Determining Substrate Specificities of $\boldsymbol{\beta 1 , 4 - E n d o - G a l a c t a n a s e s ~ U s i n g ~ P l a n t ~}$ Arabinogalactan Oligosaccharides Synthesized by Automated Glycan Assembly

Max P. Bartetzko, Frank Schuhmacher, Peter H. Seeberger, and Fabian Pfrengle*

Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany and Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany.

Contents

Building Block Synthesis S2
Automated Glycan Assembly S12
Supplementary Figure S47
References S47

Building Block Synthesis

Synthesis of BB1 (in analogy to a previously reported procedure) ${ }^{1}$
Reaction Scheme:

NMR Spectra:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$

${ }^{13} \mathrm{C}$ NMR (101 MHz) of 11

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of13

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 13

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of β-anomer of BB1

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of β-anomer of BB1

Synthesis of BB2

Reaction Scheme:

FmocCl, py DCM, 6 h, rt

NMR Spectra:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 14:

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of 14:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 15:

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 15:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of β-anomer of BB2:

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of β-anomer of BB2:

Synthesis of Arabinose BB5

Reaction Scheme:

BzCl, py
$\mathrm{DCM}, \mathrm{rt}, 6 \mathrm{~h}$

NMR Spectra:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6}$:

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of 16:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 17:

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of 17:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 18:

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of 18:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of BB5:

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of BB5:

Automated Glycan Assembly

Benzyloxycarbonylaminopentyl
2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl-4-O-fluorenylcarboxymethyl- β-D-galactopyranoside

L

Module A: 2×5 equiv BB1, TMSOTf, DCM
Module B: NEt_{3}, DMF

BB1

2) $\mathrm{hn}(305 \mathrm{~nm})$

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)- β-D-galactopyranoside (1)

Crude RP-HPLC of the semi-protected disaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected disaccharide 1 (ELSD trace):

HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in $\mathrm{MeCN}\left(45 \mathrm{~min}\right.$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeCN}(10 \mathrm{~min}$, flow rate 0.7 $\mathrm{mL} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of disaccharide 1

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of disaccharide 1

HSQC $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of disaccharide 1

Benzyloxycarbonylaminopentyl
2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-74)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranoside

L

Module A: 2×5 equiv BB1, TMSOTf, DCM
Module B: $\mathrm{NEt}_{3}, \mathrm{DMF}$

2) $h v(305 \mathrm{~nm})$

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)- β-D-galactopyranosyl-(1 $\rightarrow 4$)- β-D-galactopyranosyl($1 \rightarrow 4$)- β-D-galactopyranoside (2)

Crude RP-HPLC of the semi-protected tetrasaccharide (ELSD trace):
 HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected tetrasaccharide $\mathbf{2}$ (ELSD trace):

HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in $\mathrm{MeCN}\left(45 \mathrm{~min}\right.$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in MeCN (10 min , flow rate 0.7 $\mathrm{mL} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of tetrasaccharide $\mathbf{2}$:

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of tetrasaccharide 2:

HSQC ($\left.\mathrm{D}_{2} \mathrm{O}\right)$ of tetrasaccharide 2

Benzyloxycarbonylaminopentyl

2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1->4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranoside

Module A: 2×3.8 equiv BB1, TMSOTf,
DCM
Module B: NEt_{3}, DMF

1) $6 \times \mathrm{AB}$
2) $h v(305 \mathrm{~nm})$

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 30% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl- β-D-galactopyranosyl-($1 \rightarrow 4$)- β-D-galactopyranosyl-($1 \rightarrow 4$)- β-D-galactopyranosyl$(1 \rightarrow 4)-\beta$-D-galactopyranosyl-($1 \rightarrow 4$)- β-D-galactopyranosyl-($1 \rightarrow 4$)- -D - -galactopyranoside (3)

Crude RP-HPLC of thesemi-protected hexasaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected hexasaccharide $\mathbf{3}$ (ELSD trace):

