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PREFACE TO THE SECOND EDITION 

As a result of feedback from readers of the first edition of this book and from colleagues, this 

second edition is a major revision which goes beyond mere error correction and minor clarification. 

While the book has been modified and extended greatly, the initial concept of a combined tutorial 

introduction into surface crystallography, with bulk crystallography as a basis, and an overview of 

modern subjects for the advanced researcher is still conserved. Many sections have been updated 

for completeness and extended to include recent developments due to the advent of new and more 

refined measuring techniques. 

The second edition is also targeted at researchers working on graphene and other weakly ad-

sorbing overlayers which form large size moiré patterns observed by scanning tunneling and elec-

tron microscopy. They might appreciate the new section on moiré lattice formation which until now 

has not been available in textbook format. Nanoparticle physicists and materials scientists who are 

interested in structure information of very small particles and seek to connect e.g. electronic and 

magnetic properties with structural data, may benefit from the sections about nanoparticles, crystal 

spheres, nanotubes, as well as faceting. This might also interest catalytic chemists trying to interpret 

chemical behavior such as reactivity by structural information of small particles. 

Specific items which have been newly added or revised include 

- nanoclusters and crystallites, giving a basic overview on structure details, 

- incommensurate and quasicrystals, being treated on a common basis, 

- basics of epitaxy and crystal growth, 

- further details on chiral surfaces and adsorbates, 

- the theoretical treatment of high-order commensurate (HOC) overlayers, 

- the theory of interference lattices and moiré patterns, 

- the geometric structure of high-symmetry adsorbate sites, 

- more detailed computational algorithms in the appendices, 

- structure database formats, documenting measured surface structures. 

Furthermore, the list of references to original publications and books on specific subjects has been 

revised and extended to account for more recent experimental and theoretical developments. The set 

of exercises concluding each section has been substantially enlarged following suggestions by read-

ers of the first book edition. All structure graphics in this book have been created using the interac-
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tive software Balsac (Build and Analyze Lattices, Surfaces, And Clusters) developed by the author 

((C) K. Hermann, Fritz-Haber Institut, Berlin, 1990-2015).  

Michel A. Van Hove and Wolfgang Moritz have once again lent invaluable support through 

constructive criticism and detailed suggestions. I am particularly endebted to Michel for our fruitful 

discussions during various extended research visits to the Institute of Computational and Theoreti-

cal Studies (ICTS) at Hong Kong Baptist University, which helped to improve the revised text in 

innumerable ways. Advice from other colleagues on subjects specific to the second edition has 

likewise been instrumental to the improvement of this edition, including suggestions on interference 

lattices by Michael S. Altman, on growth mechanisms by Ernst G. Bauer, on quasicrystals by Renee 

D. Diehl, and on chirality by Andrew J. Gellman and Rasmita Raval. Critical reading of the final 

manuscript by Travis Jones and color design advice on figures by Liudmyla Masliuk are greatly 

acknowledged. 

Finally, unsurpassed support and overwhelming patience by my wife Hanna has again proven 

essential for the completion of this book project.  

Fritz-Haber-Institut, Berlin Klaus Hermann 

Autumn 2015 
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PREFACE TO THE FIRST EDITION 

The objective of this book is to provide students and researchers with the crystallographic 

foundations necessary to understand structure and symmetry of surfaces and interfaces of crystalline 

materials. This includes macroscopic single crystals as well as crystalline nanoparticles. Knowledge 

of their geometric properties is a prerequisite for the interpretation of corresponding experimental 

and theoretical results, which explain both their physical and chemical behavior. In particular, sur-

face and interface structure is of vital importance for studies of properties near single crystal surfac-

es, but also for research on thin films at solid substrates. Here technological applications range from 

semiconductor devices and magnetic storage disks to heterogeneous catalysts. 

Crystalline nanoparticles, such as nanotubes, nanowires, or compact particles of finite size 

have recently attracted considerable interest due to their novel chemical and physical properties. 

Examples are carbon nanotubes, silicon nanowires, nanosize quantum dots at semiconductor surfac-

es, or catalytically active crystallites. These particles are of finite size in one or more dimensions, 

but their local atom arrangement can still be close to that of extended bulk crystals. In addition, 

their surfaces and interfaces with other material can be described analogously to those found for 

single crystal surfaces. Thus, surface crystallography, covered in this book, can also be applied to 

analyze structural properties of nanoparticle surfaces. 

While treatises on three-dimensional crystallography are abundant, there are only few chapters 

on surface crystallography available in specialized surface science reviews. In particular, compre-

hensive textbooks on surface structure have not yet been published. Nevertheless, students and re-

searchers entering the field need to obtain a thorough overview of surface structure and geometry, 

which includes all relevant basic crystallographic methods required for theoretical and experimental 

analyses. This book tries to serve this purpose. It is primarily meant for graduate and PhD students 

in physics, chemistry, and crystallography, but will also help researchers who want to learn more 

details about geometric structure at surfaces of single crystals or nanoparticles.  

The book is written by a theoretical surface scientist. Therefore, the discussion of methods and 

approaches in the text is frequently adapted to surfaces and differs in some places from traditional 

crystallographic treatment. As an example, number theoretical methods are used to derive appropri-

ate transformations between equivalent lattice descriptions. Further, some of the conventional sur-

face structure concepts are looked at from a different view point and go beyond the standard treat-
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ment known inside the surface science community. Examples are the introduction of Miller indices 

based on netplane-adapted lattices and a thorough mathematical treatment of symmetry, which re-

sults in the seventeen two-dimensional space groups. Therefore, the text can also be used as a re-

source complementary to the standard surface science literature. 

This book project started as a manuscript of a series of lectures on surface crystallography, giv-

en by the author at several international workshops and in universities as well as research institu-

tions where surface science and catalysis groups were engaged in research on structural properties 

of surfaces. Questions and discussions during the lectures were often the source of more detailed 

work on different sections of the manuscript and thus helped to improve its presentation. Further-

more, research visits to various surface science groups raised the author’s awareness of new or in-

completely treated issues to be dealt with. The author is indebted to all those who contributed with 

their scientific curiosity and criticism. The text has benefited from numerous discussions with sur-

face scientists, crystallographers, and mathematicians of whom only a few are mentioned in alpha-

betic order: Gerhard Ertl, Klaus Heinz, Bernhard Hornfeck, Klaus Müller, John B. Pendry, Gabor 

A. Somorjai, D. Phil Woodruff. Wolfgang Moritz served as an extremely valuable sparring partner 

in the world of crystallography. Very special thanks go to Michel A. Van Hove whose constructive 

criticism, rich ideas, and continuous support during the writing phase were unmatched. Without him 

the book would not exist in its present form.  

Finally, I am greatly indebted to my wife Hanna for her patience and loving care throughout 

the time it took to finish this book and beyond. 

Fritz-Haber-Institut, Berlin Klaus Hermann 

Summer 2010 
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1 INTRODUCTION 

Research in many areas of materials science requires detailed knowledge about crystalline sol-

ids on an atomic scale. These systems may represent real materials such as complex semiconduc-

tors, or may act as meaningful models, for example, simulating reactive sites of catalysts. Here 

physical and chemical insight depends very much on details of the geometric structure of local envi-

ronments near atoms and of possible periodic atom arrangements inside the crystal as well as at its 

surface. As examples we mention that 

 chemical binding between atoms inside a crystal but also at its surfaces depends, apart from 

atomic parameters, strongly on local geometry [1], [2]. This is very often expressed by local 

coordination describing the number and arrangement of nearest neighbor atoms with re-

spect to the binding atom. As an example, metal atoms inside a bulk metal crystal are usual-

ly characterized by a large number of nearest neighbors, eight or twelve, yielding metallic 

binding. At surfaces, the change in chemical binding due to different coordination, com-

pared with that inside the bulk, is tightly connected with local structure which can be ex-

pressed by relaxation and reconstruction. Further, atoms or molecules can adsorb at specific 

sites of crystalline substrates, where the adsorption geometry is essential for an understand-

ing of local binding behavior. 

 electronic properties  at surfaces of single crystals can differ substantially from those of the 

corresponding bulk. For example, the existence of a surface can induce additional electronic 

states, surface states, that have been found in experiments and studied theoretically for some 

time [3]. Here the detailed surface structure determines the existence as well as the energetic 

behavior of the states. Further, electronic interband transitions in silicon nanowires and nan-

odots are found to cause photoluminescence which does not occur in silicon bulk crystals 

[4]. The difference is explained by both the spatial confinement of the nanoparticles and also 

by changes in geometric properties of their atom arrangement. Finally, it has been claimed 

from experiment that semiconducting bulk silicon shows metallicity at its  

(7  7) reconstructed (1 1 1) surface [5], and metallicity is also found in theoretical studies 

on silicon nanowires [6]. 

 magnetism of crystalline bulk material as well as of its surfaces depends on the crystal 

structure and local coordination. For example, vanadium sesquioxide, V2O3, in its monoclin-

ic crystal structure is anti-ferromagnetic at low temperatures, whereas its high-temperature 
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phase, described by a trigonal corundum lattice, is paramagnetic [7]. Vanadium crystals with 

a body-centered cubic lattice are found to be paramagnetic in their bulk volume but ferro-

magnetic at their surfaces [8]. Other examples are thin iron films grown on top of copper 

single crystal surfaces where, as a function of film thickness, their crystal structure changes 

and, as a consequence, their magnetic properties [9]. 

 anisotropic electrical conductivity is often connected with dense atom packing along spe-

cific directions inside a crystal. An example is given by trigonal LiCoO2 crystals which form 

the most common lithium storage material for rechargeable batteries. Here the electrical 

conductivity is greatly enhanced along densely packed Co and Li planes while it is much 

smaller perpendicular to the planes [10]. 

 catalytic surface reactions depend crucially on structural properties of the surfaces of crys-

talline catalyst materials at an atomic scale [11], [12]. The atomic surface structure deter-

mines possible adsorption and reaction sites for molecules, which can support specific cata-

lytic reactions but can also exclude others, also known as structure-reactivity relationships 

[11]. For example catalytic CO oxidation happens at single crystal surfaces of platinum with 

different efficiency depending on the surface orientation [13], where the surface structure 

determines the type and density of reactive sites. 

In addition to bulk crystals and their surfaces, studies on crystalline nanoparticles [14], [15] 

have become an exciting field of research. This includes nanotubes [16], nanowires [14], or com-

pact particles of finite size, such as atom clusters [17], fullerenes [18], or quantum dots [19], which 

show novel physical and chemical properties deviating from those of the corresponding bulk mate-

rial. Examples are carbon nanotubes providing substrate material to yield new active catalysts [20] 

or silicon nanowires whose visible photoluminescence is determined by their size [21]. Further, na-

nosize quantum dots at semiconductor surfaces are found to yield quite powerful light emitting di-

odes (LED) of technological relevance [19]. 

These nanoparticle systems are described as atom aggregates of finite size in one or more di-

mensions, where their local geometric arrangement can still be close to that of extended bulk crys-

tals. Likewise, their spatial confinement with corresponding surfaces and interfaces can be consid-

ered analogous to that appearing at bulk crystal surfaces. Therefore, surface crystallography, initial-

ly developed to describe structural properties at single crystal surfaces, also forms a sound basis to 
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characterize the structure of nanoparticle surfaces. This is particularly interesting since the relative 

number of atoms positioned at nanoparticle surfaces compared with those of their inner volume is 

always larger than that of extended macroscopic single crystals. Thus, the relative importance of 

atoms at nanoparticle surfaces in determining physical properties is expected to be larger than that 

of atoms at single crystal surfaces. In addition, nanoparticles can possess symmetry and geometric 

properties which do not appear in single crystals or at their surfaces. Examples are icosahedral clus-

ters or curved nanoparticle surfaces which originate from bending single crystal sections, where in 

this book nanotubes will be discussed as examples. 

In many experimental and theoretical studies real crystalline systems are, for the sake of sim-

plicity, approximately described as ideal single crystals with a well defined atomic composition 

and an unperturbed three-dimensional periodicity. In addition, planar surfaces of the single crystals 

are often assumed to be bulk-terminated and of unperturbed two-dimensional periodicity. With this 

approximation in mind a rigorous mathematical description of all structural parameters becomes 

possible and is one of the basic subjects of classical crystallography. As an illustration, Fig. 1.1 

shows the structure of a section of an ideal single crystal of magnesium oxide, MgO, with its perfect  

 

Fig. 1.1.  Section of an MgO crystal (NaCl lattice). The atoms are shown as shaded 

balls of different color and labeled accordingly. The section is enclosed by non-polar 

(0 0 1), (-1 1 0) and by polar (1 1 1) oriented surfaces. 

three-dimensional periodic arrangement of atoms. Here sections of ideal planar surfaces, originating 

from bulk truncation, become visible and demonstrate the variety of surface types for the same crys-

tal depending on the crystal cut. 
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In the following sections of this book we will discuss basic elements and mathematical meth-

ods used in crystallography to evaluate structural parameters of single crystals with particular em-

phasis on their surfaces. We start with ideal bulk crystals of three-dimensional periodicity, where 

classical bulk crystallography provides a quantitative description. Then we introduce ideal two-

dimensional surfaces as a result of bulk truncation along specific directions including high density, 

vicinal, stepped, kinked, and chiral surfaces. We give a detailed account of their two-dimensional 

symmetry behavior following the crystallographic classification scheme of Bravais lattices and two-

dimensional space groups. Next, we discuss details of the deviation of atomic structure at surfaces 

due to changes in surface binding compared with the bulk. This is usually described by surface re-

laxation and reconstruction, where we consider different schemes. In addition, structural behavior 

during growth processes is discussed. Then we deal with crystallographic aspects of commensurate, 

high-order commensurate, and incommensurate adsorbate systems as special cases of surface recon-

struction. Here also the different structure notations used in the literature will be described. The dis-

cussion of surface structure will be completed by an overview of the surfaces that have been ana-

lyzed quantitatively at an atomic level in scattering, diffraction, imaging, or spectroscopic experi-

ments. Further, formal requirements of complete quantitative surface structure databases will be 

considered. Finally, we describe theoretical aspects and structural details of nanotubes of different 

element composition as special cases of rolled sections of crystal monolayers. These nanotubes are 

examples of a larger class of crystalline materials, nanoparticles mentioned above, and demonstrate 

that crystallographic methods can also be applied to these systems in order to account for their 

structural properties. Finally, the book concludes with appendices spelling out further details of the 

mathematical methods used in the different sections, with tabulations of typical surface sites, and 

with compilations of structural parameters of crystals. 

The theoretical concepts treated in this book will be illustrated by example applications for fur-

ther understanding which includes results from measured real single crystal surfaces documented 

in the Surface Structure Database (SSD) [22], [23], [24] or its earlier version SCIS (Surface Crys-

tallographic Information Service) [25]. In addition, each section of the book concludes with a set of 

exercises. These exercises are of varying difficulty, ranging from simple questions to small research 

projects, and are meant to stimulate the discussion about the different subjects and to contribute to 

their clarification. Some of the exercises may require visualization tools for crystals, such as  

Balsac [26], or Survis, the visualization part of the SSDIN package [27] or the like. 



14 

 

In the theoretical treatment of some structural properties of ideal single crystals we will apply 

number theoretical methods, dealing with relations between integers. While this approach is not 

commonly used in textbooks on surface science or crystallography it can simplify the formal treat-

ment considerably. Examples are solutions of linear and quadratic Diophantine equations which fa-

cilitate the discussion of monolayers or of atom neighbor shells in crystals. Therefore, number theo-

retical methods will be introduced briefly as required and further details are found in Appendix E. 

A few illustrations are included as stereo pictures for an enhanced three-dimensional impres-

sion. These pictures may be viewed by either using optical stereo glasses (available separately) or 

by cross-eyed viewing without glasses. In the latter case, viewing for an extended time may over-

strain the eyes and should be avoided. 

Clearly, the present book cannot cover all aspects of the field and may, in some cases, be quite 

brief. Further, the selection of topics as well as their presentation is, to some degree, determined by 

the author’s personal preferences. However, the interested reader is referred to the extensive crystal-

lographic literature, see e.g. Refs. [28], [29], [30], [31], [32], [33], to the surface science literature, 

see e.g. [34], [35], [36], [37], [38], [39], or to the solid state physics literature, see e.g. Refs. [1], [2], 

[40], to explore additional details. 
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2 BULK CRYSTALS: THREE-DIMENSIONAL LATTICES 

This section deals with geometric properties of three-dimensional bulk crystals, which are de-

scribed, in their perfect structure, by atom arrangements that are periodic in three dimensions. As an 

example, Fig. 2.1 shows a section of a tetragonal YBa2Cu3O7 crystal, where vectors R1, R2, R3 (lat-

tice vectors) indicate the mutually perpendicular directions of periodicity. Further, the basis of the 

crystal structure consists of 13 atoms (1  yttrium, 2  barium, 3  copper, 7  oxygen) inside a rec-

tangular block (unit cell) which is repeated periodically inside the crystal. The building unit is 

shown to the left of the figure. 

 

Fig. 2.1.  Section of a tetragonal YBa2Cu3O7 crystal. The atoms are labeled accord-

ingly. In addition, the basis of 13 atoms inside a rectangular cell and lattice vectors 

R1, R2, R3 are included to the left. 

In this section, all basic definitions used for a quantitative description of structural properties 

of perfect three-dimensionally periodic crystals will be provided. Here the crystals are considered in 

terms of their translational symmetry, i.e. periodicity, but also by their different point symmetry el-

ements, such as inversion points, mirror planes or rotation axes, which characterize the positions of 

all atoms inside a crystal. While the definitions and general properties are rather abstract and math-

ematical, they can become quite relevant for theoretical studies of real three-dimensional crystals. 

As an example, lattice representations of crystals are required as input to any electronic structure 

calculation for solid crystalline material. Further, the theoretical treatment of three-dimensional 

crystals serves as a foundation to study surfaces of single crystals, as will be discussed in Secs. 4, 5, 

and 6. 
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2.1 Basic Definition 

The basic definition of a perfect three-dimensional bulk crystal becomes quite clear by consid-

ering a simple example. Fig. 2.2a shows a section of the cubic CsCl crystal, which is periodic in 

three perpendicular directions. Thus, its periodicity can be described by orthogonal vectors  

R1, R2, R3 (lattice vectors), indicated in Fig. 2.2b, whose lengths define corresponding periodicity 

lengths. The lattice vectors span a cubic cell (morphological unit cell) which contains one cesium 

and chlorine atom each at positions given by vectors r1 (Cs) and r2 (Cl) (lattice basis vectors), see 

Fig. 2.2b. A periodic repetition of the unit cell along R1, R2, R3 can then be used to build the com-

plete infinite crystal. 

 

Fig. 2.2.  (a) Section of a cubic CsCl crystal. Sticks connect neighboring Cs atoms to 

indicate the crystal structure. (b) Primitive morphological unit cell with two atoms, 

Cs and Cl, inside. The lattice vectors R1, R2, R3 as well as lattice basis vectors, r1 = 0 

for Cs and r2 for Cl, are shown and labeled accordingly.  

In the general case, the formal definition of a perfect three-dimensional bulk crystal starts from 

a three-dimensionally periodic arrangement of atoms. Here the crystal periodicity is described by a 

lattice with lattice vectors R1, R2, R3. Thus, the lattice forms an infinite and periodic array of lat-

tice points reached from a common origin by vectors R with 

R  =  n1 R1 + n2 R2 + n3 R3 (2.1) 

where the coefficients n1, n2, n3 can assume any integer value. This means, in particular, that each 

lattice point experiences the same environment created by all other points. 

The lattice vectors can be given in different ways, where the choice depends on the type of ap-

plication. While for numerical calculations it may be preferable to define R1, R2, R3 with respect to 

an absolute Cartesian coordinate system as 
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Ri = ( xi, yi, zi ) ,  i = 1, 2, 3 (2.2) 

it is common in the crystallographic literature to define these vectors by lattice parameters de-

scribing their lengths (lattice constants) a, b, c and by their mutual angles , , , as sketched in 

Fig. 2.3, where 

a = | R1 | ,    b = | R2 | ,    c = | R3 | 

R1R2 = a b cos() ,    R1R3 = a c cos() ,    R2R3 = b c cos() (2.3) 

 

Fig. 2.3.  Definition of crystallographic lattice parameters a, b, c, , ,  in a per-

spective view, see text.  

Examples are given by lattices denoted as 

simple cubic where a = b = c ,    =  =  = 90º (2.4) 

hexagonal where a = b  c ,    =  = 90º,   = 120º (2.5) 

Relations (2.3) can be converted to yield lattice vectors in Cartesian coordinates starting from the 

six parameters, a, b, c, and , , , given in (2.3), where one possible conversion is 

R1  =  a ( 1, 0, 0 ) ,    R2  =  b ( cos(), sin(), 0 ) 

R3  =  c ( cos() , ( cos() - cos() cos() ) / sin() , v3 / sin() )  (2.6a) 

with 

v3 = { ( cos(-) - cos() )
  
( cos() - cos(+) ) }

1/2
 (2.6b) 

This yields for simple cubic lattices with (2.4) 

R1  =  a ( 1, 0, 0 ) ,    R2  =  a ( 0, 1, 0 ) ,    R3  =  a ( 0 , 0 , 1 ) (2.7) 

and for hexagonal lattices with (2.5) 
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R1  =  a ( 1, 0, 0 ) ,    R2  =  a ( -1/2, 3/2, 0 ) ,    R3  =  c ( 0 , 0 , 1 ) (2.8) 

The lattice vectors R1, R2, R3 span a six-faced polyhedron (so-called parallelepiped), defining 

the morphological unit cell, often referred to as the unit cell, whose edges are parallel to R1, R2, R3 

and whose volume Vel is given by 

Vel  =  | ( R1  R2 )R3 | (2.9) 

The unit cell is called a primitive unit cell if its volume is the smallest of all possible unit cells in 

the crystal. This is equivalent to requiring that there is no additional lattice point, described by vec-

tor R' with 

R' = κ1 R1 + κ2 R2 + κ 3 R3 ,     0    κi  <  1 (2.10) 

inside the morphological unit cell of the lattice. Otherwise, the cell is non-primitive and there must 

be one or more additional lattice points R' inside the unit cell. Analogously, lattice vectors  

R1, R2, R3 whose morphological unit cell is primitive are called primitive lattice vectors, otherwise 

non-primitive. As an example, the cubic unit cell of CsCl as well the corresponding lattice vectors, 

shown in Fig. 2.2, are primitive. On the other hand, replacing all cesium and chlorine atoms in  

Fig. 2.2 by one atom type, for example iron, yields a body-centered cubic crystal. Here the lattice 

vectors R1, R2, R3, shown in the figure, are non-primitive, since vector r2 now becomes a lattice vec-

tor inside the morphological unit cell. 

In a crystal, the morphological unit cell contains in general p atoms at positions given by vec-

tors r1 … rp (lattice basis vectors) which form the basis of the crystal structure (the basis is some-

times also called the structure). Each atom at ri carries a label characterizing its properties, such as 

its nuclear charge or element name. These labels, usually omitted in the following, will be attached 

to each lattice basis vector if needed. For example, a definition r3
Cl

 would refer to a chlorine atom 

placed at a position given by the third lattice basis vector. All lattice basis vectors ri inside the mor-

phological unit cell can be written as linear combinations of the lattice vectors R1, R2, R3 accord-

ing to 

ri = xi R1 + yi R2 + zi R3 ,  i = 1 … p (2.11) 

where xi, yi, and zi are real-valued coefficients with |xi| < 1,  |yi| < 1,  |zi| < 1. This use of relative 

coordinates xi, yi, zi to describe atoms inside the unit cell is common practice in the crystallograph-

ic literature [28], [29], [30], [31], [32], [33]. Note that according to definition (2.11), the coeffi-
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cients xi, yi, zi are in general not connected with the Cartesian coordinate system but with coordinate 

axes given by the lattice vectors R1, R2, R3. 

The origin of the morphological unit cell inside a crystal can always be chosen freely since the 

complete infinite crystal consists of a periodic arrangement of unit cells in three dimensions. In par-

ticular, the origin does not need to coincide with a specific atom position, as considered in the ex-

ample of CsCl mentioned above. However, it is usually chosen to coincide with the location of the 

largest number of point symmetry elements, such as inversion points or origins of mirror planes and 

rotation axes, which are given by the lattice vectors R1, R2, R3 together with the lattice basis vectors 

r1 … rp. This will be discussed in greater detail in Sec. 2.4. 

Altogether, a crystal is characterized uniquely by its lattice defined by lattice vectors  

R1, R2, R3 and its basis defined by lattice basis vectors r1 … rp. Thus, general atom positions inside 

the crystal can be given by 

r  =  n1 R1 + n2 R2 + n3 R3 + ri (2.12) 

where the coefficients n1, n2, n3 can assume any integer value and index i = 1 … p counts the num-

ber of atoms in the unit cell. Here the lattice and the basis can be treated as separate elements of a 

crystal structure (which are only connected by the symmetry elements as will be discussed in  

Sec. 2.4). 

 

2.2 Representation of Bulk Crystals 

There is one important aspect that characterizes all formal descriptions of crystal structures, the 

fact that mathematical descriptions of crystals are not unique. This means that, for a given defini-

tion of a crystal, one can always find an infinite number of alternatives which describe the same 

crystal. While this ambiguity may be considered a drawback at first glance, it allows choosing crys-

tal representations according to additional constraints, e.g. those given by symmetry, physical or 

chemical properties. Here one can distinguish between alternative descriptions which affect the 

crystal basis but not its lattice representation and those where both the lattice representation and the 

basis are affected. 
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2.2.1 Alternative Descriptions Conserving the Lattice Representation 

Examples of alternative crystal descriptions which do not affect the crystal lattice are given by 

elemental or compound decompositions of a crystal. Here the basic idea is to decompose the basis 

inside the unit cell of a complex crystal into components and consider (fictitious) crystals of these 

components with the same periodicity as that of the initial crystal, given by its lattice. This decom-

position is of didactic value but may also help to understand details of chemical binding inside the 

crystal, for example, discriminating between intra- and inter-molecular binding in molecular crys-

tals. In the simplest case, a crystal with p atoms in its primitive unit cell can be considered alterna-

tively as a combination of p crystals with the same lattice but with only one atom in their primitive 

unit cells. The origins of the corresponding p crystals can be set at positions given by the lattice ba-

sis vectors ri of the complete non-primitive crystal.  

As a very simple example, the cubic cesium chloride, CsCl, crystal, shown in Fig. 2.2, is de-

fined by a simple cubic lattice with lattice vectors R1, R2, R3 given by (2.7). Further, its basis in-

cludes two atoms, Cs and Cl, which can be positioned at 

r1  =  a ( 0, 0, 0 )  for Cs  ,      r2  =  a ( 1/2, 1/2, 1/2 ) for Cl (2.13) 

with a denoting the lattice constant of CsCl. Thus, the crystal can be considered as a combination of 

two simple cubic monoatomic crystals, one for cesium and one for chlorine, where their origins are 

shifted by  ro = r2 - r1 = a ( 1/2, 1/2, 1/2 ) with respect to each other. 

A more complex example is the tetragonal YBa2Cu3O7 crystal, shown in Fig. 2.1. Here the lat-

tice vectors can be written in Cartesian coordinates as 

R1  =  a (1, 0, 0) ,    R2  =  a (0, 1, 0) ,    R3  =  c (0, 0, 1) (2.14a) 

and the morphological unit cell contains 13 atoms resulting in 13 lattice basis vectors ri with 

Y  atom : r1  =  (1/2, 1/2, 5/6) 

Ba atoms : r2  =  (1/2, 1/2, 1/6) , r3  =  (1/2, 1/2, 1/2) 

Cu atoms : r4  =  (0, 0, 0) , r5  =  (0, 0, 1/3) , r6  =  (0, 0, 2/3) 

O  atoms : r7  =  (1/2, 0, -) , r8  =  (0, 1/2, -) , r9  =  (0, 0, 1/6) 

 r10  =  (0, 1/2, 1/3) , r11  =  (0, 0, 1/2) 

 r12  =  (1/2, 0, 2/3+) , r13  =  (0, 1/2, 2/3+)  (2.14b) 
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using relative coordinates (2.11) where experiments yield a relative position shift  = 0.026 of four 

oxygen atoms. This crystal can be decomposed conceptually into 13 monoatomic (tetragonal) crys-

tals, one yttrium, two barium, three copper, and seven oxygen crystals. 

Alternatively, one can decompose the YBa2Cu3O7 crystal into physically more meaningful 

subunits which include several of the atoms of the initial unit cell. As an example, Fig. 2.4 illus-

trates a decomposition of the YBa2Cu3O7 crystal into its copper oxide and its heavy metal compo-

nents, denoted Cu3O7 and YBa2, respectively, in Fig. 2.4. Here the unit cells of the component crys-

tals contain ten and three atoms each, where the Cu3O7 component is believed to contribute to the 

high-temperature superconductivity of YBa2Cu3O7. 

 

Fig. 2.4.  Decomposition of the YBa2Cu3O7 crystal, left, into its copper oxide, 

Cu3O7, (center) and heavy metal, YBa2, components (right). Atoms are shown as 

colored balls and labeled accordingly. In addition, the lattice vectors R1, R2, R3 are 

indicated by arrows. 

A very illustrative example of crystal decomposition is given by the diamond crystal, shown in 

Fig. 2.5. Its lattice can be defined as a cubic lattice where the lattice vectors are given by (2.7). The 

basis of the crystal includes eight carbon atoms in tetrahedral arrangements resulting in eight lattice 

basis vectors ri with 

r1  =  (0, 0, 0) , r2  =  (0, 1/2, 1/2) ,  r3  =  (1/2, 0, 1/2) 

r4  =  (1/2, 1/2, 0) , r5  =  (1/4, 1/4, 1/4) ,  r6  =  (1/4, 3/4, 3/4) 

r7  =  (3/4, 1/4, 3/4) , r8  =  (3/4, 3/4, 1/4)  (2.15) 

in relative coordinates (2.11). This shows, first, that the diamond crystal can be decomposed into 

eight simple cubic (sc) crystals, each with one carbon in the primitive unit cell. Further, the lattice 

basis vectors r5, r6, r7, r8 arise from r1, r2, r3, r4 by identical shifts with 
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ri+4  =  ri  + 1/4 (1, 1, 1) ,     i = 1, 2, 3, 4 (2.16) 

This suggests that the diamond crystal can also be decomposed into two identical cubic crystals 

with four atoms in their unit cells each, where the origins of the two crystals are shifted by a vector 

a/4 (1, 1, 1) with respect to each other. The lattices of the two component crystals will be shown in 

Sec. 2.2.2.1 to be identical to face-centered cubic (fcc) lattices. Thus, the diamond crystal can be 

alternatively described by a superposition of two fcc crystals which becomes clear by an inspection 

of Fig. 2.5. 

 

Fig. 2.5.  Decomposition of the diamond crystal into two (shifted) face-centered 

cubic crystals, denoted fcc1 (gray balls, black lines) and fcc2 (red balls and red lines). 

The crystal is shown in a stereo view where the visual three-dimensional impression 

is obtained by cross-eyed viewing. 

 

2.2.2 Alternative Descriptions Affecting the Lattice Representation 

There are many possibilities of alternative descriptions of crystals where their lattices are rep-

resented differently. These alternatives may be preferred because of conceptual convenience but 

may also be required due to computational necessity. Examples are symmetry adapted lattices 

combining translational with point symmetry properties or surface adapted lattices facilitating the 

definition of atom coordinates in surface studies. 

Crystallographers have defined a set of constraints on lattice vectors R1, R2, R3 to yield a 

unique description of a lattice according to Niggli [41] which allows an easy distinction between the 

different types of three-dimensional Bravais lattices discussed in Sec. 2.4. First, the lattice vectors 

are chosen such that they form a right-handed vector triplet, which can be expressed mathematically 

by the constraint 

( R1  R2 )R3 > 0 (2.17) 



23 

 

Further, they are assumed to reflect three smallest periodicity lengths along different directions in 

the crystal and are arranged such that 

|R1|    |R2|    |R3| (2.18) 

In addition, all lattices are grouped according to their scalar products sij = Ri Rj into two classes, 

s12    0 ,   s13    0 ,   s23    0 (type 1, acute) (2.19a) 

s12    0 ,   s13    0 ,   s23    0 ,    with at least one sij  <  0 (type 2, obtuse) (2.19b) 

where lattices with other sij combinations can be easily converted to one of the two classes by in-

verting two of the lattice vectors Ri , Rj to yield -Ri , -Rj. Further, simple iterative algorithms have 

been developed [42], [43] to reduce a general vector set R1, R2, R3 of type 1 or 2 to a unique de-

scription with R1, R2, R3 referring to vectors of smallest length in the lattice. This reduced lattice 

vector set fulfills, apart from (2.17) and (2.18), the inequalities 

-min (Ri
2
, Rj

2
)    2|Ri Rj|  <  min (Ri

2
, Rj

2
) ,  i  j ,  i,j = 1, 3 (2.20) 

which can be used to identify and classify reduced unique vector sets R1, R2, R3. Type 2 lattices re-

quire an additional constraint which reads  

2 ( |R1 R2| + |R1 R3| + |R2 R3| )    R1
2
 + R2

2
 (2.21) 

to yield a unique description [42].  

The application of the above constraints to two-dimensional lattices decribed by lattice vectors 

R1, R2 is straightforeward. Here the two vectors are required to yield the smallest periodicity lengths 

along different directions in the lattice and are ordered according to 

|R1|    |R2| (2.22) 

This allows, as in the three-dimensional case, two lattice classes differing by the scalar product  

s12 = R1 R2, 

s12    0     (type 1, acute)       and        s12  <  0     (type 2, obtuse) (2.23) 

The Minkowski reduction, see Sec. 3.3 and Appendix D, can be used to reduce a general vector set 

R1, R2 of type 1 or 2 to a unique description referring to vectors of smallest length in the lattice. 

This reduced vector set fulfills, apart from (2.22), the inequality 

-min (R1
2
, R2

2
)    2 (R1 R2)  <  min (R1

2
, R2

2
) (2.24) 
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which can be used to test whether a vector set R1, R2 is reduced or not. The constraints (2.22) and 

(2.23) yield a unique description which allows a simple distinction between the different types of 

two-dimensional Bravais lattices discussed in Sec. 3.7. They can also serve as a basis for a more 

general classification scheme proposed in the literature [44]. In two dimensions obtuse lattice de-

scriptions can always be converted to acute descriptions, preferred by many surface scientists, by 

swapping the lattice vectors and replacing one of the two, e.g. R1, by its negative, -R1, where, 

however, one of the two representations may violate constraint (2.22). 

Many researchers in the surface science community (and not only there) find it convenient to 

think in Cartesian coordinates, using orthogonal unit vectors in three-dimensional space. Therefore, 

they prefer to characterize lattices, if possible, by orthogonal lattice vectors R1, R2, R3 even at the 

expense of having to consider corresponding crystal bases with a larger number of atoms. This will 

be discussed for face- and body-centered cubic lattices in Sec. 2.2.2.1. 

Theoretical studies on extended geometric perturbations inside a crystal, such as those originat-

ing from periodic imperfections or distortions, require often considering unit cells with lattice vec-

tors R1', R2', R3' which are larger than those given by R1, R2, R3 of the unperturbed crystal. Here a 

direct computational comparison of results for the perturbed crystal with those for the unperturbed 

crystal is often facilitated by applying the same (enlarged) lattice vectors R1', R2', R3' to both sys-

tems. As a result, the unperturbed crystal is described by a lattice with a larger than primitive unit 

cell and an appropriately increased number of atoms. This is the basic idea behind so-called super-

lattice methods which will be discussed in Sec. 2.2.2.2. 

Ideal single crystal surfaces, which originate from bulk truncation yielding two-dimensional 

periodicity at the surface, will be treated in great detail in Sec. 4. Here the analysis of structural 

properties at the surface can be facilitated greatly by using so-called netplane-adapted lattice vec-

tors R1', R2', R3'. These are given by linear transformations of the initial bulk lattice vectors, where 

the shape of the morphological unit cell may change but not its volume nor the number of atoms 

inside the cell. Differently oriented surfaces require different sets of netplane-adapted lattice vectors 

leading to many alternative descriptions of the bulk lattice, as discussed in Sec. 2.2.2.3. 
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2.2.2.1 Cubic, Hexagonal, and Trigonal Lattices 

The family of cubic lattices, simple, body-centered, and face-centered cubic, are closely con-

nected with each other, which is why many scientists use the simplest of the three, the simple cubic 

lattice as their reference. This lattice, also called cubic-P and often abbreviated by sc is described in 

Cartesian coordinates by lattice vectors 

R1
sc

  =  a (1, 0, 0) ,    R2
sc

  =  a (0, 1, 0) ,    R3
sc

  =  a (0, 0, 1) (2.25) 

which are three mutually orthogonal vectors of equal length, given by the lattice constant a. 

The body-centered cubic lattice, also called I-centered or cubic-I and often abbreviated by 

bcc, see Fig. 2.6, can be defined in Cartesian coordinates by lattice vectors 

R1  =  a/2 (-1, 1, 1) ,    R2  =  a/2 (1, -1, 1) ,    R3  =  a/2 (1, 1, -1) (2.26) 

 

Fig. 2.6.  Lattice vectors R1, R2, R3 of the body-centered cubic (bcc) lattice sketched 

inside a cubic frame with Cartesian coordinates, x, y, and z, indicated. Atoms of the 

corresponding bcc crystal are shown as balls. 

Here the three vectors are of the same length  

|R1|  =  |R2|  =  |R3|  =  (3/2) a (2.27) 

but they are not orthogonal to each other, forming angles  =  =  = 109.47 (cos  = -1/3) accord-

ing to (2.3). General lattice points of the bcc lattice are given in Cartesian coordinates by vectors 

R =  n1 R1 + n2 R2 + n3 R3  =  a/2 (-n1 + n2 + n3, n1 - n2 + n3, n1 + n2 - n3)  = 

 =  a/2 (N1, N2, N3) ,      n1, n2, n3, N1, N2, N3  integer (2.28) 

where the integers n1, n2, n3 and N1, N2, N3 are connected by 

N1  =  -n1 + n2 + n3 ,     N2  =  n1 - n2 + n3 ,     N3  =  n1 + n2 - n3 (2.29) 
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Relation (2.28) together with the definition of the simple cubic lattice vectors can be written as 

R  =  n1 R1 + n2 R2 + n3 R3  =  1/2 (N1 R1
sc

 + N2 R2
sc

 + N3 R3
sc

) (2.30) 

which demonstrates the connection between the body-centered and the simple cubic lattices. While 

the integer coefficients n1, n2, n3 can be chosen freely the integer coefficients N1, N2, N3 are not in-

dependent. Relations (2.29) yield 

N2  =  N1 + 2 (n1-n2) ,    N3  =  N1 + 2 (n1-n3) (2.31) 

Hence, the integers N1, N2, N3 can only be all odd or all even for any choice of n1, n2, n3.  

If N1, N2, N3 in (2.28) are all even, i.e. they can be represented by 

Ni  =  2 mi ,   i= 1, 2, 3     for any integer mi (2.32) 

then relation (2.30) together with (2.32) leads to 

R  =  m1 R1
sc

 + m2 R2
sc

 + m3 R3
sc

     m1, m2, m3 integer (2.33) 

which describes a simple cubic lattice as one subset of the bcc lattice. 

If, on the other hand, N1, N2, N3 in (2.28) are all odd, i.e. they can be represented by 

Ni  =  2mi + 1,   i= 1, 2, 3     for any integer mi (2.34) 

then relation (2.30) together with (2.34) leads to 

R  =  m1 R1
sc

 + m2 R2
sc

 + m3 R3
sc

 + v      m1, m2, m3 integer (2.35) 

with 

v  =  1/2 (R1
sc

 + R2
sc

 + R3
sc

) (2.36) 

This also describes a simple cubic lattice as the second subset of the bcc lattice, where the second sc 

lattice is, however, shifted by a vector v with respect to the first. Thus, the constraints for N1, N2, N3 

in (2.29) yield a decomposition of the bcc lattice into two identical sc lattices which are shifted with 

respect to each other by vector v given by (2.36). The two sc lattices are sketched in Fig. 2.7 and 

denoted ‘sc1’, ‘sc2’ in the figure.  
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Fig. 2.7.  Visual decomposition of the body-centered cubic crystal into two (shifted) 

simple cubic crystals, denoted sc1 (gray balls, black lines) and sc2 (red balls and red 

lines). The crystal is shown in a stereo view where the visual three-dimensional im-

pression is obtained by cross-eyed viewing. 

As a consequence, any crystal with a bcc lattice given by lattice vectors (2.26) can be alternatively 

described by a crystal with a simple cubic lattice with lattice vectors (2.25), where the unit cell of 

the sc lattice contains twice as many atoms with atom pairs separated by vector v. Further, the lat-

tice vectors R1
sc

, R2
sc

, R3
sc

 of the sc lattice representation are non-primitive since vector 

v  =  1/2 (R1
sc

 + R2
sc

 + R3
sc

) = R1 + R2 + R3 (2.37) 

according to (2.26) is a true lattice vector. 

The face-centered cubic lattice, also called F-centered or cubic-F and often abbreviated by 

fcc, see Fig. 2.8, can be defined in Cartesian coordinates by lattice vectors 

R1  =  a/2 (0, 1, 1) ,    R2  =  a/2 (1, 0, 1) ,    R3  =  a/2 (1, 1, 0) (2.38) 
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Fig. 2.8.  Lattice vectors R1, R2, R3 of the face-centered cubic (fcc) lattice sketched 

inside a cubic frame and labeled accordingly. Atoms of the corresponding fcc crystal 

are shown as balls. The dashed lines are meant to assist the visual orientation inside 

the figure. 

As for the bcc lattice, the three vectors are of the same length  

|R1|  =  |R2|  =  |R3|  =  a/2 (2.39) 

but not orthogonal to each other, forming angles  =  =  = 60 (cos  = 1/2) according to (2.3). 

