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Structure of the RBM7–ZCCHC8 core of the NEXT
complex reveals connections to splicing factors
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Torben Heick Jensen2 & Elena Conti1

The eukaryotic RNA exosome participates extensively in RNA processing and degradation.

In human cells, three accessory factors (RBM7, ZCCHC8 and hMTR4) interact to form the

nuclear exosome targeting (NEXT) complex, which directs a subset of non-coding RNAs for

exosomal degradation. Here we elucidate how RBM7 is incorporated in the NEXT complex.

We identify a proline-rich segment of ZCCHC8 as the interaction site for the RNA-recognition

motif (RRM) of RBM7 and present the crystal structure of the corresponding complex

at 2.0 Å resolution. On the basis of the structure, we identify a proline-rich segment within

the splicing factor SAP145 with strong similarity to ZCCHC8. We show that this segment

of SAP145 not only binds the RRM region of another splicing factor SAP49 but also the RRM

of RBM7. These dual interactions of RBM7 with the exosome and the spliceosome suggest a

model whereby NEXT might recruit the exosome to degrade intronic RNAs.
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T
he RNA exosome was first discovered from biochemical
and genetic experiments in Saccharomyces cerevisiae
as the exoribonuclease complex generating the mature

30-end of nuclear 5.8S ribosomal RNA (rRNA)1. Since then,
work from many laboratories has converged on the notion
that the exosome is a major 30–50 exo- and endo-ribonuclease that
degrades a bewildering number and variety of cellular
transcripts in RNA processing, turnover and surveillance
pathways, in the nucleus and the cytoplasm alike, and in all
eukaryotes studied to date (reviewed in refs 2–6). The exosome
functions together with accessory factors, which have so
far been characterized primarily in S. cerevisiae. Crucial among
these are ATP-dependent RNA helicases, which are believed
to disentangle ribonucleoprotein complexes and thread unwound
RNAs into the exosome channel7. In the cytoplasm, the
Ski2 helicase associates with Ski3 and Ski8 to form the so-called
Ski complex, which is recruited to the exosome core via Ski7
(refs 8–12). In the nucleus, the related helicase Mtr4 is
recruited to the exosome via its interaction with Rrp6–Rrp47
and likely also Mpp6 (ref. 13). In addition, Mtr4 can
separately bind the poly(A)-polymerase Trf4 and the
Zinc-knuckle protein Air2 to form the Trf4/Air2/Mtr4
polyadenylation (TRAMP) complex14–17. TRAMP adds an
oligoadenylated tail/extension to the 30-end of specific
substrates, promoting their exosomal degradation14–16,18.
The activities of TRAMP are required for degrading
defective tRNAiMet (ref. 19) and cryptic unstable
transcripts16,20, and are also involved in the degradation of
rRNAs and small nuclear and small nucleolar RNAs16,21–23.

An emerging general principle is that the exosome core is
ubiquitously localized, whereas its accessory factors are organized
in different cellular compartments. In S. cerevisiae, at least two
versions of the TRAMP complex exist that are preferentially
localized in the nucleoplasm (TRAMP4) or in the nucleolus
(TRAMP5)24,25. Such spatial compartmentalization is even
more pronounced in human cells, where the diversity of
involved factors is increased. In particular, human Mtr4
(hMTR4, also known as SKIV2L2) is found in the nucleolus
together with the human orthologues of the TRAMP complex
(TRF4-2 and the Air2-like protein ZCCHC7), which functions
in the 30-adenylation of rRNA products26,27. In the
nucleoplasm, however, hMTR4 binds the RBM7 and ZCCHC8
proteins, forming the metazoan-specific nuclear exosome
targeting (NEXT) complex27. NEXT promotes the exosomal
degradation of non-coding promoter-upstream transcripts27,
enhancer RNAs28 and 30-extended products of histone- and
small nuclear RNA transcription27,29,30. Interestingly for the
present study, it also targets intronic RNA for decay and/or
processing of embedded small nucleolar RNAs31. An important
RNA-binding element in the NEXT complex is the
RNA-recognition motif (RRM) of RBM7, which shows some
preference for poly-pyrimidine sequences29,31. This preference
in vitro correlates with the presence of uridine-rich stretches in
the targets of RBM7 in cells, although the protein is also loaded
rather promiscuously on early transcripts29,31. RBM7/NEXT
interacts not only with the exosome but also with proteins
(ZC3H18 and ARS2) that connect it to the nuclear cap-binding
complex, which resides on the 50-cap structures of nuclear
RNA polymerase II-derived transcripts30,32. While this
presumably explains the moderate cap-proximal nature of
RBM7 binding to RNA in cells, it has remained unclear how
RBM7/NEXT gets specifically targeted to the 30-ends of introns31.
In this work, we started to dissect the architecture of the NEXT
complex and in doing so we identified an interaction network
possibly explaining how the NEXT-exosome machinery gets
recruited to intronic RNA.

