq1)T , LN
[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
= [eq1D̂1(eq1)T , eq1D2(eq1)T (Iq ⊗ (eq1)T ), . . . , eq1Dk(eq

k−1

1 )T (Iqk−1 ⊗ (eq1)T )]

= eq1[D̂1(eq1)T , D2(eq1)T ⊗ (eq1)T , . . . , Dk(eq
k−1

1 )T ⊗ (eq1)T ]

= eq1[D̂1(eq1)T , D2(eq
2

1 )T , . . . , Dk(eq
k

1 )T ]

= eq1LCV,

where the last equality follows from (21b). Now consider the ith row of the
block matrix in (30):(

W i
)T [

LB(eq1)T , LN
[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
=
[
LTNW

i−1(Iqi−1 ⊗ (eq1)T )
]T
V

=
[
eq

i

1 Di(e
q
1)T , eq

i

1 Di+1(eq1)T (Iq ⊗ (eq1)T ), . . . ,

eq
i

1 Di+k−1(eq
k−1

1 )T (Iqk−1 ⊗ (eq1)T )
]

= (Iqi−1 ⊗ (eq1)T )T eq
i−1

1

[
Di(e

q
1)T , Di+1(eq

2

1 )T , . . . , Di+k−1(eq
k

1 )T
]

=: R.

Using the condition on LN given in (31), we obtain

R = (Iqi−1 ⊗ (eq1)T )T
[
(W i−1)TLNV

1, (W i−1)TLNV
2, . . . , (W i−1)TLNV

k
]

= (Iqi−1 ⊗ (eq1)T )T
[
(W i−1)TLNV

1, (W i−1)TLNV
2, . . . , (W i−1)TLNV

k
]

=
[
LTNW

i−1(Iqi−1 ⊗ (eq1)T )T
]T
V.

This means that each row of the block matrix corresponding to the left and
right side of the compatibility condition given in (30) is equal. Therefore, if LN180

is chosen to satisfy the assumption (31), then it is ensured that (30) holds.

Remark 4.1. It is interesting to see that in order to compute the reduced-order
system, we do not need to compute explicitly the matrices LA, LN , LB and LC .
We only require the expressions for WTLB, LCV , WTLAV and WTLNV . One
can substitute WTLB and LCV directly from (21a) and (21b). The expression185

of WTLNV can be easily identified by using (31). Similarly, one can obtain the
expression of WTLAV without explicitly computing LA by pre-multiplying (21c)
by WT , and using (31) and (21a).

Now, we summarize the complete methodology of computing the reduced-
order system for the system (8) in Algorithm 1.190

Remark 4.2. As shown in [15], two-sided projections might lead to much better
approximation, since more multi-moments are matched for higher order subsys-
tems. The same holds for the proposed modified Krylov subspace technique. To
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Algorithm 1 Interpolatory Model Reduction for Bilinear Systems.

1: Input: E,A,N,B,C,D, [σ1, · · · , σk], [µ1, · · · , µk], q.
2: Output: Er, Ar, Nr, Br, Cr.
3: Construct V and W according to Theorem 3.1.
4: Compute the polynomial part of the kth subsystem

Dk = C(MN)k−1MB +Dδ(k − 1).
5: Identify the expression of WTLB , LCV , WTLAV and WTLNV as:

WTLB =
[
D̂1(eq1)T , D2(eq

2

1 )T , . . . , Dk(eq
k

1 )T
]T

=: RB , D̂1 = D1 −D,
WTLB =

[
D̂1(eq1)T , D2(eq

2

1 )T , . . . , Dk(eq
k

1 )T
]

=: RC ,

WTLNV = T

 D2 · · · Dk+1

...
. . .

...
Dk+1 · · · D2k

 T T =: RN ,

where T =
k−1∑
i=0

(er1+qi)
T ⊗ eki+1, r =

∑k
i=1 q

i + · · ·+ qk, and

WTLAV =
[
RB(eq1)T , RN (:, 1 : q)(Iq ⊗ (eq1)T ), . . . ,

RN (:, q + · · ·+ qk−1 + (1 : qk))(Iqk−1 ⊗ (eq1)T )
]

=: RA.
6: Compute the reduced model as:

Er = WTEV , Ar = WTAV +RA, Nr = WTNV −RN ,
Br = WTB −RB , Cr = CV −RC .

see this, we consider an example similar to the one used in [15]. Let us assume
the projection subspaces V and W are as follows:

span(V )=span
{
A−1B, . . . , (A−1E)5A−1B,A−1NA−1B,A−1N(A−1E)A−1B

}
,

span(WT )=span
{
CA−1, . . ., C(A−1E)5A−1, CA−1NA−1, C(A−1E)A−1NA−1

}
.