General lattice points of the fcc lattice are given in Cartesian coordinates by vectors 

R =  n1 R1 + n2 R2 + n3 R3  =  a/2 (n2 + n3, n1 + n3, n1 + n2)  = 

 =  a/2 (N1, N2, N3) ,      n1, n2, n3, N1, N2, N3 integer (2.40) 

where the integers n1, n2, n3 and N1, N2, N3 are connected by 

N1  =  n2 + n3 ,   N2  =  n1 + n3 ,   N3  =  n1 + n2 (2.41) 

Relation (2.40) together with the definition of the simple cubic lattice vectors can be written as 

R  =  n1 R1 + n2 R2 + n3 R3  =  1/2 (N1 R1
sc

 + N2 R2
sc

 + N3 R3
sc

) (2.42) 

which shows the connection between the face-centered and the simple cubic lattice. As in the bcc 

case, the integer coefficients N1, N2, N3 are not independent. Even and odd valued combinations of 

the initial coefficients n1, n2, n3 yield eight cases as shown in Table 2.1. 
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Table 2.1.  List of all possible even/odd integer combinations N1, N2, N3 following 

from even/odd integer combinations n1, n2, n3 according to equation (2.41). Charac-

ters ‘e’ and ‘o’ stand for even and odd integers, respectively. 

case n1 n2 n3 N1 N2 N3 

1 e e e e e e 

2 o o o e e e 

3 o e e e o o 

4 e o o e o o 

5 e o e o e o 

6 o e o o e o 

7 e e o o o e 

8 o o e o o e 

 

As a result, integers N1, N2, N3 reduce to four different types of even/odd combinations, 

(a) Ni  =  2 mi ,  i= 1, 2, 3, (cases 1, 2 in Table 2.1) which results, according 

to (2.42), in 

R  =  a/2 (N1, N2, N3)  = a (m1, m2, m3) ,      m1, m2, m3 integer (2.43a) 

describing the simple cubic lattice given by (2.25) with its origin conciding with that of 

the fcc lattice, corresponding to an origin shift v1 = 0, see below. 

(b) N1  =  2 m1 ,  N2  =  2m2 + 1 ,  N3  =  2 m3 + 1, (cases 3, 4) resulting in 

R  =  a/2 (N1, N2, N3)  = a (m1, m2, m3) + v2 

v2  =  1/2 (R2
sc

 + R3
sc

) (2.43b) 

describing the sc lattice with an origin shift v2. 

(c) N1  =  2 m1 + 1 ,  N2  =  2m2 ,  N3  =  2 m3 + 1, (cases 5, 6) resulting in 

R  =  a/2 (N1, N2, N3)  = a (m1, m2, m3) + v3 

v3  =  1/2 (R1
sc

 + R3
sc

) (2.43c) 

describing the sc lattice with an origin shift v3. 
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(d) N1  =  2 m1 + 1 ,  N2  =  2m2 + 1 ,  N3  =  2 m3, (cases 7, 8) resulting in 

R  =  a/2 (N1, N2, N3)  = a (m1, m2, m3) + v4 

v4  =  1/2 (R1
sc

 + R2
sc

) (2.43d) 

describing the sc lattice with an origin shift v4. 

Therefore, the constraints for N1, N2, N3 in (2.41) yield a decomposition of the fcc lattice into four 

identical sc lattices which are shifted with respect to each other according to their origins at 

 v1, v2, v3, v4,  given by (2.43a-d). The four sc lattices are sketched in Fig. 2.9 and denoted ‘sc1’ to 

‘sc4’ in the figure. 

 

Fig. 2.9.  Visual decomposition of the fcc crystal into four (shifted) simple cubic 

crystals, denoted sc1 (dark gray balls, black lines), sc2 (dark red balls and lines), sc3 

(light gray balls and lines), and sc4 (light red balls and lines). The crystal is shown in 

a stereo view where the visual three-dimensional impression is obtained by cross-

eyed viewing. 

As a consequence, any crystal with an fcc lattice given by lattice vectors (2.38) can be alternatively 

described by a crystal with an sc lattice with lattice vectors (2.25), where the unit cell of the sc lat-

tice contains four times as many atoms with atom pairs separated by vectors vi - vj. , i, j = 1 ... 4. 

Further, the lattice vectors R1
sc

, R2
sc

, R3
sc

 of the sc lattice representation are non-primitive since the 

four vectors vi 

v1 = 0 v2  =  1/2 (R2
sc

 + R3
sc

)  =  R1 

v3  =  1/2 (R1
sc

 + R3
sc

)  =   R2 v4  =  1/2 (R1
sc

 + R2
sc

)  =   R3 (2.44) 

according to (2.38) are true lattice vectors. 

The hexagonal lattice, also called hexagonal-P and often abbreviated by hex, is described by 

two lattice vectors R1
hex

, R2
hex

 of equal length a, forming an angle of either 120 (obtuse represen-
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tation) or 60 (acute representation) between them. A third lattice vector R3
hex

 of length c, is per-

pendicular to both R1
hex

 and R2
hex

. Thus, the vectors of the obtuse representation can be described in 

Cartesian coordinates by 

R1
hex

  =  a (1, 0, 0) ,    R2
hex

  =  a (-1/2, 3/2, 0) ,    R3
hex

  =  c (0, 0, 1) (2.45a) 

and those of the acute representation by 

R1
hex

  =  a (1, 0, 0) ,    R2
hex

  =  a (1/2, 3/2, 0) ,    R3
hex

  =  c (0, 0, 1) (2.45b) 

where a, c are the lattice constants of the hexagonal lattice. While the two representations are 

equivalent, the obtuse representation of crystal lattices is often preferred over the acute one and 

will be used in the following.  

There is a special type of crystal structure with hexagonal lattice, the so-called hexagonal 

close-packed (hcp)  crystal structure, illustrated by Fig. 2.10 and called hex (hcp)  in the following. 

It is defined by a hexagonal lattice, given in obtuse representation by (2.45a) with a lattice constant 

ratio c/a of (8/3) = 1.63299. Further, the hexagonal unit cell contains two identical atoms at posi-

tions 

r1
hcp

  =  a (0, 0, 0) ,    r2
hcp

  =  (a/2, a/12, c/2))  =  a (1/2, 1/12, (2/3)) (2.45c) 

see Fig. 2.10b. The c/a ratio and the atom positions are chosen such that each atom is surrounded by 

12 nearest neighbor atoms at equal distance (equal to lattice constant a), achieving the same atom 

density as crystals with a corresponding fcc lattice. While hcp crystals in their rigorous mathemati-

cal definition do not exist in nature they occur, to a good approximation, i.e. with ratios c/a close to 

(8/3), for many single crystals of metals, such as beryllium, magnesium, titanium, cobalt, rutheni-

um, and cadmium, see Table B.3 of Appendix B.  
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Fig. 2.10.  (a) Section of a hexagonal crystal with close-packed geometry (hcp). 

Sticks connect atoms with nearest and second nearest neighbors to indicate the crys-

tal structure. (b) Primitive morphological unit cell with two atoms inside. The lattice 

vectors R1, R2, R3 (obtuse representation) are labeled accordingly. The unit cell is 

embedded in a hexagonal environment (dashed lines) to indicate its symmetry. 

Analogous to the family of cubic lattices, there is also a close connection between trigonal and 

hexagonal lattices, where scientists often prefer hexagonal over trigonal lattice descriptions. The 

trigonal lattice, also called trigonal-R or rhombohedral, is described by three lattice vectors  

R1, R2, R3 of equal length a, which form identical angles  =  = . Thus, the lattice vectors can be 

thought of as arising from each other by a 120 rotation about a common axis given by  

(R1 + R2 + R3), see Fig. 2.11a. Assuming the rotation axis as the z axis of a Cartesian coordinate 

system, the vectors can be described in Cartesian coordinates by 

R1  =  a (c1, 0, c2) ,   R2  =  a (-1/2 c1, 3/2 c1, c2) ,   R3  =  a (-1/2 c1, -3/2 c1, c2) , 

c1  =  cos(),   c2  =  sin() (2.46) 

where  denotes the angle between each of the three lattice vectors and the xy plane, see Fig. 2.11a, 

and is determined by 

cos()  =  cos()  =  cos()  =  1/4 { 1 - 3 cos(2) } (2.47) 
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Fig. 2.11.  (a) Lattice vectors R1, R2, R3 of the trigonal (rhombohedral) lattice with 

definitions of the Cartesian coordinate system and of angles , , see text. (b) Three 

trigonal lattices combining to form a non-primitive hexagonal lattice. Lattice vectors 

are shown by arrows, black for trigonal and red for hexagonal. The visual correla-

tion between the two lattices is indicated by thin gray sticks connecting hexagonal 

lattice points. 

Thus, the three vectors R1', R2', R3' with 

R1'  =  R1 - R2  =  3 c1 a (3/2, -1/2, 0)  

R2'  =  R2 - R3  =  3 c1 a (0, 1, 0) 

R3'  =  R1 + R2 + R3  =  3 c2 a (0, 0, 1) (2.48) 

form a hexagonal sublattice (obtuse representation) of the trigonal lattice since 

| R1' |
2
  =  | R2' |

2
  =  3 a

2
 cos()

2
 ,     | R3' |

2
  =  9 a

2
 sin()

2
 

(R1', R2')  =  120 ,     (R1', R3')  =  (R2', R3')  =  90 (2.49) 

(Actually, lattice vectors (2.48) can be easily shown to coincide with definition (2.45a) of a hexago-

nal lattice by applying a rotation by 30 about the axis through R3' and a scaling of the lattice con-

stants where constants a and c in (2.45a) correspond to (3 c1 a) and (3 c2 a) in (2.48).) 

General lattice points of the hexagonal sublattice are given according to (2.46), (2.48) by vectors 

R =  n1 R1' + n2 R2' + n3 R3'  = 

 =  (n1 + n3) R1 + (n2 - n1 + n3) R2 +(n3 - n2) R3  = 

 =  m1 R1 + m2 R2 + m3 R3 (2.50) 

where the coefficients mi and ni are connected by linear transformations written in matrix form as 
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According to (2.51b) the hexagonal sublattice is described by integer values n1, n2, n3 only if the 

corresponding trigonal coefficients m1, m2, m3 fulfill the three conditions 

2 m1 - m2 - m3  =  3 g ,     m1 + m2 - 2 m3  =  3 g' ,     m1 + m2 + m3  =  3 g'' (2.52) 

where g, g', g'' are integers. Since 

m1 + m2 + m3  =  (m1 + m2 - 2 m3) + 3 m3  = - (2 m1 - m2 - m3) + 3 m1 (2.53) 

fulfilling one of the three conditions (2.52) will automatically satisfy the other two. Considering the 

complete trigonal lattice, all sets of coefficients m1, m2, m3 can be grouped according to one of the 

three categories, 

m1 + m2 + m3  =  3 g (2.54a) 

m1 + m2 + m3  =  3 g + 1     or     (m1 - 1) + m2 + m3  =  3 g (2.54b) 

m1 + m2 + m3  =  3 g + 2     or     (m1 - 2) + m2 + m3  =  3 g (2.54c) 

Here the condition (2.54a) was shown to result in a hexagonal lattice whose origin coincides with 

that of the trigonal lattice. The conditions of (2.54b) also lead to a hexagonal lattice. However, its 

origin is shifted with respect to that of the trigonal lattice by a trigonal lattice vector R1 (or R2 or 

R3). Analogously, the conditions of (2.54c) lead to an identical hexagonal lattice with its origin 

shifted by a trigonal lattice vector 2 R1 (or any combination of two trigonal lattice vectors). Since all 

lattice points of the trigonal lattice satisfy one of the three conditions (2.54) the trigonal lattice can 

be decomposed into three identical hexagonal lattices which are shifted with respect to each other 

as sketched by the thinner arrows in Fig. 2.11b. 

Altogether, any crystal with a trigonal lattice, given by lattice vectors (2.46), can be alterna-

tively described by a crystal with a non-primitive hexagonal lattice, with lattice vectors (2.48), 

where the unit cell of the hexagonal lattice contains three times as many atoms compared with that 

of the trigonal lattice. Further, the lattice vectors R1
hex

, R2
hex

, R3
hex

 of the hexagonal lattice respres-

entation are non-primitive. 
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2.2.2.2 Superlattices and Repeated Slabs 

As mentioned earlier, theoretical studies on physical or chemical parameters inside a crystal 

require often considering a unit cell with lattice vectors R1, R2, R3 which is larger than the primitive 

cell of the lattice given by Ro1, Ro2, Ro3. Examples of this so-called supercell or superlattice con-

cept include spin alignment in anti-ferromagnetic crystals [45], where the magnetic lattice, defined 

by positions of the different spins, differs from the geometric lattice of the crystal. In addition, local 

perturbations, such as vacancies, added atoms, or substituted atoms in alloy formation [46], of oth-

erwise perfect crystals have been examined theoretically [47] applying supercell concepts. Here 

single perturbations are simulated by those in an artificial crystal with large supercells such that dis-

tances between periodic copies of the perturbations are large enough to avoid physical coupling. 

Further, small distortions of lattice positions which can result in periodicity with large supercells 

have been considered in so-called frozen phonon calculations [48]. Finally, we mention the use of 

supercell geometry in calculations of physical and chemical properties of single crystal surfaces. 

These calculations are often based on the so-called repeated slab geometry [48], where the surface 

region is approximated by a slab of finite thickness and a vacuum gap repeated periodically such 

that overall a three-dimensional periodicity with a large supercell is achieved. 

The basic mathematical idea behind conventional supercell descriptions relies on the fact that 

any crystal with a lattice described by primitive lattice vectors Ro1, Ro2, Ro3 and an atom basis can 

be represented by an alternative (non-primitive) lattice with (larger) lattice vectors R1, R2, R3 and an 

appropriately modified basis. The alternative vectors are connected with those of the initial lattice 

by a linear transformation which must be integer-valued if the global three-dimensional periodicity 

is to be conserved. This can be expressed mathematically by a transformation matrix T with 
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 (2.55) 

where the elements tij of matrix T are integers. As a consequence, the volumes Vel and Vel
o
 of the 

unit cells of the two lattices, defined by (2.9), are connected by 

Vel  =   | ( R1  R2 ) R3 |  =  |det (T)| | ( Ro1  Ro2 ) Ro3 |  = |det (T)| Vel
o
 (2.56) 
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where (2.55) together with vector relation (F.9) of Appendix F is applied. This means, in particular, 

that the volume Vel of the supercell must be an integer multiple of volume Vel
o
 of the initial unit 

cell. 

In the simplest case, the superlattice description results from simple scaling of the initial lattice 

vectors, corresponding to a transformation 

R1  =  m1 Ro1 ,       R2  =  m2 Ro2 ,       R3  =  m3 Ro3 (2.57) 

with integer-valued m1, m2, m3. Thus, the transformation matrix T becomes diagonal, i.e. 
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m00
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T  (2.58) 

As an illustration, we consider a fictitious simple cubic crystal with ferromagnetic  and anti-

ferromagnetic ordering of its atoms, where the anti-ferromagnetism introduces a doubling of the 

lattice vectors in two dimensions, as sketched in Fig. 2.12. Thus, the lattice vectors of the anti-

ferromagnetic crystal, R1, R2, R3, can be connected with those of the ferromagnetic crystal,  

Ro1, Ro2, Ro3, by 

R1  =  2 Ro1 ,       R2  =  2 Ro2 ,       R3  =  Ro3 (2.59) 

Theoretical studies of the anti-ferromagnetic crystal must be based on a lattice description given by 

R1, R2, R3 while those of the ferromagnetic crystal allow the use of the smaller lattice vectors  

Ro1, Ro2, Ro3. However, a direct comparison of physical properties of the two crystals with different 

spin alignments can be simplified by using identical lattice parameters which suggests applying the 

superlattice vectors R1, R2, R3 also for the ferromagnetic crystal. 
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Fig. 2.12.  Fictitious simple cubic crystal with ferromagnetic (left) and anti-

ferromagnetic ordering (right). Atoms are shown as dark (spin up) and light (spin 

down) balls with their spin orientation indicated by black and red arrows. The super-

lattice vectors R1, R2, R3 and primitive lattice vectors Ro1, Ro2, Ro3 are labeled ac-

cordingly. 

Incidentally, Fig. 2.12 shows that, for the present simple cubic crystal with its anti-ferromagnetic 

spin alignment, alternative lattice vectors R1', R2', R3' with 

R1'  =  1/2 (Ro1 + Ro2) ,       R2'  =  1/2 (Ro2 - Ro1) ,       R3'  =  Ro3 (2.60) 

could also be chosen, yielding a smaller morphological unit cell than that given by (2.59). This vec-

tor set can also be used to describe a superlattice of the ferromagnetic crystal. 

As mentioned above, computational studies of physical and chemical properties of single 

crystal surfaces are often based on the so-called repeated slab geometry [48] which can be consid-

ered a modified supercell concept. Within this concept a single crystal with a confining planar sur-

face of given orientation and periodicity is described approximately by a two-dimensionally period-

ic solid layer (slab) of finite thickness cut out of the bulk crystal. Here two bulk lattice vectors, R1 

and R2, characterize the two-dimensional periodicity of the surface (and that of the slab). In 

addition, the slab is repeated periodically along the direction of its surface normal with a vacuum 

gap between adjacent slabs where the periodicity vector R3 is chosen appropriately. This procedure 

creates an altogether three-dimensionally periodic crystal system with a fictitious superlattice R1, 

R2, R3 which is connected with the initial crystal lattice only by vectors R1 and R2. As a result, ma-

trix T of (2.55) contains integer-valued elements in its first and second rows while its third row may 

be real-valued. Within the repeated slab concept physical and chemical parameters of crystalline 

surfaces can be evaluated by well established computational methods developed a long time ago for 
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three-dimensionally periodic bulk crystals in solid state physics. For this approach to be meaningful 

the slabs must be sufficiently thick so that the surfaces of their upper and lower sides are electroni-

cally decoupled. Further, the vacuum distance between neighboring slabs must be sufficiently large 

such that they do not influence each other electronically. 

As an illustration, Fig. 2.13 shows three slabs of a magnesium oxide crystal confined by  

(1 0 0) and (-1 0 0) oriented surfaces at their tops and bottoms consisting of four MgO layers each 

with a vacuum separation of about three times the slab thickness. The appropriate superlattice vec-

tors R1, R2, R3, referring to a 2  2 supercell laterally, i.e. along R1 and R2, are sketched and labeled 

accordingly. The size of the supercell is much larger than that of the bulk crystal and the number of 

atoms in the cell, 4  8 = 32 in the present model structure, is rather large compared with that of the 

primitive bulk containing 2 atoms. Therefore, computational studies applying the repeated slab ge-

ometry are usually much more demanding than those of the corresponding bulk crystal. 

 

Fig. 2.13.  Structure of MgO substrate confined by (1 0 0) and (-1 0 0) oriented sur-

faces in repeated slab geometry (three slabs). The superlattice vectors R1, R2, R3 are 

labeled accordingly. 

As another illustration, Fig. 2.14 shows a more complicated structure of three slabs of a face-

centered cubic silver crystal confined by kinked surfaces (denoted (12 11 7) and (-12 -11 -7), re-

spectively) at their tops and bottoms with a vacuum separation corresponding to four times the slab 

thickness. Again, the appropriate superlattice vectors R1, R2, R3 show that the size of the supercell 

with 25 atoms is much larger than the primitive cell of the bulk crystal with one atom only, demon-
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strating the difference in computational effort between slab and bulk calculations.  

 

Fig. 2.14.  Structure of silver substrate confined by (12 11 7) and (-12 -11 -7) orient-

ed surfaces in repeated slab geometry (three slabs). The superlattice vectors R1, R2, 

R3 are labeled accordingly. 

 

2.2.2.3 Linear Transformations of Lattice Vectors 

One group of alternative descriptions of crystal lattices is given by those where the alternative 

lattice vectors R1, R2, R3 are linear combinations of their initial counterparts Ro1, Ro2, Ro3 with in-

teger coefficients. This was already discussed in connection with the superlattice concept, and the 

basic linear transformation was defined by (2.55). Amongst these alternatives, there are lattice de-

scriptions, whose morphological unit cells change their shape but not their volume, when compared 

with those of the initial lattice. 

The latter alternatives can be used in practical cases to adapt the lattice description of a single 

crystal to additional geometric constraints, in particular those introduced by the existence of a sin-

gle crystal surface. Therefore, these alternative descriptions are important for a crystallographic 

characterization of single crystal surfaces, as will become more evident in Secs. 4 and 5. In addi-

tion, they can be used to adapt lattice descriptions such that symmetry elements of the lattice be-

come easily visible. As a simple example in two dimensions, Fig. 2.15 shows two alternative de-

scriptions of the square lattice by lattice vectors Ro1, Ro2 and R1, R2, respectively, where the two 

sets are connected by a linear transformation 

R1  =  -Ro1 - Ro2 , R2  =  2 Ro1 + Ro2 (2.61) 

Both vector sets, Ro1, Ro2 and R1, R2, provide mathematically exact descriptions of the square lattice 
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and form morphological unit cells of the same volume. However, lattice vectors Ro1, Ro2 are of the 

same length and perpendicular with respect to each other. Thus, their unit cell reveals additional 

symmetry properties of the lattice, such as mirror and rotational symmetry. 

 

Fig. 2.15.  Alternative description of the square lattice by lattice vectors Ro1, Ro1 and 

R1, R2, respectively. The morphological unit cells of the two descriptions are empha-

sized by gray painting. 

In the general case, we consider lattice vectors R1, R2, R3 of an alternative lattice description 

as a result of a linear transformation applied to an initial set of lattice vectors Ro1, Ro2, Ro3, which 

according to (2.55) can be written in matrix form as 
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If the lattice vectors R1, R2, R3 are to describe the same set of lattice points as vectors Ro1, Ro2, Ro3, 

then a general lattice point at R must be representable by an integer-valued linear combination of 

both sets of lattice vectors, i.e. 

R  =   no1 Ro1 + no2 Ro2 + no3 Ro3  =  n1 R1 + n2 R2 + n3 R3  ,     noi, ni  integer (2.63) 

Thus, any triplet of integers n1, n2, n3 corresponds to another integer triplet no1, no2, no3 and vice ver-

sa. This means, in particular, that the transformation matrix T = ( tij ) in (2.62) must be integer-

valued. Further, transformation (2.62) can be inverted to yield 
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where the matrix elements tij' of the inverse matrix T
-1

 also must be integers. Since all elements of T 

are integers the determinant of matrix T, given by 

det( T )  =  t11 (t22 t33- t23 t32) + t12 (t23 t31- t21 t33) + t13 (t21 t32- t22 t31) (2.65) 

must be integer-valued. The same must be true for the inverse matrix T
 -1

. From linear algebra we 

know that 

det(T
-1

)  =  1 / det(T) (2.66) 

Thus, both determinant values must be non-zero integers, i.e.  | det(T) |  1  and  | det(T
-1

) |  1, 

which according to (2.66) can only be possible if 

det(T)  =  det(T
-1

)  =  1 (2.67) 

Here the determinant value -1 can be safely ignored since it affects only the sequence in which the 

lattice vectors appear in the transformation (connected with handedness of the vector set). Any 

transformation (2.62) with det(T)  =  -1 can be modified to yield det(T)  =  1 by exchanging one 

vector pair Ri, Rj in the transformation.  

Relation (2.67) imposes a constraint to possible transformation matrices T. Combining (2.67) 

with (2.65) one can write 

det(T)  =  a1 t11 + a2 t12 + a3 t13  =  1 (2.68) 

with integer-valued coefficients ai where 

a1  =  t22 t33- t23 t32 

a2  =  t23 t31- t21 t33 

a3  =  t21 t32- t22 t31 (2.69) 

Equation (2.68) represents a linear Diophantine equation containing only integers as parameters and 

variables. As shown in Appendix E.3, this equation has integer solutions a1, a2, a3 for given t11, t12, 

t13 only if the latter three numbers have no common divisor greater than 1. Thus, the transformed 

lattice vector 

R1  =  t11 Ro1 + t12 Ro2 + t13 Ro3 (2.70) 

is of smallest length along its direction in the lattice. Rearranging the components in the determi-

nant (2.65) we can easily derive analogous relations 

det(T)  =  b1 t21 + b2 t22 + b3 t23  =  1 (2.71) 
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det(T)  =  c1 t31 + c2 t32 + c3 t33  =  1 (2.72) 

with integer-valued coefficients bi, ci, where 

b1  =  t32 t13- t12 t33  , c1  =  t12 t23- t13 t22  

b2  =  t33 t11- t13 t31  , c2  =  t13 t21- t11 t23 

b3  =  t31 t12- t11 t32  , c3  =  t11 t22- t12 t21 (2.73) 

Then the correponding linear Diophantine equations (2.71), (2.72) have integer solutions b1, b2, b3 

for given t21, t22, t23 (and c1, c2, c3 for given t31, t32, t33) only if the latter three numbers have no 

common divisor greater than 1. Thus, the transformed lattice vectors 

R2  =  t21 Ro1 + t22 Ro2 + t23 Ro3 (2.74) 

R3  =  t31 Ro1 + t32 Ro2 + t33 Ro3 (2.75) 

are also of smallest length along their direction in the lattice. 

 

2.2.3 Centered Lattices 

In Sec. 2.2.2.1 it was shown that the bcc lattice, characterizing, for example, iron single crys-

tals, see Fig. 2.16a, can be described by non-primitive lattice vectors R1, R2, R3 which form a sim-

ple cubic lattice. However, there is an additional lattice vector R' inside the morphological unit cell, 

spanned by R1, R2, R3, which points to the center of the cubic unit cell, as illustrated in Fig. 2.16b. 

This is an example of a more general property of non-primitive lattice representation, commonly 

denoted as centering and discussed in the following. 

 

Fig. 2.16.  (a) Section of a body-centered cubic iron (Fe) crystal. Sticks between 

atom balls indicate the crystal structure. (b) Non-primitive simple cubic morpholog-

ical unit cell with two iron atoms inside. Lattice vectors vectors R1, R2, R3, and R' 

are labeled accordingly.  
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First, we consider possible lattice vectors R' at the faces of the morphological unit cell of a 

lattice represented by non-primitive lattice vectors R1, R2, R3. For this we assume that each of the 

vectors R1, R2, R3 is of smallest length compared with all general lattice vectors along the same di-

rection. Then an additional lattice point at a face of the morphological unit cell (excluding cell edg-

es) can described by a vector R' given by 

R'  =  κi Ri + κj Rj ,     0  <  κi, κj   <  1 ,     (i, j) = (1, 2), (1, 3), (2, 3) (2.76) 

and for general values κi, κj there is always a second lattice point at the face of the cell with vector 

R'' given by 

R''  =  Ri + Rj - R' = (1 - κi) Ri + (1 - κj) Rj (2.77) 

If, however, the face is assumed to contain only one additional lattice point then the vectors R' and 

R'' must coincide, i.e. 

R'' - R'  =  (1 - 2κi) Ri + (1 - 2κj) Rj  = 0 (2.78) 

Here the expressions in brackets must both be zero since the vectors Ri, Rj are linearly independent. 

This leads to 

κi  =  κj  =  1/2   ,        R'  =  1/2 (Ri + Rj) (2.79) 

yielding a lattice vector R' in the center of the cell face spanned by Ri, Rj (face centering). Relation 

(2.79) written as 

Ri  =  2 R' - Rj   ,     Rj  =  2 R' - Ri (2.80) 

means in particular that (R', Rj) and (Ri, R') can be used as alternative lattice vector sets to represent 

the set (Ri, Rj). 

Next, we consider possible lattice vectors R' inside the morphological unit cell defined by lat-

tice vectors R1, R2, R3. An additional lattice point inside the cell (excluding cell faces and edges) 

can be described by a vector R' given by 

R' = κ1 R1 + κ2 R2 + κ3 R3,     0  <  κi  <  1 ,     i  =  1, 2, 3 (2.81) 

and for general values κ1, κ2, κ3 there is always a second lattice point at the face of the cell with 

vector R'' given by 

R''  =  R1 + R2 + R3 - R' = (1 - κ1) R1 + (1 - κ2) R2 + (1 - κ3) R3 (2.82) 
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If, however, the cell is assumed to contain only one additional lattice point then the vectors R' and 

R'' must coincide, i.e. 

R'' - R'  =  (1 - 2κ1) R1 + (1 - 2κ2) R2 + (1 - 2κ3) R3  = 0 (2.83) 

Again the expressions in brackets must all be zero since the vectors R1, R2, R3 are linearly inde-

pendent. This leads to 

κ1  =  κ2  =  κ3  =  1/2   ,        R'  =  1/2 (R1 + R2 + R3) (2.84) 

yielding a lattice vector R' in the center of the cell spanned by R1, R2, R3 (body centering). Relation 

(2.84) written as 

Ri  =  2 R' - Rj - Rk   ,     (i, j, k)  =  (1, 2, 3), (2, 3, 1), (3, 1, 2) (2.85) 

means in particular that (R', R2, R3), (R1, R', R3), and (R1, R2, R') can be used as alternative lattice 

vector sets to represent the set (R1, R2, R3). 

Altogether, additional lattice vectors R' = κ1 R1 + κ2 R2 + κ3 R3 inside the morphological unit 

cell of a lattice, represented by non-primitive lattice vectors R1, R2, R3, allow four choices of cen-

tering 

(a)  body centering κ1 = κ2 = κ3 = 1/2 , Ra  =  1/2 (R1 + R2 + R3) 

(b)  face centering κ2 = κ3 = 1/2, κ1 = 0 , Rb  =  1/2 (R2 + R3) 

(c)  face centering κ1 = κ3 = 1/2, κ2 = 0 , Rc  =  1/2 (R1 + R3) 

(d)  face centering κ1 = κ2 = 1/2, κ3 = 0 , Rd  =  1/2 (R1 + R2) (2.86) 

As an illustration Fig. 2.17 shows the lattice vectors Ra, Rb, Rc, Rd, referring to the four choices. 
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Fig. 2.17.  Non-primitive morphological unit cell with choices (a) to (d) for possible 

lattice vectors inside the cell. The possible lattice vectors Ra, Rb, Rc, Rd, as well as 

the lattice vectors R1, R2, R3 defining the morphological unit cell are labeled accord-

ingly. The dashed lines are meant to assist the visual orientation inside the figure. 

If several of the vector choices (a) to (d) for R' in (2.86) appear simultaneously in the unit cell 

there are additional compatibility restrictions. First, a lattice point (a) in the center of the unit cell 

excludes the appearance of any of the additional lattice points (b) to (d), and vice versa, since this 

would also result in additional lattice points R' = 1/2 Ri at the edges of the cell, which contradicts 

the assumption of vectors Ri being of smallest length along their direction. Thus, lattices with non-

primitive lattice vectors and additional lattice points (a) form a separate group of lattices, called  

I-centered lattices (‘I’ = ‘Inner’, preferred by crystallographers) or body-centered (bcc) lattices. 

Examples of this lattice type are the bcc lattices describing many metal crystal structures, such as 

Cr, V, Mo, W, and Fe, the latter shown in Fig. 2.16. 

Second, lattices with only additional lattice points (b) form their own group, called A-centered 

lattices (‘A’ refers to the first lattice vector R1, determining the stacking of the additional lattice 

points). Those with only additional lattice points (c) form a group, called B-centered lattices  

(‘B’ refers to the second lattice vector R2), and those with only additional lattice points (d) form a 

group, called C-centered lattices (‘C’ refers to the third lattice vector R3). The appearance of two 

additional lattice points of choices (b) to (d) in (2.86) leads immediately to the appearance of a third 

lattice point as can be shown quite easily. As an example, the existence of lattice vectors Rb and Rc 

implies a lattice vector R = Rb + Rc- R3 which equals Rd. Thus, the existence of more than one addi-

tional lattice point of choices (b) to (d) in (2.86) is only possible if all three types of lattice points 

exist at the same time. This group of lattices is called F-centered lattices (’F’ = ’Face’, preferred 

by crystallographers) or face-centered (fcc) lattices. Examples of this lattice type are the fcc lattic-

es describing many metal crystal structures, such as Ni, Cu, Pt, and Ag. 
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Altogether, additional lattice points inside the morphological unit cell of a lattice with non-

primitive lattice vectors, resulting in a centered unit cell, allow five choices as shown in Fig. 2.18. 

An additional lattice point in the cell center defines I-centered lattices. Further, additional points in 

the centers of the cell faces parallel to R2 and R3 (with no other additional lattice points) define  

A-centered lattices. Analogously, centering of cell faces parallel to R1 and R3 defines B-centered 

lattices, and centering of cell faces parallel to R1 and R2 defines C-centered lattices. Finally,  

F-centered lattices have additional lattice points at centers of all six faces of the unit cell. 

 

Fig. 2.18.  Different centering of morphological unit cells. (a) Primitive, (b) I-

centered, (c) A-centered, (d) B-centered, (e) C-centered, and (f) F-centered cell. The 

lattice vectors R1, R2, R3 defining the morphological unit cell are labeled according-

ly. The dashed lines are meant to assist the visual orientation inside the cells. 
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2.3 Periodicity Cells of Lattices 

In Sec. 2.1, the morphological unit cell of a lattice with lattice vectors R1, R2, R3 was defined 

as a six-faced polyhedron spanned by R1, R2, R3 with its edges parallel to the lattice vectors and a 

volume Vel given by (2.9). If the lattice vectors are of smallest length in the lattice the correspond-

ing polyhedral unit cells are also called Buerger cells [49]. If, in addition, the lattice vectors result 

from a reduction according to Niggli [41], providing a unique description in a crystallographical 

sense, see Sec. 2.2.2, then the unit cells are referred to as Niggli cells. As examples, the three cubic 

lattices discussed in Sec. 2.2.2.1 with lattice vectors defined by (2.25), (2.26), and (2.38) yield cell 

volumes according to (2.9)  

Vel  =  a
3
 for sc lattices 

Vel  =  1/2 a
3
 for bcc lattices 

Vel  =  1/4 a
3
  for fcc lattices (2.87) 

In general, the morphological unit cell contains all p atoms which form the basis of a crystal struc-

ture. A continued repetition of the cell in the three directions along R1, R2, R3 fills the complete 

three-dimensional space and describes the complete infinite crystal.  

Assuming primitive lattice vectors R1, R2, R3, the volume of the morphological unit cell, given 

by (2.9) and connected with the atom density of the crystal, is unique whereas the cell shape is not. 

The shape is only determined by the requirement that a continued repetition of the cell in the three 

directions along R1, R2, R3 fills the complete three-dimensional space without holes and overlaps. 

This can be achieved by very differently shaped alternative unit cells. As an illustration in two di-

mensions, Fig. 2.19 shows a section of the square lattice, where, apart from the square shaped mor-

phological unit cell, spanned by lattice vectors R1 and R2 (bottom left), two alternative (polygonal) 

unit cells are included. 
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Fig. 2.19.  Alternative unit cells of the square lattice, see text. The different unit cells 

are emphasized by red filling.The lattice vectors R1 and R2 are sketched at lower left 

corner. 

The arbitrariness in the shape of alternative unit cells can be removed by additional constraints 

such as symmetry requirements, where the unit cell is assumed to reflect all point symmetry ele-

ments of the lattice. An additional constraint is compactness where all points inside the unit cell are 

assumed to be as close as possible to a lattice point. This leads to the definition of Voronoi or  

Wigner-Seitz cells which are commonly known in solid state physics [1], [2].  

The formal definition of Wigner-Seitz cells considers for each point at position r its distances  

d  =  | r - R | with respect to any lattice point R = n1 R1 + n2 R2 + n3 R3. Then position r can be as-

signed to a lattice point R by requiring that its distance d with respect to this lattice point is the 

smallest of all possible distances. The collection of all points r assigned to a given lattice point de-

fines its Wigner-Seitz cell. There will always be points r whose distances with respect to two (or 

more, up to four [50]) lattice points are identical. These points define the boundaries separating 

Wigner-Seitz cells of adjacent lattice points. More precisely, if Ra and Rb denote two adjacent lat-

tice points, then points r of equal distance with respect to Ra and Rb satisfy relation 

| r - Ra |
2
  =  r

2
 - 2 r Ra + Ra

 2
  =  | r - Rb |

2
  =  r

2
 - 2 r Rb + Rb

2
 (2.88) 

leading to 

( Ra - Rb ) r  =  1/2 ( Ra
 2
 - Rb

2
 )  =  1/2 ( Ra - Rb ) ( Ra + Rb ) 

( Ra - Rb ) [ r - 1/2 ( Ra + Rb ) ]  =  0 (2.89) 

Equation (2.89) defines all points r on a plane perpendicular to ( Ra - Rb ) and bisecting the line 

connecting Ra with Rb. Thus, boundaries separating adjacent Wigner-Seitz cells must be sections of 

planes and Wigner-Seitz cells must be polyhedral in shape. As an illustration, Figs. 2.20 and 2.21 

compare morphological unit cells (Niggli cells) with Wigner-Seitz cells for the body- and face-
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centered cubic lattices. Both polygonal Wigner-Seitz cells are highly symmetric which reflects the 

large number of point symmetry elements of the cubic lattice. This applies also to the Wigner-Seitz 

cell of the simple cubic lattice which forms a cube and is identical in shape with the morphological 

unit cell. A complete set of Wigner-Seitz cells for all 14 Bravais lattices can be found in Refs. [32] 

and [50]. 

 

Fig. 2.20.  (a) Morphological unit cell (Niggli cell) and (b) Wigner-Seitz cell of the 

bcc lattice. The polygonal cells are shaded in gray with lattice vectors labeled ac-

cordingly. The dashed lines are meant to assist the visual orientation inside the fig-

ures. 

 

 

Fig. 2.21.  (a) Morphological unit cell (Niggli cell) and (b) Wigner-Seitz cell of the 

fcc lattice. The polygonal cells are shaded in gray with lattice vectors labeled ac-

cordingly. The dashed lines are meant to assist the visual orientation inside the fig-

ures. 

It is interesting to note that there is a continuous transition, the so-called Bain path [51], from 

bcc to fcc lattices, where the intermediate lattice type is centered tetragonal (ct) characterized by 

lattice vectors 

R1 = ( a, 0, 0 ), R2 = ( 0, a, 0 ), R3 = 1/2 ( a, a, c ) (2.90) 
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The ratio q = c/a of the two lattice constants determines the actual lattice type, where q = 1 reflects 

the bcc and q = 2 yields the fcc lattice. The Wigner-Seitz cells must also transform continuously 

along the Bain path. This is illustrated in Fig. 2.22, where Wigner-Seitz cells of the ct lattice are 

shown for different ratios q between 0.8 and 1.6. 

 

Fig. 2.22.  Shape of Wigner-Seitz cells of the centered tetragonal (ct) lattice for dif-

ferent ratios q = c/a. Here q = 1 and q = 2 represent the bcc and fcc lattice, respec-

tively. The top figures refer to rectangular blocks of a fictitious monoatomic ct crys-

tal illustrating the lattice structure for corresponding ratios q. 

 

2.4 Lattice Symmetry 

A wide area of crystallography concerns the classification of all possible types of crystal struc-

ture based on their symmetry behavior. This subject will be discussed extensively for two-

dimensional lattices (netplanes) in Secs. 3.7 and 3.8, due to its importance for the characterization 

of single crystal surfaces. The present section deals with symmetry of crystal structures in three di-

mensions. However, only basic results will be briefly discussed and the reader is referred to the 

literature [28], [29], [30], [31], [32], [33] for more detailed information. 

Based on its initial definition, every lattice, given by lattice vectors R1, R2, R3, has transla-

tional symmetry along any direction described by general lattice vectors 

R  =  n1 R1 + n2 R2 + n3 R3     ,  ni  integer (2.91) 

Thus, a lattice viewed from two points r and r', which are separated by R, looks identical. This can 

be expressed mathematically using a translation operation t(R) which acts on vector r to yield a 

shifted vector r' with 

r'  =  t(R) r  =  r + R (2.92) 
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Then translational symmetry of the lattice means that the lattice does not change geometrically 

when a translation operation (2.92) is applied. 

In addition, lattices may exhibit point symmetry with respect to given points ro of the lattice 

space (symmetry origins), which do not need to coincide with general lattice points defined by vec-

tors (2.91). A lattice is considered symmetric with respect to a point symmetry operation P if it does 

not change geometrically when the operation is applied. A point symmetry operation can be writ-

ten formally as 

r        r' = P r (2.93) 

where in three dimensions five different types of operations P are generally available. These are  

 i(ro) inversion with respect to symmetry origin ro, 

 C(ro, e) rotation by an angle  about an axis along vector e through symmetry  

origin ro, 

 (ro, e) mirroring (reflection)  with respect to a plane with normal vector e through 

symmetry origin ro,  

 S(ro, e) rotoinversion by an angle  about an axis along e through ro. This combines a 

rotation C(ro, e) with an inversion i(ro), 

 S'(ro, e) rotoreflection by an angle  about an axis along e through ro. This combines a 

rotation C(ro, e) with a mirror operation (ro, e), where direction vector e of 

the rotation axis coincides with the normal vector of the mirror plane. 

The latter two symmetry operations combine two of the other operations, a rotation with inversion 

or with reflection. This means, in particular, that a lattice may be symmetric with respect to one of 

the two combined symmetry operations but may not exhibit the symmetry of the two component 

operations. Rotoinversion and rotoreflection are connected with each other by a rotation by 180 

which can be formally written as 

S'(ro, e)  =  S(ro, e) C180(ro, e)  =   C180(ro, e) S(ro, e) (2.94) 

Thus, the two symmetry operations can be used equivalently in a symmetry classification of three-

dimensional crystal lattices. Here the Hermann-Mauguin or international notation, which forms 

the basis of the International Tables of Crystallography [33]  and is by now the standard approach 
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amongst crystallographers, considers rotoinversion as the standard symmetry operation while the 

Schönflies notation, practiced by many physicists, uses rotoreflection. 