Results
ZCCHC8 is the scaffolding subunit of the NEXT complex. The
three subunits of the human NEXT complex have a multi-domain
arrangement (Fig. 1a). hMTR4 (1,042 residues) harbours the
same domain architecture as yeast Mtr4, with a helicase domain
that contains a characteristic insertion, or arch domain, and an
N-terminal low-complexity region that contains a conserved
Rrp6–Rrp47-binding motif13. RBM7 (266 residues) features a
conserved N-terminal RRM domain of about 90 amino acids27,29

followed by a poorly conserved C-terminal region predicted to be
unstructured. In the case of ZCCHC8 (707 residues), a
Zinc-knuckle domain (residues 222–246) and a proline-rich
region (residues 287–334) can be predicted by sequence analysis.
To map the protein–protein interactions within the NEXT
complex, we expressed glutathione-S-transferase (GST)-tagged
hMTR4 and ZCCHC8 in bacterial cells and carried out pull-down
assays with independently expressed Z-tagged RBM7 and
ZCCHC8. Since full-length RBM7 precipitated during
purification, we used a truncated fragment of RBM7 (residues
1–137 or RBM71–137) lacking part of the unstructured C-terminal
region of the protein. We found that RBM71–137 co-precipitated
with GST-ZCCHC8, but not with GST-hMTR4 (Fig. 1b, lanes 7
and 8). Instead, GST-hMTR4 was able to independently
precipitate Z-tagged ZCCHC8 (Fig. 1b, lane 6). We conclude
that ZCCHC8 is a scaffolding subunit that bridges the interaction
between RBM7 and hMTR4.

The proline-rich segment of ZCCHC8 binds to the RBM7 RRM.
We proceeded to narrow down the interacting regions of
RBM7 and ZCCHC8 through iterative rounds of construct
design, pull-down assays and limited proteolysis experiments. We
found that a GST-tagged version of ZCCHC8, encompassing
residues 1–337, precipitated RBM71–137 (Fig. 1c, lane 5).
RBM71–137 also co-precipitated with GST-ZCCH841–337 (Fig. 1c,
lane 6), demonstrating that the interaction does not require the
variable N-terminal segment of ZCCHC8. However, RBM71–137

did not co-precipitate with GST-ZCCHC81–263 (Fig. 1c, lane 7),
suggesting that the segment following the Zinc-knuckle domain
of ZCCHC8 is essential for the interaction.

Next we purified the complex between ZCCHC841–337 and
RBM71–137, and subjected it to limited proteolysis. We observed
smaller stable fragments of the two proteins. This prompted us to
design new ZCCHC8 and RBM7 constructs, encompassing
the RRM domain of RBM7 and the segment downstream of the
Zinc-knuckle domain of ZCCHC8 (Supplementary Fig. 1a). We
tested the corresponding constructs in pull-down assays and
demonstrated that GST-tagged ZCCHC8273–337 precipitated
RBM71–98 (Fig. 1d, lane 5). This complex, however, failed to
give diffraction-quality crystals. Another round of limited
proteolysis and mass spectrometric analysis of the purified
ZCCHC8273–337–RBM71–98 complex narrowed down the
interacting regions further (Supplementary Fig. 1b). From the
pull-down assays with the corresponding protein constructs
(Fig. 1d, lane 6), we could demonstrate that ZCCHC8285–324

(encompassing the proline-rich region downstream of the
Zinc-knuckle domain, ZCCHC8Pro) is sufficient to bind
RBM71–86 (spanning the RRM domain, RBM7RRM).

Crystal structure of a ZCCHC8–RBM7 core complex. The
complex between ZCCHC8Pro and RBM7RRM yielded crystals
diffracting to about 2.85 Å resolution, with seven complexes in
the asymmetric unit. Molecular replacement using the nuclear
magnetic resonance (NMR) structure of RBM7RRM (ref. 29)
(PDB 2M8H) or other RRM domains (RBM11, 65% sequence
identity, PDB 2YWK) as search models was not successful.
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Figure 1 | Mapping of interactions within the NEXT complex. (a) Domain organization of the three subunits of the human NEXT complex. Folded domains

are represented as rectangles and labelled. Predicted unstructured regions are shown as lines. The portions of RBM7 and ZCCHC8 included in the

presented crystal structure are coloured in green and pink, respectively. (b) Protein co-precipitations by GST pull-down assays. GST-tagged ZCCHC8 or

hMTR4 and Z-tagged RBM7 and ZCCHC8 were expressed individually and cells were mixed before lysis. Pull-down assays were carried out using

GSH-Sepharose beads in a buffer containing 500 mM NaCl. The Coomassie-stained 12% SDS–PAGE gels show the total lysate control (lanes 1–5) and the

pulled-down protein precipitates (lanes 6–10). Bands corresponding to hMtr4 (circles), ZCCHC8 (diamonds) and RBM7 (squares) are labelled. (c) Protein

co-precipitations by GST pull-down assays. Truncated versions of GST-tagged ZCCHC8 were co-expressed with truncated versions of RBM7. Pull-down

assays were carried out and analysed as described in b. Bands corresponding to RBM7 are labelled (squares). (d) Reconstitution of a minimal RBM7–

