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Quasi-symmetric configurations have a better neoclassical confinement compared to that of standard
stellarators. The reduction of the neoclassical viscosity along the direction of quasi-symmetry should
facilitate the self-generation of zonal flows and, consequently, the mitigation of turbulent fluctua-
tions and the ensuing radial transport. Therefore, it is expected that quasi-symmetries should also
result in better confinement properties regarding radial turbulent transport. In this paper we show
that, at least for quasi-poloidal configurations, the influence of quasi-symmetry on radial transport
exceeds the expected reduction of fluctuation levels and associated effective transport coefficients,
and that the intimate nature of transport itself is affected. In particular, radial turbulent transport
becomes increasingly subdiffusive as the degree of quasi-symmetry becomes larger. This behavior
is reminiscent of what has been found in tokamaks with strong radially-sheared zonal flows.

PACS numbers: 52.25.Fi, 52.35.Ra, 52.25.Gj, 05.40.-a

I. INTRODUCTION

An effective manner to confine neoclassical guiding
centre orbits in stellarators is by endowing the confining
magnetic field with a hidden symmetry (usually referred
to as quasi-symmetry), even if just approximate2,3. This
is best achieved by expressing first the field in Boozer co-
ordinates4 (s, θB , ϕB), so that the guiding center motion
depends solely on the field magnitude, B = |B|, and its
derivatives5. Then, the configuration must be designed
so that the harmonic content of B is dominated by some
linear combination, MqsθB −NqsϕB, over as much of the
radius as possible. Quasi-poloidal symmetry requires that
Mqs = 0, being Nqs arbitrary. Quasi-axisymmetry (or
quasi-toroidicity), that Nqs = 0, bringing the configura-
tion closer to a tokamak. Finally, quasi-helical symmetry,
assumes that Mqs/Nqs = mh/nh, for some prescribed
pair of integers. Examples are provided, respectively,
by the HSX8 quasi-helical (mh = 1, nh = 4) stellara-
tor currently at operation at the University of Wiscon-
sin, and the QPS6 (quasi-poloidal) and NCSX7 (quasi-
axisymmetric) projects in the US, that were regretfully
cancelled. Experimental results from HSX have already
provided evidence supporting an improved neoclassical
confinement9 and a reduced neoclassical viscosity along
the quasi-symmetry direction10. One would also expect
that, thanks to the reduced neoclassical viscosities, zonal
flows able to regulate turbulent fluctuations should be
more easily self-generated in configurations with quasi-
symmetries11. However, HSX plasmas are probably too

low-β to explore this question experimentally. The avail-
able numerical evidence does however suggest that this
might be the case. Reduced ion turbulent conductivities
have been reported for recent gyrokinetic simulations of
electrostatic ion-temperature-gradient (ITG) turbulence
for numerical equilibria with quasi-helical (i.e., HSX 12)
and quasi-axisymmetric (NCSX13) geometries. The high
computational cost of these runs made that the spatial
domains be not global, but limited to the neighborhood
of a single magnetic surface, though.

In principle, one would expect that turbulence in quasi-
poloidal symmetric configurations should be even more
sensitive since strong radially-sheared poloidal zonal
flows affect radial fluxes the most in configurations with
a large safety factor. The investigation of whether this
is indeed the case is one of the objectives of this paper.
Our studies go however beyond the mere quantification
of the reduction of the effective ion conductivity that
could be achieved by introducing quasi-poloidal symme-
try. The main objective is to find out whether quasi-
symmetries do also alter the nature of radial transport
itself at a deeper level. This investigation is inspired by
some recent studies that found a fundamental change in
the nature of radial turbulent transport across strong,
radially-sheared zonal flows in tokamaks14–16. In partic-
ular, these previous works reported that radial transport
became endowed with significant subdiffusive features as
the average radial shear of the poloidal angular flow ve-
locity was increased. At the same time, the statistics
of the radial velocity fluctuations became strongly non-
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Gaussian, exhibiting algebraic tails that pointed to the
establishment of some kind of non-local correlations. As
a result, it was then concluded that a phenomenological
description of radial transport in terms of effective coeffi-
cients was probably insufficient to capture the transport
dynamics in tokamaks with the presence of sufficiently
strong sheared-flows, and that other models would prob-
ably have to be looked for in order to maintain good
predictive capabilities17–21.
The present paper thus investigates whether radial tur-

bulent transport could be affected in a similar fashion
by the presence of local quasi-symmetries in the confin-
ing magnetic field. This question is explored by char-
acterizing the features of the transport of a population
of tracked particles as they are advected by the electro-
static ITG turbulence computed by the Gene gyroki-
netic code22,23 in a quasi-symmetric magnetic configura-
tion. The computational domain used in our studies is
different from the popular flux-tube geometry used exten-
sively in tokamaks in that it considers the radial neigh-
borhood of a full magnetic surface24,25, labeled by its
Boozer radial coordinate s = s0, instead of just around
a given magnetic field line. The degree of quasi-poloidal
symmetry at this reference surface is quantified in terms
of the quasi-poloidal symmetry ratio,