There are two additional symmetry operations which can appear in three-dimensional crystal lattic-

es, namely 

 T(ro, e, t) rototranslation (screw operation) by an angle  about an axis along e 

through ro and subsequent translation by vector te.  

 g(ro, e, g) glide reflection, combining a reflection (ro, e) with a translation by vector g, 

where vectors g and e are perpendicular to each other. 

Both operations are not true point symmetry operation since they contain a translational component. 

However, rototranslations are required to describe the symmetry of crystals which contain screw 

axes. Glide reflections appear as symmetry elements in centered three-dimensional crystal lattices. 

Translational and point symmetry elements of a lattice are subject to compatibility con-

straints. These constraints limit the number of possible point symmetry operations available for a 

characterization of different types of lattices. Examples are constraints on possible angles  of rota-

tion operations and of the direction e of their axes, of mirror plane orientations, or positions of in-

version centers. These constraints for three-dimensional lattices will not be detailed in this book. 

However, they will be discussed extensively for the case of two-dimensional lattices (netplanes) in 

Sec. 3.6. Using these constraints together with group theoretical methods provides the basis of a 

general classification scheme of all crystal lattices which is documented in the International Tables 

of Crystallography [33]. As an illustration of the compatibility constraints, possible rotation axes 

inside lattices will be considered. This can already serve for a rough classification of all possible 

lattice types into seven crystal systems and 14 different types of lattices, the so-called three-

dimensional Bravais lattices.  

In Sec. 3.6.3 it will be shown that the compatibility of rotational and translational symmetry in 

two-dimensional lattices restricts rotation angles  to integer multiples of (360/n), where only val-

ues n = 2, 3, 4, 6 are allowed. The corresponding mathematical proof is also valid for three-

dimensional lattices. If a lattice transforms into itself by a rotation by   = (360/n), it will also do 

so for all rotations by '  = p (360/n), p = 1, ... n. This property can be used to characterize rotation 

axes by their ‘foldedness’ n. An n-fold rotation axis in a lattice allows rotations by all integer mul-
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tiples of the angle 360/n about its axis, where the rotated images coincide with the initial lattice. 

Thus, lattices allow only 2-, 3-, 4-, and 6-fold rotation axes as rotational point symmetry elements. 

There are two different naming conventions for rotation axes in crystal lattices. The so-called  

Hermann-Mauguin or International notation, is preferred by crystallographers and used in the 

International Tables of Crystallography [33]. In this notation an n-fold rotation axis is denoted by its 

foldedness as n. In contrast, the so-called Schönflies notation uses the symbol Cn for an n-fold rota-

tion axis. Table 2.2 lists all possible n-fold rotation axes of three-dimensional lattices together with 

their Hermann-Mauguin and Schönflies names. (It also includes the corresponding names for mirror 

symmetry planes and inversion centers.) 

 

Table 2.2.  Naming conventions (Hermann-Mauguin, Schönflies) for the simple 

point symmetry elements of three-dimensional lattices, see text. 

Symmetry Hermann-

Mauguin 

Schönflies 

2-fold rotation axis 2 C2 

3-fold rotation axis 3 C3 

4-fold rotation axis 4 C4 

6-fold rotation axis 6 C6 

Mirror plane m  

Inversion 1   or  -1 i 

 

The four different rotation axes can distinguish between the different types of three-

dimensional lattices. First, there are lattices which do not possess any rotational axis. They form the 

most general type of Bravais lattices and will be called triclinic-P. Any centering of a triclinic-P 

lattice according to Sec. 2.2.3 will lead to another triclinic-P lattice, i.e. will not create any new lat-

tice type. Thus, the triclinic-P lattice, shown in Fig. 2.23, is the only member of the triclinic crystal 

system. 
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Fig. 2.23.  Morphological unit cell of the triclinic-P lattice with lattice vectors R1, 

R2, R3 and angles α, β, γ labeled accordingly. 

Next, we assume that a lattice possesses a 2-fold rotation axis, where the origin of the lattice 

can always be set to lie on the axis. Then, we consider two lattice points, given by a general lattice 

vector R
(0)

 (not on the axis), and its image R
(1)

, which arises from rotating R
(0)

 about the axis by 

180. The sum of the two general lattice vectors, R
c
 = (R

(0)
 + R

(1)
), is a general lattice vector point-

ing along the rotation axis. Therefore, as a result of translational symmetry, there are an infinite 

number of lattice points on the rotation axis. Of these lattice points, the one nearest to the origin can 

be used to define lattice vector R3 of the lattice. On the other hand, the difference vector  

R
a
 = (R

(1)
 - R

(0)
) is a general lattice vector perpendicular to the rotation axis suggesting infinitely 

many lattice points along its direction. Of these, again the one nearest to the origin can be used to 

define lattice vector R1 of the lattice. The same procedure can be applied to a different general lat-

tice vector R
(2)

 and its rotational image R
(3)

, where the difference vector R
b
 = (R

(3)
 - R

(2)
) is also 

perpendicular to the rotation axis. Then the smallest lattice vector along R
b
 can be used to define 

lattice vector R2 of the lattice. Vectors R1 and R2 may have to be exchanged to guarantee a right- 

handed system, but, altogether, the vector triplet R1, R2, R3 provides an appropriate set of lattice 

vectors describing the lattice with its 2-fold rotation axis. For the following discussion, these lattice 

vectors will be described by their lengths a, b, c (lattice constants) and mutual angles , , , ac-

cording to (2.3) and sketched in Fig. 2.3. This means, in particular, for the present symmetry and 

choice of lattice vectors that  =  = 90. 

The lattice vectors R1, R2, R3 where the angle  assumes any value different from 60, 90, and 

120 define the monoclinic crystal system. If the morphological unit cell of R1, R2, R3 is primitive 

the corresponding Bravais lattice will be called monoclinic-P. Centering a monoclinic-P lattice ac-
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cording to Sec. 2.2.3 can create different lattices depending on the type of centering. Here  

C-centering will only modify the lattice vectors R1 and R2 but will keep the monoclinic-P lattice. In 

contrast, A-centering leads to a new lattice type, monoclinic-A, which cannot be described by a 

monoclinic-P lattice. Likewise, B-centering, creates a new lattice type, monoclinic-B, different 

from monoclinic-P. However, monoclinic-A and monoclinic-B lattices are morphologically equiva-

lent since they differ only by an interchange of lattice vectors R1 and R2. Thus, it is sufficient to 

consider one of the two lattice types, where crystallographers prefer monoclinic-B over monoclin-

ic-A. Further, F- and I-centering can be shown to also be equivalent to B-centering by appropriate 

origin shifts and lattice vector modifications. Thus, the monoclinic crystal system can be represent-

ed by two unique Bravais lattices, monoclinic-P and monoclinic-B, shown in Fig. 2.24. 

It should be noted that crystallographers often describe the monoclinic crystal system by using 

lattice vector R2 (B axis) to define the direction of the 2-fold rotation axis of a crystal. This geome-

try, referred to in the International Tables of Crystallography [33] as the ‘first setting’ (as opposed 

to the ‘second setting’ discussed above), corresponds to lattice vector angles  =  = 90,  

  60,  90,  120. The interchange of crystal axes between the two settings does not affect the 

discussion of possible crystal types, except that the first setting considers monoclinic-P and cen-

tered monoclinic-C as the unique monoclinic lattices. 

 

Fig. 2.24.  Morphological unit cells of the monoclinic crystal system, monoclinic-P 

and monoclinic-B lattices with lattice vectors R1, R2, R3 and angles α = β = 90, γ 

labeled accordingly (angles only for monoclinic-P). Angles of 90 are indicated by 

small rectangles filled with a dot. The dashed line connecting opposing lattice points 

is meant to guide the eye. 

Lattice vectors R1, R2, R3 with the angle  = 90, i.e. for  =  =  = 90, but with different vec-

tor lengths, a  b, a  c, b  c, define the orthorhombic crystal system. If the morphological unit 
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cell of R1, R2, R3 is primitive the corresponding Bravais lattice will be called orthorhombic-P. 

Centering an orthorhombic-P lattice according to Sec. 2.2.3 will always create different lattices. 

Here A-, B-, and C-centerings lead to new lattice types, orthorhombic-A, -B, and -C, respectively, 

which cannot be described by an orthorhombic-P lattice. However, these three centered lattices are 

morphologically equivalent and differ only by an interchange of corresponding lattice vectors. 

Thus, only one of these lattice types needs to be considered, where crystallographers often prefer 

orthorhombic-C over the other two. In addition, I- and F-centerings yield new lattice types,  

orthorhombic-I and orthorhombic-F. Therefore, the orthorhombic crystal system can be repre-

sented by four unique Bravais lattices, orthorhombic-P, orthorhombic-C, orthorhombic-I, and  

orthorhombic-F, shown in Fig. 2.25. 

 

Fig. 2.25.  Morphological unit cells of the orthorhombic crystal system, orthorhom-

bic-P, orthorhombic-C, orthorhombic-I, and orthorhombic-F, lattices with lattice 

vectors R1, R2, R3 and angles α = β = γ = 90 labeled accordingly (angles only for 

orthorhombic -P indicated by small rectangles filled with a dot). The dashed lines 

connecting lattice points are meant to guide the eye. 

Lattice vectors R1, R2, R3 with angles  =  =  = 90 but with vector lengths, a = b  c, define 

the tetragonal crystal system. If the morphological unit cell of R1, R2, R3 is primitive the corre-

sponding Bravais lattice will be called tetragonal-P. Here the two constraints, a = b and  

 = 90 mean, in particular, that the 2-fold rotation axis along R3 is also a 4-fold rotation axis. 

Therefore, A- and B-centering of a tetragonal-P lattice is not possible. Further, C-centering will on-
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ly modify the lattice vectors R1 and R2 but will keep the tetragonal-P lattice. However,  

I-centering results in a new lattice type, tetragonal-I, which cannot be represented by a tetragonal-P 

lattice. In addition, F-centering can be shown to result in a tetragonal-I lattice by appropriate origin 

shifts and lattice vector modifications. Thus, the tetragonal crystal system can be represented by 

two unique Bravais lattices, tetragonal-P and tetragonal-I, shown in Fig. 2.26. 

 

Fig. 2.26.  Morphological unit cells of the tetragonal crystal system, tetragonal-P and 

tetragonal-I lattices with lattice vectors R1, R2, R3 and angles α = β = γ = 90 labeled 

accordingly (angles only for tetragonal -P indicated by small rectangles filled with a 

dot). Parallel pairs of short lines indicate vectors of equal length. The dashed line 

connecting opposing lattice points is meant to guide the eye. 

Lattice vectors R1, R2, R3 with angles  =  =  = 90 but with three equal vector lengths,  

a = b = c, define the cubic crystal system. If the morphological unit cell of R1, R2, R3 is primitive 

the corresponding Bravais lattice will be called cubic-P or simple cubic (sc). For this crystal sys-

tem the 2-fold rotation axis along R3 is also a 4-fold rotation axis, analogous to the tetragonal case. 

In addition, there are 4-fold rotation axes along R1 and R2. As a consequence, neither A- nor B- nor 

C-centering of a cubic-P lattice is possible. However, I- and F-centerings yield new lattice types, 

cubic-I or body-centered cubic (bcc) ), and cubic-F or face-centered cubic (fcc). As a conse-

quence, the cubic crystal system includes three unique Bravais lattices, cubic-P, cubic-I, and  

cubic-F, shown in Fig. 2.27. 
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Fig. 2.27.  Morphological unit cells of the cubic crystal system, cubic-P, cubic-I, and 

cubic-F, lattices with lattice vectors R1, R2, R3 and angles α = β = γ = 90 labeled 

accordingly (angles only for cubic-P indicated by small rectangles filled with a dot). 

Parallel pairs of short lines indicate vectors of equal length. The dashed lines con-

necting opposing lattice points are meant to guide the eye. 

So far, all lattice vector sets R1, R2, R3 with vector R3 pointing along a 2- and 4-fold rotation 

axis have been considered. In addition, R3 can define the direction of a 6-fold rotation axis. This 

corresponds to  =  = 90,  = 60, a = b, and defines the hexagonal crystal system. In this sys-

tem, the lattice vectors R1 and R2 can be represented in two ways. The initial definition is based on 

the 6-fold rotation axis and uses an angle  = 60 beween R1 and R2 (acute representation). The 

alternative definition uses an angle  = 120 beween R1 and R2, (obtuse representation) and is of-

ten preferred by crystallographers. The latter representation emphasizes the 3-fold rotation axis 

along R3, which is, however, combined with a 2-fold axis to form the 6-fold rotation axis. If the 

morphological unit cell of the hexagonal lattice is primitive the corresponding Bravais lattice will 

be called hexagonal-P. Any centering of a hexagonal-P lattice according to Sec. 2.2.3 will destroy 

the hexagonal symmetry. Thus, the hexagonal crystal system includes only the hexagonal-P Bravais 

lattice, shown in Fig. 2.28. 
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Fig. 2.28.  Morphological unit cell of the hexagonal-P lattice with lattice vectors R1, 

R2, R3 labeled accordingly. The dashed lines connecting lattice points in hexagonal 

arrangements at top and bottom planes are meant to guide the eye. 

The present lattice classification is based on lattices where lattice vector R3 points along a  

2-fold rotation axis. Therefore, it cannot immediately be used to describe lattices with a pure 3-fold 

rotation axis along R3 since the combination of coinciding 2- and 3- fold rotation axes leads to a  

6-fold rotation axis and, thus, to the hexagonal crystal system discussed previously. However, we 

can start from a 3-fold rotation axis through a lattice point and consider three other lattice points. 

These are given by a general lattice vector R
(0)

 from the lattice point and its two images R
(1)

, R
(2)

, 

which arise from rotating R
(0)

 about the axis by 120 and 240, respectively. If these vectors are of 

the smallest length along their direction they can be used as lattice vectors R1, R2, R3. By construc-

tion these lattice vectors are of identical length and form identical angles with each other, i.e. a = b 

= c and  =  = , which defines the trigonal or rhombohedral crystal system. This crystal system 

also includes only one Bravais lattice, the trigonal-R lattice (‘R’ = ‘Rhombohedral’ reminds of the 

alternative name), shown in Fig. 2.29. The trigonal and hexagonal lattices are closely connected 

with each other. As an example, Sec. 2.2.2.1 shows that a trigonal-R lattice can be alternatively de-

scribed by a hexagonal lattice with non-primitive lattice vectors. Further, the trigonal-R lattice 

yields for  =  =  = 90 a cubic-P lattice, for  =  =  = 60 a cubic-F lattice, and for  =  =  = 

109.47 (cos() = -1/3) a cubic-I lattice. Thus, the cubic lattices may also be defined by their (four 

different) 3-fold rotation axes rather than by 2- and 4-fold rotation axes. 
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Fig. 2.29.  Morphological unit cell of the trigonal-R (rhombohedral) lattice with lat-

tice vectors R1, R2, R3 and angles γ (given for the two front sides) labeled according-

ly. Parallel pairs of short lines indicate vectors of equal length. 

Altogether, the existence of rotation axes inside lattices allows a first classification of all lattice 

types yielding the seven crystal systems and 14 different Bravais lattices listed in Table 2.3 and 

sketched in Fig. 2.30. 

 

Table 2.3.  List of the seven crystal systems with their Bravais lattice members de-

scribed by lattice constants a, b, c, and angles , , . Angles quoted without specif-

ic values are assumed to differ from 60º, 90º, and 120º. For each crystal system, the 

corresponding Bravais lattices with crystallographic labels as well as with the high-

est point symmetry group in Schoenflies notation are included. 

Crystal system Lattice constants Bravais lattices Symmetry 

Triclinic a  b  c ,   , ,   -P Ci 

Monoclinic a  b  c ,    = 90º,  = 90º,  -P,  -B C2h 

Orthorhombic a  b  c ,    =  =  = 90º -P,  -C,  -I,  -F D2h 

Tetragonal a = b  c ,    =  =  = 90º -P,  -I D4h 

Hexagonal a = b  c ,    =  = 90º, 

 = 60º (acute), 120º (obtuse) 

-P D6h 

Trigonal, 

Rhombohedral 
a = b = c ,    =  =  -R D3d 

Cubic a = b = c ,    =  =  = 90º -P, -I, -F Oh 
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Fig. 2.30.  Morphological unit cells the 14 three-dimensional Bravais lattices, de-

scribed in Table 2.3, with lattice vectors R1, R2, R3 and angles α, β, γ labeled accord-

ingly. Angles of 90 are indicated by small rectangles filled with a dot. Parallel pairs 

of short lines indicate vectors of equal length. The dashed lines connecting opposing 

lattice points are meant to guide the eye. 

A complete classification of all possible lattice types must also take into account point sym-

metry elements other than rotations. However, this will not affect the basic family of crystal sys-

tems and Bravais lattices obtained so far. In fact, Bravais lattices and their morphological units cells 

are always found to exhibit the largest number of symmetry elements of all lattices of a given crys-

tal system. Atom positions, defining the basis inside the morphological unit cell of a crystal, may 

result in lower symmetry than suggested by the shape of the unit cell (given by the crystal system 
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and the corresponding Bravais lattice). This allows for lattices with identical lattice vectors but dif-

ferent point symmetry properties. Applying group theoretical methods, it can be shown that, alto-

gether, there are 230 different ways to combine symmetry with lattices, described by the 230 differ-

ent three-dimensional space groups,tabulated in the International Tables of Crystallography [33]. 

For a full discussion see [32] and references therein. 

 

2.5 Reciprocal Lattice 

In addition to the initial lattice vectors R1, R2, R3 describing a lattice in real space the definition 

of a second set of vectors, G1, G2, G3, given by vector products 

G1  =   (R2  R3) ,     G2  =    (R3  R1) ,     G3  =   (R1  R2) 

  =  (2) / [( R1  R2 ) R3]  =  (2) / Vel (2.95) 

has proven to be quite useful for various applications discussed in this book. Examples are the cal-

culation of distances between adjacent monolayers or of atom densities of monolayers described in 

Sec. 3.1. The reciprocal lattice defined by (2.95) is also central to wave diffraction by lattices and to 

electronic band structure theory of crystals. Since the scaling factor  in (2.95) is of dimension 

[length
-3

] vectors Gi are of dimension [length
-1

]. They are closely related to the initial lattice vectors 

and can be used to define a complementary lattice in reciprocal space, the reciprocal lattice. There-

fore, these vectors are called reciprocal lattice vectors. They have a number of interesting proper-

ties of which we mention only a few in the following. 

(a) The reciprocal lattice vectors Gi fulfill orthogonality relations 

Gi Ri  =  2   for  i = 1, 2, 3 ;       Gi Rj  =  0   for  i    j (2.96) 

which is clear from definitions (2.95) and basic properties of vector products. 

(b) The volume of the unit cell of the reciprocal lattice is inverse to that of the real space 

lattice. According to definition (2.9) and using a property of the vector product of three 

vectors a, b, c 

a  ( b  c )  =  ( a c ) b  - ( a b ) c (2.97) 

we obtain  
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VG  =  ( G1  G2 ) G3  =  
3
 {(R2  R3)  (R3  R1) } (R1  R2)|  = 

 =  
3
 { ((R2  R3) R1) R3  -  ((R2  R3) R3) R1 } (R1  R2)  = 

 =  
3
 { ((R2  R3) R1) R3 } (R1  R2)  = 

 =  
3
 {R3 (R1  R2)}

2
  =  (2)

3
 / [( R1  R2 ) R3]  =  (2)

3
 / Vel (2.98) 

and, thus, 

VG Vel  =  (2)
3
 (2.99) 

(c) The reciprocal lattice of the reciprocal lattice of a real space lattice is identical to the 

real space lattice. This can be proven by simple vector calculus using relations (2.95) and 

(2.97) as discussed in Appendix F. Thus, we can write formally 

{R1, R2, R3}
-1

  =  {G1, G2, G3}  ,     {G1, G2, G3}
-1

  =  {R1, R2, R3} (2.100) 

Explicit examples of reciprocal lattices are 

 the sc lattice whose reciprocal lattice also defines an sc lattice, i.e. 

R1
sc

  =  a (1, 0, 0) G1
sc

  =  2/a (1, 0, 0) 

R2
sc

  =  a (0, 1, 0) G2
sc

  =  2/a (0, 1, 0) 

R3
sc

  =  a (0, 0, 1) G3
sc

  =  2/a (0, 0, 1) (2.101) 

 the fcc lattice whose reciprocal lattice defines a bcc lattice, i.e. 

R1
fcc

  =  a/2 (0, 1, 1) G1
fcc

  =  2/a (-1, 1, 1) 

R2
fcc

  =  a/2 (1, 0, 1) G2
fcc

  =  2/a (1, -1, 1) 

R3
fcc

  =  a/2 (1, 1, 0) G3
fcc

  =  2/a (1, 1, -1) (2.102) 

 the bcc lattice whose reciprocal lattice defines an fcc lattice, i.e. 

R1
bcc

  =  a/2 (-1, 1, 1) G1
bcc

  =  2/a (0, 1, 1) 

R2
bcc

  =  a/2 (1, -1, 1) G2
bcc

  =  2/a (1, 0, 1) 

R3
bcc

  =  a/2 (1, 1, -1) G3
bcc

  =  2/a (1, 1, 0) (2.103) 

In general, lattice types and their symmetry properties in reciprocal space, defined by reciprocal 

lattice vectors G1, G2, G3, can be related with those of the corresponding real space lattices, lattice 

vectors R1, R2, R3. This is clear from Table 2.4 which lists for each of the 14 three-dimensional 

Bravais lattices discussed in Sec. 2.4 the corresponding reciprocal Bravais lattice. 
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Table 2.4.  List of real and corresponding reciprocal Bravais lattices. 

 Real space lattice Reciprocal space lattice 

1 Triclinic-P Triclinic-P 

2 

3 

Monoclinic-P 

Monoclinic-A, -B 

Monoclinic-P  

Monoclinic-A, -B 

4 

5 

6 

7 

Orthorhombic-P 

Orthorhombic-A, -B, -C 

Orthorhombic-I 

Orthorhombic-F 

Orthorhombic-P 

Orthorhombic-A, -B, -C 

Orthorhombic-F 

Orthorhombic-I 

8 

9 

Tetragonal-P 

Tetragonal-I 

Tetragonal-P 

Tetragonal-I 

10 Hexagonal-P Hexagonal-P 

11 Trigonal-R Trigonal-R 

12 

13 

14 

Cubic-P (sc)  

Cubic-I (bcc)  

Cubic-F (fcc)  

Cubic-P (sc) 

Cubic-F (fcc) 

Cubic-I (bcc) 

 

Reciprocal lattice vectors are also useful for the decomposition of real space coordinates r into 

multiples of lattice vectors R1, R2, R3. If a spatial coordinate r is written as 

r  =  x1 R1  +  x2 R2  +  x3 R3  ,     xi  real (2.104) 

then the orthogonality theorem (2.96) yields for i =1, 2, 3 

Gi r  =  x1 (Gi R1)  +  x2 (Gi R2)  +  x3 (Gi R3)  =  2 xi (2.105) 

Thus, the mixing coefficients xi can be calculated as scalar products involving reciprocal lattice vec-

tors. 

Many physical properties of a perfect three-dimensional bulk crystal with its periodicity de-

scribed by lattice vectors R1, R2, R3 are characterized by functions f(r) which are periodic in space 

where the periodicity coincides with that of the crystal lattice, i.e. 

f(r + R)  =  f(r)     with     R  =  n1 R1  +  n2 R2  +  n3 R3  ,     ni  integer (2.106) 

Examples are the electron density (r) or the electrostatic potential V(r) in a perfect crystal. In a 

harmonic analysis (Fourier analysis)  these periodic functions f(r) are represented by a (generally 
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infinite) series of harmonic functions written as exponentials  exp(i G r)  of imaginary argument  

(i being the imaginary unit number), i.e. 

 rGexpc)r(f
G

G i      with     G  =  k1 G1  +  k2 G2  +  k3 G3  ,   ki  integer (2.107) 

Vectors G in this expansion are linear combinations of reciprocal lattice vectors with integer-valued 

mixing coefficients ki and cG are expansion coefficients of the series determined by integrals 

  rdrGexp)r(f
V

1
c 3

Vel

G

el

  i  (2.108) 

where the three-dimensional integration is carried out over the elementary cell Vel of the real space 

lattice, for further mathematical details see Appendix G. Thus, the Fourier expansion (2.107) is 

based on a summation of terms which are determined by reciprocal lattice vectors. This is justified 

by real and reciprocal lattice vectors obeying the orthogonality theorem (2.96). According to 

G R =  (k1 G1  +  k2 G2  +  k3 G3) (n1 R1  +  n2 R2  +  n3 R3)  

 =  2 (k1 n1  +  k2 n2  +  k3 n3)  =  2 N (2.109) 

and 

exp(i 2 N)  =  1  ,     N  integer (2.110) 

we obtain with (2.107) 

       )r(fRGexprGexpcRrGexpc)Rr(f
G

G

G

G   iii  (2.111) 

Thus, the Fourier series reproduces the periodicity (2.106). 

 

2.6 Neighbor Shells 

Geometric parameters of periodic crystals are fully described by their translational and point 

symmetries. However, in some cases physical and chemical properties may be represented more 

appropriately by considering local atom neighborhoods and relationships between atoms in spheri-

cal environments. This leads to the concept of neighbor shells. Neighbor shells start from an atom 

of the crystal and characterize its environment by surrounding atoms. Here, all atoms at a given dis-

tance or distance range with respect to the central atom and irrespective of their direction are col-

lected to form a shell. The neighbor shells are ordered according to their shell radii (given by the 
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interatomic distances) where the closest shell with the smallest radius is sometimes called the (first) 

coordination shell. Then the atoms of the different shells span the complete crystal, if all radii up 

to infinity are considered.  

Physical applications of the neighbor shell concept include shell models to describe lattice vi-

brations (balls-and-springs approach to phonons [52]), tight-binding methods [53] to describe elec-

tronic properties of crystals, or electrostatic potential calculations based on point charges in ionic 

crystals [54]. Fig. 2.31 illustrates the neighbor shell concept by sketching the six smallest shells 

 

Fig. 2.31.  Neighbor shells of a crystal with an fcc lattice. The labels ‘i(Mi)’ combine 

the shell index i (0 for central atom, 1 to 6) with the corresponding shell multiplicity 

Mi (1 to 24). A section of the fcc bulk crystal (labeled ‘fcc bulk’) is included to the 

left. 

in a crystal with an fcc lattice. Further, Table 2.5 lists radii and numbers of atom members Mi (shell 

multiplicities) of the smallest six neighbor shells of crystals with cubic (sc, bcc, fcc) and hexagonal 

close-packed (hcp) lattices. Sometimes, the multiplicity of the smallest neighbor shell is also called 

the coordination number denoting the number of closest atom neighbors which can form direct 

bonds with the central atom. 
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Table 2.5.  Radii Di and shell multiplicities Mi of the smallest six neighbor shells of 

crystals with (a) simple (sc), (b) body-centered cubic (bcc), (c) face-centered (fcc), 

and (d) hexagonal close-packed (hcp) lattice, see text. The radii Di are given with 

respect to the corresponding lattice constant a (with c/a = (8/3) for hcp). 

 (a)  sc  (b) bcc  

i Mi Di/a Mi Di/a 

1 6 1 = 1.0000 8 (3/4) = 0.8660 

2 12 2  = 1.4142 6 1 = 1.0000 

3 8 3  = 1.7321 12 2 = 1.4142 

4 6 2 = 2.0000 24 (11/4) = 1.6583 

5 24 5  = 2.2361 8 3 = 1.7321 

6 24 6  = 2.4495 6 2 = 2.0000 

 

 (c)  fcc  (d)  hcp  

i Mi Di/a Mi Di/a 

1 12 1/2  = 0.7071 12 1 = 1.0000 

2 6 1 = 1.0000 6 2 = 1.4142 

3 24 (3/2)  = 1.2247 2 (8/3) = 1.6330 

4 12 2 = 1.4142 18 3 = 1.7321 

5 24 (5/2)  = 1.5811 12 (11/3) = 1.9149 

6 8 3 = 1.7321 6 2 = 2.0000 

 

The formal definition of a neighbor shell starts from a crystal with lattice vectors R1, R2, R3 

and a basis, given by atom positions r1, ... , rp. Then the i
th

 neighbor shell Si(Rc, Di, i) inside a crys-

tal is defined as a collection of crystal atoms surrounding a shell center Rc, which may or may not 

coincide with the position of a crystal atom. The shell includes all atoms, at general positions  

R = n1 R1 + n2 R2 + n3 R3 + ri, whose distances D = | R - Rc | lie within the shell range, 

(Di - i/2)    D    (Di + i/2) (2.112) 

where Di defines the shell radius and i the shell thickness. The number Mi of atoms belonging to 

a neighbor shell, also called the shell multiplicity, is determined by the position of the shell center 

Rc in the crystal, the geometry of the crystal lattice, and its basis. Here monoatomic crystals with 

lattices of high symmetry, providing many atom pairs of identical distance, are expected to result in 

shells with large shell multiplicities Mi even for vanishing i. On the other hand, crystals with lattic-

es of low symmetry may lead to sets of shells, where, even for i > 0 (‘fuzzy shells’), each shell 
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contains only few atoms such that the shell concept may not be useful. The determination of the 

complete set of shells for a perfect single crystal seems straightforward since all atom positions are 

defined mathematically. However, the actual computation can be quite tedious as will be illustrated 

in the following. 

All atom positions inside a monoatomic crystal with a simple cubic (sc)  lattice can be repre-

sented by vectors 

R  =  n1 R1 + n2 R2 + n3 R3  =  a (n1, n2, n3)  ,     ni integer (2.113) 

in Cartesian coordinates with a denoting the lattice constant. Then, neighbor shells about the origin 

Rc = (0, 0, 0) with shell radius Di and a range i = 0 can be defined, according to (2.112), by 

Di
2
  =  | R - Rc |

2
  =  R

2
  =  a

2
 (n1

2
 + n2

2
 + n3

2
) (2.114) 

Thus, neighbor shells for radii Di are determined by  

Di  =  a Ni (2.115) 

where 

Ni  =  n1
2
 + n2

2
 + n3

2
 (2.116) 

and Ni, n1, n2, and n3 are integer-valued. (Shell indices i count the shells according to the size of 

their radii.) Equation (2.116) forms a quadratic Diophantine equation for given Ni with possible 

solutions n1, n2, n3. Depending on the specific values nk of a solution, there are always alternative 

solutions and, thus, other shell members, which reflect the symmetry of the cubic lattice and deter-

mine the number of symmetry related shell members, also called the symmetry related shell mul-

tiplicity Mi
sym

. Here we can distinguish six different cases, defined by constraints for the solutions 

ni, as given in Table 2.6. 
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Table 2.6.  Alternative solutions of Diophantine equation (2.116) and symmetry 

related shell multiplicities Mi
sym

, see text. 

Case Constraints on nk Alternatives ( n1, n2, n3) Mi
sym

 

1 n1 = n > 0, 

n2 = n3 = 0 

( ±n, 0, 0 ),   ( 0, ±n,  0 ), 

( 0,  0, ±n ) 

6 

2 n1 = n2 = n > 0, 

n3 = 0 

( ±n, ±n, 0 ),   ( ±n, 0, ±n ), 

( 0, ±n, ±n ) 

12 

3 n1 = n2 = n3 = n > 0 ( ±n, ±n, ±n ) 8 

4 n1 > 0,  n2 > 0, 

n1  n2,  n3 = 0 

( ±n1, ±n2, 0 ),   ( ±n1, 0, ±n2 ), 

( 0, ±n1, ±n2 ),   ( ±n2, ±n1, 0 ), 

( ±n2, 0, ±n1 ),   ( 0, ±n2, ±n1 ) 

24 

5 n1 > 0,  n1  n, 

n2 = n3 = n > 0 

( ±n1, ±n, ±n ),   ( ±n, ±n1, ±n ), 

(±n, ±n, ±n1 ) 

24 

6 n1 > 0,  n2 > 0, 

n3 > 0,  n1  n2, 

n1  n3,  n2  n3 

( ±n1, ±n2, ±n3 ),   ( ±n1, ±n3, ±n2 ), 

( ±n2, ±n1, ±n3 ),   ( ±n2, ±n3, ±n1 ), 

( ±n3, ±n1, ±n2 ),   ( ±n3, ±n2, ±n1 ) 

48 

 

In addition to the symmetry related shell multiplicities Mi
sym

 of the different shells there may be ac-

cidental shell multiplicities Mi
acc

. They arise from the fact that equation (2.116) may have different 

solutions n1, n2, n3 where the actual absolute values nk differ. This leads to neighbor shells with in-

creased total shell multiplicity. Examples are listed in Table 2.7. In fact, accidental shell multiplici-

ties Mi
acc

 of neighbor shells are responsible for the fact that 

Table 2.7.  Alternative solutions of Diophantine equation (2.116). Parameter  

Mi
tot

 = Mi
sym

 + Mi
acc

 denotes the total number of alternative solutions for each value 

of Ni. including symmetry related and accidental shell multiplicities,  

Ni ( n1, n2, n3 ) Mi
tot

 

9 (3, 0, 0), (2, 2, 1) 6 + 24 = 30 

25 (5, 0, 0), (4, 3, 0) 6 + 24 = 30 

74 (8, 3, 1), (7, 5, 0), (7, 4, 3) 48 + 24 + 48 = 120 

101 (10, 1, 0), (9, 4, 2), (8, 6, 1), (7, 6, 4) 24 + 48 + 48 + 48 = 168 

 

total shell multiplicities Mi
tot

 = Mi
sym

 + Mi
acc

 do not have an upper limit when shell radii increase 

to an arbitrary size. In addition, total shell multiplicities Mi
tot

 depend on the shell radius in a chaotic 

fashion. While Mi
tot

 values increase on the average with shell radii there are always shells of very 

small total shell multiplicity. As examples we mention the 54
th

 neighbor shell (Ni = 64, Mi
tot

 = 6) 

and the 107
th

 neighbor shell (Ni = 128, Mi
tot

 = 12). Fig. 2.32a illustrates the chaotic behavior of Mi
tot
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with shell index for the first 100 neighbor shells of a crystal with a simple cubic lattice (shell no. 

100 corresponds to a radius of 10.816 in units of the lattice constant a, see Fig. 2.33).  

 

Fig. 2.32.  Shell multiplicity Mi
tot

 as a function of the shell index i up to the 100
th

 

shell for crystals with an (a) sc, (b) bcc, (c) fcc, and (d) hexagonal close-packed 

(hcp) lattice. For the range of shell radii, see Fig. 2.33. 

Note that equation (2.116) does not yield solutions for integer values Ni with Ni = 4
p
 (8q+7), 

where p and q are positive integers as shown in Appendix E.4. This means, in particular, that Ni ac-

cording to (2.116) is larger than i for i > 6. As a consequence, shell radii Di of the sc lattice given by 

(2.115) do not scale with i. This is also clear from Fig. 2.33 which shows the relative shell radii 

Di/a as a function of the shell index i and demonstrates the deviation of Di/a from the i dependence 

for the sc lattice. 
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Fig. 2.33.  Relative shell radii Di/a as a function of the shell index i up to the 100
th

 

shell for crystals with an sc, bcc, fcc, and hexagonal close-packed (hcp) lattice, see 

text. 

The results obtained for crystals with an sc lattice can be applied to crystals with centered cu-

bic lattices. In Sec. 2.2.3 it was shown that the bcc lattice can be represented by non-primitive sim-

ple cubic lattice vectors R1, R2, R3 with an additional lattice vector R' pointing to the center of the 

morphological unit cell. Therefore, general lattice points can be described by two sets of lattice vec-

tors, i.e. by 

R  =  n1 R1 + n2 R2 + n3 R3  =  a (n1, n2, n3)  ,     ni  integer (2.117) 

and by 

R  =  R' +n1 R1 + n2 R2 + n3 R3  =  a (n1 + 1/2, n2 + 1/2, n3 + 1/2)  ,     ni  integer (2.118) 

in Cartesian coordinates. As a consequence, for a crystal with a bcc lattice, neighbor shells about 

the origin Rc = (0, 0, 0) with shell radius Di and a range i = 0 can be defined, according to (2.112), 

by two sets, by 

Di
2
  =  | R - Rc |

2
  =  a

2
 (n1

2
 + n2

2
 + n3

2
)  =  a

2
/4 ( (2n1)

2
 + (2n2)

2
 + (2n3)

2
 ) (2.119) 

referring to vectors (2.117) and by 

Di
2
  =  | R - Rc |

2
  =  a

2
 ( (n1+1/2)

2
 + (n2+1/2)

2
 + (n3+1/2)

2
 ) 

=  a
2
/4 ( (2n1+1)

2
 + (2n2+1)

2
 + (2n3+1)

2
 ) (2.120) 

referring to vectors (2.118). Thus, in both cases neighbor shells for shell radii Di are determined by 

Di  =  a/2 Ni (2.121) 

which agrees with the result for crystals with an sc lattice. However, the integers Ni are determined 

by two different quadratic Diophantine equations 
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Ni  =  (2n1)
2
 + (2n2)

2
 + (2n3)

2
  =  4 {n1

2
 + n2

2
 + n3

2
} (2.122a) 

and 

Ni  =  (2n1+1)
2
 + (2n2+1)

2
 + (2n3+1)

2
  =  4 {n1

2
 + n2

2
 + n3

2
 + n1 + n2 + n3} + 3 (2.122b) 

with possible solutions n1, n2, n3. The Ni values of the two equations cannot coincide since Ni of 

equation (2.122a) must be even, Ni = 4 P (P integer), to yield integers n1, n2, n3 while Ni of equation 

(2.122b) must be odd, Ni = 4 P + 3 (P integer). Further, equations (2.122a, b) can be understood as 

special cases of the quadratic Diophantine equation (2.116) defining neighbor shells of a crystal 

with a simple cubic lattice, however, with two separate sets of Ni values. Altogether, the complete 

set of neighbor shells of a crystal with a bcc lattice can be decomposed into two disjoint sets, cor-

responding to Ni = 4 P and Ni = 4 P + 3, which are each described by selected shells of a crystal 

with a simple cubic lattice and a lattice constant a/2 according to (2.121).  

As to the symmetry related shell multiplicities Mi
sym

 of the different shells, the first shell set, 

defined by equation (2.122a), allows all cases 1 to 6 of Table 2.6 while the second set, determined 

by equation (2.122b), is restricted to cases 3, 5, 6 (cases 1, 2, 4 apply to even numbers ni). Analo-

gous to crystals with a simple cubic lattice, the total shell multiplicities Mi
tot

 of crystals with a bcc 

lattice depend on the shell radius in a chaotic fashion, with Mi
tot

 values increasing with shell radii on 

the average but also with shells of very small total shell multiplicity in between. As examples we 

mention the 65
th

 neighbor shell (Ni = 48, Mi
tot

 = 8) and the 86
th

 neighbor shell (Ni = 64, Mi
tot

 = 6). 

Fig. 2.32b shows the chaotic behavior of Mi
tot

 with shell index for the first 100 neighbor shells of a 

crystal with a bcc lattice (shell no. 100 corresponds to a radius of 8.602 in units of the lattice con-

stant a, see Fig. 2.33). 

The results for crystals with a bcc lattice can also be applied analogously the cesium chloride 

(CsCl) crystal. This crystal, shown in Fig. 2.2a, is described by an sc lattice and a basis of two at-

oms, Cs and Cl, where the primitive morphological unit cell contains Cs atoms at its corners and a 

Cl atom at its center (or vice versa), see Fig. 2.2b. Thus, if the element types were ignored, the lat-

tice would be described as a bcc lattice. Therefore, according to (2.119), (2.120), (2.121), (2.122) 

the neighbor shell arrangement in the CsCl crystal is given by the two sets of shells found for crys-

tals with a bcc lattice. Each set contains only one element type, Cs or Cl. This means, in particular, 

that for this ionic crystal neighbor shells contain ions of only one kind, of positive (Cs
+
) or of nega-

tive (Cl
-
) charge. However, the shells do not strictly alternate between positive and negative charge 

with increasing shell radius. As an illustration Table 2.8 lists the charge sequence for the first 20 
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neighbor shells starting at the center of a Cs atom (listed as shell no. 0). 

Table 2.8.  Charge sequence for the first 20 neighbor shells of the CsCl crystal start-

ing at the center of a Cs atom (shell no. 0). 

Shell no. 

(element) 

0 

(Cs) 

1 

(Cl) 

2 

(Cs) 

3 

(Cs) 

4 

(Cl) 

5 

(Cs) 

6 

(Cs) 

7 

(Cl) 

8 

(Cs) 

9 

(Cs) 

10 

(Cl) 

Charge +1 -8 +6 +12 -24 +8 +6 -24 +24 +24 -32 

 

Shell no.  