ZCCHC8 core complex. Protein co-precipitations by GST pull-down assays. Truncated versions of GST-tagged ZCCHC8 were co-expressed with truncated

versions of RBM7. Pull-down assays were carried out and analysed as described in b.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13573 ARTICLE

NATURE COMMUNICATIONS | 7:13573 | DOI: 10.1038/ncomms13573 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


To obtain experimental phases, we co-crystallized the complex in
the presence of heavy-atom compounds. Co-crystallization with
Samarium chloride yielded a different crystal form diffracting to
2.0 Å resolution and containing a single copy of the complex
in the asymmetric unit. The structure was solved by single
anomalous dispersion at the Samarium edge and refined to 2.0 Å
resolution with Rfree of 22.6%, R-factor of 20.2% and good
stereochemistry (Table 1). The coordinates of the Sm-derivatized
RBM7RRM–ZCCHC8Pro complex allowed solving the structure of
the native complex (Rfree of 30.0% and R-factor of 26.2%;
Table 1). As the two structures are very similar (Supplementary
Fig. 2a), we focused on the highest-resolution atomic model,
which includes residues 286–324 of ZCCH8 and residues 7–86 of
RBM7. Side-chain electron density was well resolved throughout
the RBM7RRM–ZCCHC8Pro interface (Supplementary Fig. 2b).

ZCCHC8 is recognized at the helical surface of the RBM7 RRM.
RBM7RRM folds into the typical globular domain with four
antiparallel b-strands (b1–b4) at the front and two a-helices at the
back (a1 and a2, encompassing residues 23–33 and 60–70,
respectively; Fig. 2a). In comparison with the previously reported
NMR structure of RBM7RRM (ref. 29), we found longer secondary
structure elements for a2 and b4 and an additional b-strand in the
a2–b4 loop (referred to as b4add) (Supplementary Fig. 2c and
Supplementary Fig. 2d). When viewing the structure at the front,
the b4add–b4–b1–b3–b2 sequel of strands positions short,
medium and long loops at the bottom of the molecule (b4add–b4
loop residues 75–78, b1–a1 loop residues 15–23 and b2–b3
loop residues 40–53, respectively). The conformation of these loops
is restrained by the presence of proline residues and of intramo-
lecular interactions, including main-chain hydrogen bonds and
van der Waals contacts between aliphatic side chains

(Supplementary Fig. 2e). Their conformation is indeed similar to
that observed in the NMR structure.

In the complex, RBM7RRM exposes the front b-sheet surface to
solvent and engages the helical back surface in binding
ZCCHC8Pro with conserved interactions (Fig. 2b). The
interaction covers 18% of the total accessible surface area of
RBM7RRM as calculated by the PISA server33. ZCCHC8Pro

positions the N terminus at the top of the RRM and then
stretches downward, laying over helix a1 and reaching the
bottom of the domain. Here the polypeptide chain of ZCCHC8Pro

makes a B90� bend and continues laterally with an a-helix
(aA, residues 293–299). ZCCHC8Pro then twists into a B90� coil
and continues upward with a second a-helix (helix aB, residues
308–316), reaching the top of RBM7RRM. Finally, ZCCHC8Pro

makes another B90� bend and extends laterally over helix a2,
ending with a short helical turn (residues 320–323). The C- and
N-terminal residues of ZCCHC8Pro interact with each other at
the top of RBM7RRM. Overall, ZCCHC8Pro adopts an unusual
elliptical conformation when bound to RBM7. ZCCHC8Pro also
contains an unusually high percentage of proline residues34 that
contribute in shaping the path of the polypeptide chain due to the
conformational rigidity of their cyclic structure.

The ZCCHC8–RBM7 interface is evolutionary conserved. The
RBM7RRM–ZCCHC8Pro interaction is dominated by conserved
hydrophobic contacts that can be grouped into two adjacent
patches (Fig. 2a,b). The first interaction hotspot (patch 1) is in the
lower half of the RRM domain: ZCCHC8Pro helix aA together
with the preceding and following loops insert a set of apolar
residues into a shallow hydrophobic pocket formed between the
a1 and b4add elements of RBM7RRM (Fig. 2c,d). In particular,
Leu295, Ala298, Leu299 and Phe309 of ZCCHC8 are in van der

Table 1 | Crystallographic data collection and refinement statistics.