RP-HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in $\mathrm{MeCN}\left(45 \mathrm{~min}\right.$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in MeCN (10 min , flow rate $0.7 \mathrm{~mL} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of hexasaccharide 3:

${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of hexasaccharide 3:

$\operatorname{HMQC}\left(\mathrm{D}_{2} \mathrm{O}\right)$ of hexasaccharide 3

Benzyloxycarbonylaminopentyl
2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-($1 \rightarrow 3$)-2-O-benzoyl-3,4-O-dibenzyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranoside

L

BB1

BB3

> Module A: 2×3.8 equiv BB1 or BB3, TMSOTf, DCM

Module B: NEt_{3}, DMF

1) $4 \times A B$
2) $h v(305 \mathrm{~nm})$

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl- β-D-galactopyranosyl-($1 \rightarrow 4$)- β-D-galactopyranosyl-($1 \rightarrow 3$)- β-D-galactopyranosyl($1 \rightarrow 4$)- β-D-galactopyranoside (4)

Crude RP-HPLC of the semi-protected tetrasaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in $\mathrm{MeCN}(50 \mathrm{~min}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected tetrasaccharide 4 (ELSD trace):

HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in $\mathrm{MeCN}\left(45 \mathrm{~min}\right.$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in MeCN (10 min , flow rate 0.7 $\mathrm{mL} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of tetrasaccharide 4:

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of tetrasaccharide 4:

$\operatorname{HSQC}\left(\mathrm{D}_{2} \mathrm{O}\right)$ of tetrasaccharide 4:

Benzyloxycarbonylaminopentyl 2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2-O-benzoyl-3-O-[2,3,5-O-tribenzoyl- α-L-arabinofuranosyl]-6-O-benzyl- β-D-galactopyranosyl-(1-7)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranoside

L

Module A: 2×3.8 equiv BB1 or BB2, TMSOTf, DCM
Module B: $\mathrm{NEt}_{3}, \mathrm{DMF}$
Module C: $150 \mathrm{mM} \mathrm{N} \mathrm{H}_{4} \cdot \mathrm{AcOH}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$ Module D: 2×3.8 eqiuv. BB4, NIS, TfOH, DCM/dioxane

1) $2 \times \mathbf{A B}$
2) \mathbf{A}
3) \mathbf{C}
4) \mathbf{D}
5) \mathbf{B}
6) $h v(305 \mathrm{~nm})$

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl β-D-galactopyranosyl-(1 $\rightarrow 4$)-3-O-[α-L-arabinofuranosyl]- β-D-galactopyranosyl-(1 $\rightarrow 4$)-β-D-galactopyranoside (5)

1) $\mathrm{NaOMe}, \mathrm{MeOH}$
2) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$

Crude RP-HPLC of the semi-protected tetrasaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of the deprotected tetrasaccharide 5 (ELSD trace):

HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (45 min , flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in MeCN (10 min , flow rate 0.7 $\mathrm{mL} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of tetrasaccharide 5:

${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of tetrasaccharide 5 :

HSQC $\left(D_{2} O\right)$ of tetrasaccharide 5
 benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3-O-[2,3,5-O-tribenzoyl- α-L-arabinofuranosyl]-6-O-benzyl- β-D-galactopyranosyl-(1-4)2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranoside

Module A: 2×3.8 equiv BB1 or BB2, TMSOTf, DCM
Module B: NEt_{3}, DMF
Module C: $150 \mathrm{mM} \mathrm{N} \mathrm{H}_{4} \cdot \mathrm{AcOH}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$ Module D: 2×3.8 eqiuv BB4, NIS, TfOH,

DCM/dioxane

1) $4 \times \mathrm{AB}$
2) A
3) C
4) D
5) B
6) hv (305 nm $)$

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl β-D-galactopyranosyl-(1-74)- β-D-galactopyranosyl-(1-4)-3-O-[α-L-arabinofuranosyl]-β-D-galactopyranosyl-(1-4)- β-D-galactopyranosyl-(1-4)- β-D-galactopyranoside (6)

Crude RP-HPLC of the semi-protected hexasaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected hexasaccharide 6 (ELSD trace):