(element) 

11 

(Cs) 

12 

(Cl) 

13 

(Cs) 

14 

(Cs) 

15 

(Cl) 

16 

(Cs) 

17 

(Cs) 

18 

(Cl) 

19 

(Cs) 

20 

(Cs) 

Charge +12 -48 +30 +24 -24 +24 +8 -48 +24 +48 

 

The results obtained for crystals with an sc lattice can also be applied to crystals with an fcc 

lattice. In Sec. 2.2.3 it was shown that the fcc lattice can be represented by non-primitive simple 

cubic lattice vectors R1, R2, R3 with three additional lattice vectors R
(1)

, R
(2)

, R
(3)

, pointing to the 

centers of the three unique faces of the morphological unit cell. Therefore, general lattice points can 

be described by four sets of lattice vectors, i.e. by 

R  =  rc + n1 R1 + n2 R2 + n3 R3     with      rc  =  R
(0)

 = 0,  = R
(1)

,  = R
(2)

,  = R
(3)

 (2.123) 

yielding in Cartesian coordinates 

R
(0)

 = (0, 0, 0)  ,   R  =  a/2 ( 2n1, 2n2, 2n3 )  , 

R
(1)

 = a/2 (0, 1, 1)  ,   R  =  a/2 ( 2n1, 2n2+1, 2n3+1 )  , 

R
(2)

 = a/2 (1, 0, 1)  ,   R  =  a/2 ( 2n1+1, 2n2, 2n3+1 )  , 

R
(3)

 = a/2 (1, 1, 0)  ,   R  =  a/2 ( 2n1+1, 2n2+1, 2n3 )  ,   ni  integer (2.124) 

As a consequence, for a crystal with an fcc lattice, neighbor shells about the origin Rc = (0, 0, 0) 

with shell radius Di and a range i = 0 can be defined, according to (2.112), by four sets, by 

Di
2
  =  | R - Rc |

2
  =  a

2
/4 { (2n1)

2
 + (2n2)

2
 + (2n3)

2
 }  , 

Di
2
  =  | R - Rc |

2
  =  a

2
/4 { (2n1)

2
 + (2n2+1)

2
 + (2n3+1)

2
 }  , 

Di
2
  =  | R - Rc |

2
  =  a

2
/4 { (2n1+1)

2
 + (2n2)

2
 + (2n3+1)

2
 }  , 

Di
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referring to vectors R according to (2.124). Thus, in all four cases neighbor shells for shell radii Di 
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are determined by 

Di  =  a/2 Ni (2.126) 

which agrees with the result for crystals with sc and bcc lattices. However, the integers Ni are now 

determined by four different quadratic Diophantine equations 

Ni  =  (2n1)
2
 + (2n2)

2
 + (2n3)

2
  =  4 {n1

2
 + n2

2
 + n3

2
} (2.127a) 

Ni  =  (2n1)
2
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2
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2
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2
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2
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2
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Ni  =  (2n1+1)
2
 + (2n2)

2
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2
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2
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2
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Ni  =  (2n1+1)
2
 + (2n2+1)

2
 + (2n3)

2
  =  4 {n1

2
 + n2

2
 + n3

2
 + n1 + n2} + 2 (2.127d) 

with possible solutions n1, n2, n3. Here equation (2.127a) yields integers n1, n2, n3 only for Ni = 4 P 

(P integer), whereas equations (2.127b-d) yield integers n1, n2, n3 for Ni = 4 P + 2 (P integer). Thus, 

Ni values of the three equations (2.127b-d) can coincide whereas they cannot coincide with Ni val-

ues of equation (2.127a). Further, equations (2.127a-d) can be considered as special cases of the 

quadratic Diophantine equation (2.116) defining neighbor shells of a crystal with a simple cubic 

lattice, however, with two separate sets of Ni values. Altogether, the complete set of neighbor shells 

of a crystal with an fcc lattice can be decomposed into two disjoint sets, corresponding to Ni = 4 P 

and Ni = 4 P + 2,  which are described each by selected shells of a crystal with a simple cubic lat-

tice and a lattice constant a/2 according to (2.121). 

As to symmetry related shell multiplicities Mi
sym

 of the different shells, the first shell set, de-

fined by equation (2.127a), refers to all cases 1 to 6 of Table 2.6. The second set, determined by 

equations (2.127b-d), is restricted to cases 2, 4, 5, 6 (cases 1, 3 do not allow one even and two odd 

numbers ni). Analogous to crystals with sc and bcc lattices, the total shell multiplicities of crystals 

with an fcc lattice depend on the shell radius in a chaotic fashion with Mi
tot

 values increasing with 

shell radii on the average but also with shells of very small total shell multiplicity in between. As 

examples we mention the 30
th

 neighbor shell (Ni = 16, Mi
tot

 = 6) and the 90
th

 neighbor shell  

(Ni = 48, Mi
tot

 = 8). Fig. 2.32c illustrates the chaotic behavior of Mi
tot

 with shell index for the first 

100 neighbor shells of a crystal with an fcc lattice (shell no. 100 corresponds to a radius of 7.316 in 

units of the lattice constant a, see Fig. 2.33). 
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Fig. 2.34.  (a) Section of a cubic NaCl crystal. Sticks connect Na with neighboring 

Cl atoms to indicate the crystal structure. (b) Primitive morphological unit cell with 

eight atoms, 4  Na and 4  Cl, inside. The lattice vectors R1, R2, R3 are labeled ac-

cordingly  

The results for crystals with sc and fcc lattices can also be applied to the sodium chloride 

(NaCl) crystal. This crystal, shown in Fig. 2.34a can be defined by a simple cubic lattice and a basis 

of eight atoms, four Na and Cl each. The primitive morphological unit cell contains Na atoms at its 

corners as well as at the centers of the three unique faces, while Cl atoms reside in the cell center 

and at midpoints of all unique edges, see Fig. 2.34b. (Na and Cl atoms can be interchanged in the 

definition.) In fact the two elemental parts of the crystal can both be characterized by fcc lattices 

shifted with respect to each other. Further, if the element types were ignored, the lattice would be 

described by a simple cubic lattice of lattice constant a/2. Therefore, according to the previous dis-

cussion, the neighbor shell arrangement of the NaCl crystal is given by the two sets of shells for the 

Na part, described by equations (2.127a-d) for a crystal with an fcc lattice, where Ni = 4 P or  

Ni = 4 P + 2. Further, the shells of the Cl part can be shown to be described by 

Ni  =  (2n1+1)
2
 + (2n2+1)

2
 + (2n3+1)

2
  =  4 {n1

2
 + n2
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 + n3

2
 + n1+ n2+ n3} + 3 

Ni  =  (2n1+1)
2
 + (2n2)

2
 + (2n3)

2
  =  4 {n1

2
 + n2

2
 + n3

2
 + n1 } + 1 

Ni  =  (2n1)
2
 + (2n2+1)

2
 + (2n3)

2
  =  4 {n1

2
 + n2

2
 + n3

2
 + n2 } + 1 

Ni  =  (2n1)
2
 + (2n2)

2
 + (2n3+1)

2
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2
 + n3

2
 + n3 } + 1 (2.128) 

leading to Ni = 4 P+1 or Ni = 4 P+3. This also defines two sets of shells of the Cl part. Thus, the 

shell arrangement in the NaCl lattice is given by four sets of shells, two for Na and Cl each, which 

are disjoint and contain only one element type. Therefore, neighbor shells of ionic crystals of the 

NaCl type contain ions of only one kind, of positive (Na
+
) or of negative (Cl

-
) charge, analogous to 
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CsCl discussed above. Further, the ionic Na
+
 and Cl

-
 shells do not strictly alternate with increasing 

shell radius, also in analogy with CsCl. As an illustration Table 2.9 lists the charge sequence for the 

first 20 neighbor shells starting at the center of a Na atom (listed as shell no. 0). 

Table 2.9.  Charge sequence for the first 20 neighbor shells of the NaCl lattice start-

ing at the center of a Na atom (denoted as shell no. 0). 

Shell no. 

(element) 

0 

(Na) 

1 

(Cl) 

2 

(Na) 

3 

(Cl) 

4 

(Na) 

5 

(Cl) 

6 

(Na) 

7 

(Na) 

8 

(Cl) 

9 

(Na) 

10 

(Cl) 

Charge +1 -6 +12 -8 +6 -24 +24 +12 -30 +24 -24 

 

Shell no.  

(element) 

11 

(Na) 

12 

(Cl) 

13 

(Na) 

14 

(Na) 

15 

(Cl) 

16 

(Na) 

17 

(Cl) 

18 

(Na) 

19 

(Cl) 

20 

(Na) 

Charge +8 -24 +48 +6 -48 +36 -24 +24 -48 +24 

 

Crystals with a hexagonal lattice and close-packed (hcp) structure (i.e. with c/a = (8/3) and 

two identical atoms in the primitive unit cell, see Fig. 2.10) are described by neighbor shells sur-

rounding atoms, which have, at larger distances, less atom members in each shell compared to the 

fcc lattice of equal atom density. This is confirmed by Fig. 2.32d, which shows the chaotic behavior 

of Mi
tot

 with increasing shell radius for the first 100 neighbor shells (shell no. 100 corresponds to a 

radius of 6.931 a, where a is the lattice constant, see Fig. 2.33). 

There are no explicit formulas to determine properties, such as radius or shell multiplicity, of 

the n
th

 neighbor shell of a given lattice. However there is a simple strategy to evaluate neighbor 

shells up to a maximum radius Dmax in a crystal with its lattice described by any lattice vectors R1, 

R2, R3 and with a corresponding basis. For the sake of simplicity, we confine ourselves to crystals 

with one atom in the primitive unit cell and primitive lattice vectors R1, R2, R3. Then, after selecting 

a shell center Rc inside the morphological unit cell we build a polyhedral cell around Rc including 

all atom positions R with respect to the shell center, i.e. 

R = n1 R1 + n2 R2 + n3 R3 - Rc   with       -Nk    nk    Nk ,  k = 1, 2, 3 (2.129) 

The inscribed sphere of this polyhedral cell, centered at Rc, has a radius Dmax which is given by the 

smallest of three lengths, i.e. by 
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Dmax =  min
     






























21

21
33

13

13
22

32

32
11

RR

RR
RN,

RR

RR
RN,

RR

RR
RN   = 

=  Vel  min














 21

3

13

2

32

1

RR

N
,

RR

N
,

RR

N
 (2.130) 

Fig. 2.35 illustrates the inscribed sphere for a polyhedral cell of a crystal with triclinic-P lattice with 

N1 = N2 = N3 = 2. 

 

Fig. 2.35.  Polyhedral cell of a crystal with triclinic-P lattice with inscribed sphere. 

The lattice vectors are labeled accordingly. 

As a next step we evaluate all atom positions of the polyhedral cell according to (2.129) to-

gether with their distances D with respect to the center Rc given by 

D  =   | R |  =  | n1 R1 + n2 R2 + n3 R3 - Rc | (2.131) 

Sorting these atom positions according to their D values in increasing order and grouping those with 

equal (or very similar) distances yields neighbor shells with respect to Rc where, however, only 

those shells with D  Dmax are guaranteed to be complete. Determining shells of radii larger than 

Dmax is achieved by increasing the ranges Ni in (2.130) and going through the same procedure. 

The concept of neighbor shells also becomes important for bulk crystals with a surface. There 

the truncation of the perfect three-dimensional crystal, yielding the crystal substrate below and vac-

uum above, creates atom environments near the surface which are incomplete if compared with per-

fect bulk environments. This will be discussed in more detail in Sec. 4.1. 
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2.7 Nanoparticles and Crystallites 

Finite size particles are characterized by aggregates of atoms which can be of the same element 

type but are exposed to different local environments depending on their location inside the particle 

or at its surface. Atoms close to the particle surface are coordinated with fewer atom neighbors 

compared to those near the particle center which influences their interatomic binding and affects the 

particle structure. This is different from the atom arrangement inside a perfect monoatomic crystal 

with its three-dimensional periodicity which results in equivalent atom centers and, thus, leads to 

identical binding environments and atom coordination. The inhomogeneity of atom environments in 

finite particles depends strongly on the particle size since the relative number of surface atoms 

compared with those of the inner particle core becomes smaller with increasing size. Thus, one 

might expect that deviations from a crystalline bulk structure become less important for most of the 

atoms as the particle size increases. 

In many cases, structural properties of clusters with only a few atoms, typically 1 to 200, do 

not reflect those of corresponding bulk crystals. Here structural details depend on the specific clus-

ter and there are no general guidelines as to interatomic distances or angles or as to symmetry. As 

an example, density-functional theory studies on silver clusters with up to 12 atoms, Agn,  

n = 2, … 12, [55] have identified equilibrium structures which differ substantially from those of 

sections of the face-centered cubic crystal found for bulk silver. This is illustrated by Fig. 2.36 

which shows two energetically very close isomers of the Ag7 cluster, (a) a tricapped tetrahedron (al-

so verified by experiment) and (b) a pentagonal bipyramid where in both isomers interatomic dis-

tances dAg-Ag close to 2.7 Å on the average are obtained. This is considerably smaller than the near-

est neighbor value dAg-Ag = 2.89 Å in the fcc silver crystal. Further, the isomer (b) includes a 5-fold 

rotation symmetry axis which is forbidden in bulk crystals as discussed in Sec. 2.4. 
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Fig. 2.36.  Balls-and-sticks models of two isomers of the Ag7 cluster, (a) tricapped 

tetrahedron and (b) pentagonal bipyramid. 

Larger metal clusters are also found to exhibit symmetry properties which are not compatible 

with those of bulk crystals. As examples, many alkaline earth (Be, Mg, Ca, Sr) and transition metal 

clusters (Ni, Co) in gas phase, the former with up to 5000 atoms [56], are believed to form compact 

particles with icosahedral symmetry for selected atom numbers N, so-called magic numbers, for 

which particles MeN are found to occur in preferred abundance. However, icosahedral symmetry 

cannot appear in perfect bulk crystals since it includes 5-fold rotational axes. 

The geometric definition of an icosahedral cluster is based on the concept of polyhedral atom 

shells of increasing size about a central atom where the shells are of icosahedral symmetry Ih. These 

compact closed shells consist of planar sections of triangular shape where the equilateral triangles 

are filled by close-packed (hexagonal) arrays of atoms with n atoms at each triangle side. Each tri-

angle shares its three edges with adjacent triangles where five triangles meet at corners which are 

centers of 5-fold rotational axes. This yields, altogether, shells with 20 triangles sharing 30 identical 

edges and 12 corners. As an illustration, Fig. 2.37 shows icosahedral shells for n = 2, 4, and 9 atoms 

per edge which form the outer shells of icosahedral clusters of N = 13, 147, and 2057 atoms, respec-

tively. 

 

Fig. 2.37.  Atom ball models of icosahedral shells for (a) n = 2, (b) n = 4, (c) n =9,  

see text. Corner atoms are emphasized by red shading. 
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If the shell edges contain n atoms each, the total number of atoms ns(n) of the n
th

 icosahedral shell 

(n > 1) amounts to 
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and the normalized distance ra(n) of the corner atoms from the shell center (neglecting any surface 

relaxations of the atomic positions) is, after some trigonometric calculus, given by 
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where a is the distance between neighboring atoms on the shell. Further, the combination of n con-

centric icosahedral shells to form an icosahedral cluster yields N(n) atoms where 
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 (2.134) 

Numbers N(n) are usually called magic numbers and have been discussed in mathematical detail in 

the literature [57]. In the larger icosahedral clusters, n > 4, one can distinguish between atoms inside 

the cluster (‘bulk’ atoms) which experience a full nearest neighbor environment of 12 atoms  

(6 at distances d = 0.951 a and 6 at d = a, respectively) and atoms of the outer shell (‘surface’ at-

oms) where the environment consists of 6 (1 at d = 0.951 a and 5 at d = a, corner),  

8 (2 at d = 0.951 a and 6 at d = a, edge), or 9 (3 at d = 0.951 a and 6 at d = a, facet inside triangle) 

atoms. The ratio of the number of surface and bulk atoms (n) given by 

 
 )n(n)n(N

)n(n
n

s

s


  (2.135) 

decreases with increasing cluster size converging to (n)  3/n for n >> 1. Table 2.10 lists shell and 

cluster sizes as well as relative radii of corner atoms for icosahedral clusters up to 3000 atoms.  
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Table 2.10.  Shell sizes ns(n), cluster sizes N(n), normalized radii ra(n) of corner 

atoms, and ratio of surface to bulk atoms (n) for icosahedral and cuboctahedral 

clusters with up to 3000 atoms. The values of ns(n), N(n), and (n) are valid for both 

cluster types while ra(n) values differ with the results for cuboctahedral clusters add-

ed in parentheses 

n ns(n) N(n) ra(n) (n) 

1 1 1 --- --- 

2 12 13 0.951  (1.000) 12.000 

3 42 55 1.902  (2.000) 3.231 

4 92 147 2.853  (3.000) 1.673 

5 162 309 3.804  (4.000) 1.102 

6 252 561 4.755  (5.000) 0.816 

7 362 923 5.706  (6.000) 0.645 

8 492 1415 6.657  (7.000) 0.533 

9 642 2057 7.609  (8.000) 0.454 

10 812 2869 8.560  (9.000) 0.395 

 

Large metal clusters have also been found to exhibit symmetry which can be associated with 

finite sections of cubic bulk crystal structures, both face- and body-centered cubic. Here examples 

are aluminum and indium clusters between 1000 and 10000 atoms in gas phase [56] which are sug-

gested to form compact particles with cubic symmetry, reflecting sections of the fcc bulk crystal, 

where for selected atom numbers N (magic numbers) the metal clusters are found to occur in pre-

ferred abundance. Amongst these, cuboctahedral cluster shapes have been discussed [56]. 

As in the icosahedral case, a cuboctahedral cluster can be constructed by packing polyhedral 

atom shells of increasing size about a central atom where, however, the shells are of cubic sym-

metry Oh. They consist of planar sections of both triangular and square shape. The equilateral trian-

gles are filled by close-packed (hexagonal) arrays of atoms with n atoms at each triangle side while 

the squares reflect n  n square arrays of atoms where the nearest neighbor distances agree with 

those of the triangular sections. This yields a lower atom packing inside the squares compared with 

the triangles. Each triangle shares its three edges with adjacent squares and squares are connected 

only with triangles at their edges. Further, two triangles and two squares join at each corner of the 

cluster. This yields altogether shells with 8 triangles and 6 squares sharing 24 identical edges and 12 
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corners. Fig. 2.38 shows cuboctahedral shells for n = 2, 4, and 9 atoms per edge which form the 

outer shells of cuboctahedral clusters of N = 13, 147, and 2057 atoms, respectively. 

 

Fig. 2.38.  Atom ball models of cuboctahedral shells for (a) n = 2, (b) n = 4, (c) n =9, 

see text. Corner atoms are emphasized by red shading. 

If the shell edges contain n atoms each, the 8 triangular sections account for  
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atoms and the 6 square sections for  
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atoms which yields a total number of atoms ns(n) of the n
th

 cuboctahedral shell (n > 1) with 
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which, according to (2.132), agrees with the atom count of the n
th

 icosahedral shell. The normalized 

distance ra(n) of the corner atoms from the shell center (shell radius) is given by 

   1n
)n(r

nra 
a

 (2.139) 

where a is the distance between neighboring atoms on the shell. Since the atom count of cuboctahe-

dral shells (2.138) is identical to that of icosahedral shells the total numbers of atoms N(n) in a cub-

octahedral cluster agrees with the corresponding icosahedral value and is given by (2.134). Thus, 

the magic numbers N(n) are identical for cuboctahedral and icosahedral clusters [57] while the atom 

packing differs between the two cluster types. The distinction between atoms inside the cluster 

(‘bulk’ atoms) and those of the outer shell (‘surface’ atoms) for larger cuboctahedral clusters, n > 3, 
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is analogous to that for icosahedral clusters. Here bulk atoms experience the nearest neighbor envi-

ronment of 12 atoms (at distances d = a) which is identical to the geometry inside the fcc bulk crys-

tal. In contrast, the environment of surface atoms consists of 5 (corner), 7 (edge), 8 (inside square), 

or 9 (inside triangle) atoms with identical distances d = a. In addition, the ratio of the number of 

surface and bulk atoms (n) given by (2.135) yields values which agree for corresponding cubocta-

hedral and icosahedral clusters. 

Clusters of cuboctahedral shape and moderate size, up to 1000 atoms, represent a fairly good 

approximation to spherical particles since the atoms of the different planar sections do not vary too 

much in their distance from the cluster center. This is illustrated in Fig. 2.39 which compares the 

cuboctahedral cluster for n = 4 (147 atoms) with a ‘spherical’ cluster which contains all atoms in-

side a sphere whose radius is equal to the radius ra of the corner atoms of the cuboctahedral cluster. 

The spherical cluster, containing 177 atoms, differs from the cuboctahedral cluster only by 5 addi-

tional atoms (painted red in Fig. 2.39b) sitting on top of each square section and roughening the 

cluster surface. Clearly, the difference between cuboctahedral and corresponding spherical clusters 

will become larger with increasing cluster size when more atoms can fill the void between the pla-

nar shell sections and the spherical boundary resulting in smooth transitions between planar shell 

sections of high packing density. 

 

Fig. 2.39.  Comparison of atom ball models of (a) the cuboctahedral cluster (n = 4, 

see Fig. 2.38b) with (b) a cluster of similar size with spherical constraints. Atom 

balls outside the cuboctahedron are emphasized by red shading. 

Other high-symmetry sections of face-centered cubic bulk crystals have been suggested in the 

literature [56], [57] as possible structures of metal clusters where we mention only simple octahe-

dral clusters whose closed shells consist of 8 planar sections of equilateral triangular shape filled by 

close-packed (hexagonal) arrays of atoms resulting in 12 identical edges with n atoms each and 6 
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corners. This leads to closed shell clusters with N(n) atoms (magic numbers), ns(n) atoms per shell, 

and normalized shell radii ra(n) given by 
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where clusters with odd n contain an atom in the cluster center while for even n the cluster center is 

void. As an illustration, Fig. 2.40a shows a simple octahedral cluster for n = 7 containing 231 at-

oms. Also more complex cubic cluster structures with polyhedral shells representing mixtures of 

square and hexagonal sections have been considered. Here we mention only the truncated octahe-

dral type, shown with 201 atoms in Fig. 2.40b, which is obtained from a simple octahedral cluster 

by cutting off the 6 corners symmetrically. This cluster shape is reminiscent of the Wigner-Seitz 

cell of a body-centered cubic crystal, see Sec. 2.3. The corresponding clusters consist of 6 square 

and 8 hexagonal sections forming 36 identical edges with n atoms each and 24 corners. The closed 

shell clusters are characterized by 

  6n24n33n16nN 23     , 

    21n30nn
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2

10
nra   (2.141) 

 

Fig. 2.40.  Atom ball models of clusters (a) simple octahedral with n = 7 (231 at-

oms), (b) truncated octahedral with n =3 (201 atoms). Corner atoms are emphasized 

by red shading. 

Further, metal atom clusters of high-symmetry described by sections of body-centered cubic 

bulk crystals have been discussed in the literature [56] where we mention only dodecahedral and 

truncated dodecahedral clusters, shown in Fig. 2.41. The dodecahedral shells consist of 12 identi-

cal rhombohedral sections each which are filled with close-packed arrays of atoms (distorted hex-
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agonal, reflecting the densest planar packing inside the bcc crystal). The cluster shape, see Fig. 

2.41a, is reminiscent of the Wigner-Seitz cell of a face-centered cubic crystal, see Sec. 2.3. Truncat-

ed dodecahdral clusters, see Fig. 2.41b, are obtained from dodecahedral clusters by cutting off the 6 

corners symmetrically. The resulting cluster shells contain 6 square and 12 distorted hexagonal sec-

tions each and are similar to the Wigner-Seitz cell of a body-centered cubic crystal, see Sec. 2.3. 

 

Fig. 2.41.  Atom ball models of clusters (a) dodecahedral with n = 5, (b) truncated 

dodecahedral with n =3. Corner atoms are emphasized by red shading. 

Very large clusters above 100,000 atoms up to macroscopic sizes, usually referred to as crys-

tallites or grains, can be assumed to form a crystalline structure inside their inner core with period-

ic arrangement of atoms within a finite volume. Under equilibrium conditions their exterior shape is 

often determined by planar surface sections (facets) of densely packed atom arrangements where 

there are transition regions between the facets. The geometric structure of the planar sections has 

been found to be very close to that of high-density crystal layers discussed in Sec. 4.2 with transi-

tions involving more open layers with steps and kinks. 

The global shape of crystallites has been discussed applying quasi-continuum models [58], 

[59] to polyhedral particles whose facets are considered as planar sections with normal directions 

along those of high-density crystal layers. In these models each polygonal facet is characterized by 

its size and a surface free energy per area where the latter depends on the atom density as well as 

on local binding properties of the facet layer. The size of the different facets can then be determined 

in an optimization of the total surface free energy of the particle for a given particle volume [60], 

[61] neglecting differences in binding energy at corners and edges. This yields the equilibrium 

http://en.wikipedia.org/wiki/Thermodynamic_equilibrium
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shape of the crystallite. The procedure based on the Gibbs-Wulff theorem [58], [59] is also known 

as Wulff construction.  

In its simplest version the Wulff construction starts from a crystallite center and a continuous 

energy function (n) which depends only on the crystallographic direction vector n from the center 

and defines the surface free energy per area of a crystal layer whose layer normal vector equals vec-

tor n. Then the total surface free energy of the polyhedral crystallite with N surface facets is given 

by 

  i

N

1i

itot an
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where ni denotes the normal vector of the i
th

 facet and ai is the polygon area of the facet. To obtain 

the equilibrium shape of the crystallite for a given volume, function tot needs to be minimized with 

respect to the number N of facets, the facet orientations ni, and their polygonal areas ai. The Gibbs-

Wulff theorem [58], [59], [60] states, in its simplest version, that the shape of a polyhedral crystal-

lite in its thermodynamic equilibrium is achieved if all facets lie at distances di from the crystallite 

center which are proportional to the corresponding surface free energies per area (ni). As a conse-

quence, a polyhedral crystallite can be constructed from a surface free energy function (n) by con-

sidering a set of discrete planes S(ni) with normal vectors ni at distances di =  (ni) from the crys-

tallite center enclosing the center. (Here  is a global scaling factor to be adjusted later.) Then the 

equilibrium surface of the crystallite is described by all points on the planes S(ni) which, for a given 

direction n, are closest to the crystallite center. This yields polygonal areas (facets) forming the 

shape of the polyhedral crystallite where in a subsequent step the scaling constant  is adjusted such 

that the required crystallite volume is obtained. In practical applications, the selection of planes 

S(ni) is restricted to sets of high-density crystal layers (perpendicular to ni) and respective free ener-

gy values (ni) are taken from experimental data for the corresponding surfaces of high atom densi-

ty or from theoretical surface energies.  

As an illustration, Fig. 2.42 shows sketches of Wulff polyhedra of a cubic crystallite where  

26 planes S(ni) perpendicular to high-symmetry directions (x y z) are allowed to contribute to the 

shape of the crystallite. Further, free energy values (ni) are assumed to be equal for symmetry 

equivalent directions ni resulting in a parameter set 
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ni = (x, y, z) =  (1, 1, 1)    with  (1 1 1)  

 =  (1, 0, 0), (0, 1, 0), (0, 0, 1)    with  (0 0 1) 

 =  (1, 1, 0), (1, 0, 1), (0, 1, 1)    with  (0 1 1) (2.143) 

Fig. 2.42a shows the Wulff polyhedron for surface free energy values (1 1 1) = (0 0 1) = (0 1 1) = 1.0 in 

relative units. If one of the three values, e.g. (0 0 1), is increased, the corresponding high-symmetry 

planes are less preferred and do not appear or contribute smaller polygon areas to the Wulff polyhe-

dron which reflects the minimum energy shape. This is evident in Fig. 2.42b where  (0 0 1) is in-

creased to (0 0 1) = 1.5 and high-symmetry planes corresponding to normal vectors (0 0 1) and their 

symmetry equivalents do not appear at the polygon surface. Figs. 2.42c and 2.42d show the analo-

gous effect for increased values (1 1 1) = 1.5 and (0 1 1) = 1.5, respectively. 

 

Fig. 2.42.  Sketches of Wulff polyhedra of a cubic crystallite for different surface 

free energy scenarios, see text. (a) (1 1 1) = (0 0 1) = (0 1 1) = 1.0; (b) (1 1 1) = (0 1 1) = 

1.0, (0 0 1) = 1.5; (c) (0 0 1) = (0 1 1) = 1.0, (1 1 1) = 1.5; (d) (1 1 1) = (0 0 1) = 1.0, (0 1 1) = 

1.5. Directions of selected polygon surfaces, (x y z), are labeled accordingly. 



88 

 

The Wulff construction can be generalized [61] formally to smoothed polygonal shapes of 

crystallites with continuous transitions between planar areas which, on an atomic scale, account for 

open atom arrangements with steps and kinks between high-density atom arrays. Even a formal 

treatment of particles with generally curved surfaces has been considered. These generalizations are 

achieved by replacing the summation in (2.142) by a surface integration which, however, compli-

cates the optimization procedure considerably. Further details which go beyond the scope of this 

book can be found in Ref. [61]. Finally, it should be emphasized that the shape of real crystallites 

found in experiment is not exclusively determined by surface free energy considerations, which are 

the basis of the Wulff construction. Depending on preparation, kinetics, and local impuritites, 

growth conditions of the different crystal planes can influence the shape of crystallites and may lead 

to metastable shapes which differ considerably from those of a Wulff construction.  

 

2.8 Incommensurate Crystals and Quasicrystals 

There are solid materials which exhibit long-range atomic order as well as local symmetry 

behavior. However, they are not periodic in three dimensions and are usually referred to as aperi-

odic crystals. They are different in their structural properties from amorphous materials, which 

show only some short-range order in their atom arrangement. As a result, the International Union of 

Crystallography extended its definition of a crystal to a solid producing discrete X-ray diffraction 

patterns where its ordering can be either periodic or aperiodic [62]. This includes three different 

groups of aperiodic crystals [63], those with modulated structures, incommensurate composite crys-

tals, and quasicrystals which will be briefly discussed in the following. 

 

2.8.1 Modulated structures 

According to Sec. 2.1 ideal periodic crystals are defined by lattice vectors Ro1, Ro2, Ro3 

describing their basic periodicity where 

Ro  =  n1 Ro1 + n2 Ro2 + n3 Ro3  ,     ni integer (2.144) 

denotes all lattice positions which, for primitive lattices, may be set to coincide with atom sites. In 

crystals with modulated structures the basic periodicity is modulated by adding a modulation vector 
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u(r) to each atom position where u(r) is a periodic function in space with its periodicity described by 

a second lattice given by modulation vectors U1, U2, U3 such that 

u(r + m1 U1 + m2 U2 + m3 U3)  =  u(r)  ,     mi integer (2.145) 

Thus, general atom positions R in a crystal with a modulated structure are given by 

R  =  Ro + u(Ro) (2.146) 

The basic and modulation lattices are connected by a linear transformation written as 
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where one can distinguish three cases, 

(a) matrix D or its inverse D
-1

 contain only integer-valued elements dij. Then the two 

lattices are commensurate with the joint periodicity determined by lattice vectors  

U1, U2, U3 or Ro1, Ro2, Ro3. Thus the modulated structure describes a strictly periodic 

atom arrangement. This is illustrated in Fig. 2.43a sketching a square lattice with lattice 

constant a modulated by a longitudinal wave displacement along vector Lwave whose 

length (modulation wavelength) is equals 4a. 

(b) matrix D contains a mixture of integer or fractional-valued elements dij.Then matrix D 

can be written as a product of two matrices, D = B
-1

 A where A, B are integer-valued 

such that there is also a joint periodicity. The lattices are high-order commensurate, as 

discussed in detail for two-dimensional periodicities at surfaces in Sec. 6.4, and the 

modulated structure describes again a strictly periodic atom arrangement. 

(c) matrix D contains real-valued elements dij.Then the two lattices are incommensurate 

and the resulting atom arrangement (2.146) is aperiodic. 

Altogether, an aperiodic primitive crystal with a modulated structure is defined by atom positions 

(2.146) with a displacement function u(r) whose periodicity is incommensurate with that of the 

basic lattice. This corresponds formally to the requirement that the transformation matrix D in 

(2.147) contains real-valued elements dij. Modulated crystal structures have been observed for 

example for monoclinic sodium carbonate, -Na2CO3, [64] or KSm(MoO4)2 [65]. 

Modulation vectors u(r) can also refer to one- and two-dimensionally periodic functions, re-
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flecting crystals with preferred modulation directions. As an illustration, Fig. 2.43b shows a simple 

two-dimensional example of an aperiodic lattice. Here the square lattice with lattice constant a is 

modulated by a transverse wave displacement perpendicular to vector Lwave whose length 

(modulation wavelength) is given by (32)a. 

 

Fig. 2.43.  Commensurate and incommensurate modulation of a square lattice; (a) 

periodic lattice with longitudinal wave modulation, (b) aperiodic lattice with trans-

verse wave modulation. The left sections (‘perfect’) show the perfect square lattice 

with lattice constant a, while the modulated lattices (‘modulated’) are shown to the 

right. Vectors Lwave denote the directions and wave lengths of the modulations with 

Lwave = 4a in (a), = (32)a in (b). 

 

2.8.2 Incommensurate composite crystals 

These crystals consist, in the simplest case, of two crystal components, S1 and S2, which them-

selves form periodic structures with lattice vectors R11, R12, R13 and R21, R22, R23, respectively, 

where the two sublattices are mutually incommensurate yielding an altogether aperiodic crystal 

structure with long-range order. This requires the two sublattices to be sufficiently open such that 
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crystal component S1 can accommodate all atoms of component S2 or viceversa. Examples are layer 

type crystals where layers of atoms from component S1 alternate with those from component S2 

yielding strict periodicity perpendicular to the layers. By contrast, the two-dimensional periodicity 

of the two components parallel to the layers is incommensurate. In general, this yields a linear 

transformation between the two sublattices where 
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 ,   dij real, m integer or fractional (2.148) 

assuming that the lattice vectors R1i, R2i, i = 1, 2, point parallel to the layers and R13, R23 connect 

between (e.g. are perpendicular to) adjacent layers. (If all elements dij in (2.148) would be integer- 

or fractional-valued the resulting lattice combination and thus the crystal would be strictly periodic 

in three dimensions.)  

As an example, the crystal of the misfit layer compound (LaS)1.13TaS2 has been found [66] to 

form a layer type structure with alternating LaS and TaS2 layers, see Fig. 2.44. Here the two lattice 

vectors perpendicular to the layers, R13 and R23, as well as one pair, R12 and R22, parallel to the lay-

ers coincide, while the lattice vectors R11 and R21 along the layers are different in length and in-

commensurate as indicated in Fig. 2.44. In experiment, the LaS layer is found to buckle and both 

layers also exhibit incommensurate modulations [66] which are ignored for the present purpose and 

not included in Fig. 2.44. 
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Fig. 2.44.  (a) Schematic view of a section of the layer type (LaS)1.13TaS2 crystal. 

Sticks connect neighboring atoms of the LaS and TaS2 layers with atoms labeled 

accordingly. The incommensurate lattice vectors R11 (LaS layer) and R21 (TaS2 lay-

er) are indicated by arrows connecting sulfur atoms. 

The different periodicities of incommensurate composite layer crystals along their layers, ex-

pressed by transformation (2.148) between R11, R12 and R21, R22 are formally equivalent with the 

periodic arrangement of incommensurate adsorbate overlayers at single crystal surfaces, dis-

cussed Sec. 6.1. Therefore, the mathematical treatment of the two types of systems can be put on 

the same basis.  

Other groups of incommensurate composite crystals include two-component materials where 

component S1 forms a framework with open channels. Then the atoms of component S2 arrange in 

1-dimensionally periodic chains inside the channels where the chain periodicity is incommensurate 

with the periodicity of the host along the channels. This yields in general a linear transformation 

between the two sublattices where 
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 ,  mij integer or fractional, d real (2.149) 

assuming that the lattice vectors R1i, R2i, i = 1, 2, define a common two-dimensional lattice of the 

crystal (e.g. perpendicular to the channels) and R13, R23 point along the channels. 

An example, the compound Rb1.37MnO2 (derived from Rb15Mn11O22) [67] has been found to 
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consist of an open hexagonal host lattice of rubidium atoms where chains of connected MnO4 tetra-

hedra form inside the hexagonal Rb channels. Here the two lattice vectors along the hexagonal 

channels, R13 and R23, are incommensurate and the periodicity along the MnO4 chains is further 

perturbed by modulation. In contrast, the two components, Rb and MnO4, share the two-

dimensional periodicity perpendicular to the channels. as shown in Fig. 2.45. In experiment, the 

connected MnO4 units defining the inner chains are found to distort and form spiral columns [67] 

which are ignored for the present purpose and not shown in Fig. 2.45. 

 

Fig. 2.45.  Schematic view of a section of the Rb1.37MnO2 crystal. Sticks connect 

neighboring atoms of the Rb host lattice and the MnO4 chains with atoms labeled 

accordingly. The periodicity perpendicular to the hexagonal channels is indicated by 

arrows connecting rubidium atoms. 

 

2.8.3 Quasicrystals 

There is a third class of crystals which exhibit long-range order but are not periodic in three 

dimensions. They were first suggested by experiment [68] and are referred to as quasiperiodic crys-

tals or quasicrystals. These materials, consisting in many cases of aluminum-rich metal alloys, ex-

hibit numerous exciting physical and chemical properties [69], [70], [71], [72], [73], [74], [75]. Ex-

amples are high mechanical hardness as well as relatively low electrical and thermal conductance 

which make quasicrystalline materials good candidates for surface coatings. Surfaces of quasicrys-

tals are known for their low friction and adhesion, as well as for their good oxidation resistance 

[76], [77]. Aperiodic crystals including quasicrystals have become a common playground for math-
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ematicians [70], [71], [78]. As a result, there is a wealth of publications and textbooks dealing with 

quasicrystals, going far beyond the scope of the present book. References [28], [69], [70], [71], 

[72], [73], [74], [78], [79] represent only a few examples. Here we confine ourselves to some as-

pects of structure and symmetry of quasicrystals by simple examples illustrating general issues. 

As a first example of quasicrystalline order, a two dimensional model of a quasicrystal will be 

considered. This model is connected with the mathematical theory of Penrose tiling [78], [80]. The 

basic subject of this theory is to cover a plane completely without holes or overlaps using tiles of a 

finite set of different polygons, so-called prototiles. Here we consider only rhombic prototiles of 

two different shapes, a ‘fat’ rhombus with its smallest vertex angle at  = 360/5 = 72 and a ‘thin’ 

rhombus with its smallest vertex angle at  = 36, where both rhombuses have edges of the same 

length a, as shown in Fig. 2.46. As a consequence of the choice of angles (whose values will be-

come more evident when rotational symmetry of the tiling pattern is considered), the long diagonal 

of the fat rhombus has a length of  a, while the short diagonal of the thin rhombus has a length of 

(1/) a (diagonals as dashed lines in Fig. 2.46), where  = (1 +5) / 2 = 1.618034 denotes the gold-

en ratio or golden mean. 

 

Fig. 2.46.  Rhombic Penrose prototiles; fat (light gray) and thin (dark gray) tiles with 

edge lengths a and with smallest vertex angles of  = 72 and  = 36, respectively. 

Sets of the two prototiles can be arranged such that they form a two-dimensionally periodic 

pattern, shown in Fig. 2.47. In this figure atoms are placed at the centers of all rhombuses, one 

large for each fat and one small for each thin rhombus. This leads to a planar atom arrangement 

which describes a two-dimensionally periodic crystal with primitive lattice vectors R1 and R2 and a 
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basis of three atoms, two large and one small, included in Fig. 2.47. The corresponding lattice is 

characterized as centered rectangular by its symmetry, see Sec. 3.8.6. 

 

Fig. 2.47.  Rhombic Penrose prototiles arranged to form a two-dimensionally period-

ic pattern. Two different prototiles are emphasized by light and dark background, 

respectively. Atoms are added at the centers of the tiles to form a two-dimensional 

crystal. Lattice vectors are labeled accordingly with the morphological unit cell em-

phasized by a gray background. 

On the other hand, sets of the two rhombuses can also be positioned such that they cover the 

plane completely but do not exhibit periodicity in any direction as indicated in Fig. 2.48. A closer 

inspection of the tiling evidences global 5-fold symmetry for exactly one vertex at the center (la-

beled by a black dot in Fig. 2.48). In addition, there are many smaller regions (indicated by black 

sticks connecting thick neighbor atoms), which exhibit local 5-fold symmetry without being peri-

odic repeat units. Global 5-fold symmetry is not compatible with translational symmetry as shown 

in Sec. 3.6.3. Thus, placing atoms at the centers of all rhombuses, as indicated in Fig. 2.48, does not 

yield a two-dimensionally periodic crystal. (Atomic positions in a real quasicrystal are slightly more 

complicated, as will be shown below.) However, the existence of local symmetry suggests some 

order which justifies calling the set of atoms a quasicrystal. There is an additional geometric aspect 

that becomes clear from an analysis of Fig. 2.48. The local regions with 5-fold symmetry are not 
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completely random in their distribution but follow the global 5-fold symmetry such that similar 

pentagonal regions with higher complexity are formed. This property is connected with self-

similarity and is also encountered in models of three-dimensional quasicrystals. 

 

Fig. 2.48.  Aperiodic (quasicrystal) arrangement of rhombic Penrose prototiles illus-

trating 5-fold symmetry. Two different prototiles are emphasized by light and dark 

background, respectively. Atoms are added at the centers of all tiles to form a two-

dimensional quasicrystal. 

Further, a detailed analysis of the atom arrangement in Fig. 2.48 evidences that many atoms are 

positioned along (infinite) rows which are parallel to each other and point in different directions. 

This becomes even clearer in Fig. 2.49, where some of these rows are emphasized by lines to guide 

the eye. The sequences of separations between specific parallel lines follow a pattern, where only 

two different distances appear, labeled L (large) and s (small) in Fig. 2.49. The distance sequence, 

indicated by ‘sLLsLsL’ from the top of the figure, seems to be random at first sight. However, it 

can be shown to be associated with sequences appearing in the mathematical theory of Fibonacci 

numbers [78] which will not be discussed further, see Exercise 2.32. 
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Fig. 2.49.  Aperiodic (quasicrystal) arrangement of rhombic Penrose prototiles illus-

trating linear atom rows. The rows are emphasized by black lines. In addition, paral-

lel atom rows, separated by two distinct distances, large (L) and small (s), are shown 

with their distances labeled accordingly, see text. 