Data set RBM7RRM–ZCCHC8ProSm3þ RBM7RRM–ZCCHC8Pronative

Space group P6322 C2
Cell dimensions

a, b, c (Å) 79.5, 79.5, 87.6 178.8, 66.6, 111.9
a, b, g (�) 90, 90, 120 90, 126.6, 90

Data collection
Wavelength (Å) 1.60 1.00
Resolution (Å) 87.61–2.00 71.79–2.85
Rmerge 18.7 (344.2) 6.1 (114.2)
I/sI 26.6 (1.34) 8.1 (0.8)
Completeness (%) 98.8 (92.7) 99.8 (99.7)
Multiplicity 134.8 3.2
CC1/2 100 (34.1) 99.5 (62.0)

Refinement
Resolution (Å) 87.61–2.00 (2.08–2.00) 71.79–2.85 (2.92–2.85)
No. of unique reflections 11,456 24,933
Copies per a.s.u. 1 7
Rwork/Rfree (%) 20.2/22.6 26.2/30.0
Wilson B-factor (Å2) 43.4 88.7
Average B-factors (Å2) 49.4 107.3
No. of atoms

Proteins 955 5,485
Ligands 9 9

Stereochemistry
R.m.s.d. bond lengths (Å) 0.003 0.005
R.m.s.d. bond angles (�) 0.56 1.12
Ramachandran favoured (%) 100 98.0
Ramachandran outliers (%) 0.0 0.4

R.m.s.d., root mean squared deviation; a.s.u., asymmetic unit.
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Waals contacts with Leu25, Leu29, Ile73, Leu75 and Tyr76 of
RBM7. This layer of hydrophobic residues packs against an outer
layer formed by ZCCHC8 Ile291, Val301, Pro307, Pro308 and
Ile310. The second interaction hotspot (patch 2) is in the upper
half of the RRM domain. Here helix aB as well as the C-terminal

and N-terminal segments of ZCCHC8 cluster a set of apolar side
chains into a hydrophobic surface groove formed between helices
a1 and a2 of RBM7 (Fig. 2e). Leu69 of RBM7 projects from helix
a2 to interact with ZCCHC8 Met313, while RBM7 Tyr65 stacks
against a proline–proline dipeptide in ZCCHC8 (Pro319 and
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Pro320). Adjacent to it, the N- and C-terminal residues of
ZCCHC8Pro form a remarkable array of consecutive face-to-face
stacking interactions that involve Pro288, Phe286, Trp322 and
RBM7 Pro35. Finally, ZCCHC8 Tyr318 and Phe286 lay on top of
each other with an edge-to-face aromatic interaction.

The interactions at patch 1 are reminiscent of those observed in
other RRM–protein complexes. For example, ZCCHC8 Leu295
and Leu299 are at a similar structural position as a tryptophan
residue found in motifs that recognize the UHM (U2AF homology
motif) family of RRM35–37 (Fig. 2f) and also observed in the
interaction of eIF3j with the RRM of eIF3b (ref. 38; Supplementary
Fig. 2f). Even more striking is the similarity with the
complex between the polypyrimidine tract-binding protein
(PTB) and Raver1 (ref. 39). Raver1 inserts a pair of leucine
residues (corresponding to ZCCHC8 Leu295 and Leu299) into
an equivalent hydrophobic pocket in the PTB RRM that has
very similar surface features as RBM7 (Fig. 2g). U2AF65 and
U2AF35 (UHM–peptide complex) form a very tight complex
with a dissociation constant of KDB2 nM (ref. 35), whereas
in comparison the PTB–Raver1 interaction is rather weak, with a
KDB100mM (ref. 40). To test in which affinity regime the
RBM7RRM–ZCCHC8Pro complex resides, we determined the
dissociation constant by microscale thermophoresis. We
engineered and purified a ZCCHC8Pro-(GS)3-eYFP fusion
protein (using a Gly–Ser linker). Titration of ZCCHC8Pro-(GS)3-
eYFP with RBM71–137 yielded a KD of 28 nM (±4 nM) (Fig. 2h),
suggesting that RBM7RRM–ZCCHC8Pro form a tight
complex similar to that of U2AF65 and U2AF35. Finally, the
RBM7RRM–ZCCHC8Pro interaction does not use the front surface
of the RRM domain, which is expected to mediate RNA binding.
Indeed, the RBM7RRM–ZCCHC8Pro complex was able to bind a
polyU RNA substrate in fluorescence anisotropy experiments and
displayed similar RNA-binding affinity as compared with RBM7 in
isolation (Supplementary Fig. 2g).

Mutational analysis of the ZCCHC8–RBM7 interface. We next
tested experimentally the importance of the hydrophobic contacts
observed in the crystal structure. To this end, specific amino-acid
substitutions in RBM7RRM and ZCCHC8Pro were engineered and
their impact on the RBM7–ZCCHC8 interaction was tested by
co-expression pull-down assays in vitro. In these assays, RBM7RRM

patch 2 substitutions (Tyr65Ala and Leu69Glu) or ZCCHC8Pro

substitutions (Met313Glu and Phe309Ala) severely weakened the
interaction of the polypeptides (Fig. 3a, compare lane 8 with lanes
10 and 12). An even more drastic effect was observed when
mutating patch 1 either in RBM7RRM (Leu25Glu and Leu29Glu) or
in ZCCHC8Pro (Leu295Glu and Leu299Glu), which essentially
abrogated complex formation (Fig. 3a, lanes 9 and 11).