σqp(s0) =

N∑
n=−N

|B0,n(s0)|

M∑
m=0

N∑
n=−N

|Bm,n(s0)|

≤ 1, (1)

where (m,n) represent the Fourier harmonics associ-
ated to the Boozer angles, θB, ϕB, and M and N are
the limiting harmonics included in the representation
[The poloidal index m is never negative because we
will be always assuming stellarator symmetry2]. Per-
fect quasi-poloidal symmetry requires σqp = 1. For real
quasipoloidal configurations, however, σqp is typically a
decreasing function of s. We have taken advantage of
this fact by carrying out all the simulations used in this
paper at several radial locations within a single magnetic
configuration. In this way, we can achieve a controlled
variation of other features of the configuration and still
explore a wide range of values of the quasi-poloidal sym-
metry ratio.
The rest of the paper is organized as follows. First,

the configuration used and the simulations carried out
for this study are described in Sec. II. The fundamentals
of TRACER, the new code that has been developed to
advance the tracked particles in the electrostatic poten-
tial fluctuations that Gene provides, are also discussed.
Sec. III briefly reviews the theoretical aspects of frac-
tional transport theory that are needed to understand the
diagnostics used to characterize the nature of transport
later in the paper. The application of these diagnostics
to the different Gene simulations is described in Sec. IV.
The interpretation of the results are discussed at length
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FIG. 1. Quasi-poloidal configuration under study shown in
real space. It has Nfp = 2 field periods. The variation of
B = |B| on the last magnetic surface is shown as a color plot.
The quasi-poloidal symmetry can be appreciated from the fact
that the contours of constant B tend to be aligned predom-
inantly in the poloidal direction [Although strictly speaking,
quasi-poloidal symmetry however requires that B = B(s, ϕB)
instead of B(s, ϕ), being ϕ the toroidal geometrical angle.].

in Sec. V. Finally, conclusions are presented in Sec. VI.

II. CONFIGURATION UNDER STUDY

The quasi-poloidal equilibrium configuration chosen
for this investigation belongs to a set of cases explored
during the design phase of the QPS project6 (see Fig. 1).
It is a configuration with two periods (i.e., Nfp = 2), as-
pect ratio R0/a = 2.6 (R0 and a are, respectively, the ma-
jor and minor radius), β =

⟨
2µ0p/B

2
⟩
∼ 2.5%, toroidal

current I ∼ 40 kA and magnetic field on axis, B0 ≃ 0.9
T. Regarding its magnetic harmonic content, it includes
poloidal modes from m = 0 up to m = M , with M = 8.
The toroidal modes are |n| ≤ N , with N = 7. The safety
factor (defined as q(s) := dΦ/dΨ, with Φ(s) and Ψ(s) re-

FIG. 2. Quasi-poloidal symmetry ratio σqp as a function of
the Boozer radial coordinate s ∈ [0, 1] for the configuration
under study. The surfaces that have been used for the Gene
simulations are marked.
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spectively being the toroidal and poloidal magnetic fluxes
at the magnetic surface s) decreases smoothly with ra-
dius, from q(0) ≃ 8.0 to q(a) ≃ 4.5. The quasi-poloidal
nature of the symmetry is appreciated in the contour lev-
els of B (see Fig. 1), that are predominantly aligned with
the poloidal direction (even when, strictly speaking, the
quasi-symmetric alignment is with θB , not the geomet-
rical poloidal angle). The quasi-poloidal symmetry ratio
(Eq. 1) decreases steadily from slightly above 0.9, close
to the axis, to about ∼ 0.6 as we move closer to the edge
(see Fig. 2).

We have carried out nonlinear ITG gyrokinetic simu-
lations with the Gene code22,23 at eight different radial
locations of this configuration. These positions, marked
in Fig. 2 with solid circles, provide a significant variation
of the quasi-poloidal symmetry ratio. At each radial po-
sition, Gene solves the nonlinear gyrokinetic equations26

using an Eulerian δf approach on a fixed grid in 5D
phase space (x, y, z, v∥, µ). As a result, both the non-
Maxwellian part of the gyroaveraged ion distribution (δf)

and the electrostatic potential ϕ̃ can be followed in time
(see Fig. 3). The spatial domain considered in our simu-
lations is one full annulus centered at a reference surface
s0 [Here, s is the magnetic toroidal flux normalized to
its edge value.]. A special field-aligned coordinate sys-
tem is used in which y = C(s0) (q(s)θB − ϕB) labels the
magnetic field line, where C(s0) = a

√
s0/q(s0) is a nor-

malization constant. The coordinate z = θB runs along
the magnetic field line and x =

√
s − √

s0 is a normal-
ized radial coordinate. Coordinates respectively span the
domains x ∈ [−Lx/2, Lx/2], y ∈ [0, Ly] and z ∈ [−π, π].
Although originally a flux-tube tokamak code, Gene can
deal with this type of annular regions but requires that
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FIG. 3. Example of turbulent electrostatic potential in the
field-aligned (x, y, z) coordinates for a selected time well
within the saturated region. The cubic view is just used for
convenience, since all coordinates are periodic. Data corre-
sponds to the simulation carried out at the s0 = 0.49 surface.