${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of hexaasaccharide 6:

${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)$ of hexasaccharide 6:

HSQC $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of hexasaccharide 6

Benzyloxycarbonylaminopentyl 2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)2-O-benzoyl-3-O-[2,3,5-O-tribenzoyl- α-L-arabinofuranosyl]-6-O-benzyl- β-Dgalactopyranoside

Module A: 2×3.8 equiv BB1 or BB2, TMSOTf, DCM
Module B: NEt_{3}, DMF
Module C: $150 \mathrm{mM} \mathrm{N} \mathrm{N}_{4} \cdot \mathrm{AcOH}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$ Module D: 2×3.8 eqiuv BB4, NIS, TfOH, DCM/dioxane

1) $3 \times A B$
2) A
3) C
4) D
5) $h v(305 \mathrm{~nm})$

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl β-D-galactopyranosyl-(1-4)- β-D-galactopyranosyl-(1-4)- β-D-galactopyranosyl(1 $\rightarrow 4$)-3-O-[α-L-arabinofuranosyl]- β-D-galactopyranoside (7)

Crude RP-HPLC of the semi-protected pentasaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected tetrasaccharide 7 (ELSD trace):

HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in $\mathrm{MeCN}\left(45 \mathrm{~min}\right.$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in MeCN (10 min , flow rate 0.7 $\mathrm{mL} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of pentasaccharide 7:

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of pentasaccharide 7:

HSQC $\left(D_{2} O\right)$ of pentasaccharide 7

Benzyloxycarbonylaminopentyl 2,3,5-O-tribenzoyl-a-L-arabinofuranosyl-(1 $\boldsymbol{\rightarrow}$ 3)-2,5-O-dibenzoyl- α -L-arabinofuranosyl-(1 $\rightarrow 3$)-2-O-benzoyl-4,6-O-dibenzyl- β-D-galactopyranoside

L

BB3

Module A: 2×3.8 equiv BB3 TMSOTf DCM
Module B: NEt_{3}, DMF
Module D: 2×3.8 eqiuv BB4 or BB5, NIS, TfOH, DCM/dioxane

BB5

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl α-L-arabinofuranosyl-(1-3)- α-L-arabinofuranosyl-(1-3)- β-D-galactopyranoside (8)

Crude RP-HPLC of the semi-protected trisaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected trisaccharide 8 (ELSD trace):

HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in $\mathrm{MeCN}\left(45 \mathrm{~min}\right.$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeCN}(10 \mathrm{~min}$, flow rate 0.7 $\mathrm{mL} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of trisaccharide 8:

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of trisaccharide 8:

HSQC $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of trisaccharide 8

Benzyloxycarbonylaminopentyl

2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3-O-[2,5-O-dibenzoyl-3-O-[2,3,5-O-tribenzoyl- α-L-arabinofuranosyl]- α-L-arabinofuranosyl]-6-O-benzyl- β-D-galactopyranosyl-(1-4)-2-O-benzoyl-3,6-O-dibenzyl- β-D-galactopyranoside

Module A: 2×3.8 equiv BB1 or BB2, TMSOTf, DCM
Module B: NEt_{3}, DMF
Module C: $150 \mathrm{mM} \mathrm{N} \mathrm{H}_{4} \cdot \mathrm{AcOH}, 25^{\circ} \mathrm{C}, 3 \times 30 \mathrm{~min}$ Module D: 2×3.8 eqiuv BB4 or BB5, NIS, TfOH, DCM/dioxane
Module E: $0.5 \mathrm{M} \mathrm{Bz}_{2} \mathrm{O}, 0.25 \mathrm{M}$ DMAP in DCE, $40^{\circ} \mathrm{C}$ $3 \times 30 \mathrm{~min}$

BB4
.