According to Theorem 3.3, the reduced-order system preserves 12 multi-moments
of the first subsystem

C(A−1E)l1A−1B +Dδ(l1) = CTr (A−1r Er)
l1A−1r Br +D1δ(l1),

where l1 = 0, . . . , 11. For the second subsystem, 29 multi-moments are matched

C(A−1E)l2A−1N(A−1E)l1A−1B = CTr (A−1r Er)
l2A−1r Nr(A

−1
r Er)

l1A−1r Br

+D2δ(l1)δ(l2),

where l1, l2 = 0, 1, . . . , 5 or l1 = 6, l2 = 0, 1 and l1 = 0, 1, l2 = 6. For the third
subsystem, 37 multi-moments are matched

C(A−1E)l3A−1N · · ·N(A−1E)l1A−1B

= CTr (A−1r Er)
l3A−1r Nr · · ·Nr(A−1r Er)

l1A−1r Br+D3δ(l1)δ(l2)δ(l3),
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where l1 = 0, 1, . . . , 5, l2 = 0, l3 = 0, 1 or l1 = 0, 1, l2 = 0, l3 = 2, 3, 4, 5 or
l1 = 0, 1, l2 = 1, l3 = 0, 1. For the fourth subsystem, 4 multi-moments are
matched

C((A−1E)l4A−1N · · ·N(A−1E)l1A−1B

= Cr((A
−1
r Er)

l4A−1r Nr · · ·Nr(A−1r Er)
l1A−1r Br +D4δ(l1)δ(l2)δ(l3)δ(l4),

where l1 = 0, 1, l2 = 0, l3 = 0, l4 = 0, 1.

4.2. Time-domain representation

Till now, we have shown how to achieve interpolation for the leading k
subsystems along with retaining their polynomial parts. In this subsection, we
derive the time-domain representation of the reduced bilinear system whose kth
order subsystem is of the form given in (20). The following theorem summarizes195

our results.

Theorem 4.2. Given a bilinear system, whose kth order transfer function has
the form given in (20). Then, the time-domain representation of this bilinear
system can be written as

Erẋr(t) = Arxr(t) +Nrxr(t)u(t) +Bru(t),

yr(t) = Crxr(t) +

∞∑
k=1

Dku
k(t).

(32)

Proof. We begin with the kth order transfer function

Hr(s1, . . . , sk) = Cr(skEr −Ar)−1Nr(sk−1Er −Ar)−1Nr · · ·
· · ·Nr(s1Er −Ar)−1Br +Dk,

= Ĉ(skIr − Â)−1N̂(sk−1Ir − Â)−1N̂ · · ·
· · · N̂(s1Ir − Â)−1B̂ +Dk, (33)

where

Â = E−1r Ar, N̂ = E−1r Nr, B̂ = E−1r Br and Ĉ = Cr. (34)

By utilizing the multivariate inverse Laplace transform on (33), we obtain the
regular Volterra kernel as:

hk(t1, t2, . . . , tk) = ĈeÂtkN̂eÂtk−1N̂ · · · N̂eÂt1B̂ +Dkδ(tk)δ(tk−1) · · · δ(t1).
(35)

As discussed in [22], the output yr(t) of a nonlinear system can be described in
terms of the Volterra kernel hk(t1, t2, . . . , tk) and input u(t) as follows:

yr(t) =

∞∑
k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

hk(t1, t2, . . . , tk)u(t−
k∑
i=1

ti) · · ·u(t− tk)dtk · · · dt1.
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Substituting (35) in the above equation, we can write

yr(t) = y(1)r (t) + y(2)r (t),

where

y(1)r (t)=

∞∑
k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

ĈeÂtkN̂ · · · N̂eÂt2N̂eÂt1B̂u(t−
k∑

i=1

ti) · · ·u(t− tk)dtk · · · dt1,

y(2)r (t)=

∞∑
k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

Dkδ(tk)δ(tk−1) · · · δ(t1)u(t−
k∑

i=1

ti) · · ·u(t− tk)dtk · · · dt1.

The response y
(1)
r (t) is simply the Volterra series representation of a bilinear

ODE system with zero initial condition [22]. This means that corresponding to

y
(1)
r (t), we have

ẋr(t) = Âxr(t) + N̂xr(t)u(t) + B̂u(t),

y(1)r (t) = Ĉxr(t), xr(0) = 0.
(36)

For y
(2)
r (t), we use the properties of the Dirac delta function [28] which leads to

y(2)r (t) =

∞∑
k=1

Dku(t) · · ·u(t) =

∞∑
k=1

Dku
k(t).