To evaluate whether the patch 1 mutations would also affect
RBM7–ZCCHC8 interaction in cells in the background of the

full-length proteins, we carried out immunoprecipitation (IP)
experiments using extracts from HEK293 cells overexpressing
full-length wild-type (WT) or patch 1 mutant (mut) versions of
RBM7-GFP (Fig. 3b, left panels) or ZCCHC8-FLAG (Fig. 3b,
right panels) fusion proteins. Using the engineered affinity tags,
both WT and mut proteins were immunoprecipitated efficiently
(Fig. 3b). Moreover, consistent with our in vitro experiments only
WT RBM7-GFP and ZCCHC8-FLAG were able to IP endogenous
ZCCHC8 and RBM7, respectively, whereas their mut counterpart
proteins failed to do so (Fig. 3b, compare lanes 5 and 6 for both
left and right panels).

Binding of ZCCHC8 and SAP145 to RBM7 is mutually exclusive.
The identification of the proline-rich RRM-binding motif in
ZCCHC8 prompted us to ask whether other proteins might
harbour a similar functional site. In bioinformatic analyses, we
detected a remarkable sequence similarity between the
proline-rich ZCCHC8 segment and a proline-rich stretch in the
protein SAP145 (residues 603–647, SAP145Pro) (Fig. 4a,
upper panel). SAP145 (also known as SF3b2) is a subunit of the
spliceosomal SF3b complex. Previous interaction studies by
far-western analyses suggested the presence of a specific SF3b
subcomplex between SAP145 and SAP49 (also known as SF3b4),
a protein containing two RRM domains41. We reasoned that the
interaction between SAP49 and SAP145 might resemble that of
RBM7RRM and ZCCHC8Pro. SAP49 contains two RRMs at the
N terminus, and sequence alignments suggest that the first one
(RRM1) is the most similar to RBM7 (Fig. 4a, lower panel).
Indeed, in vitro experiments with recombinant proteins
showed that SAP145Pro interacts directly with a SAP49
construct comprising both RRMs (SAP49RRM1–2) or RRM1
only (SAP49RRM1) (Fig. 4b, lane 10 and 11). As a control,
SAP145Pro did not interact with p14, the other RRM-containing
protein of the SF3b complex (Supplementary Fig. 3, lane 7).

The striking similarity between ZCCHC8Pro and SAP145Pro and
between RBM7RRM and SAP49RRM (in particular the first RRM)
raised the possibility of an interaction across the NEXT and SF3b
complexes. In support of this, mining the data from recent
proteomic studies in human cells27,30,42,43 revealed that affinity
purifications of the bait protein RBM7 contained SAP145 and
other SF3b subunits, in addition to ZCCHC8, hMTR4 and
exosome subunits. Furthermore, RBM7 was previously reported
to associate with SAP145 in rat testes44. We assessed the suggested
interaction in vitro, and found that the RBM7RRM and SAP145Pro

fragments make direct physical contact (Fig. 4b, lane 7). Mutation
of the patch 1 surface of RBM7RRM had a minor effect on
SAP145Pro binding (Fig. 4b, lane 8), whereas mutation of patch 2
effectively abolished the interaction (Fig. 4b, lane 9). Since both
ZCCHC8 and SAP145 proline-rich domains bind to RBM7, we
also tested if they could form a ternary complex. To this end,

Figure 2 | Structure of the RBM7–ZCCHC8 core complex. (a) Crystal structure of the RBM7–ZCCHC8 core complex shown in two orientations. RBM7 is in

green and ZCCHC8 in pink. Secondary structure elements discussed in the text are indicated. Boxes indicate the regions of the RBM7–ZCCHC8 interface that

are shown as zoom-ins in c–e. (b) Structure-based sequence alignments of RBM7 and ZCCHC8, including orthologues from Homo sapiens (Hs), Gallus gallus

(Gg), Xenopus laevis (Xl) and Danio rerio (Dr). The secondary structure elements are shown above the sequences. Conserved residues are highlighted in green

(RBM7) and pink (ZCCHC8). Above the sequences, coloured circles identify residues involved in intermolecular interactions with ZCCHC8 (pink circles) and

with RBM7 (green circles). Green triangles indicate the residues that form the outer hydrophobic layer. Asterisks point to the residues mutated in the

interaction studies below. (c–e) Zoom-in view of a representative set of residues at the RBM7–ZCCHC8 interaction patch 1 (c,d) and patch 2 (e) (see text for

details). (f,g) Comparison of interactions at the back helical surface of RRM domains. The two panels show the superposition of RBM7–ZCCHC8 with

U2AF35/U2AF65 (f) and with PTB–Raver (g). The zoom-in views show how an equivalent hydrophobic pocket in the three RRM-containing proteins can

accommodate either a Trp residue (f) or two Leu residues (g). The RRM domains of U2AF35 and PTB are shown in dark green, U2AF65 in yellow and the Raver

peptide in orange. (h) The binding of RBM71–137 to ZCCHC8Pro was measured with microscale thermophoresis MST (circles). The titration of RBM71–137

ranged from 0.2 nM to 6.0mM with a constant concentration of ZCCHC8Pro-(GS)3-eYFP at 30 nM. Data were analysed by temperature jump mode and

yielded a KD of 28±4 nM. The error bars represent the s.d. of each data point calculated from three independent thermophoresis measurements.
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we co-expressed MBP-RBM71–86 with GST-ZCCHC8Pro and
TRX-SAP145Pro and performed two pull-down experiments.
When using MBP-binding amylose beads, MBP-RBM71–86

co-precipitated both GST-ZCCHC8Pro and TRX-SAP145Pro

(Fig. 4b, lane 13). However, when using GST-binding GSH
beads, GST-ZCCHC8Pro precipitated only MBP-RBM71–86