A more complex mathematical treatment of Penrose tiling [78] shows that its structural proper-

ties can be obtained by considering periodic lattices in higher dimensions, 5-dimensional in the 

case of two-dimensional Penrose tiling. Then, projections of an aperiodic section of the  

5-dimensional lattice can provide the structure of the two-dimensional aperiodic quasicrystal. This 

result is more general and also applies to three-dimensional quasicrystals, where the corresponding 

higher dimensional lattices are 6-dimensional. In this approach, the atom composition of the aperi-

odic sections in six dimensions determines the composition of the three-dimensional quasicrystal. 

The approach leads to a classification of quasicrystals into two types [81]. First, icosahedral quasi-

crystals do not exhibit periodicity in any direction but allow one global and many local 5-fold rota-

tion axes. Second, polygonal (dihedral)  quasicrystals contain one global 8-, 10-, or 12-fold rota-

tion axis (octagonal, decagonal and dodecagonal quasicrystals) and are periodic along this axis. 

However, these quasicrystals are aperiodic in planes perpendicular to the rotation axis (quasiperiod-

ic ordering). Further details concerning the mathematics behind possible projections go far beyond 

the scope of this book and can be found in the literature cited above, see e.g. Ref. [78]. 
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As an illustration of projecting a periodic lattice of higher dimension to yield a lower-

dimensional aperiodic quasicrystal we consider the cut-and-project method applied to a two-

dimensional square lattice of lattice constant a as shown in Fig. 2.50. The square unit cell of the lat-

tice, outlined in red in the figure, serves as a starting point to construct a strip between two parallel 

lines through two diagonal corners where the lines form an angle  = arctan(1/) = 31.717 with the 

corresponding sides of the cell ( denoting the golden ratio) and are, thus, separated by a distance w 

= a {cos() + sin()}, see Fig. 2.50. The area between the parallel lines includes atoms of the 

square lattice (painted red in the figure) whose coordinates are projected onto one of the parallel 

lines. This defines a linear string of locations where atoms are placed (the string is shifted upwards 

in the figure for better visibility). This array of atoms is aperiodic with two distinct interatomic dis-

tances, a long and a short distance, L and s, respectively. The ratio of the distances is given by L/s = 

 and the sequence of distances, LsLLsLsLLsLLsLsLLsLsLL … , reflects the Fibonacci series 

which defines a 1-dimensional quasicrystal, also known as a Fibonacci chain. This sequence of 

long and short distances was discussed before for Penrose tiling, see Fig. 2.49.  

 

Fig. 2.50.  Projection of a strip of finite width in a two-dimensional square lattice 

(cut-and-project procedure) to yield a Fibonacci chain. The atoms inside the strip are 

painted red and those of the Fibonacci chain are dark gray. Long and short distances 

between chain atoms are labeled L and s, respectively. The unit cell of the square 

lattice is outlined in red and lattice vectors indicated by arrows. 

The structural features discussed for purely mathematical models, like Penrose quasicrystals, 
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and Fibonacci chains can be also found in real three-dimensional quasicrystals and at their surfaces. 

As an illustration, Figs. 2.51 and 2.52 show geometric models of the surface of an icosahedral  

i-AlCuFe quasicrystal (characterized in its chemical composition as Al65Cu20Fe15 [82]). This model 

was used to analyze the surface structure of i-AlCuFe by low-energy electron diffraction (LEED) ) 

[83]. 

 

Fig. 2.51.  Structural model of the surface of an icosahedral i-AlCuFe quasicrystal in 

a top view. The different atom types, Al, Cu, Fe, are labeled accordingly. Two local 

environments of different size with 5-fold symmetry are emphasized by gray back-

ground. 

The top view, given in Fig. 2.51, appears less ordered than in Fig. 2.48 because it does not contain a 

global 5-fold axis. It has many rings of mostly 10 Al atoms, each of which form 2 pentagonal rings 

of 5 atoms in two different planes and, thus, have local 5-fold symmetry. Either a copper or an iron 

atom resides in the symmetry centers. In addition, there are larger atom environments of more com-

plex structure, such as pentagons consisting of 5-rings of 10 Al atoms each, which also exhibit local 

5-fold symmetry: see the larger pentagon emphasized in Fig. 2.51, which is blown up relative to the 

smaller emphasized pentagon. This can be taken as a first indication of self-similarity of the surface. 

Fig. 2.52 shows the same quasicrystal surface in a side view, i.e. along the surface. Here an addi-

tional structural feature becomes clear. The i-AlCuFe quasicrystal forms approximate layers parallel 
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to the surface, similar to those found for periodic crystals. This is emphasized in Fig. 2.52 by white 

horizontal lines with a similar distance with respect to each other. While there are few atoms be-

tween the layers, most of the atoms are positioned close to the planes indicated by the lines. (It 

should be noted that the structure shown in Figs. 2.51 and 2.52 is not an ‘open’ low-density net-

work, but a nearly close-packed structure. The atomis spheres in the figures are reduced in size to 

help visibility.) 

 

Fig. 2.52.  Structural model of a surface of an icosahedral i-AlCuFe quasicrystal in a 

side view. The different atom types, Al, Cu, Fe, are labeled accordingly. The ap-

proximate layer structure is indicated by white horizontal lines. 

 

2.9 Exercises 

2.1. A crystal lattice is given by lattice vectors R1, R2, R3 with lattice constants a, b, c and mutual 

angles , ,  according to (2.3). Proof that the volume of the morphological unit cell is giv-

en by 

Vel  =  a b c {1 - cos
2
() - cos

2
() - cos

2
() + 2 cos() cos() cos()}

1/2
 

2.2. A crystal is described by lattice vectors R1, R2, R3 and a monoatomic basis. Replacing the 

atoms by hard balls of equal radii such that the balls are the largest without overlapping fills 

the crystal space partly, leaving empty space in between. The volume ratio of the space filled 

by balls and that of the complete crystal defines the packing ratio qpack. Determine the pack-

ing ratio qpack for crystals with (a) sc, (b) fcc, (c) bcc, (d) hex (hcp) lattice. 

2.3. Characterize visually and formally (primitive) sublattices of the ions inside the NaCl, CsCl, 

and diamond crystal. For lattice vectors, see (2.25), (2.26), (2.38), (2.13), (2.15). 

2.4. Analyze the centered tetragonal (ct) lattice with 
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R1 = ( a, 0, 0 ), R2 = ( 0, a, 0 ), R3 = 1/2 ( a, a, c ) 

and show that fcc- and bcc lattices are special cases. Determine the value of c/a for these 

cases. 

2.5. Discuss the structural phase transition bcc -> ct -> fcc (Bain path) based on the lattice defini-

tion of Exercise 2.4 and visualize respective morphological and Wigner-Seitz unit cells. 

2.6. Consider an alternative Bain path characterized by lattice vectors 

R1 = a ( 1, 0, 0 ), R2 = a ( 1/2, 3/2, 0 ), R3 = a ( 1/2, 1/12, x ) 

for 0.1 < x <1.0 and show that bcc, sc, and fcc lattices are special cases with xbcc = 1/24,  

xsc = 2/24, xfcc = 4/24. Which lattice symmetries appear along the continuous path  

0.1 < x <1.0 ? Visualize respective morphological unit and Wigner-Seitz cells. 

2.7. The hexagonal graphite crystal can be defined by lattice vectors R1, R2, R3 and a basis of 

four C atoms where  

R1  =  a (1, 0, 0) , R2  =  a (1/2, 3/2, 0) , R3  =  c (0, 0, 1) 

r1  =  (0, 0, 0) , r2  =  1/3 (1, 1, 0) , r3  =  1/2 (0, 0, 1) 

r4  =  (2/3, 2/3, 1/2) ,  c/a  =  2.72 

with Ri, i = 1,2,3, in Cartesian coordinates and rk, k = 1, 2, 3, 4, in relative coordinates, see 

(2.11). Show that the crystal structure is hexagonal layer-type and can be built by stacking 

honeycomb-structured planes of atoms. What is the stacking direction? 

2.8. The rhombohedral graphite crystal can be defined by lattice vectors R1, R2, R3 and a basis of 

two C atoms where 

R1  =  a (3/2, -1/2, c/a) , R2  =  a (0, 1, c/a) , R3  =  a (-3/2, -1/2, c/a) 

r1  =  (1/6, 1/6, 1/6) , r2  =  (-1/6, -1/6, -1/6) , c/a  =  2.36 

with Ri, i = 1,2,3, given in Cartesian coordinates and rk, k = 1, 2, in relative coordinates, see 

(2.11). Show that this crystal structure is also hexagonal layer-type and can be built by stack-

ing honeycomb-structured monolayers of atoms. Prove that the hexagonal structure 

description 

R1  =  a (1, 0, 0) , R2  =  a (1/2, 3/2, 0) , R3  =  c (0, 0, 1) 

r1  =  (0, 0, 0) , r2  =  1/3 (1, 1,0) , r3  =  1/3 (1, 1, 1) 
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r4  =  1/3 (2, 2, 1) , r5  =  1/3 (2, 2, 2) , r6  =  1/3 (0, 0, 2) 

c/a  =  4.08 

is equivalent to the rhombohedral description above. 

2.9. Compare the crystal structures of rhombohedral and hexagonal graphite. Show that hexago-

nal graphite results in stacking of honeycomb-structured planes of atoms according to  

... A B A B ... as opposed to ... A B C A B C ... for rhombohedral graphite. Here A, B, C de-

notes the planes with those of the same label positioned directly above each other (shifted by 

R3 of the hexagonal lattice). 

2.10. Consider a hexagonal lattice with lattice vectors Ro1, Ro2, Ro3 given in obtuse representation 

where a = |Ro1| = |Ro2| and Ro1Ro2 = -1/2 a
2
. Show that there are, altogether, 12 equivalent 

representations (6 obtuse and 6 acute) with vectors R1 and R2 of the same length as |Ro1| and 

identical R3 = Ro3. 

2.11. Show that there is a continuous structural transition from rhombohedral graphite to diamond 

and discuss the structural elements. 

2.12. Consider initial lattice vectors Ro1, Ro2, Ro3 of a three-dimensional crystal and a correspond-

ing superlattice representation by lattice vectors R1, R2, R3 where 

R1  =  κ11 Ro1 + κ12 Ro2 + Ro3  ,     R2  =  κ21 Ro1 + κ22 Ro2 + Ro3  ,     R3  =  Ro3 

Determine constraints on κij such that the two representations result in identical volumes of 

their morphological unit cells. 

2.13. Consider a three-dimensional crystal with non-primitive lattice vectors R1, R2, R3 and a lat-

tice point inside the morphological unit cell described by vector 

R' = κ1 R1 + κ2 R2 + κ 3 R3 ,    0    κi  <  1 

Which parameter combinations κ1, κ2, κ3 must be excluded and why? 

2.14. Consider a three-dimensional crystal with non-primitive lattice vectors R1, R2, R3 which are 

of smallest length compared with all general lattice vectors pointing along the same direc-

tions. Assume a lattice vector R' inside the morphological unit cell, i.e.  

R'  =  κ1 R1 + κ2 R2 + κ3 R3 ,     0  <  κi   <  1 
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where (R', R2, R3), (R1, R', R3), and (R1, R2, R') form alternative lattice vector sets to de-

scribe the initial lattice. Show that this can be achieved only for 

R'  =  (R1 + R2 + R3) / p ,     p integer 

2.15. Consider a two-dimensional set of non-primitive lattice vectors, R1 and R2, which are of 

smallest length compared with all general lattice vectors pointing along the same directions. 

Assume a lattice vector R' inside the morphological unit cell, i.e.  

R'  =  κ1 R1 + κ2 R2 ,     0  <  κi   <  1 

where (R', R2) and (R1, R') form alternative lattice vector sets to describe R1 and R2. Show 

that this can be achieved only for 

R'  =  (R1 + R2) / p ,     p integer 

2.16. Consider the Wigner-Seitz cells (WSC) of a (a) sc, (b) fcc, (c) bcc lattice with lattice con-

stant a. Determine for each WSC the volume of the largest inscribed sphere Vsph and com-

pare it with the WSC volume Vel. How do the ratios qWSC = Vsph / Vel compare with the 

packing ratios qpack. determined in Exercise 2.2? 

2.17. A crystal lattice is described by lattice vectors R1, R2, R3 where the morphological unit cell 

contains 3-fold rotation axes along directions 

e1  =  (1, 1, 1) ,     e2  =  (1, -1, 1) ,     e3  =  (-1, 1, 1) ,     e4  =  (-1, -1, 1) 

in Cartesian coordinates. 

(a) Determine the 3  3 matrices T of Cartesian coordinate transformations 
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 referring to the corresponding eight rotation operations. 

(b) Determine all point symmetry elements of the morphological unit cell given by  

R1, R2, R3. 

2.18. The morphological unit cell of a crystal, described by orthogonal lattice vectors R1, R2, R3, 

contains three 2-fold rotation axes along directions  

e1  =  (1, 0, 0) ,     e2  =  (0, 1, 0) ,     e3  =  (0, 0, 1)      in Cartesian coordinates. 
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(a) Determine all possible symmetry elements of the unit cell originating from the 2-fold 

rotation axes. 

(b) Fill the unit cell with atoms such that the cell allows only the symmetry elements found 

in (a). 

2.19. A crystal is described by cubic lattice vectors R1, R2, R3 and a basis of two different atoms 

A, B, located at 

r1
A
 = ( 0, 0, 0 ), r2

B
 =  κ1 R1 + κ2 R2 + κ3 R3 ,     | κi |  <  1 ,  i = 1, 2, 3 

in relative coordinates, see (2.11). Find values κ1, κ2, κ3 where neighbor shells with respect 

to atom A contain both types of atoms in the same shell. 

2.20. Determine neighbor shells (distances, shell multiplicities) of monoatomic crystals with (a) 

fcc, (b) bcc, (c) hex (hcp), and (d) diamond lattice up to 5
th

 nearest neighbors. Which shells 

are identical for these lattices assuming the same value of lattice constant a.  

2.21. A crystal of the semiconductor Gallium arsenite, GaAs, can be described by an fcc lattice 

and a two-atom basis with 

R1  =  a/2 (0, 1, 1) , R2  =  a/2 (1, 0, 1) , R3  =  a/2 (1, 1, 0) 

r1  =  (0, 0, 0) , r2  =  1/4 (1, 1, 1) 

with Ri, i = 1,2,3, in Cartesian coordinates and rk, k = 1, 2, in relative coordinates, see (2.11). 

(This is also the crystal structure of cubic zincblende, ZnS.) Show that neighbor shells with 

respect to Ga or As centers contain only atoms of the same type. 

2.22. Consider a monoatomic crystal described by simple cubic lattice vectors R1, R2, R3 and de-

termine neighbor shells with respect to the midpoint between two adjacent atoms in the crys-

tal up to the 10
th

 shell. Calculate the number of shell multiplicities Mi and corresponding 

cluster radii Di as functions of the shell index i. 

2.23. A crystal of titanium dioxide, TiO2, with rutile structure can be described by a tetragonal lat-

tice and a six-atom basis with 

R1  =  a (1, 0, 0) , R2  =  a (0 1, 0) , R3  =  c (0, 0, 1) 

r1
Ti

  =  (0, 0, 0) , r2
Ti

  =   (1/2, 1/2, 1/2) , r3
O
  =  (x, x, 0) 

r4
O
  =  (1 - x, 1 - x, 0) , r5

O
  =  (1/2 + x, 1/2 - x, 1/2) , r6

O
  =  (1/2 - x, 1/2 + x, 1/2) 

a  =  4.593 Å,     c  =  2.958 Å,     x  =  0.3053 
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with Ri, i = 1,2,3, in Cartesian coordinates and rk, k = 1, ... 6, in relative coordinates. 

(a) Show that each titanium atom has four oxygen atoms in its 1
st
 and two in its 2

nd
 neigh-

bor shell. Determine Ti-O distances of the two oxygen shells with respect to the central 

titanium. 

(b) The six oxygen atoms of the two neighbor shells form edges of a polyhedron. Deter-

mine its shape. 

(c) Determine point symmetry elements of the crystal. 

2.24. Consider atom clusters AN with N atoms originating from a central atom A and its n neigh-

bor shells in a crystal (n < 10) with an (a) fcc, (b) bcc, (c) hex (hcp) lattice. Determine the to-

tal number of atoms N(n) and corresponding cluster radii R(n) as a function of the shell in-

dex n. 

2.25. Build radially symmetric C60 (‘Buckminster ball’), C24, and C12 clusters. Here equilateral 

carbon hexagons join with each other and with pentagons, squares, and triangles, respective-

ly to form a polyhedral structure of ‘spherical’ shape, i.e. all atom centers lie on a sphere 

with respect to a common center. Determine the sphere radius of each cluster as a function of 

the interatomic C-C distance dC-C assuming equal distances in all cases (dC-C =  1.4 Å in ex-

periment). Hints: 

(a) C60 combines 20 hexagons with 12 pentagons. Each pentagon is adjacent only to 

hexagons. The cluster resembles a competition soccer ball. 

(b) C24 combines 8 hexagons with 6 squares. Each square is adjacent only to hexa-

gons. The cluster resembles the Wigner-Seitz cell of a bcc crystal. 

(c) C12 combines 4 hexagons with 4 triangles. Each triangle is adjacent only to hexa-

gons. The cluster resembles a tetrahedron with edges cut off symmetrically. 

2.26. Determine orientations and areas of all surfaces of the Wulff polyhedra for the cubic crystal-

lites shown in Fig. 2.42. 

2.27. Consider a Wulff polyhedron of a cubic crystallite with low-energy planes perpendicular to 

(1,1,1) with surface energies (1 1 1) and perpendicular to (1,0,0), (0,1,0), (0,0,1) with 

surface energies (0 0 1) where (x, y, z) refers to vectors in Cartesian coordinates. 

(a) Determine the polyhedron volume and surface area as a function of q = (0 0 1)/(1 1 1). 
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(b) Assume surface energy ratios q = (0 0 1)/(1 1 1) and show that the Wulff polyhedral are 

cubes for q  3, capped cubes for 2/3  q < 3, capped octahedra for 1/3  q < 2/3, 

and octahedra for q < 1/3. 

(c) Determine the volume of the sphere surrounding the Wulff polyhedron for given ratio q 

where the polyhedron edges lie on the sphere surface. 

2.28. Consider a Wulff polyhedron with low-energy planes of equal surface energy  and perpen-

dicular to (1, 1, 1) , (-1, -1, 1) , (-1, 1, -1) , (1, -1, -1) in Cartesian coordinates. Show that the 

shape is tetrahedral. 

2.29. Consider a Wulff polyhedron to be defined by 12 planes through Ri with normal vectors 

along Ri in Cartesian coordinates where Ri = (x, y, z) = (1,1, 2), (2, 0, 0), (0, 2, 0). 

Show that the shape of the polyhedron is that of a Wigner-Seitz cell of the face-centered cu-

bic lattice. Determine the relative surface energies (x, y, z) of the different planes. 

2.30. Consider a Wulff polyhedron to be defined by 14 planes through Ri with normal vectors 

along Ri in Cartesian coordinates where Ri = (x, y, z) = (1,1,1), (2, 0, 0), (0, 2, 0),  

(0, 0, 2). Show that the shape of the polyhedron is that of a Wigner-Seitz cell of the body-

centered cubic lattice. Determine the relative surface energies (x, y, z) of the different planes. 

2.31. Show that the Wulff polyhedron of a hexagonal crystal with its hexagonal axis along z in 

Cartesian coordinates and surface energies (x, y, 0) = a, (0, 0, z) = c is a hexagonal prism in-

dependent of a and c. 

2.32. The two-dimensional Penrose crystal, see Fig. 2.49, includes parallel atom rows where adja-

cent rows are separated by two distinct distances, a small and a large distance, s and L, re-

spectively. The sequence of these distances can be generated iteratively by the following rec-

ipe 

 start with a one-member sequence S1 of distance s or L; 

 generate the next sequence Sk+1 by replacing in the present sequence Sk all distances 

s by L and all L by two distances s, L. 

This generates sequences Sk with an increasing number Nk of distances, of which Nk
L
 counts 

large and Nk
s
 small distances. An example is the eight-distance sequence ‘L s L L s L s L’. 
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(a) Show that the number of distances Nk in sequence Sk, starting with sequences S1 = s,  

S2 = L, can be determined iteratively by 

Nk  = Nk-1  +  Nk-2     ,  N1  =  N2  = 1 

 yielding the Fibonacci number series  1, 1, 2, 3, 5, 8, 13, … 

(b) Show that the starting Nk members of distances in sequence Sk+1 are identical to those of 

Sk. 

(c) Show that the ratio of the number of large distances, Nk
L
, and that of small distances, 

Nk
s
, of sequence Sk can be determined iteratively by 

qk  =  Nk
L
 / Nk

s
  :     qk  =  1 + 1/qk-1 

 Show that ratio qk converges for infinitely large sequences to the golden ratio 

 = (1 +5) / 2 = 1.618034  . 

(d) Show that the ratio pk = Nk / Nk-1 of the number of distances Nk of two successive se-

quences converges for infinitely large sequences to the golden ratio . 

2.33. A Fibonacci chain is created by projecting atoms inside a strip cut from a square lattice of 

lattice constant c where the cutting angle  is given by tan() = 1/, see Fig. 2.50. 

(a) Show that the width w of the strip is given by 
 

1

1

2 







cw . 

(b) Assume that the two different interatomic distances along the chain are L (long) and s 

(short). Proof that L/s =   ,   L = c cos() = c  (
2
+1)

-1/2
  ,   s = c sin() = c (

2
+1)

-1/2
  

with tan() = 1/ . 

2.34. Cut-and-project (CAP) chains in general can be created by projecting atoms inside a strip cut 

from a square lattice of lattice constant c where the cutting angle is  analogous to Fig. 2.50. 

(a) Show that CAP chains for tan() = n/m (n, m integer) are periodic. For other angles  

they are aperiodic with always only two different interatomic lengths L and s. 

(b) Show that the width w of the strips is given by  )cos()sin(   cw . 

(c) Proof that s/L = tan()  ,   L = c cos()  ,   s = c sin(). 

2.35. Consider a monoatomic crystal with modulated lattice structure where atom positions are 

given by 
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Ro  =  n1 Ro1 + n2 Ro2 + n3 Ro3  +  u(Ro) ,     ni integer 

u(r)  =  uo sin (G r) ,    uo, G fixed 

Determine vectors G which result in a truly periodic lattice. 
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3 CRYSTAL LAYERS: TWO-DIMENSIONAL LATTICES 

3.1 Basic Definition, Miller Indices 

The concept of monolayers and netplanes in crystals is of central importance for the analysis 

of many structural properties of single crystals as well as of their surfaces. It can simplify conceptu-

al thinking about crystal structure but is also essential for practical applications. For example, elec-

tron and photon diffraction from single crystal surfaces are often treated by theoretical methods that 

consider scattering from different crystal layers to build the complete diffraction image. Here the 

basic idea is that any three-dimensionally periodic crystal can be decomposed into planar two-

dimensionally periodic monolayers, which are stacked along the third dimension. This is illustrated 

in the Fig. 3.1, which shows different two-dimensionally periodic monolayers inside a monoatomic 

crystal with an fcc lattice, where square, rectangular, and hexagonal layers are displayed. (The net-

plane nomenclature, used to label the monolayers in Fig. 3.1, refers to Miller indices which will be 

explained below.) Clearly, monolayers can assume quite different structure depending on how they 

are oriented in the crystal. 

 

Fig. 3.1.  Different monolayers of a crystal with an fcc lattice, (a) square (0 0 1) 

monolayer, (b) rectangular (1 1 0) monolayer, and (c) hexagonal (1 1 1) monolayer. 

In each case the second monolayer from the top is emphasized by large red balls. 
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The formal definition of a monolayer starts from a perfect bulk crystal with its periodicity de-

fined by lattice vectors Ro1, Ro2, and Ro3 and its basis by lattice basis vectors ro1 … rop, where we 

focus first on the lattice. General lattice vectors R of the lattice can always be described by linear 

combinations 

R  =  no1 Ro1 + no2 Ro2 + no3 Ro3  ,     noi integer (3.1) 

However, according to Sec. 2.2.2.3, there are an infinite number of alternative descriptions of the 

same lattice by other vector sets R1, R2, R3, where some may be more appropriate for describing 

specific monolayers . These alternative vector sets are connected with their initial counterparts,  

Ro1, Ro2, Ro3, by linear transformations according to (2.62) with integer-valued transformation ma-

trices T, where det(T) = 1. (Matrix T also transforms all lattice basis vectors ro1 … rop to yield  

r1 … rp.) If we consider one of these transformed lattice vector sets defined by an appropriate ma-

trix T then general lattice vectors R can be written, analogous to (3.1), as 

R  =  ( n1 R1 + n2 R2 ) + n3 R3  ,     ni integer (3.2) 

The parentheses in (3.2) emphasize that, for a fixed value n3, the infinite set of vectors R for all in-

teger values n1, n2 forms a two-dimensional lattice with lattice vectors R1 and R2. Thus, different 

values of n3 provide a collection of parallel two-dimensional lattices, which are identical in their 

periodicity defined by R1 and R2 and whose origins are separated from each other by vector R3. 

These sublattices of the bulk lattice are called netplanes, sometimes also crystallographic planes, 

and the complete set of parallel netplanes spans the three-dimensional lattice. Further, the planar 

symmetry of the netplanes depends on the choice of the transformed lattice vectors R1, R2, and, 

therefore, on the corresponding transformation matrix T. (Additional symmetry issues will be dis-

cussed in greater detail in Secs. 3.7 and 3.8.) 

The concept of netplanes is intimately connected with the definition of monolayers. A mono-

layer describes a collection of atoms on a plane in a crystal. The atoms are located at positions 

given by a lattice basis vector ri, i = 1 ... p, and its periodic equivalents where the periodicity is de-

fined by vectors R1 and R2 of a netplane. Then the complete set of parallel monolayers is obtained 

by shifting each of the origins ri, i = 1 ... p, by any integer multiple of lattice vector R3. As exam-

ples, Fig. 3.1 shows three different monolayers for corresponding choices of lattice vectors R1 and 

R2. The complete set of monolayers for all ri fills the three-dimensional crystal. Further, depending 

on vectors R1 and R2, monolayers originating from different positions ri can lie on the same plane, 

which leads to polyatomic monolayers. This can be seen already in Fig. 1.1 for the MgO crystal 
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where monolayers denoted by (1 1 1) refer to planes of single Mg or O atoms while those labeled  

(0 0 1) contain both Mg and O atoms in the same plane. 

It should be noted that the definition of a monolayer given in this book is rather general and 

deviates from definitions used in numerous surface science publications. In the latter, the term 

‘monolayer’ often refers to adsorbate overlayers at single crystal bulk where the overlayer density 

corresponds to one adsorbate particle per substrate atom or unit cell (described as monolayer cover-

age). With the present definition this would be an adsorbate monolayer with a specific coverage 

while those of different coverage would also be called monolayers. 

The relationship between netplanes and monolayers forms the two-dimensional analogue to 

that between lattices and crystals in the three-dimensional case. Thus, one can also consider a mor-

phological unit cell of a netplane or monolayer, defined by the parallelogram spanned by lattice 

vectors R1 and R2 with cell area Ael given by 

Ael  =  | R1  R2 | (3.3) 

The unit cell will be called primitive if it is of smallest possible area in the netplane. Further, a 

monolayer can be assigned a basis of atoms given by corresponding lattice basis vectors ri. Thus, 

in the example of a (0 0 1) monolayer of MgO one could define two lattice basis vectors, ri
Mg

, r2
O
, 

inside the corresponding morphological unit cell describing positions of the two unique atoms Mg 

and O. It should be noted that surface scientists often use the word ‘netplane’ to describe a mono-

layer. However, in a strict sense a netplane can be considered only a mathematical construct to 

characterize the two-dimensional periodicity and symmetry properties of a monolayer. 

The definition of a netplane is based on transformed lattice vectors R1, R2, R3 of a three-

dimensional lattice, where the two vectors R1 and R2 determine the periodicity of the netplane. 

Thus, vectors R1, R2, R3 and the corresponding transformation matrix T can be considered to be 

netplane-adapted and matrix T may be used to characterize netplanes. The normal direction of a 

netplane can be viewed as the normal component of the stacking direction of corresponding mono-

layers inside a crystal. It is given by a vector n where, using transformation T from (2.62), 

n =   (R1  R2)  =   
 

3

1i

3

1j

t1i t2j (Roi  Roj) 

 =   { h (Ro2  Ro3)  +  k (Ro3  Ro1)  +  l (Ro1  Ro2) } (3.4) 
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with coefficients 

h  =  t12 t23 - t13 t22 ,        k  =  t13 t21 - t11 t23 ,        l  =  t11 t22 - t12 t21 

 = | R1  R2 |
-1

     . (3.5) 

Here  is only a normalization constant to guarantee that | n | = 1. Since all elements of the trans-

formation matrix T are integers the coefficients h, k, and l must also be integer-valued and are 

commonly named (generic) Miller indices. This means in particular that, according to (3.4), nor-

mal directions of netplanes in a lattice are always discrete and generic Miller indices (h k l) can be 

used to characterize sets of netplanes for a given direction. In this spirit transformation matrices T 

which are connected with netplane stacking directions will be labeled T
(h k l)

 in the following. 

Miller indices can assume both positive and negative integer values where in crystallography 

negative indices are often written with the minus sign above the number, such as (-4 1 2) being 

written as ( 4  1 2), which saves a character space. However, in this book we do not adopt this nota-

tion and all negative indices will be given with a minus sign in front. 

According to (3.4) netplane normal vectors n are given as linear combinations of three vectors  

(Roi  Roj) that arise from vector products of the initial lattice vectors. Thus, based on the definition 

(2.95) of reciprocal lattice vectors, Go1, Go2, Go3, in Sec. 2.5 any normal vector n points along a vec-

tor G(h k l), where  

G(h k l)  =   (R1  R2)  =  h Go1 + k Go2 + l Go3 

         =  (2) / [( R1  R2 ) R3]  =  (2) / [( Ro1  Ro2 ) Ro3] =  (2) / Vel (3.6) 

Thus, G(h k l) is a general reciprocal lattice vector and is quite useful in describing numerous prop-

erties of netplanes and monolayers. 

As an example, the distance d(h k l) between two adjacent (h k l) netplanes or monolayers, 

which are connected by a lattice vector R3, can be written as 

d(h k l) =  n R3 =  (G (h k l) R3) / | G(h k l) | =  (2/Vel) (R1  R2) R3 / | G(h k l) |  = 

 =  2 / | G(h k l) | (3.7) 

Thus, if the length of G(h k l), determined by the size of the generic Miller indices, becomes large, the 

distance between adjacent netplanes becomes small. Netplanes belonging to large Miller indices lie 

close together. 
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Further, the average atom density (h k l) of a monolayer with an (h k l) netplane is, according 

to (3.6), (3.7), given by 

(h k l)  =  n(h k l) / | R1  R2 |  =  n(h k l) (2/Vel) / | G(h k l) |  =  n(h k l) d(h k l) / Vel (3.8) 

where n(h k l) denotes the number of co-planar atoms in the unit cell of the monolayer. Thus, for large 

vectors G(h k l) the atom density of corresponding monolayers becomes small while monolayers be-

longing to small Miller indices are the densest. As an illustration, Table 3.1 lists Miller indices  

(h k l) and densities (h k l) and of the ten densest monolayers with (h k l) netplanes of the sc, fcc, 

bcc, and hex (hcp) lattices calculated using (3.8). All Miller indices of the cubic lattices are given in 

sc notation by symmetry related families {h k l}; (m), with m denoting the number of family mem-

bers, see below. Miller indices of the hcp lattice refer to the obtuse representation  

 

Table 3.1.  Average atom densities (h k l) of the ten densest (h k l) monolayers  

({h k l} monolayer families) of crystals with (a) sc, (b) fcc, (c) bcc, and (d) hcp lat-

tice, see text. The densities (h k l) are defined with respect to the square of the corre-

sponding lattice constant a (applying c/a = (8/3) for hcp). 

 {h k l}; (m) (h k l)/a
2
  {h k l}; (m) (h k l)/a

2
 

(a) sc      

1 {1 0 0}; (6) 1 = 1.000 6 {2 2 1}; (24) 1/9  = 0.333 

2 {1 1 0}; (12) 1/2  = 0.707 7 {3 1 0}; (24) 1/10  = 0.316 

3 {1 1 1}; (8) 1/3  = 0.577 8 {3 1 1}; (24) 1/11  = 0.302 

4 {2 1 0}; (24) 1/5  = 0.447 9 {3 2 0}; (24) 1/13  = 0.277 

5 {2 1 1}; (24) 1/6  = 0.408 10 {3 2 1}; (24) 1/14  = 0.267 

(b) fcc      

1 {1 1 1}; (8) 4/3  = 2.309 6 {4 2 0}; (24) 4/20 = 0.894 

2 {2 0 0}; (6) 4/4 = 2.000 7 {4 2 2}; (24) 4/24 = 0.816 

3 {2 2 0}; (12) 4/8 = 1.414 8 {5 1 1}; (24) 4/27 = 0.770 

4 {3 1 1}; (24) 4/11 = 1.206 9 {5 3 1}; (48) 4/35 = 0.676 

5 {3 3 1}; (24) 4/19 = 0.918 10 {4 4 2}; (24) 4/36 = 0.667 

(c) bcc      

1 {1 1 0}; (12) 2/2 = 1.414 6 {3 2 1}; (48) 2/14 = 0.535 

2 {2 0 0}; (6) 2/4 = 1.000 7 {4 1 1}; (24) 2/18 = 0.471 

3 {2 1 1}; (24) 2/6 = 0.816 8 {4 2 0}; (24) 2/20 = 0.447 

4 {3 1 0}; (24) 2/10 = 0.632 9 {3 3 2}; (24) 2/22 = 0.426 

5 {2 2 2}; (8) 2/12 = 0.577 10 {5 1 1}; (24) 2/27 = 0.385 
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(d) hcp (h k l); (m) (h k l)/a
2
 

1 (0 0 1); (2) 2/3  = 1.155 

2
* 

(1 1 0), (2 -1 0), (1 -2 0); (6) 1/2  = 0.707
 

3 (1 0 0), (0 1 0), (1 -1 0); (6) (3/8)  = 0.612 

4
*
 (1 1 2), (2 -1 2), (1 -2 2); (12) 2/11  = 0.603 

5 (1 0 1), (0 1 1), (1 -1 1); (12) (12/41)  = 0.541 

6 (1 0 2), (0 1 2), (1 -1 2); (12) (3/17)  = 0.420 

7
* 

(3 0 2), (0 3 2), (3 -3 2); (12) 2/27  = 0.385 

8 (1 1 1), (2 -1 1), (1 -2 1); (12) 2/35  = 0.338 

9 (2 0 1), (0 2 1), (1 -1 1); (12) (12/137)  = 0.296 

10 (2 1 0), (1 2 0), (-1 3 0), (-2 3 0), 

(3 -2 0), (3 -1 0); (12) 

(3/56)  = 0.231 

 

(i.e. (Ro1, Ro2) = 120, see Sec. 2.2.2.1) and are given in generic 3-index notation. Note that for 

the hex (hcp) lattice the 2
nd

, 4
th

 and 7
th

 densest monolayers, denoted by asterisks (
*
) in Table 3.1, 

contain two atoms in their morphological unit cells, i.e . n(h k l) = 2 while for all others n(h k l) = 1. 

If a lattice exhibits, in addition to translation symmetry, also point symmetry then geometri-

cally identical netplanes may appear for different Miller index values. These equivalent netplanes 

are often grouped into families, where each family is characterized by Miller indices  

{h k l} written inside curly brackets. An example is given by the simple cubic lattice with the six 

equivalent netplanes, denoted by Miller indices (1 0 0), (0 1 0), (0 0 1), forming a family de-

scribed as {1 0 0}. This notation is also used in Table 3.1 for monolayers of cubic lattices. 

In a generalization of (3.4), directions inside a lattice may also be defined by Miller indices  

h, k, l, which are, in general, non-integer- or integer-valued. These directions are usually written as 

[h k l] inside square brackets. In addition, lattices with point symmetry allow symmetry equivalent 

directions where corresponding direction families are written as <h k l> inside pointed brackets. 

As an example, the simple cubic lattice includes eight equivalent directions [1 1 1], [-1 1 1],  

[1 -1 1], [1 1 -1], which form a direction family <1 1 1>. 
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3.2 Netplane-Adapted Lattice Vectors 

The discussion in Sec. 3.1 showed that  (h k l) netplanes can be associated with linear trans-

formations T
(h k l)

, connecting the initial lattice vectors Ro1, Ro2, Ro3 with netplane-adapted lattice 

vectors R1, R2, R3 according to (2.62), where vectors R1 and R2 determine the netplane periodicity. 

Thus, transformations T
(h k l)

 are essential for any computation of crystal properties which requires 

quantitative information about netplanes by their explicit lattice vectors R1 and R2 derived from the 

initial lattice vectors Ro1, Ro2, Ro3. As an example we mention theoretical evaluations of elastic 

moduli along specific crystal directions. Transformed lattice vectors are also an essential ingredient 

for any quantitative theoretical treatment of ideal single crystal surfaces as will be discussed in de-

tail in Sec. 4. 

The close relationship between transformation matrices T
(h k l)

 and Miller indices (h k l) be-

comes clear from the following relations obtained by using equations (2.62), (2.96), and (3.6) 

G(h k l) R1 =  (h Go1  +  k Go2  +  l Go3) (t11 Ro1 + t12 Ro2 + t13 Ro3) 

 =  2 (t11 h + t12 k + t13 l)  =  0 

G(h k l) R2 =  (h Go1  +  k Go2  +  l Go3) (t21 Ro1 + t22 Ro2 + t23 Ro3) 

 =  2 (t21 h + t22 k + t23 l)  =  0 

G(h k l) R3 =  (h Go1  +  k Go2  +  l Go3) (t31 Ro1 + t32 Ro2 + t33 Ro3) 

 =  2 (t31 h + t32 k + t33 l)  =  2 (3.9) 

resulting in a set of three linear Diophantine equations which can be written in matrix form as 
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 (3.10) 

This shows that for any transformation matrix T
(h k l)

 corresponding Miller indices (h k l) can be ob-

tained by solving the linear equations (3.10). In fact, the solutions are already given explicitly in 

(3.5). 

On the other hand, for given (h k l) values example transformations T
(h k l)

 can be evaluated from 

(3.10) using number theoretical methods as has been shown elsewhere [84]. Here we mention 

three example solutions which cover all possible h, k, l values. 
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(a) Let integers a, b solve the linear Diophantine equation 

a h + b k  =  1 (3.11a) 

then 
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 (3.11b) 

(b) Let integers a, c solve the linear Diophantine equation 

a h + c l  =  1 (3.12a) 

then 
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 (3.12b) 

(c) Let integers b, c solve the linear Diophantine equation 

b k + c l  =  1 (3.13a) 

then 
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10

T
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 (3.13b) 

Thus, each of these solutions requires the computation of one linear Diophantine equation in two 

variables, equations (3.11a), (3.12a), and (3.13a), where solutions may be guessed or determined 

numerically, using the algorithm discussed in Appendix E.3. Table 3.2 shows which of the three 

solutions can be used for any triplet (h k l). This table assumes that all non-zero Miller index values 

are normalized such that they do not have a common divisor greater than 1. Otherwise, all non-zero 

Miller indices have to be divided by gcd(x, y) or gcd(x, y, z) before transformations (3.11), (3.12), 

or (3.13) can be applied. (Functions gcd(x, y) and gcd(x, y, z) denote the greatest common divisor, 

see Appendix E.1.)  
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Table 3.2.  Example transformations T
(h k l)

 for different Miller index values (h k l) 

referring to solutions (3.11), (3.12), or (3.13), see text. 

Miller indices Transformation  

(h 0 0)    (1 0 0) (3.11) with a = 1, b = 0 ;  (3.12) with a = 1, c = 0 

(0 k 0)    (0 1 0) (3.11) with a = 0, b = 1 ;  (3.13) with b = 1, c = 0 

(0 0 l)    (0 0 1) (3.12) with a = 0, c = 1 ;  (3.13) with b = 0, c = 1 

(h k 0) ,  gcd(|h|, |k|) = 1 (3.11) compute a, b 

(h 0 l) ,  gcd(|h|, |l|) = 1 (3.12) compute a, c 

(0 k l) ,  gcd(|k|, |l|) = 1 (3.13) compute b, c 

(h k l) , gcd(|h|, |k|, |l|) = 1 (3.11) compute a, b     or 

(3.12) compute a, c     or 

(3.13) compute b, c 

 

The calculation of transformation matrices T
(h k l)

 and, hence, of corresponding netplane-

adapted lattice vectors, described in this section, does not make use of any specific lattice properties 

like lattice type or symmetry. Further, matrices T
(h k l)

 given by (3.11b), (3.12b), and (3.13b) repre-

sent, in each case, an infinite number of solutions, since the accompanying Diophantine equations 

(3.11a), (3.12a), and (3.13a) have infinitely many solutions, as shown in Appendix E.3. This reflects 

the fact that lattice descriptions are not unique and there is always an infinite number of alterna-

tives. The next section shows, how to select from this infinite manifold specific lattice descriptions, 

which can also reflect point symmetry properties of the (h k l) netplane under consideration. 