By combining the responses y
(1)
r (t) and y

(2)
r (t) and substituting the expression

for Â, N̂ , B̂ and Ĉ from (34), we obtain a bilinear system as in (32) and this200

proves the theorem.

Since the output equation in (32) contains the sum of an input dependent
infinite series, we need to compute the summation at each time step. This
increases the computational cost and may destroy the effect of the model re-
duction procedure. In the following, we discuss some cases where this infinite205

summation can be computed cheaply.

Case 1: For the particular structure of N as in (15), Dk = 0 for all k > 1.

Thus
∞∑
k=1

Dku
k(t) reduces to D1u(t), which is computationally cheap.

Case 2: There are some applications where the input u(t) can be considered
constant or unity (u(t) = α or u(t) = 1). These scenarios may appear, for
example in the parameter varying systems [29]. In such a case

∞∑
k=1

Dku
k(t) = D1α+D2α

2 +D3α
3 · · · .
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Substituting the expression of Dk from Lemma 3.1 in the above equation,
we get

∞∑
k=1

Dku
k(t) = (CMB +D)α+ C(MN)MBα2 + C(MN)2MBα3 + · · ·

= αC(I + αMN + α2(MN)2 + · · · )MB + αD.

Now, if we assume ‖αMN‖2 < 1, we have

∞∑
k=1

Dku
k(t) = (C(I − αMN)−1MB +D)α.

Thus, we can identify an expression of the convergent series for constant
inputs.210

Case 3: In this case, we assume convergence for ‖Dk‖, i.e.
∞∑

k=j+1

‖Dk‖<τ�1.

Then for bounded inputs, we can truncate the infinite summation after
the jth term. That is

∞∑
k=1

Dku
k(t) ≈

j∑
k=1

Dku
k(t).

Thus, we can save the computations associated with
∞∑

k=j+1

Dku
k(t).

4.3. Interpolation of multi-input multi-output bilinear DAEs

Thus far, we have concentrated on interpolation of single-input single-output
bilinear systems for simplicity of notation. Nonetheless, it can be extended to
multi-input multi-output bilinear systems, where the notation becomes much
more difficult to handle. Therefore, we consider interpolation of the first 2
subsystems only in order to give a glimpse how the proposed methodology can be
applied to MIMO bilinear DAEs, but nonetheless one can consider interpolation
of the leading first k subsystem as well. We consider a MIMO bilinear system (1)
whose the leading four multivariate subsystems can given as follows:

H1(S1) = C(s1E −A)1B,

H2(S2) =
[
H

(1)
2 (S2), . . . , H

(m)
2 (S2)

]
,

H3(S3) =
[
H

(1,1)
3 (S3), . . . , H

(1,m)
3 (S3), H

(2,1)
3 (S3), . . . , H

(m,m)
3 (S3)

]
,

H4(S4) =
[
H

(1,1,1)
4 (S4), . . . , H

(1,1,m)
4 (S4), H

(2,1,1)
4 (S4), . . . , H

(m,m,m)
4 (S4)

]
,

where

H
(l1,...,li−1)
i (Si) = Cφ(si)Nli−1φ(si−1) · · ·Nl1φ(s1)B (37)
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with φ(si) := (siE − A)−1. Moreover, we denote the polynomial parts of

H
(l1,...,li−1)
i (Si) byD

(l1,...,li−1)
i , which can be given as follows by using Lemma 3.1:

D1 = CMB +D,

D
(l1,...,li−1)
i = CMNli−1

M · · ·Nl1MB,
(38)

where M is the same as defined in (6). Furthermore, we need to use a more
general nested structure to determine the projection matrices. For this, we
assume arbitrary interpolation points σi, µi ∈ C such that sE−A and sEr−Ar
are invertible for s = σi, µi, and define the projection matrices V and W as
follows:

range
(
V (1)

)
= Kα

(
(σ1E −A)−1E, (σ1E −A)−1B

)
,

range
(
V

(2)
i

)
= Kα

(
(σiE −A)−1E, (σiE −A)−1NiV

1
)
, i = 1, . . . ,m,

range
(
W (1)

)
= Kβ

(
(µ1E −A)−TET , (µ1E −A)−TCT

)
,

range
(
W

(2)
i

)
= Kα

(
(µiE −A)−TET , (µiE −A)−TNT

i W
1
)
, i = 1, . . . ,m,

range (V ) = range
(
V (1)

)
+

m⋃
i=1

{
range

(
V (2)
m

)}
,

range (W ) = range
(
W (1)

)
+

m⋃
i=1

{
range

(
W (2)
m

)}
.