another code, GIST27, calculates all the geometrical and
magnetic information at the magnetic surface s0. All
equilibrium quantities are assumed to be independent of
x, but may depend on y and z (in particular, those related
to the magnetic field). Periodic boundary conditions in
x (and naturally, also in y and z) are enforced for all
perturbed fields. Because of these boundary conditions,
Ly is not a free parameter, being set to a value that
depends on the safety factor at the magnetic surface of
interest. The dominant instability in all the simulations
performed is the electrostatic ITG mode (a/LTi = 4 and
a/Ln = 0 have been used for the ion temperature and
density gradients), and adiabatic electrons are assumed.
The resolution in (x, y, z, v∥, µ) phase space has been set
to 126 × 64 × 256 × 32 × 8 points in all cases. These
numbers were chosen after having completed systematic
linear and nonlinear convergence studies, in which we
monitored the saturation levels of various physical vari-
ables such as ion heat flux and parallel and perpendicu-
lar temperatures, among others. The radial size of the
computational domain, for the parameter values used,
contains roughly Lx ≃ 140ρs, with ρs = cs/Ωi, being

cs =
√
2Te/m the sound velocity, and Ωi = eB/m the

ion cyclotron frequency. Accordingly, the often used pa-
rameter ρ∗ = ρs/a = 0.004. Finally, all simulations have
been advanced in time for several hundreds of Lagrangian
turbulent decorrelation times, as will be discussed later.
Runs must be at least this long to ensure that the features
extracted from the transport studies are meaningful.

The techniques that we have used to characterize the
nature of transport (see Sec. III) require knowledge of the
trajectories of individual particles as they are advected
by the turbulence. Advecting particles within modern
Vlasov gyrokinetic codes is not a trivial task due to their
large computational cost and their sophisticated but frag-
ile parallel optimization28. As a result, the most straight-
forward way to carry out this type of studies –namely, to
include the tracked particle evolution within the normal
Vlasov-Poisson time-stepping– is not very practical. It
would require a major overhaul of the GK code in or-
der to maintain its internal balance for optimal paral-
lelization and performance. In addition, every time that
a different tracked particle initialization is needed, the
whole GK simulation would have to be rerun, thus incur-
ring in a huge waste of computational resources. For all
these reasons, we have developed our own parallel code,
TRACER, to carry out the advection of as many parti-
cles as desired for as long as needed as a post-process.
TRACER uses Gene ’s standard output to gather all
the relevant information needed to complete this task
including, but not restricted to, the metric tensor and
the jacobian (i.e., geometry), the (time-varying) electro-
static potential (see Fig. 3), the magnetic field and its
gradients. TRACER interpolates all these fields in space
and in time using either B-splines or linear interpolation.
When massless particles are considered (i.e., tracer par-
ticles), each trajectory is calculated by integrating the
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equation of motion (see Fig. 4),

ṙ = vE×B + v∥
B

B
= −∇ϕ̃×B

B2
+ v∥

B

B
, (2)

using an explicit 4-th order Runge-Kutta (RK4) scheme.
Regarding parallel motion, all tracers are initialized with
a value of v∥ drawn from a Maxwellian distribution at the
equilibrium ion temperature that is maintained constant
throughout the motion.
TRACER also offers the possibility of tracking trajec-

tories of particles with mass and charge. In that case,
perpendicular magnetic drifts are included in the equa-
tion of motion:

ṙ = vE×B + vMagn. drift + v∥
B

B
, (3)

defined by the usual expression,

vMagn. drift =
mv2

2qB3

(
1 +

v2∥

v2

)
B×∇B. (4)

Here, m and q are respectively the mass and charge of
the particle. The parallel velocity is updated in the usual
way, assuming conservation of the magnetic moment µ:

v̇∥ = − µ

m

B · ∇B

B
, µ̇ = 0, (5)

thus including a magnetic mirror effect.
Tracked particles, either with mass or massless, can be

initially distributed in space in many different ways. The
choice must be made depending on the diagnostic used
(see Sec. III). For instance, when using the Lagrangian
diagnostic technique21, it is more convenient to initialize
them uniformly throughout the computational domain.
To estimate radial propagators20, on the other hand, it
is preferrable to locate them initially at x = 0, with a
uniform distribution along the y and z directions. It must
be noted, however, that a much larger number of particles
(∼ 104 − 106) is often required to get sufficiently good
statistics for propagators, compared with the Lagrangian
technique17. This is due to the fact that the relevant
information in this context must be retrieved from the
tails of the propagators, that correspond to much smaller
probabilities.

III. DIAGNOSTICS TO CHARACTERIZE
FRACTIONAL TRANSPORT

The main diagnostic that we will use to characterize
the nature of transport along the radial (i.e., x) direction
is the analysis of the statistical and correlation properties
of the radial component of the Lagrangian velocity17,21.
This analysis is one of several contrasted techniques that
can be used to characterize the nature of transport in
turbulent (and other types of) systems. It only requires
following in time a sufficiently large population of trac-
ers as they are advected by the background turbulence.
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FIG. 4. Example of several massless tracer trajectories ob-
tained by integrating Eq. 2. Although the motion takes place
mostly along z (v∥ > 0 has been used for those included in the
figure), the direction of interest is along x. The trajectories
are superimposed on (a snapshot of) two selected equipoten-
tial surfaces for illustration purposes (In reality, trajectories
are integrated using the time-evolving electrostatic potential,
not a frozen one). The apparent vertical structure, roughly
m = n = 0, corresponds to a region of zonal flow.