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl β-D-galactopyranosyl-(1-4)-3-O-[3-O-[α-L-arabinofuranosyl]- α-L-arabinofuranosyl]-β-D-galactopyranosyl-(1-4)- β-D-galactopyranoside (9)

Crude RP-HPLC of the semi-protected pentasaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected pentasaccharide 9 (ELSD trace):

HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (45 min , flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in MeCN (10 min , flow rate 0.7 $\mathrm{ml} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of pentasaccharide 9:

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of pentasaccharide 9:

HSQC $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of pentasaccharide 9:

Benzyloxycarbonylaminopentyl 2,3,5-O-tribenzoyl-a-L-arabinofuranosyl-(1 $\boldsymbol{\rightarrow}$ 5)-2,3-O-dibenzoyl- α -L-arabinofuranosyl-(1-55)-2,3-O-dibenzoyl- α-L-arabinofuranosyl-2-O-benzoyl-4,6-O-dibenzyl- β-Dgalactopyranoside

$\begin{aligned} & \text { Module A: } 2 \times 3.8 \text { equiv BB3 TMSOTf, } \\ & \text { DCM } \\ & \text { Module B: } \mathrm{NEt}_{3}, \text { DMF } \\ & \text { Module D: } 2 \times 3.8 \text { eqiuv BB6 or BB4, NIS, TfOH, } \\ & \text { DCM/dioxane }\end{aligned}$

1) A
2) B
3) D
4) B
5) D
6) B
7) D
8) hv $(305 \mathrm{~nm})$

Crude NP-HPLC (ELSD trace):

HPLC was performed using a YMC Diol column and linear gradients from 90% to 40% hexane in ethyl acetate (35 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$) and from 40% to 0% hexane in ethyl acetate (10 min , flow rate $1 \mathrm{~mL} / \mathrm{min}$).

Aminopentyl α-L-arabinofuranosyl-(1 $\rightarrow 5$)- α-L-arabinofuranosyl-(1 $\rightarrow 5$)- α-L-arabinofuranosyl-(1 $\rightarrow 3$)-β-D-galactopyranoside (10)

Crude RP-HPLC of the semi-protected tetrasaccharide (ELSD trace):

HPLC was performed using a C5 column and a linear gradient from 80% to $0 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (50 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

RP-HPLC of deprotected tetrasaccharide 10 (ELSD trace):

HPLC was performed using a Hypercarb column and a linear gradient from 97.5% to $30 \% \mathrm{H}_{2} \mathrm{O}$ (containing 0.1% of formic acid) in MeCN (45 min , flow rate $0.7 \mathrm{~mL} / \mathrm{min}$) and from 30% to $0 \% \mathrm{H}_{2} \mathrm{O}$ in MeCN (10 min , flow rate 0.7 $\mathrm{mL} / \mathrm{min}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of tetrasaccharide 10:

${ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of tetrasaccharide $\mathbf{1 0}$:

$\mathrm{HSQC}\left(\mathrm{D}_{2} \mathrm{O}\right)$ of tetrasaccharide 10

Supplementary Figure

Supplementary Figure 1. Investigation of the substrate specifities of E-GALCJ, E-GALN and E-GALCT endo-galactanases using synthetic type-I arabinogalactan oligosaccharides. HPLC analyses of reactions of the galactanases with different substrates (indicated by boxes). Peaks are annotated with the corresonding AG fragments containing an aminopentenyl linker or with free reducing end (with or without red bar). Note that the α - and the β-form of the fragments with free reducing end elute separately or as double peak.

References

1. Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K. Nature 2015, 526, 241.
2. Bartetzko, M. P.; Schuhmacher, F.; Hahm, H. S.; Seeberger, P. H.; Pfrengle, F., Org. Lett. 2015, 17, 4344.
3. Li, Z.; Gildersleeve, J. C. J. Am. Chem. Soc. 2006, 128, 11612.
4. Kandasamy, J.; Hurevich, M.; Seeberger, P. H. Chem. Comm. 2013, 49, 4453.
5. Lopez, G.; Nugier-Chauvin, C.; Remond, C.; O'Donohue, M. Carbohydr. Res. 2007, 342, 2202.
6. Kawabata, Y.; Kaneko, S.; Kusakabe, I.; Gama, Y. Carbohydr. Res. 1995, 267, 39.