In order to ensure the same number of columns in V and W , we choose α and
β such that mα = pβ, where p and m are the numbers of outputs and inputs,
respectively. Next, we consider LA, LN , LB and LC which are solutions to the
following set of equations:

WTLB =
[
(eα1 )T ⊗ D̂1, (e

α2

1 )T ⊗D(1)
2 , . . . , (eα

2

1 )T ⊗D(m)
2

]T
,

LCV =
[
D̂1 ⊗ (eβ1 )T , D

(1)
2 ⊗ (eβ

2

1 )T , . . . , D
(m)
2 ⊗ (eβ

2

1 )T
]
,

LAV =
[
LB ⊗ (eα1 )T , LN(1)V 1(Imα ⊗ (eα1 )T ), . . . , LN(m)V 1(Imα ⊗ (eα1 )T )

]
,

WTLA =
[
LTC ⊗ (eβ1 )T , LTN(1)W

1(Ipβ ⊗ (eα1 )T ), . . . , LTN(m)W
1(Ipβ ⊗ (eα)T )]

]T
,

in which D̂1 = D1 −D. Then, the reduced-order system can be determined as
follows:

Ê = WTEV, Â = WT (A+ LA)V, N̂i = WT (Ni − LN(i))V,

B̂ = WT (B − LB), Ĉ = (C − LC)V.

Similar to the SISO bilinear systems, the explicit computation of the matrices
LA, LN(i) , LB and LC can also be avoided in order to determine reduced-order
systems. However, for brevity of the paper, we skip the derivation for the MIMO215

case, but it can be done analogously as shown for the SISO case.
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5. Numerical Experiments

In this section, we present numerical results for model reduction of struc-
tured bilinear DAE systems using different approaches. The reduced-order sys-
tem can be computed either by direct implementation of Theorem 3.1, without220

matching the polynomial part in the reduced-order system (classical interpola-
tory technique) or by our proposed methodology which achieves the matching
of the polynomial part in addition to interpolation. All the numerical results

were simulated in MATLAB
®

version 7.11.0.584(R2010b) 64-bit (glnza64) on
Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz, 6 MB cache, 4GB RAM,225

openSUSE 12.1 (x86-64).

5.1. Artificial Example

The bilinear DAE system, that is to be reduced, is generated randomly of
order n = 100 and with partitioning n1 = 90, n2 = 10. It is ensured that the
structure of the matrix pencil λE−A is similar to the index-1 pencil of a linear230

DAE. The polynomial parts of the first 4 subsystems of the bilinear system are
D1 = 0.1472, D2 = 5 · 10−3, D3 = 1.92 · 10−4, D4 = 7.35 · 10−6, where Di is the
polynomial part of the ith subsystem. The interpolation points are selected as
σ = µ = [0, 0.5] with multiplicity q = 1 resulting in a reduced-order system of
order r = 4. We truncate the infinite summation in Lemma 4.1 after 4 terms235

since ‖Di‖ decreases exponentially.
We compute the reduced-order systems by using the classical interpolation

technique and the proposed methodology, having the same interpolation points
and multiplicities. The time-domain responses of the actual and the reduced
bilinear systems, obtained by using the implicit Euler method, are shown in240

Figure 1a for an exponential input. The relative errors associated with the two
approaches are shown in Figure 1b.
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(a) Transient response.
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Figure 1: Comparison of the time-domain simulations of the original and
reduced-order systems for an input u(t) = e−10t.
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Certainly, the reduced-order system obtained from the direct implementa-
tion shows completely different dynamics whereas the proposed methodology
captures the dynamics of the original system well.245

5.2. Nonlinear RC Circuit

As a second example, we consider a nonlinear RC circuit that represents
a modified form of the transmission line circuit proposed in [30]. The circuit
includes resistors, capacitors and diodes as shown in Figure 2.
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u
(
t
)

v1

g
(
v
) C

g(v) g(v)

v2

C C

g(v)

vn1−1

C

g(v)

vn1

C

vn1+1

R R R

vn

i
=

u
(
t
)

Figure 2: Nonlinear transmission line circuit.