The basis of the technique relies on the comparison of the
properties of the motion of a tracked particle with those
of fractional Lévy motion (fLm)29,30. fLm is a stochas-
tic model that generalizes the popular Langevin equation
(LE) from which classical diffusion is often derived. As
will be remembered, the Langevin equation gives the po-
sition of a single particle as:

x(t) = x0 +

∫ t

0

dt′ξ2(t
′), (6)

where ξ2(t) is a Gaussian, uncorrelated noise with a cor-
relation function given by ⟨ξ2(t)ξ2(t′)⟩ = Dδ(t− t′). The
connection of the Langevin equation with diffusion can be
established, for example, by computing the propagator of
Eq. 6. That is, the probability of finding the particle at
any position x at time t > 0. It is given by,

PLE(x, t|x0) =
1√
2πDt

exp

(
− (x− x0)

2

2Dt

)
. (7)

This Gaussian propagator, with standard variation grow-
ing as σLE = (Dt)1/2, is also the propagator of the clas-
sical diffusion equation,

∂n

∂t
= D

∂2n

∂x2
. (8)

In a real physical system, the role of noise would be
played by the (turbulent) Lagrangian velocity of the par-
ticle, whose correlation function is often modeled as,

⟨v(t)v(t′)⟩ ∼ v2c exp

(
−|t− t′|

τc

)
. (9)
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With this choice, the long-term, long-distance limit of
transport is also well described by classical diffusion with
D ∼ v2cτc. Therefore, one can conclude that the long-
term dominance of diffusive transport is ultimately re-
lated to the existence of finite characteristic scales asso-
ciated to the transport process. Namely, vc and τc. The
velocity vc is related to the (square root of the) variance
of the Lagrangian velocitiy; τc determines for how long
memory is maintained (in the velocity) as the particle
advances along its (Lagrangian) trajectory.
There are however situations in which such finite trans-

port scales may be absent in a system. Eq. 6 is not appro-
priate to model the overall transport dynamics in those
cases. A more suitable generalization, able to deal with
these cases, is provided by the stochastic equation30

x(t) = x0 +
1

Γ(H − 1
α + 1)

∫ t

0

dt′(t− t′)H− 1
α ξα(t

′),

(10)
where Γ(x) the Euler’s gamma function. Here, ξα(t)
is noise distributed according to an uncorrelated, sym-
metric Lévy distribution with a tail exponent α ∈ (0, 2].
For α < 2, these distributions have a fat power-law tail,
Lα(x) ∝ |x|−(1+α), and lack a finite variance (in fact, all
moments of order α or larger are infinite29). Clearly, ξα
will no longer be a surrogate of the Lagrangian veloc-
ity. The latter is obtained by differentiating (with care)
Eq. 10. The exponent H ∈ (0,max(1, 1/α)], on the other
hand, is referred to as the Hurst exponent. Its range of
possible values is limited to ensure that the propagator
of Eq. 10 remains well-behaved29.
Eq. 10 contains several famous stochastic models. For

instance, the usual Langevin equation is recovered when-
ever α = 2 and H = 1/2. If α = 2 but H is not pre-
scribed, Eq. 10 reduces to the famous fractal Brownian
motion (fBm). The propagator is still Gaussian but with
a standard deviation that grows in time like31:

σfBm ∝ (Dt)H

(2H)1/2Γ
(
H + 1

2

) . (11)

The fBm propagator scales diffusively only if H = 1/2.
Otherwise, fBm transport is either subdiffusive (H < 0.5)
or superdiffusive (H > 0.5). One can also study the
properties of fBm transport from the ordered sequence
of its (Lagrangian) velocities (obtained by differentiation
of Eq. 10). It turns out that32, although the variance of
the pdf of these velocities (that sets the velocity scale, vc,
as we discussed earlier) is still defined, a finite timescale
(i.e., τc) no longer exists if H ̸= 1/2. This means that
memory is being maintained for infinitely long times
along the Lagrangian trajectory, a consequence of the
power-law kernel in Eq. 10. As a result, the long-term,
long-distance limit of transport no longer corresponds to
classical diffusion.
In the case α ̸= 2, the propagator of Eq. 10 takes the

form of a symmetric Lévy law33:

P fLm(x, t|x0) = t−HLα,σfLm

(
x− x0

tH

)
(12)

with scale factor σfLm defined as

σfLm = σξα

[
(αH)1/αΓ

(
H + 1− 1

α

)]−1

, (13)

being σξα the scale factor of the noise Lévy distribution.
This type of motion is known as fractional Levy motion
(fLm)30. Since all moments of order α or larger are now
infinite, a characteristic length for transport is no longer
present. However, any moment of order p < α is still
finite, scaling as ⟨(x− x0)

p⟩ ∝ tpH . Following fBm con-
ventions, the scaling H = 1/2 is still referred to as a
diffusive scaling (although dynamics are neither Marko-
vian nor Gaussian). Subdiffusion is used for H < 0.5,
superdiffusion, for H > 0.5. In the case of fLm, neither a
finite vc nor a finite τc can be defined for its Lagrangian
velocities. The former, because velocities are distributed
according to a similar Lévy law statistics with the same
tail-index α, thus lacking a finite variance. The latter,
because memory is again maintained for infinitely long
times along the Lagrangian trajectory if H ̸= 1/α due to
the kernel in Eq. 10, as in fBm.