 

3.3 Symmetrically Appropriate Lattice Vectors: Minkowski Reduction 

The netplane-adapted lattice vectors given by (3.11), (3.12), and (3.13) yield mathematically 

exact lattice descriptions which may, however, not always be intuitive. As an example we mention 

the simple cubic lattice, where (h k l) = (0 0 1) netplanes are of square shape, see Fig. 2.15, can be 

constructed by lattice vectors 

Ro1  =  a (1, 0, 0) , Ro2  =  a (0, 1, 0) (3.14) 

denoting a symmetrically appropriate vector set, since the two vectors are of equal length and per-

pendicular to each other, suggesting a square pattern. However, there are alternative lattice vectors, 

e.g.  
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R1  =  a (-1, -1, 0) , R2  =  a (2, 1, 0) (3.15) 

which do not give any idea of the square shape of the netplane. This problem can arise, in particu-

lar, when lattice vectors are generated numerically by a computer (i.e. without visual intuition). The 

rather hazy notion of ‘symmetrically appropriate’ can be quantified by requiring that the lattice 

vectors R1 and R2 connect lattice points of smallest distance in the lattice with R1
2
  R2

2
. This re-

quirement allows additional point symmetry elements to become visible already in the lattice vector 

representation of the corresponding netplane. Symmetrically appropriate vectors can be constructed 

iteratively following an algorithm due to Minkowski (Minkowski reduction)  [85], see Appendix 

D for mathematical details. The iteration starts from any two lattice vectors R1 and R2 which are 

reduced successively in length by linear mixing until vectors of smallest length are obtained. This 

is illustrated in Fig. 3.2 for the (1 1 0) netplane of an fcc monolayer. Here the initial lattice vectors 

R1 and R2 (labeled ‘(0)’ in the figure) are reduced in two iteration steps to yield Minkowski-reduced 

lattice vectors (labeled ‘(2)’) where the vectors in red illustrate the reduction in each step.  

 

Fig. 3.2.  Minkowski reduction of a lattice vector set for the (1 1 0) netplane of an 

fcc monolayer, see text. The underlying monolayer is added for orientation.  

The reduction yields always after a finite number of iterations two Minkowski-reduced lattice vec-

tors R1 and R2 of lengths R1 and R2 which can be shown to satisfy condition 

-min ( R1
2
, R2

2
 )   2 (R1R2)  <  min ( R1

2
, R2

2
 ) (3.16) 

This means geometrically that each of the two vectors Ri projected on to the other, Rj, yields a vec-

tor along Rj of less than or equal to half the length of Rj. As shown in Appendix D, relation (3.16) 

guarantees that at least one of the two lattice vectors, R1 or R2, connects lattice points of smallest 

distance in the lattice. If, as a result of the reduction, the vectors R1 and R2 are of the same length 

they must both be of smallest length. Further, relation (3.16) can be written as 
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-1    -A    2 cos()  =  2 (R1R2) / (R1R2)  <  A    1 

A  =  min (R1/R2, R2/R1) (3.17) 

where  is the angle between vectors R1 and R2. This proves that the angle between two Minkowski-

reduced lattice vectors R1 and R2 must always lie between 60 and 120 where we distinguish be-

tween acute, 60 <   90, and obtuse lattice vector sets , 90 <   120. 

Altogether, the Minkowski formalism leads to uniquely defined lattice vectors R1 and R2 for 

any two-dimensional lattice and allows an easy classification of the different types of two-

dimensional Bravais lattices discussed in Sec. 3.8. Centered rectangular and hexagonal lattices yield 

equivalent lattice vector sets for cos() = A/2 and cos() = -A/2 (with A according to (3.17) ) corre-

sponding to acute and obtuse vector sets which can both be considered to be Minkowski-reduced. 

Here crystallographers prefer the obtuse representation referring to the strict definition given in 

(3.16). It should be mentioned that for three-dimensional bulk crystals analogous reduction schemes 

have been proposed [42], [43] to obtain unique lattice vector sets R1, R2, R3, see also Sec. 2.2.2. 

There, the simplification to two dimensions is equivalent to the Minkowski reduction.  

 

3.4 Miller Indices for Cubic and Trigonal Lattices 

Generic Miller indices (h k l) are, by definition, based on reciprocal lattice vectors  

Go1, Go2, Go3, as given by (2.95), where lattice vectors Ro1, Ro2, Ro3, referring to a primitive lattice 

representation, are the natural choice. However, in the case of cubic lattices scientists very often use 

real space and reciprocal lattice vectors of the simple cubic lattice even in studies of crystals with 

fcc and bcc lattices. This is due to the geometric simplicity of the sc lattice with its three orthogo-

nal lattice vectors of equal length where the reciprocal lattice is also of sc type and direction vectors 

in real space are parallel to those in reciprocal space. The choice of the sc lattice for fcc and bcc lat-

tices affects corresponding Miller index values, as will be discussed in the following. 

According to (2.102), the face-centered cubic lattice is characterized by reciprocal lattice vec-

tors Go1
fcc

, Go2
fcc

, Go3
fcc

, which can be represented by those of the simple cubic (sc, cubic-P) lattice, 

using (2.101), where 

Go1
fcc

  =  -Go1
sc

  + Go2
sc

 + Go3
sc

  

Go2
fcc

  =   Go1
sc

  - Go2
sc

 + Go3
sc
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Go3
fcc

  =   Go1
sc

  + Go2
sc

 - Go3
sc

 (3.18) 

As a consequence, netplane normal directions point along vectors 

G(h k l) =  h
fcc

 Go1
fcc

 + k
fcc

 Go2
fcc

 + l
fcc

 Go3
fcc

  = 

 =  (-h
fcc

 + k
fcc

 + l
fcc

) Go1
sc

 + (h
fcc

 - k
fcc

 + l
fcc

) Go2
sc

 + (h
fcc

 + k
fcc

 - l
fcc

) Go3
sc

 

 =  h
sc

 Go1
sc

 + k
sc

 Go2
sc

 + l
sc

 Go3
sc

 (3.19) 

suggesting, in addition to the generic notation (h
fcc

 k
fcc

 l
fcc

), a simple cubic or (sc) notation  

(h
sc

 k
sc

 l
sc

) for Miller indices of the fcc lattice. According to (3.19), there is a linear transformation 

between the indices given by 
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2

1

l

k

h

l
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h

 (3.20a, b) 

Here the factor 1/2 in transformation (3.20b) restricts possible values of Miller indices in simple 

cubic notation. Transformation (3.20b) yields integer-valued Miller indices, h
fcc

, k
fcc

, l
fcc

, only if the 

indices in simple cubic notation, h
sc

, k
sc

, l
sc

, are all even or all odd integers. 

Transformation (3.20a) can also be understood as the three basic Miller index triplets (-1 1 1),  

(1 -1 1), (1 1 -1) defining lattice vectors in the integer vector space which describes all sc Miller in-

dices (h
sc

 k
sc

 l
sc

) of a fcc lattice in simple cubic notation. Thus, any valid Miller index triplet  

(h
sc

 k
sc

 l
sc

) can be decomposed into contributions of basic Miller index triplets, where the above 

choice is not unique. Alternative basic lattice vectors (h1 k1 l1), (h2 k2 l2), (h3 k3 l3) can be obtained 

by transformations 
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 (3.21) 

where T is an integer-valued 3  3 matrix with det(T) = 1. As an example we mention  
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 (3.22) 

The choice of appropriate basic lattice vectors in the vector space of integers describing all possible 
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Miller indices will become important in connection with the decomposition of Miller indices char-

acterizing stepped and kinked surfaces, see Sec. 4.3. Table 3.3 lists typical examples of lowest Mil-

ler index triplets (h k l) of the fcc lattice given in both generic fcc and in simple cubic notation. 

Table 3.3.  Typical Miller index triplets of the fcc lattice given both in simple cubic 

notation, (h
sc

 k
sc

 l
sc

), and in generic fcc notation (h
fcc

 k
fcc

 l
fcc

). 

(h
sc

 k
sc

 l
sc

 ) (h
fcc

 k
fcc

 l
fcc

) 

(1 1 1) (1 1 1) 

(2 0 0) (0 1 1) 

(2 2 0) (1 1 2) 

(3 1 1) (1 2 2) 

(3 3 1) (2 2 3) 

(4 2 0) (1 2 3) 

(4 2 2) (2 3 3) 

 

The body-centered cubic lattice is, according to (2.103), characterized by reciprocal lattice 

vectors G1
bcc

, G2
bcc

, G3
bcc

, which can be represented by those of the simple cubic lattice, using 

(2.101), where 

G1
bcc

  =  G2
sc

 + G3
sc

 

G2
bcc

  =  G1
sc

 + G3
sc

 

G3
bcc

  =  G1
sc

  + G2
sc

 (3.23) 

Therefore, netplane normal directions point along vectors 

G(h k l) =  h
bcc

 Go1
bcc

 + k
bcc

 Go2
bcc

 + l
bcc

 Go3
bcc

  = 

 =  (k
fcc

 + l
fcc

) Go1
sc

 + (h
fcc

 + l
fcc

) Go2
sc

 + (h
fcc

 + k
fcc

) Go3
sc

 

 =  h
sc

 Go1
sc

 + k
sc

 Go2
sc

 + l
sc

 Go3
sc

 (3.24) 

which suggests, in addition to the generic notation (h
bcc

 k
bcc

 l
bcc

), a simple cubic or (sc) notation  

(h
sc

 k
sc

 l
sc

) for Miller indices of the bcc lattice. According to (3.24), there is a linear transformation 

between the indices 
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 (3.25a, b) 

Analogous to the fcc lattice, the factor 1/2 in transformation (3.25b) restricts possible values of Mil-

ler indices in simple cubic notation. Here transformation (3.25b) yields integer-valued Miller indi-

ces, h
bcc

, k
bcc

, l
bcc

, only for indices in simple cubic notation, h
sc

, k
sc

, l
sc

, where the sum of all three 

values, i.e.  g  =  h
sc

 + k
sc

 + l
sc

  is an even integer. This is achieved by either all indices being even 

or by one being even and two odd. 

Transformation (3.25a) can, as before, be understood as the three basic Miller index triplets  

(0 1 1), (1 0 1), (1 1 0) defining lattice vectors in the integer vector space which describes all sc 

Miller indices (h
sc

 k
sc

 l
sc

) of a bcc lattice in simple cubic notation. Thus, any valid Miller index tri-

plet (h
sc

 k
sc

 l
sc

) can be decomposed into contributions of basic Miller index triplets, where the above 

choice is not unique. Alternative basic lattice vectors (h1 k1 l1), (h2 k2 l2), (h3 k3 l3) can be obtained 

by transformations 
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 (3.26) 

where T is an integer-valued 3  3 matrix with det(T) = 1. As an example we mention  
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 (3.27) 

As for the fcc case, the choice of appropriate basic lattice vectors in the vector space of integers de-

scribing all possible Miller indices will become important in connection with the decomposition of 

Miller indices characterizing stepped and kinked surfaces, see Sec. 4.3. Table 3.4 lists typical ex-

amples of lowest Miller index triplets (h k l) of the bcc lattice given in both generic bcc and in sim-

ple cubic notation. 

Table 3.4.  Typical Miller index triplets of the bcc lattice given both in simple cubic 

notation, (h
sc

 k
sc

 l
sc

), and in generic bcc notation (h
bcc

 k
bcc

 l
bcc

). 

(h
sc

 k
sc

 l
sc

 ) (h
bcc

 k
bcc

 l
bcc

) 
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(1 1 0) (0 0 1) 

(2 0 0) (-1 1 1) 

(2 1 1) (0 1 1) 

(3 1 0) (-1 1 2) 

(2 2 2) (1 1 1) 

(3 2 1) (0 1 2) 

(3 3 2) (1 1 2) 

 

The numerical constraints on Miller indices, h
sc

, k
sc

, l
sc

, in simple cubic notation for fcc or bcc 

lattices become important when Miller indices (and corresponding reciprocal lattice vectors G(h k l)) 

are used in numerical calculus. Examples are the evaluation of netplane distances d(h k l) or the de-

composition of Miller indices discussed in see Sec. 4.3. As an illustration, distances d(h k l) between 

adjacent netplanes of an fcc lattice are, according to (2.101), (2.102), (3.7), given by 

d(h k l) =  2 / |G(h k l)| =  a / [3 {(h
fcc

)
2
 + (k

fcc
)
2
  + (l

fcc
)
2
} -  

  - 2 { h
fcc

 k
fcc

 + h
fcc

 l
fcc

 + k
fcc

 l
fcc

 +}]
1/2

 

=  a / [(h
sc

)
2
 + (k

sc
)
2
  + (l

sc
)
2
]
1/2

  (3.28) 

with the three sc Miller indices, h
sc

, k
sc

, l
sc

, required to be either all even or all odd. Thus, netplanes 

with (1 1 2) orientation in simple cubic notation must use h
sc

 = 2, k
sc

 = 2, l
sc

 = 4 in the evaluation of 

(3.28). In general, Miller index triplets (h k l), given in simple cubic notation for fcc lattices and 

representing  mixtures of even and odd numbers, have to be scaled by a factor of two for any quan-

titative calculus. For example, the triplet (1 2 3) needs to be replaced by (2 4 6). In analogy, Miller 

indices, given in simple cubic notation for bcc lattices with the sum (h + k + l) being an odd num-

ber, must be scaled by a factor of two. For example, the triplet (1 1 1) needs to be replaced by  

(2 2 2). However, when Miller indices (h k l) are to be used only to denote netplane directions in 

the crystal, common integer factors in the indices can be omitted.  

The correlations between generic fcc or bcc Miller indices and those referring to the simple cu-

bic lattice are special cases of a more general behavior of Miller indices when lattice vectors are 

modified by transformations. If we assume that R1', R2', R3' are lattice vectors arising from a linear 

transformation of initial lattice vectors R1, R2, R3 according to 
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then the corresponding reciprocal lattice vectors G1', G2', G3' and G1, G2, G3 are connected by 
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 (3.30) 

where the superscript ‘+’ in (T
-1

)
+
 denotes the transposed matrix of T

-1
. Thus, a general reciprocal 

lattice vector G which can be written in both representations as 

G  =  h G1 + k G2 + l G3  =  h' G1' + k' G2' + l' G3' (3.31) 

is given in matrix form together with (3.30) by 
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G lkhl'k'h'l'k'h'  (3.32) 

This leads to a relation between the corresponding Miller indices where 

(h'  k'  l') (T
-1

)
+
  =  (h  k  l)   ,     (h'  k'  l')  =  (h  k  l) (T)

+
 (3.33) 

or 
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T  (3.34) 

A comparison of (3.34) with (3.29 shows that the transformation between lattice vectors and that 

between corresponding Miller indices uses the same transformation matrix T. 

As an example, lattice vectors of trigonal crystals are often expressed by those of a related 

hexagonal lattice where the hexagonal vectors R1
hex

, R2
hex

, R3
hex

 are connected with those of the 

trigonal lattice, R1
trg

, R2
trg

, R3
trg

, for example, according to 
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 (3.35) 
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see (2.48). (There are, altogether, 6 choices of obtuse and 6 of acute representations of the 

corresponding hexagonal lattice of which (3.35) is an obtuse representation.) Therefore, hexagonal 

Miller indices h
hex

, k
hex

, l
hex

 are connected with those of the corresponding trigonal lattice,  

h
trg

, k
trg

, l
trg

, by 
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 (3.36) 

and hence 
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l
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h

 (3.37) 

All Miller indices in (3.37) must be integer-valued which puts constraints on possible values of 

hexagonal Miller indices. These can be expressed as 

-h
hex

 + k
hex

 + l
hex

  =  3 g ,     2 h
hex

 + k
hex

 + l
hex

  =  3 g' , 

-h
hex

 - 2 k
hex

 + l
hex

  =  3 g'' (3.38) 

where g, g', g'' are integers. Since 

-h
hex

 + k
hex

 + l
hex

 = (2 h
hex

 + k
hex

 + l
hex

) - 3 h
hex 

 =  (-h
hex

 - 2 k
hex

 + l
hex

) + 3 k
hex

 (3.39) 

fulfilling one of the three conditions (3.38) will automatically satisfy the other two. Thus, con-

straints (3.38) can be replaced by one constraint, 

-h
hex

 + k
hex

 + l
hex

  =  3 g (3.40) 

If all 6 possible obtuse representations of the hexagonal lattice are considered three of them are 

subject to constraint (3.40) while the other three are subject to 

h
hex

 - k
hex

 + l
hex

  =  3 g (3.41) 

Further, it can be shown that of the 6 different acute representation of the hexagonal lattice three are 

subject to the constraint 

h
hex

 + k
hex

 - l
hex

 =  3 g (3.42) 

and three to 
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h
hex

 + k
hex

 + l
hex

  =  3 g (3.43) 

Table 3.5 lists typical examples of lowest Miller index triplets (h k l) of the trigonal lattice given in 

both generic trigonal and in hexagonal notation according to (3.36). This table also includes the cor-

responding Miller-Bravais indices (l
hex

 m
hex

 n
hex

 q
hex

) according to (3.53) as discussed in Sec. 3.5.  

Table 3.5.  Typical Miller index triplets of the trigonal lattice given both in generic 

trigonal (h
trg

 k
trg

 l
trg

), in obtuse hexagonal notation, (h
hex

 k
hex

 l
hex

) and in 4-index nota-

tion (l
hex

 m
hex

 n
hex

 q
hex

), see text. 

(h
trg

 k
trg

 l
trg

 ) (h
hex

 k
hex

 l
hex

) (l
hex

 m
hex

 n
hex

 q
hex

) 

(1 0 0) (1 0 1) (1 0 -1 1) 

(0 1 0) (-1 1 1) (-1 1 0 1) 

(0 0 1) (0 -1 1) (0 -1 1 1) 

(1 1 0) (0 1 2) (0 1 -1 2) 

(1 0 1) (1 -1 2) (1 -1 0 2) 

(0 1 1) (-1 0 2) (-1 0 1 2) 

(1 1 1) (0 0 3) (0 0 0 3) 

 

 

3.5 Alternative Definition of Miller Indices, Miller-Bravais Indices 

There is an alternative way to define netplanes inside a lattice, which is usually preferred by 

crystallographers due to its seeming simplicity. Here one considers two adjacent parallel (h k l) net-

planes in a lattice defined by lattice vectors Ro1, Ro2, Ro3, where the lattice can always be positioned 

such that its origin coincides with that of one of the netplanes. Then the adjacent netplane will, in 

general, cross the lines along the three lattice vectors Ro1, Ro2, Ro3 at crossing points A, B, C with 

A  =  1 Ro1 ,    B  =  2 Ro2 ,    and   C  =  3 Ro3 (3.44) 

as shown in the Fig. 3.3. Thus, the intercept factors 1, 2, 3 can be used to characterize the 
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Fig. 3.3.  Netplane definition by its intercepts with the three lattice vectors Ro1, Ro2, 

Ro3 at A, B, C. The lattice vectors and intercepts are sketched accordingly. The net-

plane is indicated by light gray. 

 

netplane uniquely. If vector n denotes the normal vector of the netplane, then the distance d(h k l) be-

tween the two adjacent netplanes is given by 

d(h k l) =  A n  =  1 Ro1 n  =  1 Ro1 G (h k l) / | G(h k l) |  = 

 =  1 Ro1 (h Go1 + k Go2 + l Go3) / G(h k l)  =  1 h 2 / G(h k l)  =  2 / G(h k l) (3.45) 

where equations (3.6), (3.7) together with the orthogonality relations (2.96) are used. This yields for 

the intercept factor 1 

1 h  =  1         or         1 =  1 / h (3.46) 

In analogy, relations  

d(h k l)  =  B n       and       d(h k l)  =  C n (3.47) 

result in 

2  =  1 / k    and    3  =  1 / l (3.48) 

connecting, altogether, between inverse Miller indices h, k, l and the intercept factors i of the three 

lattice vectors cut by the netplane. Since Miller indices are all integer-valued, relations (3.46), 

(3.48) show that for non-zero values of h, k, l the corresponding intercept factors i are bound to  

0   |i|  1. In addition, according to (3.46) h = 0 can be considered a result of the limiting case  

1   such that the corresponding netplanes lie parallel to the lattice vector Ro1. Analogously,  

k = 0 and l = 0 refer to netplanes parallel to vectors Ro2 and Ro3, respectively. If two Miller index 

values equal zero then the corresponding netplane must be parallel to two lattice vectors. For exam-

ple, the (1 0 0) netplane cuts the Ro1 axis at a lattice point (1 =  1) and extends parallel to the plane 
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spanned by Ro2 and Ro3. Relations (3.46), (3.48) can be inverted to read 

h  =  1 / 1  ,       k  =  1 / 2  ,       l  =  1 / 3     or 

( h  k  l )  =  ( 1/1   1/2   1/3 ) (3.49) 

which shows that the inverse intercept factors are equivalent to Miller indices and can, thus, be 

alternatively used to characterize the orientation of a netplane inside a lattice.  

There is a special variant of the alternative definition (3.49) which applies only to hexagonal 

lattices. These lattices are described by two lattice vectors, Ro1 and Ro2, forming a two-dimensional 

hexagonal lattice with angles (Ro1, Ro2) = 120 or = 60 (obtuse or acute representation) while Ro3 

is perpendicular to both Ro1 and Ro2. Assuming an obtuse representation, the 3-fold symmetry of 

the planar sublattice given by Ro1 and Ro2 induces a third vector Ro2' = -Ro1 - Ro2, which forms an 

angle (Ro1, Ro2') = (Ro2, Ro2') = 120 with respect to the initial lattice vectors and is of equal 

length, see Fig. 3.4. Thus, the vector triplet Ro1, Ro2, Ro2' may be considered an equivalent set and 

 

Fig. 3.4.  Netplane definition (hexagonal lattices) by its intercepts with the four lat-

tice vectors Ro1, Ro2, Ro2', and Ro3 at A, B, C, D. The lattice vectors and intercepts 

are sketched accordingly. The netplane is indicated by light gray. 

each pair of vectors from this triplet can be used to describe the periodicity of the hexagonal net-

plane. Crystallographers treat the three lattice vectors Ro1, Ro2, Ro2' on equal footing and character-

ize netplanes by intercepts of the three lattice vectors Ro1, Ro2, Ro3 and of vector Ro2', i.e. by 

A  =  1 Ro1 ,    B  =  2 Ro2 ,    C  =  3 Ro3 ,    and    D  =  2' Ro2' (3.50) 

as shown in the Fig. 3.4, where simple algebra yields 

1/2'  =  -1/1 - 1/2 (3.51) 

This is the basis of the so-called 4-index notation of the Miller indices, also referred to as Miller-



129 

 

Bravais indices, where the initial definition 

( h  k  l )  =  ( 1/1  1/2  1/3 ) (3.52) 

is, with the help of (3.51), replaced by 

( l  m  n  q )  =  ( 1/1   1/2   1/2'   1/3 )  =  ( h   k   (-h-k)   l ) (3.53) 

The quadruple ( l  m  n  q ) is sometimes also termed ( h  k  i  l ). Examples of corresponding Miller 

and Miller-Bravais indices are listed in Table 3.6. 

 

Table 3.6.  Examples of Miller indices (h k l) and corresponding Miller-Bravais in-

dices (l m n q) based on an obtuse representation of the hexagonal lattice. 

(h  k  l) (l  m  n  q) 

(1  0  0) (1  0  -1  0) 

(0  1  0) (0  1  -1  0) 

(0  0  1) (0  0  0  1) 

(1  1  0) (1  1  -2  0) 

(1  0  1) (1  0  -1  1) 

(0  1  1) (0  1  -1  1) 

(1  1  1) (1  1  -2  1) 

 

The geometric equivalence of the three lattice vectors Ro1, Ro2, Ro2' in the obtuse representa-

tion is also visible in a symmetry property of the corresponding Miller-Bravais indices. A rotation 

of the hexagonal lattice by 120 (anti-clockwise) about its symmetry axis along Ro3, reproduces the 

lattice and leads to a transformation of its lattice vectors 

Ro1    Ro2 , Ro2    Ro2' , Ro2'    Ro1 , Ro3    Ro3 (3.54) 

This also affects the intercepts, used for the definition of Miller-Bravais indices, see Fig. 3.4, where 

the transformation yields 

( l  m  n  q ) =  ( 1/1   1/2   1/2'   1/3 ) 

  ( 1/2   1/2'   1/1   1/3 )  =  ( m  n  l  q ) (3.55) 

resulting in symmetry equivalent Miller index quadruplets. Thus, Miller-Bravais indices  

( l  m  n  q ), ( m  n  l  q ), and ( n  l  m  q ) are symmetry equivalent and lead to netplanes of identi-

cal structure. 
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Assuming an acute representation of the hexagonal lattice the four points of Fig. 3.4 are giv-

en by  

A  =  1 R1 ,    B  =  2' (R2 - R1) ,    C  =  3 R3 ,    and    D  =  2 (-R2) (3.56) 

where 

1/2'  =  1/2 - 1/1 (3.57) 

In this representation the initial definition 

( h, k, l )  =  ( 1/1, 1/2, 1/3 ) (3.58) 

is, with the help of (3.57), replaced by 

( l  m  n  q )  =  ( 1/1, 1/2', -1/2, 1/3 )  =  ( h   (k - h)   -k   l ) (3.59) 

Examples of corresponding Miller and Miller-Bravais indices are listed in Table 3.7. 

Table 3.7.  Examples of Miller indices (h k l) and corresponding Miller-Bravais in-

dices (l m n q) based on an acute representation of the hexagonal lattice. 

(h  k  l) (l  m  n  q) 

(1  0  0) (1  -1  0  0) 

(0  1  0) (0  1  -1  0) 

(0  0  1) (0  0  0  1) 

(1  1  0) (1  0  -1  0) 

(1  0  1) (1  -1  0  1) 

(0  1  1) (0  1  -1  1) 

(1  1  1) (1  0  -1  1) 
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3.6 Symmetry Properties of Netplanes 

Netplanes can also be analyzed in terms of their symmetry behavior, i.e. by their translational 

symmetry and corresponding point symmetry elements. This is analogous to symmetry analyses of 

three-dimensional lattices discussed in Sec. 2.4. A comparison with the three-dimensional sym-

metry operations, available for lattices and listed in Sec. 2.4, shows immediately that there are only 

three different types of true point symmetry operations which qualify for two-dimensional net-

planes. These are 

 i(ro) inversion with respect to symmetry origin ro, equivalent with a 180 rotation 

about ro, as discussed below, 

 C(ro) rotation by an angle  about the symmetry origin ro, 

 (ro, e) mirroring (reflection) with respect to a line through symmetry origin ro with 

the line direction defined by its normal vector e.  

In addition, netplanes may be symmetric with respect to a mixed mirror and translational symmetry 

operation which is known as  

 g(ro, g) glide reflection, combining a reflection (ro, e) with a translation by vector g, 

where vectors g and e are perpendicular to each other. 

As for three-dimensional lattices, translational and point symmetry elements of a netplane are sub-

ject to compatibility constraints which limits the number of possible point symmetry operations as 

well as their relation with translations. This subject is treated in full mathematical detail in this sec-

tion, going beyond the analogous discussion of symmetry for three-dimensional lattices in this 

book. First, the different symmetry operations, mentioned above, are defined and their interplay 

with translational symmetry is discussed in Secs. 3.6.2 to 3.6.5. Then, Sec. 3.6.6 combines all sym-

metry elements to symmetry groups which can be used to classify the different types of netplanes 

according to their symmetry. These sections are rather formal and filled with mathematical details. 

Thus, readers, who are less interested in mathematics, may inspect the conclusions of Secs. 3.6.2 to 

3.6.5 at the end of each section only or may skip these sections altogether and move to Sec. 3.7. 
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3.6.1 Centered Netplanes 

Centering of three-dimensional lattices was shown in Sec. 2.2.3 to allow primitive lattice de-

scriptions in cases where the morphological unit cells of the initial lattice are not primitive. The 

same considerations can also be applied to two-dimensional netplanes where the reasoning is iden-

tical to that for cell faces of three-dimensional unit cells. Consider a netplane defined by lattice vec-

tors R1 and R2, where both vectors are assumed to be of smallest length along their direction. Then 

the morphological unit cell spanned by R1 and R2 may be primitive, i.e. of smallest area compared 

with all possible unit cells in the netplane. If the cell is non-primitive then its area is not the small-

est and, in analogy to the discussion for cell faces in Sec. 2.2.3, there is at least one additional lat-

tice point inside the morphological unit cell, described by vector R' with 

R' = κ1 R1 + κ2 R2 ,     0  <  κ1, κ2  <  1 (3.60) 

and for general values κ1, κ2 there is always a second lattice point inside the cell with vector R'' giv-

en by 

R''  =  R1 + R2 - R' = (1 - κ1) R1 + (1 - κ2) R2 (3.61) 

If, however, the cell is assumed to contain only one additional lattice point then the vectors R' and 

R'' must coincide, i.e. 

R'' - R'  =  (1 - 2κ1) R1 + (1 - 2κ2) R2  = 0 (3.62) 

Here the expressions in brackets must all be zero since the vectors R1 and R2 are linearly independ-

ent. This leads to 

κ1  =  κ2  =  1/2   ,        R'  =  1/2 (R1 + R2) (3.63) 

yielding a lattice vector R' in the center of the cell spanned by R1 and R2 describing a centered net-

plane. In the symmetry classification of netplanes, discussed in Sec. 3.8, it will be shown, that cen-

tering of a netplane of given symmetry type results in a new type of netplane only if the initial (non-

primitive) netplane is rectangular, leading to a centered rectangular or c-rectangular netplane. As an 

illustration, Fig. 3.5 shows morphological unit cells of different primitive and non-primitive lattice 

descriptions of a centered rectangular netplane. This figure also illustrates the general result that 

centered netplanes imply glide reflection symmetry as discussed in detail in Sec. 3.6.5. 
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Fig. 3.5.  Morphological unit cells of different primitive and non-primitive lattice 

descriptions of a centered rectangular netplane. The cells are shaded in gray with 

primitive and non-primitive cells labeled ‘p’ and ‘np’, respectively. Corresponding 

lattice vectors are shown as red arrows. 

 

3.6.2 Inversion 

Inversion operations i(ro) convert any point r on the netplane into its image r' such that the in-

version center ro cuts the connecting line between r and r' into half, see Fig. 3.6. This can be ex-

pressed mathematically by a coordinate transformation of points on the netplane 

r  =  ro + ( r - ro )      r'  =  ro - ( r - ro )  =  2 ro - r  =  ro  +  i ( r - ro ) (3.64) 

where i is formally defined as the inversion operator. This is connected with a two-dimensional Car-

tesian coordinate transformation with respect to ro, applying a 2  2 matrix i, where 

1
10

01
i,

y

x
i

'y

'x































 (3.65) 

 

Fig. 3.6.  Sketch of an inversion operation applied to vector r to yield r' with the  

inversion center at ro, see text. 

The definition of general lattice points R on a netplane with primitive lattice vectors R1 and R2 by 
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R  =  n1 R1 + n2 R2  ,     n1, n2 integer (3.66) 

implies that the origin of a netplane is also an inversion center, since for any combination of inte-

gers (n1, n2) there is the negative counterpart (-n1, -n2) converting R into -R. In addition, the transla-

tional symmetry of the netplane yields inversion centers at all lattice points (3.66) of the netplane. 

There are also other inversion centers ro inside the morphological unit cell of the netplane. The in-

version operation (3.64) at a lattice point R given by (3.66) can be rewritten as 

r' =  R  -  ( r - R )  =  2 R  -  r  =  [ 2 (R -ro)  -  r ]  +  2 ro  = 

 =  (R - ro)  -  ( r - (R -ro) )  +  2 ro (3.67) 

where ro may be a point inside the morphological unit cell, given by 

ro  =  1 R1 + 2 R2  ,         0    i  <  1  ,    i = 1, 2 (3.68) 

Thus, equation (3.67) can be interpreted as an inversion at lattice point (R - ro) followed by a shift 

by vector (2 ro). As a consequence, if a netplane reproduces itself for inversions at R according to 

(3.66), its translational symmetry also yields inversion symmetry with respect to (R - ro) as long as 

(2 ro) is a general lattice vector. The latter allows, together with the constraints in (3.68), only pa-

rameter values i = 0 or i = 1/2. This results, altogether, in four different possible inversion centers 

ro' inside the unit cell at 

ro
(1)

  =  0  ,     ro
(2)

  =  1/2 R1  ,     ro
(3)

  =  1/2 R2  ,     ro
(1)

  =  1/2 (R1 + R2) (3.69) 

Thus, the primitive morphological unit cell of a netplane with inversion symmetry can contain in-

version centers only at its origin, one at the cell center, and two at the midpoints of the cell edges, 

see Fig. 3.7. 

 

Fig. 3.7.  Morphological unit cell of a netplane with lattice vectors R1, R2. Non-

equivalent inversion centers inside the cell are shown as black ellipses while transla-

tionally equivalent inversion centers are given by gray ellipses. 
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This means, in particular, that, if a netplane, given by R1 and R2, possesses inversion symmetry, 

then it can always be arranged such that there are inversion centers at positions 

R  =  n1 R1 + n2 R2  +  ro
(i)

 ,     i = 1, 4 , ,     n1, n2 integer (3.70) 

which, together with (3.69), can also be written as 

R  =  n1 (R1/2) + n2 (R2/2)  ,     n1, n2 integer (3.71) 

Equation (3.71) describes general lattice points on a netplane with lattice vectors (R1/2), (R2/2). 

In conclusion, inversion centers existing as symmetry elements of a netplane, defined by prim-

itive lattice vectors R1 and R2, have the following property : 

 All inversion centers form a netplane with lattice vectors (R1/2), (R2/2). (3.72) 

 

3.6.3 Rotation 

Rotation operations C(ro) rotate any point r on the netplane by an angle  (rotation angle) 

about a center ro (rotation center) to yield an image point r', see Fig. 3.8. This can be expressed 

mathematically by a transformation of points on the netplane 

r  =  ro + ( r - ro )      r'  =  ro  +  C ( r - ro ) (3.73) 

where C is formally defined as the rotation operator. This is connected with a two-dimensional 

Cartesian coordinate transformation with respect to the rotation center ro, applying a 2  2 matrix 

C, where 
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 (3.74) 
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Fig. 3.8.  Sketch of a rotation operation applied to vector r to yield r' with the rota-

tion center at ro, see text. 

Possible rotation angles , which transform netplanes into themselves, are subject to constraints. 

In particular, if a rotation by angle   reproduces a netplane, then a rotation by 2  must also repro-

duce the netplane. A repeated rotation by   will eventually lead to a full circular movement of the 

netplane after a finite number of steps. Thus, possible rotation angles  can only be fractions of 

360, i.e. 

   =  p (360 / n)  , p = 1, ... n  ,     n  integer (3.75) 

If a netplane reproduces itself, when rotated about a center ro by all angles   with p = 1, ... n in 

(3.75), it is said to possess an n-fold rotation axis n (Cn) at ro. Here the symmetry symbols n, Cn 

refer to the Hermann-Mauguin and Schönflies notation for rotation axes, discussed in Sec. 2.4. 

(Both notations will be used in the following with the Schönflies notation put in parentheses.) 

The angle   = 180, corresponding to a 2-fold rotation axis, is special. According to (3.74), 

the transformation matrix C for   = 180 is identical to the inversion matrix i = - 1 in (3.65). 

Thus, in two dimensions a 2-fold rotation is equivalent with an inversion operation. As a conse-

quence, the four possible inversion centers ro, given by (3.69) are the only centers inside the unit 

cell, where 2-fold rotation axes can exist. 

The compatibility of rotational with translational symmetry of a netplane imposes constraints 

on possible rotation angles  . Let us assume a netplane to possess a rotation center at ro, where the 

netplane can always be shifted such that ro coincides with the netplane origin. Then, as a result of 

translational symmetry, there are infinitely many rotation centers at all lattice points (3.66) of the 

netplane. Thus, each rotation center A has an equivalent center B separated by lattice vector R 

which can be assumed to be the smallest lattice vector of the netplane, see Fig. 3.9. Rotating the 



137 

 

netplane anti-clockwise about center A by angle   transforms center B to B' while the clockwise 

rotation about center B transforms A to A'. 

 

Fig. 3.9.  Rotations by angles  applied to translationally equivalent rotation cen-

ters A and B (indicated by crosses). Lattice vector R connects center A with B while 

R' connects the image centers B' and A', see text. 

Vector R', connecting B' with A' must be parallel to vector R and simple algebra yields 

R'  =  R  -  2 R cos    =  R ( 1 - 2 cos   ) (3.76) 

Since the two rotations are assumed to transform the netplane into itself, vector R' must be an inte-

ger multiple of R, which means that 

( 1 - 2 cos   )  =  p       or       cos    =  (1 - p) / 2  ,       p integer (3.77) 

where the range of the cosine function, | cos   |  1, limits the integer values p to -1  p  3.  

Here p = -1, corresponding to   = 0, can be ignored, which leaves four possible angles   and cor-

responding n-fold rotation axes listed in Table 3.8. 

Table 3.8.  List of possible rotation angles  and corresponding n-fold rotation axes 

allowed for netplanes. 

p  =  | R'| / | R1 |  Rotation axis 

0 60 6-fold 

1 90 4-fold 

2 120 3-fold 

3 180 2-fold 
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Altogether, the translational symmetry of netplanes allows only 2-, 3-, 4-, and 6-fold rotation 

axes. Relation (3.75) shows, in addition, that a 4- fold rotation axis implies always a 2-fold axis at 

the same rotation center ro. Further, a 6- fold rotation axis includes 2- and 3-fold axes. Since 2-fold 

rotations are equivalent with inversion operations, possible rotation centers ro for 2-, 4-, or 6-fold 

rotation axes must coincide with inversion centers given by (3.69). In contrast, centers of true 3-fold 

rotation axes (i.e. excluding 6-fold rotation) can never coincide with inversion centers. 

Consider a netplane with 4- fold rotation symmetry at ro, assumed to coincide with the net-

plane origin. Then its periodicity can be described by lattice vectors R1 and R2, where |R1| denotes 

the smallest distance between lattice points of the netplane. Further, R2 can be constructed to be the 

image of R1, rotated by 90, yielding the same length as vector R1. Thus, the corresponding mor-

phological unit cell is of square shape, see Fig. 3.10. A rotation of the lattice vectors R1 and R2 by 

90 with respect to the netplane origin yields vectors R1', R2' with 

R1'  =  C90 (R1)  =  R2  , R2'  =  C90  (R2)  =  -R1 (3.78) 

 

Fig. 3.10.  Rotation by  = 90 applied to lattice vector R1 to yield R2. The initial 

rotation center is indicated by a red square. The unit cell is emphasized in gray with 

its other 2- and 4-fold rotation centers shown by black ellipses and squares, respec-

tively. 

Therefore, a 90 rotation about a center ro inside the unit cell, given by  

ro  =  1 R1 + 2 R2  ,         0    i  <  1  ,    i = 1, 2 (3.79) 

transforms general lattice vectors R of (3.66) to R' according to 

R' =  n1' R1 + n2' R2  = 

 =  ro  +  C90 (R - ro)  =  ro  +  C90 (R) - C90 (ro)  = 

 =  1 R1 + 2 R2  +  n1 R2  -  n2 R1  -  1 R2  +  2 R1  = 

 =  (1 + 2 - n2) R1  +  (2 - 1 + n1) R2  =  1 R1 + 2 R2 (3.80) 

where 
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1  =  1 + 2 - n2 2  =  2 - 1 + n1 

1  =  1/2 (1 - 2 + n1 + n2) 2  =  1/2 (1 + 2 - n1 + n2) (3.81) 

If ro is the center of a 4-fold rotation axis of the netplane, then all transformed centers R' in (3.80) 

must coincide with the initial centers R given by (3.66). This requires that both 1 and 2 are inte-

ger-valued and, hence, the corresponding parameters i in (3.81) must be integer multiples of 1/2. 

Together with relation (3.79), only two parameter choices (1 = 2 = 0) and (1 = 2 = 1/2) are possi-

ble. This results in two different possible centers of 4-fold rotation axes inside the unit cell at 

ro
(1)

  =  0  ,     ro
(2)

  =  1/2 (R1 + R2) (3.82) 

which covers only half of the 2-fold rotation centers given by (3.69), as shown in Fig. 3.10. 

Next, consider a netplane with true 3-fold rotation symmetry at ro (i.e. 3- but not 6-fold rota-

tion), assumed to coincide with the netplane origin. Then its periodicity can be described by lattice 

vectors R1 and R2, where |R1|, as before, denotes the smallest distance between lattice points of the 

netplane. Further, R2 can be constructed to be the image of R1, rotated by 120, yielding the same 

length as vector R1. Thus, the corresponding morphological unit cell takes the shape of a highly 

symmetric rhombus, see Fig. 3.11. A rotation of the lattice vectors R1 and R2 by 120 with respect 

to the netplane origin yields vectors R1', R2' with 

R1'  =  C120 (R1)  =  R2  , R2'  =  C120 (R2)  =  - (R1 + R2) (3.83) 

 

Fig. 3.11.  Rotation by  = 120 applied to lattice vector R1 to yield R2. The initial 

rotation center is indicated by a red triangle. The unit cell is emphasized in gray with 

its other 3-fold rotation centers shown by black triangles. 

Therefore, a 120 rotation about a center ro inside the unit cell, given by  

ro  =  1 R1 + 2 R2  ,         0    i  <  1  ,    i = 1, 2 (3.84) 

transforms general lattice vectors R of (3.66) to R' according to 
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R' =  ro  +  C120 (R - ro)  =  ro  +  C120 (R) - C120 (ro)  = 

 =  1 R1 + 2 R2  +  n1 R2  -  n2 (R1 + R2)  -  1 R2  +  2 (R1 + R2)  = 

 =  (1 + 2 - n2) R1  +  (22 - 1 + n1 - n2) R2  =  1 R1 + 2 R2 (3.85) 

where 

1  =  1 + 2 - n2 2  =  22 - 1 + n1 - n2 

1  =  1/3 (21 - 2 + n1+ n2) 2  =  1/3 (1 + 2 - n1+ 2n2) (3.86) 

If ro is the center of a 3-fold rotation axis of the netplane, then all transformed centers R' in (3.85) 

must reflect the initial centers R given by (3.66). This requires that both 1 and 2 are integer-

valued and, therefore, the corresponding parameters i must be integer multiples of 1/3. Together 

with relation (3.84), only three parameter choices (1 = 2 = 0), (1 = 2/3, 2 = 1/3), and  

(1 = 1/3, 2 = 2/3) are possible. This results in three different possible centers of true 3-fold rota-

tion axes at 

ro
(1)

  =  0  ,     ro
(2)

  =  1/3 (2 R1 + R2)  ,     ro
(3)

  =  1/3 (R1 + 2 R2) (3.87) 

If a netplane possesses 6-fold rotation symmetry at ro this center must also serve for a 2- and 

3-fold rotation axis. Here the former offers four distinct centers ro inside the unit cell according to 

(3.69), while the latter allows three different centers, given by (3.87). The two sets of centers over-

lap only at ro  =  0, the origin of the unit cell. Therefore, a netplane allows 6-fold rotation sym-

metry only at centers coinciding with lattice points. 