All the resistances and capacities are set to 1 and all the diodes ensure
iD = e40vD +vD−1, where iD represents the current and vD is the voltage across
the diodes. The input u(t) is the current source i and the output y(t) represents
the average voltage over all nodes ranging from 1 to n. Using Kirchhoff’s current
law at each node, we have

v̇1 = −2v1 + v2 + 2− e40v1 − e40(v1−v2) + u(t),

v̇k = −2vk + vk−1 + vk+1 + e40(vk−1−vk) − e40(vk−vk+1), (2 ≤ k ≤ n1 − 1)

v̇n1
= −2vn1

+ vn1−1 + vn1+1 − 1 + e40(vn1−1−vn1
),

0 = 3vk − vk−1 − vk+1, (n1 + 1 ≤ k ≤ n− 1)

0 = −2vn + vn−1 + u(t).

In order to represent the above nonlinear system as a quadratic-bilinear system,
we set v1 to vk,k+1 (vk,k+1 = vk−vk+1), k = 1, . . . , n1−1, and vn1+1 to vn as the
state variables, and perform some changes of variables by defining y1 = e40v1−1
and yk = e40(vk−1,k) − 1, 2 ≤ k ≤ n1. Together with the differential equations
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of all yk’s, the above changes lead to the following set of equations:

v̇1 = −v1 − v1,2 − y1 − y2 + u(t),

v̇1,2 = −v1 − 2v1,2 + v2,3 − y1 − 2y2 + y3 + u(t),

v̇k,k+1 = −2vk,k+1+vk−1,k+vk+1,k+2+yk−2yk+1+yk+2, (2 ≤ k ≤ n1−2)

v̇n1−1,n1 = −2vn1−1,n1 + vn1−2,n1−1 + vn1 − vn1+1 + yn1−1 − 2yn1 ,

0 = 3vk − vk−1 − vk+1, (n1 + 1 ≤ k ≤ n− 1)

0 = −2vn + vn−1 + u(t),

ẏ1 = 40(y1 + 1)(−v1 − v1,2 − y1 − y2 + u(t)),

ẏ2 = 40(y2 + 1)(−v1 − 2v1,2 + v2,3 − y1 − 2y2 + y3 + u(t)),

ẏk = 40(yk + 1)(−2vk−1,k + vk−2,k−1 + vk,k+1 + yk−1 − 2yk + yk+1),

˙yn1 = 40(yn1 + 1)(−2vn1−1,l1 + vn1−2,n1−1 + vn1 − vn1−1 + yn1−1 − 2yn1).

In the above set of equations, we fixed vn1 to v1 −
n1∑
i=2

vk−1,k. This means that250

the circuit can be modelled by a quadratic-bilinear descriptor system of order
ñ = n1 + n, having an index-1 matrix pencil associated with the quadratic
system of index-1. Next, we utilize the Carleman bilinearization, ensuring that
the resulting bilinearized system also has an index-1 matrix pencil [31]. The
order of the bilinearized DAE system is N = (n1 +n)(2n1 +1). The polynomial255

part of the first subsystem of the bilinearized system is D1 = 0.0333 and higher
order subsystems have zero polynomial parts.

For our experiment, we choose n1 = 10 and n = 30. The bilinearized system
is therefore of order N = 840. Using Theorem 3.1, we compute the projection
matrices such that the reduced-order system guarantees interpolation of the260

first two subsystems at σ = µ = [10, 50, 300]. The multiplicities of all the
interpolation points are set to 1. The reduced-order systems of the bilinearized
system are computed using the classical and the proposed methodology using
the same interpolation points and multiplicities, since we do not have specific
criteria yet to choose these interpolation points and their multiplicities which265

can ensure a stable reduced-order system for both the modified and the classical
method. For our result, it is possible to get stable reduced-order systems using
this methodology for the same interpolation points and same multiplicities in
case of one-sided projection, i.e. W = V .

The time responses of the resulting reduced-order bilinear systems are shown270

in Figure 3a by utilizing the implicit Euler method, and also the absolute errors
(|y − ŷ|) are shown in Figure 3b. Clearly, the proposed interpolatory technique
shows a substantial improvement in the transient response of the system.

6. Conclusions

We proposed interpolatory techniques for a special class of bilinear descrip-275

tor systems with a particular attention to their polynomial parts. An expression
that explicitly identifies the polynomial part of each subsystem associated with
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Figure 3: The comparison of time-domain responses of the original, Carleman
bilinearized and the reduced-order systems for an input u(t) = cos(20πt) + 1.

the bilinear system has been derived. This extends the expression for the poly-
nomial part of linear index-1 DAE systems discussed in [21] to bilinear systems.
Also, we have derived conditions on interpolatory subspaces that not only guar-280

antees interpolation of the first k subsystems, but also retains the polynomial
part of the bilinear system. By means of numerical examples, we have shown
the efficiency of the proposed model reduction technique.
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