A way to characterize the nature of transport in a sys-
tem is to compare its characteristics with those of fLm.
That is, one simply needs to estimate the exponents α
and H that define fLm. One can do this by characteriz-
ing the statistics and the correlation of the (component
of interest of the) Lagrangian velocities21. Also, one can
estimate the transport propagator along the direction of
interest20. In this paper, we will mostly rely on the first

FIG. 5. Above: pdfs of the Lagrangian radial velocities (in
log-linear) obtained using ten thousand tracer particles; the
blue curve corresponds to tracers advanced in the turbulence
calculated around the surface s0 = 0.32, where the quasi-
poloidal symmtery ratio is σqp = 0.80; the red one, to tracers
advanced around the surface s0 = 0.63, where σqp = 0.68.
Below: instantaneous tail exponent (see Eq. 14) for the two
pdfs. The start of the mesoscale range is marked with a ver-
tical line and an arrow.
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approach. A collection of tracked particles, uniformly
initizalized throughout the computational box, will be
advanced in the presence of the electrostatic turbulence,
and their radial Lagrangian velocities recorded. These
velocities correspond to vx/

√
gxx in Gene internal co-

ordinates, since vx is a radial contravariant component
and must be divided by the length of the proper con-
travariant basis vector, |ex| =

√
gxx (because ex points

in the radial direction). The exponent α is then estimated
from the tail-index of the pdf of the velocity component
along the x direction. Or, in other words, by quantify-
ing whether the pdf of these velocities decays (or not)
as a power law p(v) ∼ v−(1+α) for large |v|. The pro-
cedure is illustrated in Fig. 5 for massless tracers that
have been advanced in the turbulence computed in the
neighbourhood of two different magnetic surfaces of the
QPS configuration. The flat regions in the lower frame,
that shows the local tail exponent, defined as,

α(v) + 1 := −(v/p) dp/ dv, (14)

correspond to the mesorange where a meaningful value
for α can be estimated. As seen in the figure, a cutoff
appears for larger values of v whose origin is probably
related to the limited resolution of the runs (see Sec. V).
To estimate H, on the other hand, we use a simple

variation of the popular rescaled-range (or R/S) method,
introduced by H. E. Hurst in the 50s to quantify memory
in Guassian-distributed time series34. Assuming a time
series Vk, k = 1, 2, · · ·N , Hurst’s prescription required
the computation of the rescaled range:

[R/S](τ) :=

max
1≤k≤τ

W (k, τ)− min
1≤k≤τ

W (k, τ)√
⟨V 2⟩τ − ⟨V ⟩2τ

, (15)

with

W (k, τ) :=
k∑

i=1

Vi − k ⟨V ⟩τ . (16)

Here, ⟨·⟩τ represents the temporal average up to time
τ . When the signal resembles fBm, then [R/S] ∼ τH ,
with H being the Hurst exponent. The prescription must
however be slightly modified21 to deal with fLm, due to
the divergent nature of its variance. In those cases, the
denominator of the rescaled-range is replaced by the 1/s-
th power of a moment of order s > 0, with s < α. It is
useful to introduce the instantaneous Hurst exponent,

H(τ) := − τ

[R/S](τ)
· d[R/S]

dτ
(τ), (17)

that is used to determine the range of scales where H
is well defined. They will appear as flat regions in the
instantaneous Hurst exponent.
The procedure is illustrated in Fig. 6, that shows the

results of performing the R/S analysis on the time series
of the Lagrangian radial velocity of two tracers advanced

[R
/S
]

FIG. 6. Above: rescaled range (i.e., [R/S]) as a function of
time delay for two time series of radial Lagrangian velocities
of tracers advanced by TRACER; the black one comes from a
tracer advanced in the turbulence computed by Gene around
s0 = 0.22 where the quasi-poloidal symmetry ratio is σqp =
0.85; the red one, from a tracer advanced around s0 = 0.63,
where σqp = 0.68. Below: instantaneous Hurst exponent
(Eq. 17) for the same two series. The auto-correlation and
mesoscale ranges are marked with vertical lines and arrows.

by TRACER for two different Gene simulations. The
shape of the [R/S] function shown in the upper frame is
rather typical, with a first range at the lowest time lags
in which [R/S] ∼ τ that gives a rough estimate of the
Lagrangian auto-correlation time (for the cases shown,
it is roughly τL ∼ (1 − 2)a/cs. At longer scales, about
τ > 102a/cs, is where the mesorange dynamics appear
in the form of a second power-law range. It is the expo-
nent in this second region that corresponds to the Hurst
exponent. The figure shows two distinct cases, one for a
tracer advanced in the turbulence calculated at s0 = 0.63
(σqp = 0.68) in which [R/S] ∼ τ0.49, almost diffusive,
and a second one advanced at s0 = 0.22 (σqp = 0.85)
where [R/S] ∼ τ0.45, that is distinctly subdiffusive.