In conclusion, rotation axes existing as symmetry elements of a netplane, defined by primitive 

lattice vectors R1 and R2, have the following properties : 

 Netplanes allow only 2-, 3-, 4-, and 6-fold rotation axes. (3.88a) 

 Centers of 2-fold rotation axes form netplanes with lattice vectors 

1/2 R1, 1/2 R2.  (3.88b) 

 Centers of 2-fold rotations are identical with inversion centers. (3.88c) 

 Centers of true 3-fold rotations are restricted to hexagonal netplanes. They 

form netplanes with lattice vectors  

 1/3 (2 R1 + R2),  1/3 (R1 + 2 R2) (obtuse representation of R1, R2) 

 1/3 (R1 + R2),  1/3 (-R1 + 2 R2) (acute representation of R1, R2). (3.88d) 

 Centers of 4-fold rotation axes are restricted to square netplanes. They 
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form netplanes with lattice vectors 1/2 (R1 + R2), 1/2 (R1 - R2). Thus,  

4-fold rotation centers coincide with half of the 2-fold rotation centers,  

given in (3.88b). (3.88e) 

 Centers of 6-fold rotation axes combine 2- with 3-fold rotation axes. 

They form netplanes with lattice vectors R1 and R2, reflecting the initial  

netplane. (3.88f) 

 

3.6.4 Mirror Operation   

Mirror operations (ro, e) with respect to a mirror line along vector e on the netplane create, 

for any point r on one side of the line, an image point r' on the other side, such that the connecting 

line between the two points is perpendicular to the mirror line and their distances from the mirror 

line are the same, see Fig. 3.12. This can be expressed mathematically by a transformation of 

points on the netplane 

r      r'  =  r  -  2 [( r - ro ) m] m  =  ro  +  m ( r - ro ) (3.89) 

where the mirror line is defined by its origin ro (mirror center), a direction vector e along the line 

(mirror line vector), and a normal vector m (mirror line normal vector) of unit length perpendic-

ular to vector e, sketched in Fig. 3.12. The mirror operation can also be connected with a  

 

Fig. 3.12.  Sketch of a mirror operation applied to vector r to yield r'. The mirror 

center ro, mirror line vector e, and mirror line normal vector m are labeled accord-

ingly, see text. 

two-dimensional Cartesian coordinate transformation with respect to the mirror center ro applying 

a 2  2 matrix m where 
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with 

m  =  (mx, my)  =  (-ey, ex)     and     e  =  (ex, ey)   with  ex
2
 + ey

2
  =  1 (3.91) 

The mirror line vector e may also be written in Cartesian coordinates as 

e  =  (cos , sin ) (3.92) 

where  denotes the angle of the mirror line with respect to an x axis. Hence mirror line normal 

vector m is given by 

m  =  (-sin , cos ) (3.93) 

which, according to (3.90), leads to 
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 (3.94) 

Here the mirror center ro can be chosen arbitrarily along the mirror line, since due to the or-

thogonality of e and m a shift 

ro      ro'  =  ro  +   e (3.95) 

results, according to (3.89) with (e m) = 0, in a transformation 

r''  =  r - 2 [ ( r - ro' ) m ] m  =  r - 2 [ ( r - ro ) m ] m  + 2 (e m) m  =  r' (3.96) 

Parallel mirror lines given by mirror centers r1o, r2o with identical normal vectors m are sepa-

rated by a distance 

dm  =  | (r2o - r1o) m | (3.97) 

Here a combined mirror operation with respect to the two lines can be written as 

r    r' : r'  =  r  -  2 [ ( r - r1o ) m ] m (mirror line 1) (3.98a)  

r'    r'' : r''  =  r'  -  2 [ ( r' - r2o ) m ] m (mirror line 2) (3.98b) 

yielding, after some calculus 

r''  =  r  +  2 [ (r2o - r1o) m ] m (3.99) 
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This corresponds to a simple shift operation by a shift vector perpendicular to the mirror lines 

with, according to (3.97), a length equal to twice the distance between the two mirror lines. 

Centers ro of two mirror lines which cross each other can always be chosen such as to coin-

cide with the crossing point. Thus, the mirror lines differ only by their transformation matrices m, 

where, assuming a crossing angle  between the the mirror lines leads, according to (3.94), to ma-

trices m() and m(+) with 
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Therefore, a combination of the two mirror operations (in the two different sequences) results in 

symmetry operations with their centers at ro and transformation matrices T , T' given by the differ-

ent products of m() and m(+), i.e. by 
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and 
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Comparing with (3.74), matrices C2 and C-2 represent clockwise and anti-clockwise rotations by 

an angle 2, as sketched in Fig. 3.13 for the anti-clockwise case. Therefore, two mirror symmetry 

lines of a netplane which cross at ro with a finite angle  are always connected with (clockwise and 
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Fig. 3.13.  Two subsequent mirror line operations with mirror lines crossing at ro and 

forming an angle . Point A is transformed to A', then to A''. The mirror lines are 

indicated by thick black lines with small mirror normal arrows. Angles , 2 are 

labeled accordingly. 

anti-clockwise) rotations by 2. If the two mirror lines are symmetry elements of a netplane the 

resulting rotation by 2 must also be a symmetry element. Thus, it must belong to an n-fold rota-

tion axis of the netplane. Since these axes can only be 2-, 3-, 4-, or 6-fold, possible angles  with 0 

< ||  90 amount to 

||  =  30 ,  45 ,  60 ,  90 (3.104) 

In particular, matrix T of (3.102) for  = 90 reflects a 180 rotation, corresponding to a 2-fold 

rotation axis, which was shown to be also equivalent to an inversion operation. Thus, the crossing 

point of two orthogonal mirror lines is always the center of a 2-fold rotation or inversion. 

Relation (3.102) can be modified to read 

C  m ()  =  m ( + /2)  m ()  m ()  =  m ( + /2) (3.105) 

This shows that a mirror operation followed by a rotation by an angle  with respect to a center ro 

on the mirror line is equivalent to another mirror operation. The latter mirror line crosses the initial 

line at ro and forms an angle /2 with it. This result becomes important for the symmetry analysis 

of netplanes discussed in the following. 

The compatibility between translational and mirror symmetry imposes constraints on possi-

ble positions and directions of mirror lines in a netplane. Let us assume a netplane with lattice vec-

tors R1 and R2 possesses mirror symmetry with a mirror line through ro. Then the netplane can al-

ways be shifted such that its origin coincides with ro (setting ro = 0). According to (3.89), a general 

lattice vector R, given by (3.66) and not located at a mirror line, will have a mirror image R'. Then 

the difference vector Rr2, given by 
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Rr2  =  R - R'  =  2 (R m) m  =  k1 R1 + k2 R2  ,     k1, k2  integer (3.106) 

must also be a general lattice vector. This shows, in particular, that normal vectors m of mirror lines 

must always point along general lattice vectors of the netplane. Further, the vector sum Rr1 is given 

by 

Rr1  =  R + R'  =  2 [ R - (R m) m ]  =  (2n1 - k1) R1 + (2n2 - k2) R2 (3.107) 

with  

Rr1Rr2  =  4 [ R - (R m) m ] [ (R m) m ] =  0 (3.108) 

Thus, the general lattice vector Rr1 is perpendicular to Rr2 and, hence, points along the mirror line. 

Altogether, the existence of a mirror plane implies two orthogonal general lattice vectors Rr1 

and Rr2 in the netplane. These may be integer multiples of smaller lattice vectors along their direc-

tions, where we consider, in each case, the smallest possible vector, calling it R1 and R2. Vectors R1 

and R2 can then be used as lattice vectors to describe the netplane periodicity and, since the vectors 

are perpendicular to each other the netplane must be rectangular. Therefore, in the following dis-

cussion, we will use mutually orthogonal lattice vectors R1 and R2 to describe netplanes with mirror 

symmetry, where primitive and centered rectangular netplanes, see Sec. 3.6.1, can be treated on the 

same footing. 

Consider a primitive rectangular netplane defined by orthogonal lattice vectors R1 and R2 and 

a mirror operation with its mirror line through the netplane origin and parallel to R1. , i.e. 

m = R2/|R2|  ,     ro = 0 (3.109) 

Then, as a result of translational symmetry, there are infinitely many parallel mirror lines through 

mirror centers at ron with 

ron  =  n R2,     n integer (3.110) 

indicated by black horizontal lines in Fig. 3.14, where adjacent lines are separated by a distance dm 

with 

dm  =  | R2 m |  =  R2 (3.111) 
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Fig. 3.14.  Periodic sets of horizontal mirror lines for (a) primitive and (b) centered 

rectangular netplanes. The mirror lines are shown by black and gray horizontal lines 

(some with small mirror normal arrows) parallel to lattice vector R1. The unit cell is 

emphasized in gray. 

The translational symmetry of the netplane yields additional parallel mirror lines beyond those 

given by (3.110). The mirror operation (3.89), together with (3.109), (3.110), can be written as 

r' =  r  -  2 [ ( r - ron ) m ] m  =  r  -  2 [ ( r - (ron+ R2/2) ) m ] m  -  R2 (3.112) 

which can be interpreted as a parallel mirror operation with respect to a mirror line at origin 

ron'  =  (n + 1/2) R2,     n integer (3.113) 

followed by a (backwards) shift by lattice vector R2. Thus, if a netplane reproduces itself for mirror 

operations with mirror lines at origins ron, according to (3.109), its translational symmetry also 

yields mirror symmetry with respect to additional parallel lines. The latter originate at ron', given by 

(3.112), and, thus, are located in the middle between the adjacent mirror lines of the initial set 

(3.110), as indicated by gray horizontal lines in Fig. 3.14. The two sets, defined by origins (3.110) 

and (3.113), can be combined to one set of parallel mirror lines with m = R2/|R2| and originating at 

mirror centers 

ron  =  n R2/2 ,     n integer (3.114) 

where even n values refer to (3.110) and odd ones to (3.113). Mirror symmetry of the netplane for 

additional lines parallel to those given by (3.114) cannot occur since this would violate the transla-

tional symmetry of the netplane. 

The results for sets of mirror lines parallel to R2 are completely analogous to those when mir-
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ror lines parallel to R1 are considered. Interchanging R1 with R2 in the above discussion shows that, 

as a result of translational symmetry, there are infinitely many parallel mirror lines through mirror 

centers at ron with 

m = R1/|R1|  ,     ron  =  n R1/2 ,     n integer (3.115) 

 

Fig. 3.15.  Periodic sets of vertical mirror lines for (a) primitive and (b) centered 

rectangular netplanes, see text. The mirror lines are shown by black and gray vertical 

lines (some with small mirror normal arrows) parallel to lattice vector R2. The unit 

cell is emphasized in gray. 

The sets of mirror lines parallel to lattice vectors R1 and R2 of a primitive rectangular netplane, 

given by origins (3.114) and (3.115), must also exist when the orthogonal lattice vectors R1 and R2 

refer to a non-primitive representation of a centered rectangular netplane, as illustrated in Figs. 

3.14b and 3.15b. The additional netplane point in the center of the morphological unit cell of the 

centered rectangular netplane is always positioned on a mirror line, shown in gray in the two fig-

ures. Thus, it cannot give rise to additional mirror lines and the set of parallel mirror lines at origins 

(3.114) and (3.115) is also complete for centered rectangular lattices. 

Netplanes with mirror symmetry may also include inversion centers as symmetry elements. 

Let us assume a primitive rectangular netplane with orthogonal lattice vectors R1 and R2 to pos-

sess mirror lines parallel to R1 through centers ron, given by (3.114), as symmetry elements. If the 

netplane also possesses inversion symmetry, then there is, according to Sec. 3.6.2, an infinite num-

ber of inversion centers which form a netplane on their own (inversion netplane), with lattice vec-

tors 1/2 R1 and 1/2 R2, see (3.72). The origin of the inversion netplane may be shifted with respect 



148 

 

to that of the initial netplane defining the mirror lines, but the two have to be compatible. Thus, 

mirror operations with respect to any mirror line through centers ron, given by (3.114), must repro-

duce all inversion centers and inversions with respect to any inversion center must reproduce all 

mirror lines. This is possible only if, either, the origins of the initial and its inversion netplane coin-

cide, or the origins are shifted with respect to each other by R2/4. In the former case all inversion 

centers lie on mirror lines, while, in the latter, inversion centers lie only in the middle between mir-

ror lines, as illustrated in Fig. 3.16. 

 

Fig. 3.16.  Primitive rectangular netplanes with coexisting inversion centers (2-fold 

rotation axes) and mirror lines. (a) Mirror lines parallel to R1 and R2 with inversion 

centers on mirror lines. (b,c) Mirror lines with inversion centers between mirror 

lines parallel to R1 and parallel to R2, respectively. Corresponding unit cells are em-

phasized in gray with lattice vectors R1, R2 indicated accordingly. Mirror lines are 

shown by thick lines and 2-fold rotation centers by black ellipses. 

According to (3.105) an inversion center ro on a mirror line parallel to R1 and through ro implies an-

other mirror line through ro but parallel to R2, i.e. perpendicular to R1. This shows that, when all in-

version centers lie on mirror lines parallel to R1, the netplane also includes the set (3.115) of mirror 

lines parallel to R2. This is illustrated in Fig. 3.16a, where mirror lines of both sets are sketched. 
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The above results apply analogously to primitive rectangular netplanes with orthogonal lat-

tice vectors R1 and R2 including mirror lines parallel to R2 (through centers ron given by (3.115)) as 

symmetry elements. Interchanging R1 with R2 in the previous discussion shows that inversion 

symmetry of the netplane is only possible if the origins of the initial and its inversion netplane coin-

cide or, if the origins are shifted with respect to each other by R1/4. This means that, either, all in-

version centers lie on mirror lines, which implies two orthogonal sets of mirror lines, as discussed 

above, see Fig. 3.16a. Alternatively, inversion centers will lie only in the middle between mirror 

lines, as illustrated in Fig. 3.16c. 

The same arguments concerning compatibility of mirror and inversion symmetry for primi-

tive rectangular netplanes can also be used for centered rectangular netplanes. Starting from a 

non-primitive description of a centered rectangular netplane by orthogonal lattice vectors R1 and R2, 

a primitive description can be obtained by lattice vectors R1 and R2' with 

R2'  = 1/2 (R1 + R2) (3.116) 

Thus, a centered rectangular netplane with inversion symmetry possesses, according to Sec. 3.6.2, 

an infinite number of inversion centers forming an inversion netplane with lattice vectors (R1/2), 

(R2'/2) = 1/4 (R1 + R2). On the other hand, it was shown above that the set of mirror lines parallel to 

R1 is identical for primitive and centered rectangular netplanes. Therefore, compatibility of mirror 

and inversion symmetry requires that the origins of the initial and its inversion netplane coincide. 

This is the only choice and results in half of the inversion centers lying at mirror lines and the oth-

er half in the middle between mirror lines, as illustrated in Fig. 3.17. Further, the inversion centers 

on the mirror lines lead to two orthogonal sets of mirror lines, as discussed for primitive rectangular 

netplanes and sketched in Fig. 3.17. 
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Fig. 3.17.  Centered rectangular netplane with coexisting inversion centers (2-fold 

rotation axes) and mirror lines parallel to R1, R2. Corresponding non-primitive and 

primitive unit cells are emphasized in light and dark gray, respectively, with lattice 

vectors R1, R2, R2' indicated accordingly. Mirror lines are shown by thick lines and 

2-fold rotation centers by black ellipses. 

Since in two dimensions inversion centers and 2-fold rotation axes are equivalent the above 

discussion also applies to coexisting mirror and 2-fold rotation symmetry in netplanes. 

Netplanes with mirror symmetry may also possess 4-fold rotation axes as symmetry ele-

ments. According to the discussion in Sec. 3.6.3, 4-fold rotation symmetry in a netplane results in 

symmetry-adapted lattice vectors R1 and R2 which are mutually orthogonal and both of smallest fi-

nite length. This yields a primitive morphological unit cell of square shape. 

Let us assume a square netplane with orthogonal lattice vectors R1 and R2 of equal length to 

possess mirror lines parallel to R1 through centers ron, given by (3.114), as symmetry elements. If 

the netplane is also symmetric with respect to 4-fold rotation, corresponding rotation centers must 

coincide with positions of 2-fold rotation centers on the netplane, since 4-fold rotation implies  

2-fold rotation. As shown above, the complete set of 2-fold rotation centers ( = inversion centers) 

forms an inversion netplane with lattice vectors 1/2 R1 and 1/2 R2. Adding 4-fold rotation centers 

according to (3.88e) covers half of the inversion centers in a checkerboard type arrangement, see 

Fig. 3.18a. The origin of this modified inversion netplane can only coincide with that of the initial 

square netplane or its origin is shifted, by R1/4,  R2/4, or (R1+ R2)/4, see above. Here, the presence 

of 4-fold rotation centers is found to yield the same structures for all cases.  
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Fig. 3.18.  Square netplane with coexisting 2-, 4-fold rotation axes and mirror lines. 

(a) Mirror lines parallel to R1, R2, and to diagonals. (b) Mirror lines parallel to diag-

onals between true 2-fold rotation axes only. Corresponding unit cells are empha-

sized in gray. Mirror lines are shown by thick lines and 2-, 4-fold rotation centers by 

black ellipses and open squares, respectively. 

Thus, only the coincidence geometry needs to be considered, where it can be assumed that the net-

plane origin ro also coincides with a 4-fold rotation center, as indicated in Fig. 3.18a. As a conse-

quence, this 4-fold rotation center ro implies other mirror lines crossing ro, where, according to 

(3.105), mirror lines parallel to R1 and R2, as well as parallel to the two diagonals (R1  R2) cover 

all cases, illustrated by Fig. 3.18a. This combination of mirror and 4-fold rotation symmetry does 

not include mirror lines parallel to the two diagonals (R1  R2) connecting true 2-fold rotation cen-

ters. The existence of such mirror lines can be shown to exclude all previous mirror lines of Fig. 

3.18a, yielding an alternative geometry for coexisting mirror and 4-fold rotation symmetry, shown 

in Fig, 3.19b. 

The coexistence of mirror lines and true 3-fold (i.e. 3- but not 6-fold) rotation axes as sym-

metry elements of a netplane is slightly more involved. First, we note that, as discussed in  

Sec. 3.6.3, 3-fold rotations are restricted to hexagonal netplanes, described by two primitive lattice 

vectors R1
hex

, R2
hex

 of equal length, forming an angle of 120 or 60. Here we use the acute repre-

sentation (i.e. 60) which yields 

|R1
hex

|  =  |R2
hex

|  =  a  ,         R1
hex
R2

hex
  =  a

2
 / 2 (3.117) 

where a is the lattice constant of the netplane. This allows the definition of a vector R2  

R2  =  2 R2
hex

 - R1
hex

 (3.118) 

which is orthogonal to R1
hex

. Therefore, vectors R1
hex

, R2, together with R2
hex

 yield a non-primitive 

lattice description of the hexagonal netplane by a centered rectangular netplane which will be 
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used in the following. 

Consider a hexagonal netplane, described as centered rectangular by orthogonal non-primitive 

lattice vectors R1
hex

, R2 (|R2| = 3 |R1
hex

|) and a centering lattice vector R2
hex

. This netplane is further 

assumed to possess mirror lines parallel to R1
hex

 through centers ron, given by (3.114), as symmetry 

elements. If the netplane also includes symmetry with respect to true 3-fold rotation, then corre-

sponding rotation centers form, according to (3.88d) and after some calculus, a separate rotation 

netplane with lattice vectors 1/3 (R1
hex

 + R2
hex

) and  

1/3 R2. The origin ro of this rotation netplane, which can be assumed to be a 3-fold rotation center, 

must coincide with the origin of the initial hexagonal netplane, as indicated in Fig. 3.19a. The 3-fold 

rotation center at ro, positioned on a mirror line parallel to R1
hex

, implies, according to (3.105), two 

additional mirror lines crossing ro, which are rotated by 60 and 120. This yields the netplane ge-

ometry illustrated by Fig. 3.19a. The discussion for a hexagonal netplane assumed to possess mir-

ror symmetry parallel to R2 together with 3-fold rotation symmetry is completely analogous and 

leads to the netplane geometry illustrated by Fig. 3.19b. 

 

Fig. 3.19.  Hexagonal netplane with coexisting true 3-fold rotation axes and mirror 

lines. (a) Mirror lines parallel to R1 and corresponding rotated mirror lines. (b) Mir-

ror lines parallel to R2 and corresponding rotated mirror lines. Non-primitive and 

primitive unit cells are emphasized in light and dark gray, respectively, with lattice 

vectors R1, R2, R2' indicated accordingly. Mirror lines are shown by thick lines and 

3-fold rotation centers by black triangles. 

The coexistence of mirror lines and 6-fold rotation axes as symmetry elements of a netplane 

is, analogous to the case of 3-fold rotation symmetry, also restricted to hexagonal netplanes. As 

before, we describe the hexagonal netplane as centered rectangular by orthogonal non-primitive lat-

tice vectors R1
hex

, R2 (|R2| = 3 |R1
hex

|) and a centering lattice vector R2
hex

. The netplane is further 
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assumed to possess mirror lines parallel to R1
hex

 through centers ron, given by (3.114), as symmetry 

elements. Allowing, in addition, for 6-fold rotational symmetry leads to corresponding rotation 

centers, which form, according to (3.88f) a rotation netplane with lattice vectors R1
hex

, R2
hex

, i.e. the 

rotation netplane is of the same periodicity than the initial hexagonal netplane. The origin ro of this 

rotation netplane, which can be assumed to be a 6-fold rotation center, must coincide with the origin 

of the initial hexagonal netplane, as indicated in Fig. 3.20. The 6-fold rotation center at ro, posi-

tioned on a mirror line parallel to R1
hex

, implies, according to (3.105), five additional mirror lines 

crossing ro, which are rotated by 30, 60, 90, 120, and 150. This yields the netplane geometry 

illustrated by Fig. 3.20. 

 

Fig. 3.20.  Hexagonal netplane with coexisting 3-, 6-fold rotation axes and mirror 

lines parallel to R1
hex

, R2
hex

 and corresponding rotated mirror lines. Non-primitive 

and primitive unit cells are emphasized in light and dark gray, respectively, with 

lattice vectors R1, R2, R2' indicated accordingly. Mirror lines are shown by thick 

lines and 3-, 6-fold rotation centers by black triangles and hexagons, respectively. 

In conclusion, mirror lines existing as symmetry elements of a netplane, defined by lattice 

vectors R1 and R2, have the following properties : 

 Netplanes with mirror symmetry must be either primitive or centered  

rectangular (including square and hexagonal netplanes as special cases). (3.119a) 

 Netplanes with mirror symmetry include infinite sets of parallel mirror 

lines. If R1 and R2, are orthogonal lattice vectors describing the primitive  

or non-primitive morphological unit cell, then mirror line sets can be 

given by normal vectors m = R1/|R1| and centers ron  =  n R1/2, or by 

normal vectors m = R2/|R2| and centers ron  =  n R2/2. (3.119b) 
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 In primitive rectangular netplanes with mirror symmetry inversion  

(2-fold rotation) centers lie either all on mirror lines or all in the middle  

between adjacent parallel mirror lines. (3.119c) 

 In centered rectangular netplanes with mirror symmetry inversion 

(2-fold rotation) centers induce two orthogonal sets of parallel mirror lines. 

The inversion centers lie both on mirror lines and in the middle between  

adjacent parallel mirror lines. (3.119d) 

 In square netplanes with mirror symmetry 4-fold rotation centers induce 

two or four orthogonal sets of parallel mirror lines. The mirror lines will  

either cross 2- and 4-fold rotation centers (four sets) or will only connect  

2-fold centers between 4-fold rotation centers (two sets). (3.119e) 

 In hexagonal netplanes with mirror symmetry true 3-fold rotation centers  

induce sets of parallel mirror lines which cut each other at angles of 60. (3.119f) 

 In hexagonal netplanes with mirror symmetry 6-fold rotation centers  

induce sets of parallel mirror lines which cut each other at angles of  

30, 60, and 90, respectively.  (3.119g) 

 

3.6.5 Glide Reflection 

Glide reflections g(ro, g) combine mirroring with translation and are, therefore, not point 

symmetry operations in the strict sense. They create, for any point r on one side of a glide line along 

g, a mirror point on the other side (the glide line acting as a mirror line), which is then shifted by a 

vector g parallel to the glide line to yield the image point r', see Fig. 3.21. This can be expressed 

mathematically by a transformation of points on the netplane 

r      r'  =  r  -  2 [ ( r - ro ) m ] m  +  g  =  ro  +  m ( r - ro )  +  g (3.120) 

where the glide line is defined by its origin ro (glide line center), a shift vector g along the line 

(glide line vector), and a normal vector m (glide line normal vector) of unit length perpendicular 

to vector g, sketched in Fig. 3.21. The glide reflection can also be connected with a two-

dimensional  
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Fig. 3.21.  Sketch of a glide reflection operation applied to vector r and yielding r'. 

The glide line center ro, glide line vector g, and glide line normal vector m are la-

beled accordingly, see text. 

Cartesian coordinate transformation with respect to the mirror center ro applying a 2  2 matrix 

m where 
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where matrix m is identical to that for mirroring, see (3.90), and 

m  =  (mx, my)  ,     g  = (gx, gy)  ,     (mg)  =  0 (3.122) 

As for mirroring the glide line center ro can be chosen arbitrarily along the glide line. Fur-

ther, repeating a glide reflection (3.120) with the same glide line vector g results in an operation 

given by 

r    r'    r'' =  r'  -  2 [ ( r' - ro ) m ] m  +  g  = 

 =  r  -  2 [ ( r - ro ) m ] m  +  2 g  +  2 [ ( r - ro ) m ] m  = 

 =  r  +  2 g (3.123) 

Thus, two subsequent glide reflections with identical g are equivalent to a translation by vector  

2 g. In a netplane possessing glide reflection symmetry this vector must be a general lattice vector, 

i.e. 

2 g  =  R  =  n1 R1  + n2 R2  ,     n1, n2 integer 

or 

g  =  1/2 R  =  1/2 (n1 R1  + n2 R2) (3.124) 

This restricts possible translation vectors g of glide lines and is the main condition for compatibility 

between translational and glide line symmetry in netplanes. 
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A glide line g(ro, g) as a symmetry element of a netplane was shown to point always along one 

of its general lattice vectors R. Of these, the smallest vector along R, denoted Ro, is given, accord-

ing to (3.124) by mixing factors n1, n2, whose common divisor is not greater than 1. This yields 

glide reflections g(ro, g = Ro/2) with Ro determining the translational periodicity of the netplane 

along the glide line. Relation (3.124) also allows multiples of Ro/2 as possible glide line vectors g, 

i.e. in general 

g  =  p Ro/2  ,     p  integer (3.125) 

Here even p values yield vectors g that are general lattice vectors themselves. Thus, the definition 

(3.120) of a glide reflection together with translational symmetry of the netplane leads to a mirror 

operation. On the other hand, odd p values correspond to the glide reflection g(ro, g = Ro/2) up to 

a shift by a general lattice vector which can be ignored due to translational symmetry of the net-

plane. Thus, in the following true glide reflection symmetry will always be connected with sym-

metry operations g(ro, Ro/2), where Ro denotes the smallest vector along its direction.. 

The compatibility between translational and glide reflection symmetry imposes constraints on 

possible positions and directions of glide lines in a netplane. Let us assume a netplane with lattice 

vectors R1 and R2 to possess glide reflection symmetry with respect to a glide line along Ro and 

through ro. Then the netplane can always be shifted such that its origin coincides with ro (setting  

ro = 0). Further, since Ro was shown to be a general lattice vector of smallest length along its direc-

tion, it can be used to define one of the lattice vectors of the netplane, e.g. setting R1 = Ro. Accord-

ing to (3.120), a general lattice vector R, given by (3.66) and not positioned on a glide line, will 

have a glide reflection image R', where 

R'  =  R  -  2 (R m) m  +  Ro/2 (3.126) 

and applying a glide reflection to R' creates a second image R'' with 

R''  =  R'  -  2 (R' m) m  +  Ro/2 (3.127) 

where both R' and R'' are general lattice vectors. Therefore, vector Rg2, given by 

Rg2  =  R  +  R''  -  2 R'  =  2 [ (R - R') m ] m (3.128) 

must also be a general lattice vector, which is orthogonal to R1 = Ro since (m Ro)  =  0 according to 

(3.122). Thus, the lattice vector of smallest length along Rg2, together with R1 provides an orthogo-

nal set of (primitive or non-primitive) lattice vectors describing the netplane periodicity. This 
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proves that the existence of glide reflection symmetry is always connected with primitive or non-

primitive rectangular netplanes. Therefore, in the following discussion, we will use mutually or-

thogonal lattice vectors R1 and R2 to describe netplanes with glide reflection symmetry. 

First, consider a rectangular netplane defined by orthogonal lattice vectors R1 and R2 and a 

glide reflection with its glide line through the netplane origin and parallel to R1. , i.e. 

m = R2/|R2|  ,     ro = 0 (3.129) 

Then, in complete analogy with the discussion of mirror operations in Sec. 3.7.4, resulting in 

(3.113), there are infinitely many parallel glide lines through glide line centers at ron with 

ron  =  n R2/2 ,     n integer (3.130) 

which applies to both primitive and centered rectangular netplanes, as illustrated in Fig. 3.22a for 

the primitive rectangular case. 

 

Fig. 3.22.  Periodic sets of glide lines (a) parallel to lattice vector R1, (b) parallel to 

lattice vector R2 for primitive rectangular netplanes, see text. The glide lines are 

shown by black horizontal and vertical dashed lines. The unit cell is emphasized in 

gray. 

Analogously, glide reflections with their glide lines parallel to R2 form an infinite set with glide 

line centers at  

ron  =  n R1/2 ,     n integer (3.131) 

for primitive and centered rectangular netplanes, shown in Fig. 3.22b. 

A glide line g(ro, g = Ro/2) can never coincide with a mirror line (ro, e = Ro/|Ro|) along the 

same direction in a netplane, since this would result in lattice vectors Ro' = Ro/2 contradicting Ro to 
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be of smallest length along its direction. However, glide lines may exist between adjacent parallel 

mirror lines. Let us assume a netplane with orthogonal lattice vectors R1 and R2 to possess mirror 

symmetry with respect to a mirror line parallel to R1 through ro, chosen as the origin of the netplane. 

Then, according to the discussion in Sec. 3.6.4, the netplane includes an infinite set of parallel mir-

ror lines along R1 through centers ron = n R2/2, n integer, as symmetry elements. Thus, mirror lines 

with n = 0, 1, 2 confine or cut the morphological unit cell, see Fig. 3.23a. Let us assume that the 

netplane has also glide reflection symmetry with respect to a glide line parallel to R1 and cutting the 

morphological unit cell, which can be achieved by setting the glide line center rgo at 

rgo  =  γ R2 ,     0  <  γ  <  1 (3.132) 

Then a general lattice vector R according to (3.66) will be transformed by a glide reflection (3.120) 

to yield another general lattice vector R', where 

R'  =  R  -  2 [ ( R - rgo ) m ] m  +  R1/2  ,     m  =  R2/|R2| (3.133) 

or, using representation (3.66) together with the orthogonality of R1 and R2, 

R =  n1 R1 + n2 R2,     n1, n2  integer 

R' =  (n1 + 1/2) R1 + (2 γ - n2) R2  ,     n1, n2  integer (3.134) 

which can be written as 

R'  =  1/2 (R1 + R2)  +  n1 R1 + [ 2 (γ - 1/4) - n2 ] R2 (3.135) 

This shows that the transformed general lattice vector R' must belong to a centered rectangular 

lattice. Further, the prefactor [ 2 (γ - 1/4) - n2 ] in front of R2 must be integer, which constrains val-

ues of γ to 

2 (γ - 1/4)  =  p  ,     γ  =  (2p + 1) / 4  ,     p  integer (3.136) 

Thus, γ must be an odd valued multiple of 1/4 which together with constraints (3.132) allows only 

values γ = 1/4 or γ = 3/4, yielding glide lines in the middle between mirror lines through  

ro = 0 and ro = R2/2, as well as through ro = R2/2 and ro = R2. Thus, a combination of glide reflection 

and mirror symmetry parallel to R1 is possible only if the glide lines exist in the middle between 

adjacent mirror lines. In addition, the netplane must allow a centered rectangular representation 

by non-primitive orthogonal lattice vectors R1 and R2, as illustrated in Fig. 3.23a. The correspond-

ing result for netplane symmetry with glide and mirror lines parallel to R2 is analogous and illustrat-

ed in Fig. 3.23b. 
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Fig. 3.23.  Morphological unit cells of centered rectangular netplanes with coexist-

ing mirror and glide line symmetry, glide and mirror lines (a) parallel to R1, (b) par-

allel to R2. The non-primitive lattice vectors R1, R2, as well the centering vector R2' 

are labeled accordingly. The unit cells are emphasized in light and dark gray (non-

primitive and primitive cells, respectively) with mirror lines indicated by thick and 

glide lines by dashed lines.  

The result of the above discussion also has consequences for primitive rectangular netplanes 

described by orthogonal lattice vectors R1 and R2. There, symmetry with respect to a glide line par-

allel to R1 (or R2) excludes mirror symmetry with lines parallel to the glide line. Primitive rectangu-

lar netplanes do not allow glide lines parallel to mirror lines. 

Netplanes with glide reflection symmetry may also possess inversion symmetry. First, con-

sider primitive rectangular netplanes with primitive lattice vectors R1 and R2. According to 

(3.130) the complete set of glide lines parallel to R1 can be positioned at centers ron  =  n R2/2. Then 

inversion centers, forming a netplane with lattice vectors 1/2 R1 and 1/2 R2, see Sec. 3.6.2, can only 

either all lie on glide lines or all in the middle between adjacent glide lines, as illustrated in  

Fig. 3.24. (The prove is completely analogous to that for mirror lines given in Sec. 3.6.4.) In the 

former case inversion centers rio are given by 

rio  =  p R1/2 + q R2/2  ,     p, q integer (3.137) 

while in the latter rio can be defined by 

rio  =  p R1/2 + q R2/2  + R2/4  ,     p, q integer (3.138) 

with glide line centers rgo given by 

rgo  =  n2 R2/2  ,     n2 integer (3.139) 

Then a glide reflection g(rgo, R1/2) followed by an inversion i(rio) according to (3.64), (3.120) is 
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given by a transformation r    r'    r'', where 

r' =  r  -  2 [ ( r - rgo ) m ] m  +  R1/2  ,     m  =  R2 / |R2| 

r'' =  2 rio - r'  =  -r  +  2 [ ( r - rgo ) m ] m  +  2 rio  -  R1/2  = 

 =  -r  +  2 (r m) m  +  2 (rio - rgo) -  R1/2 (3.140) 

and with 

m'  =  R1/|R1|  ,     (m m')  =  0  ,     r  =  (r m) m  + (r m') m' (3.141) 

we obtain 

r''  =  r  -  2 (r m') m'  +  2 (rio - rgo)  -  R1/2 (3.142) 

If all inversion centers are positioned at glide lines, i.e for (3.137), relation (3.142) reads 

r'' =  r  -  2 (r m') m'  +  p R1 + (q - n2) R2  -  R1/2  = 

 =  r  -  2 [ (r - (2p-1) R1/4) m' ] m'  +  (q - n2) R2 (3.143) 

This corresponds to mirror operations ((2p-1) R1/4, R1/|R1|) with mirror lines perpendicular to the 

initial glide lines, followed by translations by general lattice vectors. Thus, a netplane, which is 

symmetric with respect to the initial glide lines parallel to R1 and contains inversion centers on the 

glide lines, will also include a set of perpendicular mirror lines as symmetry elements, as illus-

trated in Fig. 3.24a. 

If, on the other hand, all inversion centers are positioned in the middle between adjacent glide lines, 

i.e. for (3.138), relation (3.142) reads 

r'' =  r  -  2 (r m') m'  +  p R1 + (q - n2) R2  -  R1/2  +  R2/2  = 

 =  r  -  2 [ (r - (2p-1) R1/4) m' ] m'  +  R2/2  +  (q - n2) R2 (3.144) 

This corresponds to glide reflections g((2p-1) R1/4, R2/2) with glide lines perpendicular to the initial 

glide lines, followed by translations by general lattice vectors. Thus, a netplane, which is symmetric 

with respect to the initial glide lines parallel to R1 and contains inversion centers between the glide 

lines, will also include a set of perpendicular glide lines as symmetry elements, as illustrated in 

Fig. 3.24b. 
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Fig. 3.24.  Periodic sets of glide lines (dashed lines), parallel to R1, combined with 

corresponding inversion centers (ellipses) for a primitive rectangular netplane. (a) 

Inversion centers positioned on glide lines and perpendicular mirror lines, shown by 

thick lines.(b) Inversion centers positioned in the middle between glide lines and 

perpendicular glide lines. The unit cells are emphasized in gray. 

Primitive rectangular netplanes with inversion and glide reflection symmetry, where glide 

lines are parallel to R2, yield structures, which are analogous to those obtained for glide lines paral-

lel to R1. Here the two cases, inversion centers on glide lines and between glide lines, lead to addi-

tional orthogonal mirror lines and glide lines, respectively, as shown in Fig. 3.25, which is quite 

similar to Fig. 3.24. In fact, the structures of Figs. 3.24b and 3.25b differ only by a shift of the net-

plane origins. 

 

Fig. 3.25.  Periodic sets of glide lines (dashed lines), parallel to R2, combined with 

corresponding inversion centers (ellipses) for a primitive rectangular netplane. (a) 

Inversion centers positioned on glide lines and perpendicular mirror lines, shown by 

thick lines.(b) Inversion centers positioned in the middle between glide lines and 

perpendicular glide lines. The unit cells are emphasized in gray. 

Centered rectangular netplanes with inversion and glide reflection symmetry, where glide 
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lines are parallel to R1 or R2, always yield inversion centers positioned on glide lines as well as be-

tween. According to the above discussion, this results in additional perpendicular glide and mirror 

lines as symmetry elements and leads to the geometry shown in Fig. 3.26. 

 

Fig. 3.26.  Periodic sets of glide lines (dashed lines), parallel to R1, R2, combined 

with corresponding inversion centers (ellipses) for a centered rectangular netplane. 

The non-primitive lattice vectors R1, R2, as well the centering vector R2' are shown 

by red arrows and labeled accordingly. The unit cells are emphasized in light and 

dark gray (non-primitive and primitive cells, respectively). The resulting mirror lines 

are indicated by thick lines. 

In conclusion, glide lines existing as symmetry elements of a netplane, defined by lattice vec-

tors R1 and R2, have the following properties : 

 Netplanes with glide reflection symmetry must be either primitive 

or centered rectangular (including square and hexagonal netplanes 

as special cases). (3.145a) 

 Netplanes with glide reflection symmetry include infinite sets of 

parallel glide lines. If R1 and R2, are orthogonal lattice vectors describing 

the morphological unit cell, then glide line sets can be given by normal 

vectors m = R1/|R1| and centers ron  =  n R1/2, or by m = R2/|R2| and 

centers ron  =  n R2/2.  (3.145b) 

 Glide lines of netplanes with glide reflection and mirror symmetry 

can never coincide with mirror lines. Glide lines parallel to mirror lines  

exist only in centered rectangular netplanes and appear in alternating  

equidistant sequences. Primitive netplanes do not allow parallel glide  

and mirror lines as symmetry elements. (3.145c) 
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 In primitive rectangular netplanes with glide reflection and inversion  

symmetry inversion (2-fold rotation) centers lie either all on glide  

lines or all in the middle between adjacent parallel glide lines. (3.145d) 

 Primitive rectangular netplanes with glide reflection and inversion  

symmetry include an additional set of mirror lines perpendicular to  

the glide lines, if the inversion centers lie on the glide lines, and an  

additional set of glide lines perpendicular to the initial glide lines, 

if the inversion centers lie between glide lines. (3.145e) 

 Centered rectangular netplanes with glide reflection and inversion  

symmetry include orthogonal sets of parallel glide lines as well as  

of mirror lines as symmetry elements. (3.145f) 

 

3.6.6 Symmetry Groups 

The point symmetry operations, i.e. inversion, n-fold rotation, and mirroring, discussed in the 

previous sections together with corresponding translation operations, form a complete set which 

can be used to classify the different types of netplanes according to their point symmetry behavior. 

In the following discussion, point symmetry operations are denoted by Schönflies symbols and 

their origins ro are assumed to coincide with the origin of a two-dimensional Cartesian coordinate 

system (x, y). Further, rotation and mirror line angles are defined with respect to the x axis.  

