日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime

MPS-Authors

Paasch-Colberg,  Tim
Max Planck Institute of Quantum Optics, Max Planck Society;
TOPTICA Photonics AG;

Kruchnin,  Stanislav Yu.
Max Planck Institute of Quantum Optics, Max Planck Society;

Kapser,  Stefan
Max Planck Institute of Quantum Optics, Max Planck Society;

Muehlbrandt,  Sascha
Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons21497

Ernstorfer,  Ralph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Kienberger,  Reinhard
Max Planck Institute of Quantum Optics, Max Planck Society;
Physik-Department, Technische Universität München;

Yakovlev,  Vladislav S.
Max Planck Institute of Quantum Optics, Max Planck Society;
Ludwig-Maximilians-Universität;

Karpowicz,  Nicholas
Max Planck Institute of Quantum Optics, Max Planck Society;

Schiffrin,  Agustin
Max Planck Institute of Quantum Optics, Max Planck Society;
School of Physics & Astronomy, Monash University;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1608.01854.pdf
(全文テキスト(全般)), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Paasch-Colberg, T., Kruchnin, S. Y., Sağlam, Ö., Kapser, S., Cabrini, S., Muehlbrandt, S., Reichert, J., Barth, J. V., Ernstorfer, R., Kienberger, R., Yakovlev, V. S., Karpowicz, N., & Schiffrin, A. (2016). Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime. Optica, 3(12), 1358-1361. doi:10.1364/OPTICA.3.001358.


引用: https://hdl.handle.net/11858/00-001M-0000-002C-4E0F-5
要旨
Nonlinear interactions between ultrashort optical waveforms and solids can be used to induce and steer electric currents on femtosecond (fs) timescales, holding promise for electronic signal processing at PHz (1015  Hz) frequencies [Nature 493, 70 (2013)]. So far, this approach has been limited to insulators, requiring extreme peak electric fields (>1  V/Å) and intensities (>1013  W/cm2). Here, we show all-optical generation and control of electric currents in a semiconductor relevant for high-speed and high-power (opto)electronics, gallium nitride (GaN), within an optical cycle and on a timescale shorter than 2 fs, at intensities at least an order of magnitude lower than those required for dielectrics. Our approach opens the door to PHz electronics and metrology, applicable to low-power (non-amplified) laser pulses, and may lead to future applications in semiconductor and (photonic) integrated circuit technologies.