In the next section we will discuss the results of ap-
plying these techniques on tracked particles advanced in
the turbulent fields computed at the various surfaces of
reference shown in Fig. 2. By monitoring changes in α
and/or H as the quasi-poloidal symmetry ratio varies, we
will be able to detect any fundamental change responsible
for pushing transport dynamics away from the standard
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FIG. 7. Above: Time traces of the ion heat flux for two of
the simulations examined. Bounded by vertical lines is the
range over which tracers are advanced, already within the
saturation region. Below: Effective heat conductivity (left,
in red) and shear flow strength (right, in blue) as a function of
the quasi-poloidal symmetry ratio. We use, as figure-of-merit
to quantify the sheared flow strength, the surface average of
⟨| dΩθ/dx|⟩ (see description in text).

framework of classical diffusion.

IV. SIMULATION RESULTS

ITG nonlinear GK simulations have been carried out
for the eight different radial locations of the QPS equilib-
rium marked in Fig. 2. The range of values of the quasi-
poloidal symmetry ratio examined extends from 0.65, at
the outermost surface, to 0.92, almost at the magnetic
axis (see also Table. I).

A. Heat fluxes

The first result worth mentioning from these runs rel-
ative to radial transport does not require any tracked
particles. It is that, consistently with previous nonlin-
ear simulations for other quasi-symmetries (i.e., quasi-

helical12 and quasi-axisymmetric13), the effective ion
heat conductivity, computed as the average:

χi,eff =

⟨
−qi

dTi/dx

⟩
volume

, (18)

(being qi the outward ion heat flux), becomes smaller
(for the same equilibrium gradient values) as the quasi-
poloidal symmetry ratio σqp increases. This is shown in
the lower frame of Fig. 7, where the reduction in χi,eff

is also shown to be positively correlated with the capa-
bility of self-generated, radially sheared poloidal flows to
act on and suppress the turbulence. We have chosen to
characterize this capability in terms of the figure-of-merit
⟨| dΩθ/ dx|⟩volume, with the angular velocity Ωθ given by:

Ωθ =
(vz + C(s0)q0vy)/

√
g

(gzz + C2(s0)q20gyy + 2C(s0)q0gyz)
, (19)

where q0 = q(s0) is the safety factor at the magnetic
surface s = s0, vz and vy are the covariant components
of the E×B velocity, and gzz, gyy and gyz are the proper
covariant metric elements. Ωθ is related to the part of
the poloidal angular turbulent velocity that is tangent to
the magnetic surface s = s0.

B. Massless tracer motion

We turn next to the analysis of the motion of massless
tracers. Thousands of massless tracer particles have been
advanced in each case, for periods of time of the order of
(103−104)a/cs, more than three decades longer than the
local Lagrangian decorrelation time (see Fig. 6), and well

FIG. 8. Values of the exponents H (above) and α (below)
obtained for the radial velocity time series as a function of
the value of the quasi-poloidal symmetry ratio.



8

s0 σqp ⟨| dΩθ/ dx|⟩volume H α

0.10 0.92 31.87 0.42 0.81
0.17 0.91 16.52 0.43 0.77
0.22 0.85 11.65 0.44 0.83
0.32 0.80 7.59 0.45 0.85
0.37 0.78 6.55 0.46 0.82
0.49 0.73 5.12 0.47 0.85
0.63 0.68 4.27 0.48 0.87
0.72 0.65 4.02 0.50 0.88

TABLE I. List of values of the exponents H and α obtained
from the simulations at the neighbourhood of the magnetic
surface labeled as s0.

deep within the nonlinearly saturated phase. These long
periods are essential for the analysis, as we mentioned
earlier, since it is the long-term transport features that we
are interested in. Following the methodology described
in Sec. III, we have estimated the values of the exponents
α and H that characterize radial transport. The expo-
nents are determined for each tracer trajectory, and then
averaged over all (usually a few thousand) tracers. The
averaged values obtained are shown in the upper frame of
Fig. 8 as a function of the quasy-poloidal symmetry ratio
at each magnetic surface (they have also been collected
in Table I). The results show that H < 0.5 except at the
last outermost surface, and that this value is well estab-
lished for more than a decade starting at τ > 102a/cs
(see Fig.6, lower frame). This result suggests that long-
term, subdiffusive radial heat transport is indeed taking
place for s < 0.6, instead of the type of reduced dif-
fusive transport that one might have naively expected.
This is an important finding. Furthermore, the value of
the exponent H consistently decreases as the value of
the quasi-poloidal symmetry ratio, σqp, is increased (see
Fig. 5, upper frame). Consequently, transport inherits a
more strongly subdiffusive character as the center of the
configuration is approached, and becomes less so as we
move outwards, until it eventually scales diffusively (in
these runs, for s ≥ 0.6− 0.7).
Secondly, we observe that the exponent α is signifi-

cantly non-Gaussian, with α ∼ 0.7 − 0.9. In contrast to
the case of H, the exponent α does not decrease mono-
tously with the value of the quasi-poloidal symmetry ra-
tio (see Fig. 8, lower frame), although there is a globally
decreasing trend. That is, it consistently becomes less
Gaussian as H becomes more subdiffusive. In this case,
however, the region of self-similarity that appears in the
velocity pdf, from which α is determined, reaches a cut-
off rather quickly at all positions (as illustrated in Fig. 5)
that makes the proper determination of α difficult.
In order to gain additional confidence on the obtained

values of the exponents α and H, we have also estimated
them by means of another independent method: radial
propagators. Ten thousand massless tracers were initially
located at x = 0 (uniformly distributed in y and z) and
then advected by the turbulence at each surface. The
evolution of this population gives an estimate of the ef-