(Fig. 4b, lane 12). Therefore, the interaction of the proline-rich
domains of ZCCHC8 and SAP145 with RBM71–86 appears
to be mutually exclusive. This supports the notion that the back
helical surface of RBM7RRM can recognize the proline-rich
segment of either ZCCHC8Pro or SAP145Pro. Detailed differences
in the amino-acid sequences of ZCCHC8 and SAP145 might be
responsible for tighter binding at the patch 1 surface of RBM7RRM

(in the case of ZCCHC8Pro) or patch 2 (in the case of SAP145Pro).
The interaction between RBM7 and an SF3b protein raised the

question whether NEXT plays a role in splicing. To address
this question, we quantitatively analysed changes in alternative
splicing using the MISO algorithm45 on RNA-seq data sets
obtained from HeLa cells depleted for either RBM7 or ZCCHC8,
and two corresponding control samples30 (Supplementary
Fig. 4a–c). We identified only few consistently changed
alternative splicing events: 14 in RBM7-depleted samples
(Supplementary Fig. 4a,d) and 32 in ZCCHC8-depleted samples
(Supplementary Fig. 4b,d). Only four of these altered splicing
events were observed in both RBM7 and ZCCHC8 depletions
(Supplementary Fig. 4d). Thus, neither RBM7 nor ZCCHC8
appear to function as general splicing factors. Previous, iCLIP

data have shown that RBM7 binds to a region in the 30-ends of
introns, at a similar position where the U2snRNP binds31.
In addition, SAP49 has been shown to crosslink near the branch
site sequence in the splicing reaction41. Altogether, these findings
suggest a model where the interaction with SF3b could help
recruit NEXT to introns to assist in RNA degradation after
completion of the splicing process.

Discussion
In this work, we have shown that RBM7RRM binds a proline-rich
segment of ZCCHC8 at the back helical surface and is able to
concomitantly bind RNA. This RBM7RRM–ZCCHC8Pro

interaction engages extensive surfaces and thus appears to be a
stable architectural unit in the formation of the NEXT complex.
On the basis of this structural analysis, we found that RBM7RRM

can interact with SAP145Pro, a homologous proline-rich segment
present in the spliceosomal SF3b complex. In turn, SAP145Pro

binds the RRM region of the splicing factor SAP49 (ref. 44),
linking RBM7 to RNA splicing factors, in addition to its
connection to exosome-mediated RNA degradation27,30,46.
The mutually exclusive binding of ZCCHC8 and SAP145 to
RBM7 could reflect independent functions of RBM7 in
exosome-mediated degradation and splicing. Alternatively, it
could reflect the ability of concomitantly linking both
machineries provided RBM7 is able to homo-dimerize as
reported for RBM11, a paralogue of RBM7 that also associates
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Figure 3 | Mutational analysis of the ZCCHC8–RBM7 interface. (a) Effect of structure-based mutations in vitro assayed by protein co-precipitations in

GST pull-down assays. WT and indicated mutant versions of GST-tagged ZCCHC8 were co-expressed with WT and indicated mutant versions of RBM7.

Pull-down assays were carried out and analysed as described in Fig. 1b. The mutants map to patches I and II (as indicated in red at the bottom of the gels).

Asterisks point to ZCCHC8 degradation products, which arose when the protein was absent from RBM7. (b) Patch 1 facilitates RBM7–ZCCHC8 interaction

in cells. Western blotting analysis of input and RBM7-GFP or ZCCHC8-FLAG IP samples. Full-length WT or patch 1 mutant (mut) proteins were expressed

transiently in HEK293 cells. An empty expression vector was used as a negative control. IPs were carried out using Dynabeads coupled to anti-GFP

nanobodies or to anti-FLAG antibodies. Input and IP fractions were probed with anti-RBM7 and anti-ZCCHC8 antibodies as indicated.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13573 ARTICLE

NATURE COMMUNICATIONS | 7:13573 | DOI: 10.1038/ncomms13573 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


with ZCCHC8 and SAP145 (ref. 42), and has a preference for
uridine-rich sequences47. Regardless the exact details, this
interaction network together with previous iCLIP data31

suggests a mechanism by which the NEXT–exosome machinery
can be targeted to the 30-ends of introns. While NEXT does not
have a general effect on splicing, we speculate that the coupling
between NEXT and SF3b complexes might serve in targeting
NEXT to intronic RNA for degradative purposes.