FIG. 9. Positive tail of the estimated radial propagator (in
log-log scale, above) and growth with time of its first moment
(below) calculated in the neighbourhood of the magnetic sur-
faces located at s0 = 0.10 and s0 = 0.63. The propagator tail
should scale as P (∆x) ∼ ∆x−(1+α), from which α is inferred.
The moment used should scale as τH , on the other hand.

fective radial propagator, as discussed in Sec. III. The
procedure for the determination of the exponents from
the propagators is illustrated in Fig. 9. The upper frame
shows, in a log-log scale, the tail of the propagator after
a time of the order of 10 a/cs for two different locations,
one at surface s0 = 0.10, with σqp = 0.92, the other at
s0 = 0.63, with σqp = 0.68. The tails of all fLm prop-

agators scale as P (∆x) ∼ ∆x−(1+α). Therefore, a value
of α ∼ 0.8 is inferred, that seems to be a bit steeper for
the less quasi-symmetric location, confirming what was
already found with the Lagrangian method. The expo-
nent H, on the other hand, is estimated from the growth
with time of the moments of propagator. This is illus-
trated in the lower frame of Fig. 9. A value of H ∼ 0.42
for the inner surface at s0 = 0.10, that has the largest
degree of quasi-symmetry, and H ∼ 0.49 for s0 = 0.63.
Again, these values are consistent with what was previ-
ously found using the Lagrangian method.
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FIG. 10. Instantaneous value of the Hurst exponent H for
massless tracers (in red) and thermal ions (in blue) as they
are advected by the ITG turbulence in the neighbourhood of
the s0 = 0.10 magnetic surface.

C. Thermal ion motion

Finally, we have also studied whether the values of the
exponents H and α change significantly if the tracked
particles considered had the mass, charge and kinetic en-
ergy of plasma thermal ions. In this case, their equa-
tion of motion includes all magnetic drifts and mirror
effects (see Eq. 3). The Lagrangian analysis shows, in
this case, that the estimated values for the exponent α
barely change. However, things become more interesting
with respect to the H exponent. The situation is illus-
trated in Fig. 10. It compares, for the most subdiffusive
simulation (the one carried out in the neighbourhood of
s0 = 0.10, with σqp = 0.92), the instantaneous value ofH
obtained for thermal ions (in green) with that of massless
tracers (in red). We have also plotted the result in the
case in which the turbulent E × B drift is not included
(in blue). The important thing to notice is that the long-
term behaviour of the exponent (for τ > 102 a/cs) seems
to be very similar for thermal ions and tracers, remaining
subdiffusive. However, there is a new intermediate range
of scales for the thermal ions (10 < τ < 102 a/cs) when
a clear superdiffusive plateau becomes apparent, that is
absent for massless tracers. A similar trend is observed
at all radial locations. We will explain the physics for
this new scaling region in the next section.

V. DISCUSSION

The numerical results obtained in this study – and de-
scribed in the previous section – suggest that, although a
reduction of the effective ion heat conductivity is indeed

observed as the degree of quasi-poloidal symmetry is in-
creased, this fact in itself does not provide the complete
picture of what is happening with the radial turbulent
transport. Radial transport appears to inherit a subdif-
fusive character (i.e., H < 0.5), that becomes stronger as
the degree of quasi-symmetry becomes larger. The phys-
ical mechanism behind this trend seems to be strongly
correlated with the increase in the shearing capability
of the self-generated turbulent zonal flow in the poloidal
direction that is enabled by the reduced neoclassical vis-
cosity associated to the higher degree of quasi-symmetry.
This connection can be made more apparent by plot-
ting the obtained values for the exponents in terms of
the figure-of-merit that we use to characterize the shear-
ing capability of the zonal flow, ⟨|dΩθ/dx|⟩volume (see
Fig. 11).

This behaviour is very reminiscent of how radial trans-
port was found to behave in recent gyrokinetic sim-
ulations of ITG tokamak turbulence that had strong
radially-sheared poloidal flows14,16. In fact, most of the
available numerical evidence points to the same physical
mechanisms as the responsible ones for the subdiffusive
radial transport observed here. The physical mechanism
for this process can be understood as follows. Any large
positive [negative] value of ⟨|dΩθ/dx|⟩volume, whose gen-
eration via the Reynolds stresses is facilitated by the re-
duced neoclassical viscosity that a larger quasi-poloidal
symmetry brings, causes a growth in extension and in-
tensity of those regions with positive [negative] vorticity
together and a suppresion of those with negative [pos-
itive] vorticity16. This process takes place in addition
to the concomittant stretching along y and the shorten-
ing along x of any region of localized vorticity (along z)
driven by the sheared rotation. The vorticity landscape

FIG. 11. Values of the exponents H (above) and α (below)
obtained for the radial velocity time series as a function of
the figure-of-merit characterizing the strength of the shear in
the poloidal zonal flow, ⟨| dΩθ/ dx|⟩volume.
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that results from these processes makes it more probable
for any radial motion to reverses its direction often, in-
stead of moving steady, which automatically leads to the
observed subdiffusion along x. This behaviour is insensi-
tive to the sign of the shear, caring only about the shear
absolute strength. This is what we observe here. More
interestingly, tokamak simulations proved that the estab-
lishment of subdiffusion via this process does not require
that the zonal flow be self-generated by the turbulence14.
Transport would also become subdiffusive in the presence
of externally driven flows, which suggests an interesting
avenue to transport control via external biasing.