Methods
Protein purification. His-GST-tagged ZCCHC8285–324 was co-expressed with
His-Z-tagged RBM71–86 in bacterial cells. The complex was purified by a
glutathione affinity step. The tags were cleaved by 3C and removed by a
Ni-nitrilotriacetate affinity step. In the final purification step, the complex was
subjected to size-exclusion chromatography in 20 mM Tris/HCl (pH 7.5), 150 mM
NaCl and 2 mM dithiothreitol.

Crystallization and structure determination. After size-exclusion
chromatography, the complex was concentrated to 20 mg ml� 1 and stored at 4 �C
until further use. Crystallization trials were performed using a vapour diffusion
set-up by mixing the protein complex and crystallization solution in a 2:1 ratio.
Initial native crystals grew in 0.1 M Bis-Tris-Propane (pH 6.5), 0.2 M NaBr and
20% (w/v) PEG3350 (PACT Suite screen, F2, Qiagen) at 18 �C. The initial native hit
was refined to 0.1 M Bis-Tris-Propane (pH 6.5), 0.2 M NaBr, 0.1 M sodium
malonate and 20% (w/v) PEG3350 (Additives Screen, Hampton Research, C1). The
crystals were cryoprotected with the reservoir solution supplemented with 20%
(w/v) ethylene glycol before data collection at 100 K. All diffraction data were

collected at the Swiss Light Source PXII beamline (Villigen, Switzerland). The data
of the Samarium derivative crystals were processed using XDS48, and the data of
the native crystals were processed with Xia2/Dials49 within CCP4i2 (ref. 50). Native
crystals belong to the monoclinic spacegroup C2 and diffracted to 2.85 Å
resolution. For co-crystallization with Samariumchloride, the protein complex was
mixed with SmCl3 dissolved in buffer in a 1:2 molar ratio. Crystals grew in 0.1 M
Bis-Tris-Propane (pH 6.5), 0.2 M NaBr, 18% (w/v) PEG3350 and 7% (w/v) glycerol
at 18 �C, and were cryoprotected with the reservoir solution supplemented with
20% (w/v) glycerol before data collection at 100 K. Samarium derivatized crystals
belong to the hexagonal spacegroup P6322 and diffracted to 2 Å resolution. The
structure of ZCCHC8Pro and RBM7RRM was solved by single anomalous dispersion
phasing with Autosol from Phenix51. The mean figure of merit over all resolution
shells had a value of 0.46 and estimated map correlation coefficient a value of
63.3±6.9. Most of the model was automatically built using Buccaneer52, was
manually completed with COOT53 and refined with phenix.refine54. The obtained
model was used to solve the structure of the native crystals by molecular
replacement with Phaser within Phenix55. The native crystals contain seven
RBM7RRM–ZCCHC8Pro complexes (14 chains) in the asymmetric unit. The model
was manually completed with COOT and refined with phenix.refine54.

Pull-down assays. For interaction studies the respective combination of proteins
were either co-expressed or individually expressed and co-lysed in 20 mM Tris/HCl
(pH 7.5), 500 mM NaCl, 10 mM imidazole, 2.5 mM EDTA, 10% (v/v) glycerol,
0.1% (v/v) NP40, 5 mM b-mercaptoethanol and 1 mM phenylmethylsulfonyl
fluoride. ZCCHC8273–337 and ZCCHC8285–324 were co-expressed with RBM71–98

and RBM71–86, respectively, to avoid degradation of ZCCHC8. Glutathione
sepharose beads (GE Healthcare) were incubated with lysates for 2 h, washed three
times with 0.5 ml lysis buffer and the retained material was eluted with lysis
buffer containing 30 mM glutathione. Input material and eluates were analysed by
SDS–PAGE and Coomassie staining.

Uncropped SDS–PAGE gels are shown in Supplementary Fig. 5.

Interaction studies in cells. To construct patch 1 ‘Mut’ versions of ZCCHC8-
FLAG and RBM7-GFP, pcDNA5-ZCCHC8-FLAG and pcDNA5-RBM7-GFP
plasmids27 were subjected to site-directed mutagenesis using the following
oligonucleotide primer pairs:

RBM7-GFP-Mut:
50-GTGACCGAGGAGgaaCTTTTCGAGgaaTTCCACCAGGCTGG-30

50-CCAGCCTGGTGGAAttcCTCGAAAAGttcCTCCTCGGTCAC-30

ZCCHC8-FLAG-Mut:
50-GGAGTTATTAGTGAGGAAgaaCAAGATGCAgaAGGTGTGACAGAC-30

50-GTCTGTCACACCTtcTGCATCTTGttcTTCCTCACTAATAACTCC-30

Plasmids were transfected into HEK293 cells (Flp-In 293 T-REx cells, Thermo
Scientific: R78007), maintained in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum (Invitrogen), using the
calcium-phosphate method. Cells were transfected with 20 mg of plasmid DNA
mixed in 500 ml of 0.25 M CaCl2 and 500 ml of 2� HEBS buffer (250 mM NaCl,
9 mM KCl, 1.5 mM Na2HPO4, 10 mM glucose and 50 mM HEPES/NaOH, pH 7.1),
collected after 48 h and lysed in lysis buffer (200 mM NaCl, 20 mM HEPES/NaOH
(pH 7.4) and 0.5% Triton X-100) containing protease inhibitor cocktail (Roche).
Cell lysates were sonicated 3� 10 s using 20 W and cleared by centrifugation at
4,000g for 15 min at 4 �C. IPs using equal amounts of lysates were performed using
anti-Flag M2 antibodies (Sigma) or anti-GFP nanobodies coupled to Epoxy
Dynabeads M-270 beads for 1 h in lysis buffer at 4 �C. After washing of beads three
times with lysis buffer, proteins were eluted with NuPAGE LDS sample buffer
(Life Technologies) at 75 �C for 10 min and denatured by adding NuPAGE Sample
Reducing Agent (Life Technologies) at 75 �C for 10 min. One per cent of initial
input material and 25% of eluate were run on NuPAGE Novex 4–12% Bis-Tris
Protein Gels (Life Technologies). After transfer to membranes, western blotting
analysis was performed according to standard procedures using the following
primary antibodies: polyclonal rabbit anti-RBM7 (1: 1,000, Sigma: HPA013993);
and monoclonal mouse anti-ZCCHC8 (1:2,000, Abcam: ab68739). Anti-mouse and
anti-rabbit IgGs conjugated with horseradish peroxidase (Dako) were used as
secondary antibodies. Uncropped western blots are shown in Supplementary Fig. 5.

Microscale thermophoresis. To determine the dissociation constant of the
RBM7–ZCCHC8 complex, 30 nM of ZCCHC8Pro-(GS)3-eYFP was incubated
with increasing concentrations of unlabelled RBM71–137 in 50 mM Tris/HCl
(pH 7.4), 150 mM NaCl, 10 mM MgCl2 and 0.05% (v/v) Tween 20. The RBM71–137

concentration series was produced by serial dilution (1:1). Thermophoresis was
measured with an LED power of 70% and standard parameters on a NanoTemper
Monolith NT.115 machine. Titrations were performed in triplicates and the data
were analysed using the T-Jump strategy option with the MO software (Nano-
Temper Technologies).

Fluorescence anisotropy. Fluorescence anisotropy measurements were performed
with a 50-6-carboxy-fluorescein (6-FAM)-labelled U8 RNA at 20 �C in 50ml reactions
on a Genios Pro (Tecan). The RNA was dissolved to a concentration of 10 nM and
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Figure 4 | RBM7 forms alternative interactions with splicing factors. (a)

Upper panel: sequence alignments of the RBM7-binding region of ZCCHC8

proteins from the indicated species (from Fig. 2b) with their respective

SAP145 orthologues. ZCCHC8Pro is shown in pink and SAP145Pro in blue.

Lower panel: sequence alignment of the ZCCHC8-binding RRM of RBM7 with

RRM1 and RRM2 of SAP49 and the RRM of p14. (b) The proline-rich domains

of ZCCHC8 and SAP145 bind to RBM7 in a mutually exclusive manner. GST-

tagged ZCCHC8Pro or SAP145Pro were co-expressed with truncated versions

of RBM7 WT or mutants and SAP49. Pull-down assays were carried out and

analysed as described in Fig. 1b. The resin used is indicated above the lane:

MBP-binding amylose resin (A) and GST-binding GSH resin (G).
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incubated with RBM7 complexes at different concentrations in a buffer containing
20 mM Tris/HCl (pH 7.5), 150 mM NaCl and 2 mM dithiothreitol. The excitation
and emission wavelengths were 485 and 535 nm, respectively. Each titration point
was measured 3 times using 10 reads with an integration time of 40ms. The data
were analysed by nonlinear regression fitting using the BIOEQS software.

Analysis of RNA-seq data. RNA-seq data from HeLa cells subjected to control
(� 2), RBM7 or ZCCHC8 depletion using siRNA-mediated knockdown were
obtained from the Sequence Read Archive database (accession code SRP031620).
The mapped reads30 were used to assess alternative splicing by use of the MISO
algorithm and annotated human splicing events (Human genome (hg19) alternative
events v2.0 downloaded from the MISO homepage http://miso.readthedocs.io/en/
fastmiso/annotation.html#version-2-alpha-release-of-the-human-mouse-
annotations-compiled-june-2013)45. Significant altered splicing events were
determined by requiring a Bayes factor Z10, |DC| Z0.10, number of reads
supporting the first isoform Z1, number of reads supporting the second isoform Z1
and the sum of reads supporting both isoforms Z10. For both RBM7 and ZCCHC8
knockdown samples, consistent altered splicing events were determined by finding
the overlap between significant events compared with two different control samples
(ctrl1 and ctrl2), and asserting that the direction of splicing change was consistent
between the two comparisons. Finally, the overlap between consistent significant
events for RBM7 and ZCCHC8 knockdown samples were determined.

Data availability. The coordinates and the structure factors have been
deposited in the Protein Data Bank with accession codes 5LXR (Sm3þ derivative)
and 5LXY (native).

The RNA-seq data with the accession code SRP031620 were retrieved from the
Sequence Read Archive database.
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