Regarding the non-Gaussian tails (α < 2) found in our
simulations, their meaning is not so clear. In previous
tokamak GK simulations the values of the tail exponents
found were much larger (α ∼ 1.4− 1.5) and increased to-
wards the Gaussian value (i.e., α ∼ 2) as the zonal flow
shear strength decreased and transport became more dif-
fusive16. This is not what we have found in the current
Gene simulations for a quasi-poloidal geometry. Instead,
α ∼ 0.8 − 0.9, although it does seem to increase as the
value of the quasi-poloidal symmetry ratio is reduced. In
the tokamak GK simulations it was also found that the
mechanism responsible for subdiffusion was very differ-
ent from that causing the lack of Gaussianity. The latter
was related to the establishment of a predator-prey cycle
between potential and flow shear local fluctuations that
translated into avalanche-like radial propagations whose
reflection was the appearence of power-law tails. It is
not clear at this time if this mechanism is absent or sup-
pressed in our quasipoloidal runs. In addition, the toka-
mak simulations were done with UCAN35, a global, PIC
code. Gene is Eulerian and local. At the moment we
cannot say whether the much lower values obtained for
the exponent α are caused by differences in the domi-
nant physics caused by the stellarator geometry, or just
because of factors related to the different numerical im-
plementation used. It is our intention to further investi-
gate this question in the near future.

In regards to the different behavior of the instanta-
neous H exponent found for massive ions and illustrated
in Fig. 10, its explanation can be traced to the spatial dis-
tribution of the sign of the radial component of B×∇B
that governs the magnetic drift of the massive ions. As
shown in Fig.12, this sign is predominantly positive (i.e.,
red) for z ∈ (0, π) and negative (blue) for z ∈ (−π, 0).
Since z corresponds to the Boozer poloidal angle, this
up-down asymmetry pushes massive ions radially out-
wards in the upper half of the configuration, and radially
inwards in the lower half. But since z is also used as
the label that runs along any magnetic field line, massive
ions feel these effects alternatively as they move along the
field lines due to the relatively large safety factor. The
process is ballistic in nature and governs the scaling of
radial transport in the intermediate range (10−102)a/cs
as shown in Fig. 10. This is particularly clear in the
blue curve in that figure, that only considers magnetic
drifts and parallel motion for the massive ions. When

0.30

0.15

0.0

-0.15

-0.30

FIG. 12. Variation of the radial component of B×∇B across
the computational volume centered at the magnetic surface
s0 = 0.10. Since z = θB , the poloidal Boozer angle, the plot
shows that massive particles are going to be pushed outwards
in radius (i.e., to larger x’s) when z ∈ (0, π), and then inwards
(to smaller x’s) while z ∈ (−π, 0), as they move along the
field line. These ballistic processes are responsible for the
superdiffusive behaviour made apparent in Fig. 10.

the contribution to perpendicular motion of the turbu-
lent E×B is also included, as shown by the green curve
in Fig. 10, turbulent decorrelation begins to dominates
for timescales τ > 102 a/cs, beyond which the radial mo-
tion of massive ions becomes very similar to that of the
massless tracers. That is, it becomes more subdiffusive
the larger the quasi-poloidal symmetry ratio is.

VI. CONCLUSIONS

We have shown that quasi-poloidal symmetry may im-
prove the confinement properties of a three-dimensional
magnetic configuration, in regards to radial turbulent
transport, in a much deeper sense than through the mere
reduction of effective transport coefficients (the ion heat
conductivity, in this case). The reduction of the neo-
classical viscosity along the direction of quasi-symmetry
allows for the development of zonal flows with a stronger
radial shear, that is able to alter the vorticity landscape
is such a way as to drive transport subdiffusively across
the flow (i.e., in the radial direction). The physical
mechanisms responsible for this behaviour appear to be
analogous to those recently reported for tokamaks. Al-
though some differences are also found, particularly in
what refers to the non-Gaussianity of the process, that
deserve further study. It is not clear at this time whether
this is a fundamental difference or if it is somehow caused
by the computational method chosen. This issue will be
studied in the future. A last point worth making is that
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subdiffusive transport will not dominate for arbitrarily
long timescales, though. Otherwise, it would be impos-
sible to reach a steady state in the present of a constant
drive. Therefore, for sufficiently long times, the nature
of transport will eventually become diffusive. But those
scales can be very large (for the cases examined here, they
clearly lie beyond 104a/cs, our longest simulation time).
Therefore, if the process of interest takes place within the
range of scales in which subdiffusion dominates, proper
predicitive capabilities will only be maintained if such
dynamics are captured properly.
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