Overall, there are 16 true point symmetry operations which can be applied and may repro-

duce a netplane. These are 

 eight rotation operations C(ro), see Sec. 3.6.3, where, due to compatibility with transla-

tional symmetry, rotation angles  are restricted to finite values   =  60, =  90,  

=  120,  = 180, with the latter also shown to reflect an inversion operation. Further, a ro-

tation with   = 0 describes the identity operation, which leaves a netplane unchanged and 

is introduced for mathematical completeness only. The corresponding 2  2 coordinate 

transformation matrices C are given by (3.74), i.e. by 















 cossin

sincos
C  (3.146) 
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 eight mirror operations (ro,), see Sec. 3.6.4, where, due to compatibility with translation-

al symmetry,  mirror line angles  are restricted to values   =  0 (mirror line along x axis), 

=  30 ,  =  45 (mirror line along x/y diagonal),  =  60 , =  90 (mirror line along y ax-

is). The corresponding 2  2 coordinate transformation matrices  are given by (3.94), i.e. 

by 















 )2cos()2sin(

)2sin()2cos(
 (3.147) 

Usually a netplane includes several of these 16 operations as elements describing its full point 

symmetry. If a netplane transforms into itself upon applying two point symmetry operations A, B 

separately then it must also be symmetric with respect to a subsequent application of the two, for-

mally described as a product operation (A B) whose 2  2 transformation matrix is given by the 

product of the two matrices A, B characterizing the operations. Thus, 

 the product of two rotation operations C, C (the explicit mention of the common rotation 

center ro is omitted in the following) is characterized according to (3.74) by a 2  2 matrix T 

with 
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 (3.148) 

which describes C+, a rotation by an angle equal to the sum of the two initial angles. 

 the product of two mirror operations ,  is characterized according to (3.94) by a 2  2 

matrix T with 
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  (3.149) 

which describes a rotation C2( - ) by an angle equal to twice that between the two mirror 

lines. 
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 the mixed products of a rotation and a mirror operation C,  are characterized accord-

ing to (3.74) and (3.94) by 2  2 matrices T with 
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  (3.151) 

which describe mirror operations (/2) with mirror lines rotated by /2 with respect to 

the initial mirror line referring to , where the two results depend on the sequence of the 

product formation. 

The rotation by 0 (identity operation) ), described as C0 and represented, according to (3.74), 

by the 2  2 unit matrix C0 with 
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sincos
C

0
0

 (3.152) 

can be considered a unit operation whose products with rotations and mirror operations yield 

C C0 =  C0 C  =  C  ,          C0 =  C0   =   (3.153) 

On the other hand, relation (3.148) shows together with (3.152) that any rotation by angle  can be 

undone by an inverted rotation with angle ' = -. Further, applying  =  in (3.149) shows that 

any mirror operation can be undone by its own mirror operation. These two results, which are intui-

tively clear, can be formally expressed by the statement that each symmetry operation A of the 

above set possesses an inverted operation A
-1

, where 

A·A
-1

  =  A
-1 

·A  =  C0 (3.154) 

As a last result we mention the associativity of subsequent applications of symmetry operations A, 

B, C, i.e. 
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A·(B·C)  =  (A·B)·C (3.155) 

which is clear from the associativity of the matrix multiplication. 

Any subset of the 16 point symmetry operations listed above forms a point symmetry group if 

all its product operations belong to the same subset. This is an example of a mathematical group G 

= {g1, … gp} with a finite number p of elements gi, which is defined formally [40] by the four prop-

erties 

1) a product of two group elements (gi·gj) is defined and always yields  

an element gk of the group (closure condition) (3.156a) 

2) the group contains a unit element e with  gi·e  =  e·gi  =  gi 

for all elements gi·of the group, analogous to (3.153) (3.156b) 

3) the group contains an inverse element gi
-1

 with gi·gi
-1

  =  gi
-1

·gi  =  e 

for each element gi·of the group, analogous to (3.154) (3.156c) 

4) group products are associative, i.e. gi·(gj·gk)  =  (gi·gj)·gk 

for all elements gi·of the group, analogous to (3.155) (3.156d) 

As an example, the three rotation operations defining a 3-fold rotation axis form a set  

{C0, C120, C-120} which defines a point symmetry group (denoted C3 or 3). 

The complete collection of two-dimensional point symmetry groups, allowed for netplanes, can 

be determined by considering the above 16 point symmetry operations together with their products 

given by (3.148) to (3.151). Then collecting sets of operations such that they satisfy the four group 

properties yields, altogether, 10 different point symmetry groups. These are listed by their opera-

tions as well as their symmetries in Table 3.9. where symmetry operation C0 defines the identity 

operation while C180 (2-fold rotation) is equivalent with inversion. 
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Table 3.9.  List of all point symmetry groups allowed for netplanes. The list includes group mem-

bers, rotations C with  denoting the rotation angle, and mirror operations , where  denotes 

the angle of the mirror line with respect to the x axis. The groups are labeled according to both the 

Hermann-Mauguin and the Schönflies notation, where the latter is put in parentheses. 

Group Symmetries Members Group Symmetries Members 

1 (C1) identity C0 m (CS) 1 mirror C0, 0 

2 (C2) 2-fold rot. C0, C180 2mm (C2v) 2-fold rot., 

2 mirrors 

C0, C180, 

0, 90 

3 (C3) 3-fold rot. C0, C120,  

C-120 

3m1,  

31m (C3v) 

3-fold rot., 

3 mirrors 

C0, C120,  

C-120, 60,  

-60, 0 

4 (C4) 2-fold rot., 

4-fold rot. 

C0, C90,  

C180, C-90 

4mm (C4v) 2-fold rot., 

4-fold rot., 

4 mirrors 

C0, C90,  

C180, C-90, 

0, 45,  

90, -45 

6 (C6) 2-fold rot., 

3-fold rot., 

6-fold rot. 

C0, C60,  

C120, C180,  

C-120, C-60 

6mm (C6v) 2-fold rot., 

3-fold rot., 

6-fold rot., 

6 mirrors 

C0, C60,  

C120, C180,  

C-120, C-60, 

0, 30, 60,  

90, -60, -30 

 

Each point symmetry group in Table 3.9, except for the identity group C1, includes subsets of 

symmetry elements, which themselves form groups, also called subgroups of the initial point 

symmetry group. This is shown in Table 3.10 listing all subgroups of the point symmetry groups of 

Table 3.9. 

Table 3.10.  List of all point symmetry groups allowed for netplanes together with corresponding 

subgroups, see text. The groups are labeled according to both the Hermann-Mauguin and the 

Schönflies notation, where the latter is put in parentheses. Subgroups are given only in Hermann-

Mauguin notation only. 

Group Subgroups Group Subgroups 

1 (C1) -- m (CS) 1  

2 (C2) 1 2mm (C2v) 1,  2,  m 

3 (C3) 1 3m1, 31m (C3v) 1,  3,  m 

4 (C4) 1,  2 4mm (C4v) 1,  2,  4, 

m,  2mm 

6 (C6) 1,  2,  3 6mm (C6v) 1,  2,  3, 

6,  m,  2mm, 

3m1,  31m 
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The formal group definition (3.156) can also be applied to describe translational symmetry of a 

netplane by its translation group. The characterization of a periodic netplane by its lattice vectors 

R1 and R2 means in particular that the netplane is symmetric with respect to translations by general 

lattice vectors R with R = n1 R1 + n2 R2. This can be phrased by a translation symmetry operation  

r        r'  =  T(n1, n2) r  =  r + (n1 R1 + n2 R2)  ,     n1, n2  integer (3.157) 

where the infinite set of operations T(n1,n2), n1, n2 integer, together with a product definition, 

T(n1, n2)·T(n1', n2')  =  T(n1+n1', n2+n2') (3.158) 

a unit element T(0,0), and inverse elements, 

T(n1, n2)
-1

   =  T(-n1, -n2) (3.159) 

defines the (infinite) translation group of a netplane. This group can be combined with a corre-

sponding point symmetry group of a netplane to yield a two-dimensional space group, sometimes 

also called plane group. If this space group describes all symmetry properties of a netplane the net-

plane will be said to be characterized by a simple or symmorphic space group. This includes 

groups, where, due to translational symmetry, initial point symmetry operations also allow glide 

reflections, which combine mirroring with translation, see Sec. 3.6.5. (As discussed in Sec. 3.6.5, 

glide lines will appear if a netplane with mirror lines includes a primitive lattice vector which is in-

clined with respect to a mirror line.) In addition, there are cases where the full symmetry of a net-

plane requires, in addition to true point symmetry operations, glide reflections as initial generating 

symmetry elements. In this case the netplane will be said to be characterized by a non-symmorphic 

space group. The distinction between the different types of space groups becomes clear in Sec. 3.8, 

where space groups are used to classify all netplanes with respect to their possible symmetry prop-

erties. 

 

3.7 Crystal Systems and Bravais Lattices in Two Dimensions 

Properties of the different point symmetry operations, discussed in Sec. 3.6, together with 

translational symmetry allow a symmetry classification of all netplanes by their corresponding 

space groups. This is analogous to the classification of three-dimensional lattices discussed in  

Sec. 2.4. As in the three-dimensional case, we can also use the four different rotation axes, 2-, 3-,  

4-, and 6-fold, to distinguish between the different types of netplanes. Here the netplane origin is 
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assumed to coincide with a rotation center. Further, the two lattice vectors R1 and R2, describing the 

netplane periodicity will be described by their lengths a, b and the angle γ between them, i.e. 

|R1|  =  a  ,     |R2|  =  b  ,     (R1, R2)  =  γ  ,     (R1R2)  =  a b cos(γ) (3.160) 

First, we note that, as a result of their periodicity, netplanes without further symmetry con-

straints always include an inversion center as a symmetry element at their origin, which is equiva-

lent to 2-fold rotation symmetry. Then the most general type of netplanes is described by primitive 

lattice vectors R1 and R2 of different length, a  b, and forming an angle γ different from 60, 90, 

and 120. This corresponds to a morphological unit cell of parallelogram shape, shown in Fig. 

3.27a, and the respective netplanes are called oblique, forming the oblique Bravais lattice. 

 

Fig. 3.27.  Morphological unit cells of netplanes referring to the five Bravais lattices 

(a) oblique, (b) primitive rectangular, (c) centered rectangular, (d) square, and (e) 

hexagonal. The cells are emphasized in gray with lattice vectors R1, R2, (R2') 

sketched accordingly. 

A second type of netplanes is described by primitive lattice vectors R1, R2 of different length 

which are orthogonal to each other, i.e. a  b, and γ  = 90. Here the morphological unit cell is of 

rectangular shape, shown in Fig. 3.27b. These netplanes are called primitive rectangular or  

p-rectangular, referring to the p-rectangular Bravais lattice. 
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A third type of netplane, which includes 4-fold rotation symmetry, is described by primitive 

lattice vectors R1 and R2 of the same length which are orthogonal to each other, i.e. a = b, and  

γ  = 90. Here the morphological unit cell is of square shape, shown in Fig. 3.27d. These netplanes 

are called square, referring to the square Bravais lattice. 

A forth type of netplanes, which includes 3- and 6-fold rotation symmetry, is described by 

primitive lattice vectors R1 and R2 of identical length, a = b, and γ  = 60 (acute representation) or 

120 (obtuse representation). Here the morphological unit cell has the shape of two equilateral tri-

angles joining on one side, shown in Fig. 3.27e. These netplanes are called hexagonal, referring to 

the hexagonal Bravais lattice. 

So far, the discussion was restricted to Bravais netplanes whose periodicity was described by 

primitive lattice vectors R1 and R2. Assuming non-primitive lattice vectors R1 and R2, the corre-

sponding morphological unit cell will contain additional lattice points. In Sec. 3.6.1 it was shown 

that, if vectors R1 and R2 are of smallest length along their direction, there can only be one point 

located in the center of the unit cell, given by a vector R' = 1/2 (R1 + R2), see (3.63). This results in 

a centered netplane which may by described by primitive lattice vectors R1', R2' with 

R1' = 1/2 (R1 - R2)  ,     R2' = 1/2 (R1 + R2) (3.161) 

Centering an oblique netplane, sketched in Fig. 3.28a, cannot lead to different symmetry which 

would change the type of Bravais lattice. Therefore, a centered oblique Bravais lattice is, in its type, 

identical to its primitive oblique counterpart. In contrast, centering a primitive rectangular net-

plane, sketched in Fig. 3.28b, creates a new type of netplane, defining the centered rectangular or 

c-rectangular Bravais lattice. This lattice is not generally available by any of the other Bravais lat-

tices. Due to the orthogonality of the initial non-primitive lattice vectors R1 and R2, the correspond-

ing primitive vectors R1', R2', according to (3.161), are of equal length and can form any angle γ be-

tween them. This can also be used as a definition of the c-rectangular Bravais lattice being de-

scribed by primitive lattice vectors R1', R2' of identical length, a = b, and any angle γ ( 60, 90, 

120, see below). With this vector definition, centering the c-rectangular Bravais lattice according 

to (3.161) yields a primitive rectangular netplane as sketched in Fig. 3.28d. Alternatively one could 

use vectors R1 and R2' as a primitive description, which is shown in Fig. 3.27c where centering re-

sults in an oblique netplane unless |R1| = |R2'|, corresponding to a hexagonal netplane, where center-

ing leads to a rectangular netplane. 
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Fig. 3.28.  Morphological unit cells of centered Bravais lattices, (a) oblique, (b) p- 

rectangular, (c) square, and (d) c- rectangular. Lattice vectors R1, R2 refer to non-

primitive and R1', R2' to primitive lattice descriptions, respectively. The cells are 

emphasized in light (non-primitive) and dark (primitive) gray. Lattice points of the 

initial lattice are painted red while those added by centering are painted gray. 

A centered square netplane is described by non-primitive lattice vectors R1 and R2 of equal 

length and γ  = 90. This results in primitive vectors R1', R2' according to (3.161), which are also of 

the same length and orthogonal, as sketched in Fig. 3.28c. Thus, the centered square netplane is 

identical in its type with its primitive counterpart. Hexagonal netplanes are described by primitive 

lattice vectors R1 and R2 of identical length, a = b, and γ  = 60, 120. Thus, they can be considered 

special cases of centered rectangular netplanes according to the definition given above. This is also 

shown in Fig. 3.27e, where the non-primitive rectangular unit cell of a hexagonal netplane with its 

orthogonal lattice vectors R1 and R2' is included together with the primitive unit cell, given by R1 

and R2. As a consequence of this close relationship between hexagonal and centered rectangular 

netplanes, centering hexagonal netplanes yields a primitive rectangular netplane analogous to that 

shown in Fig. 3.28d. 

This concludes the symmetry classification of netplanes and yields, altogether, five different 

types, oblique, primitive and centered rectangular, square, and hexagonal. The classification de-

scribes the two-dimensional crystal system given by five different Bravais lattices in two dimen-

sions with definitions collected in Table 3.11. In this table all lattice vectors are assumed to be 

primitive and defined according to (3.160).  
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Table 3.11.  Bravais lattice members described by lattice constants a, b, and angle , 

see text. 

Crystal system, 

Bravais lattice 

Definitions 

Oblique a  b ,     any γ  60, 90, 120 

Primitive rectangular a  b ,     γ = 90 

Centered rectangular a  b ,     (R1R2) = 1/2 a
2
 

or 

a  b ,     (R1R2) = 1/2 b
2
 

or 

a = b ,     any γ  60, 90, 120 

Square a = b ,     γ = 90 

Hexagonal a = b ,     γ = 60, 120 

 

The listing in Table 3.11 shows a hierarchy of the different Bravais lattices, where the oblique 

lattice exhibits the lowest symmetry. Thus, primitive and centered rectangular Bravais lattices can 

always be considered as special cases of oblique lattices. Further, the square Bravais lattice can be 

thought of as a special case of both primitive and centered rectangular lattices, while the hexagonal 

Bravais lattice represents a special case of a centered rectangular lattice. The distinction between 

the different lattice types becomes important when all symmetry elements of the netplanes are con-

sidered. 

The relationship between the different Bravais lattices is further illustrated in Fig. 3.29 which 

shows all possible types of two-dimensional Bravais lattices described by Minkowski-reduced lat-

tice vectors R1 and R2, see Sec. 3.3. Here lattice vector R1 is kept fixed and defines the x axis of the 

graph while all possible vectors R2 (constrained to be Minkowski-reduced) are obtained from points 

inside the gray shaded area, dark gray for obtuse and light gray for acute lattice representations. The 

figure shows very clearly the network of lines referring to Bravais lattices of different type, where 

transitions between the types occur at line intersections. Further, the distinction between acute, 60 

   90, and obtuse lattice vector sets , 90 <   120, becomes clear. Centered rectangular and 

hexagonal lattices yield equivalent lattice vector sets for cos() = A/2 and cos() = -A/2 (with  

A  =  min (R1/R2, R2/R1)  according to (3.17) ) corresponding to acute and obtuse vector sets which 

can both be considered to be Minkowski-reduced. Here crystallographers prefer the obtuse repre-

sentation referring to the strict definition given in in (3.16).  
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Fig. 3.29.  Minkowski-reduced lattice vectors of general netplanes, see text. Lines of 

Bravais lattices of different type are labeled accordinglyThe filled square and the 

two filled hexagons indicate square and hexagonal Bravais lattices, respectively. 

The symmetry classification of netplanes discussed above also has consequences for the pos-

sible shape of compact two-dimensional unit cells, the Wigner-Seitz cells, discussed in Sec. 2.3. 

These are of interest, in particular, for theoretical studies on electronic or vibronic properties of 

two-dimensionally periodic systems, such as single crystal surfaces, discussed below. The basic 

definition of a Wigner-Seitz cell in two dimensions starts from lattice vectors R1 and R2 of a net-

plane and subdivides the netplane area into identical cells enclosing general lattice points  

R = n1 R2 + n2 R2. Each cell is defined by including all points r which are the nearest to R compared 

with all other lattice points. Then adjacent cells about R and R' must be separated by sections of 

straight lines defined by r assuming equal distance with respect to R and R'. Hence, two-

dimensional Wigner-Seitz cells must be polygonal in shape. The edge points of these cells can be 

constructed for the five Bravais lattices by simple geometry considerations where we mention only 

the final result derived in [84]. 
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Fig. 3.30.  Wigner-Seitz cell (WSC) for a general netplane with lattice vectors R1, 

R2. The edges ri, i = 1, … 6 of the polygonal cell are labeled accordingly, see text. 

Let us consider a netplane with its periodicity described by Minkowski-reduced lattice vectors R1 

and R2. Then its (two-dimensional) Wigner-Seitz cell about the netplane origin forms, in general, an 

irregular hexagon, see Fig. 3.30, given by edge vectors 

ri  =   i1 R1 + i2 R2  ,     i = 1, … 6 (3.162) 

where the mixing coefficients ij are listed in Table 3.12. 

 

Table 3.12.  Edge vectors of a general two-dimensional Wigner-Seitz cell based on 

Minkowski-reduced lattice vectors R1, R2, see text. 

Edge vector ri i1 i2  

r1 21 12 12 =   [ |R1|
2
 (|R2|

2
 - R1R2) ] 

r2 -21 1 - 12 21 =   [ |R2|
2
 (|R1|

2
 - R1R2) ] 

r3 21 - 1 12  =  1/2 [ |R1|
2
 |R2|

2
 - (R1R2)

2
 ]

-1
 

r4 (  -r1) -21 -12  

r5 (  -r2) 21 12 - 1  

r6 (  -r3) 1 - 21 -12  

 (3.163) 

As a result, the edge points of Table 3.12 yield Wigner-Seitz cells shaped as 

(a) irregular hexagons for oblique netplanes, see Fig. 3.31a. 

(b) rectangles (coinciding edges r2, r3 and r5, r6) for primitive rectangular netplanes,  

see Fig. 3.31b. 

(c) symmetrically stretched hexagons (two perpendicular mirror lines, one through two op-

posing edges) for centered rectangular netplanes, see Fig. 3.31c. 
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(d) squares (coinciding edges r2, r3 and r5, r6) for square netplanes, see Fig. 3.31d. 

(e) regular hexagons for hexagonal netplanes, see Fig. 3.31e. 

 

Fig. 3.31.  Wigner-Seitz cells (WSC) of the five Bravais lattices in two dimensions, 

(a) oblique, (b) p-rectangular, (c) c-rectangular, (d) square, and (e) hexagonal. The 

WSCs, emphasized in dark gray, are compared with morphological unit cells 

spanned by lattice vectors R1, R2, shown in lighter gray.  

 

3.8 Crystallographic Classification of Netplanes and Monolayers 

The symmetry classification discussed in Sec. 3.7 gave a first overview of possible types of 

netplanes, yielding the two-dimensional crystal systems with their five Bravais lattices. Here the 

discrimination between the lattice types was based only on the interplay of translational and rota-

tional symmetry of netplanes. Monolayers are described in their translational symmetry by corre-

sponding netplanes and can, therefore, also be classified according to the five Bravais lattices. 

However, a complete crystallographic classification of all possible monolayer types must take 

into account the full set of point symmetry elements, including glide reflections, together with trans-

lational symmetry. This can be achieved formally by considering, for each of the five Bravais lattic-

es, appropriate symmetry operations of all ten point symmetry groups, listed in Tables 3.9 and 3.10, 

as well as glide reflections. Here the symmetry of a monolayer may turn out to be lower than that of 
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its corresponding netplane due to the appearance of additional monolayer atoms at off-symmetry 

sites of the elementary unit cell given by the netplane. Altogether, the analysis leads to 17 different 

symmetry types describing netplanes and monolayers, the so-called two-dimensional space 

groups, which will be discussed in Secs. 3.8.1 to 3.8.5. These sections are rather formal and filled 

with geometric and group theoretical details. Thus, readers, who are less interested in the mathemat-

ics behind two-dimensional space groups, may skip these sections and move to the conclusion of 

the analysis, given in Sec. 3.8.6. 

The classification distinguishes between symmorphic and non-symmorphic space groups. 

Symmorphic space groups result from considering any of the ten point symmetry groups of  

Table 3.9 (i.e. excluding glide reflections as initial symmetry elements) and adding the translation 

symmetry group of the Bravais lattice defined by lattice vectors R1 and R2. As a consequence of 

combining point symmetry elements, centered at different points of the Bravais lattice, glide reflec-

tions may also appear as symmetry elements in symmorphic space groups. However, they do not act 

as symmetry generating elements. In contrast, non-symmorphic space groups arise from applying 

glide reflections as initial symmetry elements of a netplane or monolayer and combining them with 

selected point symmetry operations as well as with translational symmetry. Here only rectangular 

and square Bravais lattices need to be considered since glide reflection symmetry is connected with 

rectangular symmetry, as discussed in Sec. 3.6.5. 

In the following sections, we consider the center ro of the highest point symmetry group G of a 

netplane to coincide with the netplane origin. (The highest point symmetry group is defined as the 

group with the largest number of point symmetry operations that transform the netplane into itself.) 

Further, the symmetry elements of each space group will be sketched in symbolic form, according 

to the conventional crystallographic notation used in the International Tables for Crystallography 

[33] (denoted as (ITC)  in the following). With this notation, mirror lines are indicated by thick and 

glide lines by dashed lines while 2-fold rotation (and inversion) centers are shown by ellipses, and  

3-, 4-, and 6-fold rotation centers by filled triangles, squares, and hexagons, respectively. In addi-

tion, point symmetry and space groups will be denoted by both the international notation according 

to Hermann-Mauguin and by the Schönflies notation, see Sec. 2.4, where the latter will be put in 

parentheses. As examples, we mention the point symmetry group 4 (C4) and the space group p31m 

(C3v
2
). 
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3.8.1 Oblique Netplanes 

The oblique Bravais lattice with the largest number of symmetry elements is described by 

point symmetry group 2 (C2). The corresponding symmorphic space group is denoted as p2 (C2) 

and included as no. 2 in the ITC. Fig. 3.32a shows a morphological unit cell, where the circular pat-

terns in Fig. 3.32a represent example atoms or groups of atoms (motifs). The motifs are placed at 

general positions of the morphological unit cell, i.e. not located at symmetry points of the cell. As 

a consequence, each operation of the point symmetry group 2 (C2) generates a new motif at a dif-

ferent location, where the transformation is illustrated by the orientation of the black wedges inside 

the circles of the patterns. Motifs illustrating symmetry elements of the unit cell will be used 

throughout the following discussion. Fig. 3.32b sketches all symmetry elements of the unit cell in a 

symbolic form, where centers of 2-fold rotation axes (inversion centers) are indicated by ellipses, 

according to the conventional crystallographic notation [33]. 

 

Fig. 3.32.  Symmorphic oblique space group p2, no. 2 in the ITC. (a) Morphological 

unit cell (in gray) spanned by lattice vectors R1, R2 with example motifs shown by 

circular patterns. (b) Sketch of all symmetry elements of the unit cell according to 

ITC. 

According to Table 3.10 in Sec. 3.6.6, point symmetry group 2 (C2) contains only one sub-

group, the identity group 1 (C1), which can be combined with translational symmetry to yield an-

other space group, where corresponding monolayers of the oblique Bravais lattice exhibit only 

translation symmetry. This symmorphic space group is denoted as p1 (C1) and included as no. 1 in 

the ITC. Fig. 3.33a shows a morphological unit cell of the space group with the circular patterns 

illustrating its (missing) symmetry while Fig. 3.33b sketches all (i.e. none) symmetry elements of 

the unit cell and is added only for completeness. 
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Fig. 3.33.  Symmorphic oblique space group p1, no. 1 in the ITC. (a) Morphological 

unit cell (in gray) spanned by lattice vectors R1, R2 with example motifs shown by 

circular patterns. (b) Sketch of all (= no) symmetry elements of the unit cell. 

 

3.8.2 Primitive Rectangular Netplanes 

The primitive rectangular Bravais lattice with the largest number of symmetries is described 

by point symmetry group 2mm (C2v). The corresponding symmorphic space group is denoted as 

p2mm (C2v
1
), or in short as pmm, and included as no. 6 in the ITC. Fig. 3.34a shows a morpholog-

ical unit cell of the space group with the circular patterns illustrating its symmetry. Fig. 3.34b 

sketches all symmetry elements of the unit cell following the ITC notation given in Sec. 3.8. 

 

Fig. 3.34.  Symmorphic primitive rectangular space group p2mm, no. 6 in the ITC. 

(a) Morphological unit cell (in gray) spanned by lattice vectors R1, R2 with example 

motifs shown by circular patterns.  (b) Sketch of all symmetry elements of the unit 

cell according to ITC. 

According to Table 3.10, point symmetry group 2mm (C2v) contains three subgroups, 1 (C1),  

2 (C2), and m (Cs), which can be combined with translational symmetry of the primitive rectangular 
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Bravais lattice to yield three other space groups with less symmetry elements than the initial space 

group p2mm (C2v
1
). Here the cases of point symmetry groups 1 (C1) and 2 (C2), resulting in space 

groups p1 (C1) and p2 (C2), respectively, have already been discussed in Sec. 3.8.1. 

Point symmetry group m (Cs) combined with a primitive rectangular Bravais lattice results in 

the symmorphic space group denoted as p1m1 (CS
1
), or in short as ‘pm’, and is included as no. 3 

in the ITC. Fig. 3.35a shows a morphological unit cell of the space group with the circular patterns 

illustrating its symmetry. Fig. 3.35b sketches all symmetry elements of the unit cell following the 

ITC notation given in Sec. 3.8. 

 

Fig. 3.35.  Symmorphic primitive rectangular space group p1m1, no. 3 in the ITC. 

(a) Morphological unit cell (in gray) spanned by lattice vectors R1, R2 with example 

motifs shown by circular patterns. (b) Sketch of all symmetry elements of the unit 

cell according to ITC. 

In Sec. 3.6.5 it was shown that the existence of glide line symmetry is always connected with 

rectangular Bravais lattices. In particular, glide reflections as generating symmetry elements can be 

combined with primitive rectangular Bravais lattices to yield corresponding non-symmorphic 

space groups.  

Combining the infinite set of parallel glide lines, shown to exist in primitive rectangular Bra-

vais lattices, see Sec. 3.6.5 and Fig. 3.22, with translational symmetry leads to the non-

symmorphic space group denoted as p1g1 (CS
2
), or in short as pg, and included as no. 4 in the ITC. 

Fig. 3.36a shows a morphological unit cell of the space group with the circular patterns illustrating 

its symmetry. Fig. 3.36b sketches all symmetry elements of the unit cell following the ITC notation 

given in Sec. 3.8. 
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Fig. 3.36.  Non-symmorphic primitive rectangular space group p1g1, no. 4 in the 

ITC. (a) Morphological unit cell (in gray) spanned by lattice vectors R1, R2 with 

example motifs shown by circular patterns. (b) Sketch of all symmetry elements of 

the unit cell according to ITC. 

Infinite sets of parallel glide lines in primitive rectangular Bravais lattices can also be com-

bined with symmetry described by point symmetry group 2 (C2), which includes 2-fold rotation (in-

version) symmetry. As discussed in Sec. 3.6.5, there are two possible arrangements of inversion 

centers with respect to parallel glide lines, 

(a) All inversion centers lie on glide lines, see Fig. 3.24a. This was shown to yield additional 

mirror lines perpendicular to the glide lines, resulting in a non-symmorphic space 

group, denoted as p2mg (C2v
2
), or in short as pmg, and included as no. 7 in the ITC. Fig. 

3.37a shows a morphological unit cell of the space group with the circular patterns illus-

trating its symmetry. Fig. 3.37b sketches all symmetry elements of the unit cell following 

the ITC notation given in Sec. 3.8. Note that the unit cells of Fig. 3.37 are rotated by 90 

with respect to that of Fig. 3.24a in order to comply with the conventional notation used 

in the ITC. 
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Fig. 3.37.  Non-symmorphic primitive rectangular space group p2mg, no. 7 in the 

ITC. (a) Morphological unit cell (in gray) spanned by lattice vectors R1, R2 with 

example motifs shown by circular patterns. (b) Sketch of all symmetry elements of 

the unit cell according to ITC. 

(b) All inversion centers lie in the middle between glide lines, see Fig. 3.24b. This was 

shown to yield additional glide lines perpendicular to the initial glide lines resulting in an 

orthogonal set of glide lines. This glide line network combined with a primitive rectangu-

lar Bravais lattice leads to another non-symmorphic space group, denoted as p2gg 

(C2v
3
), or in short as pgg, and included as no. 8 in the ITC. Fig. 3.38a shows a morpho-

logical unit cell of the space group with the circular patterns illustrating its symmetry. 

Fig. 3.38b sketches all symmetry elements of the unit cell following the ITC notation 

given in Sec. 3.8. Note that the unit cells of Fig. 3.38 are shifted by 1/4 R2 with respect to 

that of Fig. 3.24b in order to comply with the conventional notation used in the ITC. 
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Fig. 3.38.  Non-symmorphic primitive rectangular space group p2gg, no. 8 in the 

ITC. (a) Morphological unit cell (in gray) spanned by lattice vectors R1, R2 with 

example motifs shown by circular patterns. (b) Sketch of all symmetry elements of 

the unit cell according to ITC. 

 

3.8.3 Centered Rectangular Netplanes 

The centered rectangular Bravais lattice with the largest number of symmetries is, as the 

primitive rectangular lattice, described by point symmetry group 2mm (C2v). The corresponding 

symmorphic space group is denoted as c2mm (C2v
4
), or in short as cmm, and is included as no. 9 

in the ITC. Fig. 3.39a shows two morphological unit cells of the space group, with the circular pat-

terns illustrating its symmetry. The primitive skewed cell, defined by lattice vectors R1 and R2, is 

emphasized by dark gray painting, while the non-primitive rectangular cell, given by vectors R1 and 

R2' and preferred by crystallographers, is painted light gray. These two cells will be shown for all 

centered lattices discussed in the following. Fig. 3.39b sketches all symmetry elements of the unit 

cell following the ITC notation given in Sec. 3.8. 
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Fig. 3.39.  Symmorphic centered rectangular c2mm space group, no. 9 in the ITC. 

(a) Morphological unit cells (in gray) spanned by lattice vectors R1, R2 (skewed cell) 

and R1, R2' (rectangular cell) with example motifs shown by circular patterns. (b) 

Sketch of all symmetry elements of the unit cell according to ITC. 

According to Table 3.10, point symmetry group 2mm (C2v) contains three subgroups, 1 (C1),  

2 (C2), and m (Cs), which can be combined with translational symmetry of the centered rectangular 

Bravais lattice to yield three other space groups. Analogous to the discussion for the primitive rec-

tangular case, see Sec. 3.8.2, point symmetry groups 1 (C1) and 2 (C2) can be ignored since they 

have been treated in Sec. 3.8.1. 

Point symmetry group m (Cs) combined with a centered rectangular Bravais lattice results in 

the symmorphic space group denoted as c1m1 (CS
2
), or in short as ‘cm’, and is included as no. 5 in 

the ITC. Fig. 3.40a shows two morphological unit cells (primitive skewed and non-primitive rec-

tangular) of the space group with the circular patterns illustrating its symmetry. Fig. 3.40b sketches 

all symmetry elements of the unit cell following the ITC notation given in Sec. 3.8. 
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Fig. 3.40.  Symmorphic centered rectangular c1m1 space group, no. 5 in the ITC. (a) 

Morphological unit cells (in gray) spanned by lattice vectors R1, R2 (skewed cell) 

and R1, R2' (rectangular cell) with example motifs shown by circular patterns. (b) 

Sketch of all symmetry elements of the unit cell according to ITC. 

 

3.8.4 Square Netplanes 

The square Bravais lattice with the largest number of symmetries is described by point sym-

metry group 4mm (C4v). The corresponding symmorphic space group is denoted as p4mm (C4v
1
), 

or in short as p4m, and included as no. 11 in the ITC. Fig. 3.41a shows a morphological unit cell of 

the space group with the circular patterns illustrating its symmetry. Fig. 3.41b sketches all sym-

metry elements of the unit cell following the ITC notation given in Sec. 3.8. 
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Fig. 3.41.  Symmorphic square p4mm space group, no. 11 in the ITC. (a) Morpho-

logical unit cell (in gray) spanned by lattice vectors R1, R2 with example motifs 

shown by circular patterns. (b) Sketch of all symmetry elements of the unit cell ac-

cording to ITC. 

According to Table 3.10, point symmetry group 4mm (C4v) contains five subgroups, 1 (C1),  

2 (C2), 4 (C4), m (Cs), and 2mm (C2v), which can be combined with translational symmetry of the 

square Bravais lattice to yield five other space groups. Here only point symmetry groups 4 (C4) 

needs to be considered since the other groups have been dealt with earlier, see Secs. 3.8.1 to 3.8.3.  

Point symmetry group 4 (C4) combined with a square Bravais lattice results in the sym-

morphic space group denoted as p4 (C4) and is included as no. 10 in the ITC. Fig. 3.42a shows a 

morphological unit cell of the space group with the circular patterns illustrating its symmetry.  

Fig. 3.42b sketches all symmetry elements of the unit cell following the ITC notation given in Sec. 

3.8. 

 

Fig. 3.42.  Symmorphic square p4 space group, no. 10 in the ITC. (a) Morphological 

unit cell (in gray) spanned by lattice vectors R1, R2 with example motifs shown by 

circular patterns. (b) Sketch of all symmetry elements of the unit cell according to 

ITC. 
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Infinite sets of parallel glide lines in square Bravais lattices can also be combined with sym-

metry described by point symmetry group 4 (C4), which includes 2- and 4-fold rotation symmetry. 

We mention without further proof that there is only one choice, where the corresponding  

non-symmorphic space group is denoted as p4gm (C4v
2
), or in short as p4g, and included as no. 12 

in the ITC. Fig. 3.43a shows a morphological unit cell of the space group with the circular patterns 

illustrating its symmetry. Fig. 3.43b sketches all symmetry elements of the unit cell following the 

ITC notation given in Sec. 3.8. 

 

Fig. 3.43.  Non-symmorphic square p4gm space group, no. 12 in the ITC. (a) Mor-

phological unit cell (in gray) spanned by lattice vectors R1, R2 with example motifs 

shown by circular patterns. (b) Sketch of all symmetry elements of the unit cell ac-

cording to ITC. 

 

3.8.5 Hexagonal Netplanes 

In Sec. 3.7 it was shown that a hexagonal lattice, defined by primitive lattice vectors R1 and R2 

in acute representation (γ = 60), can be described alternatively as a centered rectangular lattice 

with non-primitive lattice vectors R1 and R2' = 2 R2 - R1, which are orthogonal. Therefore, all sym-

metry diagrams for hexagonal space groups, discussed in the following, will be shown with two 

morphological unit cells of the space group, analogous to the centered rectangular case in Sec. 

3.8.3. The primitive rhombic cell, defined by lattice vectors R1 and R2, is emphasized by dark gray 

painting, and the non-primitive rectangular cell, given by vectors R1 and R2' and preferred by crys-

tallographers, is painted light gray. 

The hexagonal Bravais lattice with the largest number of symmetries is described by point 

symmetry group 6mm (C6v). The corresponding symmorphic space group is denoted as p6mm 
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(C6v), or in short as p6m, and included as no. 17 in the ITC. Fig. 3.44a shows two morphological 

unit cells (primitive rhombic and non-primitive rectangular) of the space group with the circular 

patterns illustrating its symmetry. Fig. 3.44b sketches all symmetry elements of the unit cell follow-

ing the ITC notation given in Sec. 3.8. 

 

Fig. 3.44.  Symmorphic hexagonal p6mm space group, no. 17 in the ITC. (a) Mor-

phological unit cells (in gray) spanned by lattice vectors R1, R2 (rhombohedral cell) 

and R1, R2' (rectangular cell) with example motifs shown by circular patterns. (b) 

Sketch of all symmetry elements of the unit cell according to ITC. 

According to Table 3.10, point symmetry group 6mm (C6v) contains seven subgroups, 1 (C1), 

2 (C2), 3 (C3), 6 (C6), m (Cs), 2mm (C2v), and 3m1 / 31m (C3v) which can be combined with trans-

lational symmetry of the hexagonal Bravais lattice to yield other space groups. Here only point 

symmetry groups 3 (C3), 6 (C6), and 3m1, 31m (C3v) need to be considered since the other groups 

have been dealt with earlier, see Secs. 3.8.1 to 3.8.3. 

Point symmetry group 3 (C3) combined with a hexagonal Bravais lattice results in the sym-

morphic space group denoted as p3 (C3) and is included as no. 13 in the ITC. Fig. 3.45a shows two 

morphological unit cells (primitive and non-primitive) of the space group with the circular patterns 

illustrating its symmetry. Fig. 3.45b sketches all symmetry elements of the unit cell following the 

ITC notation given in Sec. 3.8. 
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Fig. 3.45.  Symmorphic hexagonal p3 space group, no. 13 in the ITC. (a) Morpho-

logical unit cells (in gray) spanned by lattice vectors R1, R2 (rhombohedral cell) and 

R1, R2' (rectangular cell) with example motifs shown by circular patterns. (b) Sketch 

of all symmetry elements of the unit cell according to ITC. 

Point symmetry group 6 (C6) combined with a hexagonal Bravais lattice results in the sym-

morphic space group denoted as p6 (C6) and is included as no. 16 in the ITC. Fig. 3.46a shows two 

morphological unit cells of the space group with the circular patterns illustrating its symmetry. Fig. 

3.46b sketches all symmetry elements of the unit cell following the ITC notation given in Sec. 3.8. 

 

Fig. 3.46.  Symmorphic hexagonal p6 space group, no. 16 in the ITC. (a) Morpho-

logical unit cells (in gray) spanned by lattice vectors R1, R2 (rhombohedral cell) and 

R1, R2' (rectangular cell) with example motifs shown by circular patterns. (b) Sketch 

of all symmetry elements of the unit cell according to ITC. 
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Point symmetry group 3m1, 31m (C3v) can also be combined with a hexagonal Bravais lattice. 

Here the two variants depend on the orientation of the mirror lines with respect to the primitive lat-

tice vectors R1 and R2 (assuming an acute representation, γ = 60), 

(a) Mirror lines point between lattice vectors R1 and R2, resulting in angles of 30 between 

lattice vectors and mirror lines, described by point symmetry group variant 3m1 (C3v). 

This results in the symmorphic space group denoted as p3m1 (C3v
1
), which is included 

as no. 14 in the ITC. Fig. 3.47a shows two morphological unit cells of the space group 

with the circular patterns illustrating its symmetry. Fig. 3.47b sketches all symmetry el-

ements of the unit cell following the ITC notation given in Sec. 3.8. 

 

Fig. 3.47.  Symmorphic hexagonal p3m1 space group, no. 14 in the ITC. (a) Mor-

phological unit cells (in gray) spanned by lattice vectors R1, R2 (rhombohedral cell) 

and R1, R2' (rectangular cell) with example motifs shown by circular patterns. (b) 

Sketch of all symmetry elements of the unit cell according to ITC. 

(b) Mirror lines coincide with lattice vectors R1 and R2, described by point symmetry group 

variant 31m (C3v). This results in the symmorphic space group denoted as p31m (C3v
2
), 

which is included as no. 15 in the ITC. Fig. 3.48a shows two morphological unit cells of 

the space group with the circular patterns illustrating its symmetry. Fig. 3.48b sketches 

all symmetry elements of the unit cell following the ITC notation given in Sec. 3.8. 



190 

 

 

Fig. 3.48.  Symmorphic hexagonal p31m space group, no. 15 in the ITC(a) Morpho-

logical unit cells (in gray) spanned by lattice vectors R1, R2 (rhombohedral cell) and 

R1, R2' (rectangular cell) with example motifs shown by circular patterns. (b) Sketch 

of all symmetry elements of the unit cell according to ITC. 

 

3.8.6 Classification Overview 

Secs. 3.8.1 to 3.8.5 have covered all possible symmorphic and non-symmorphic space groups, 

available for a classification of netplanes and monolayers by their symmetry behavior. Altogether, 

there are 17 different space groups (13 symmorphic, 4 non-symmorphic) in two dimensions, 

where two space groups refer to the oblique, five to the primitive rectangular, two to the centered 

rectangular, three to the square, and five to the hexagonal Bravais lattice. Table 3.13 collects all 

two-dimensional space groups with their properties with the numbering scheme following the se-

quence of the in the International Tables for Crystallography [33]. 
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Table 3.13.  Properties of the 17 space groups in two dimensions. The ITC number 

refers to the International Tables for Crystallography [33], where non-symmorphic 

space groups are labeled by asterisks (
*
) and space groups with highest point sym-

metry of a given Bravais lattice by (
+
). Space and point group names are listed in 

Hermann-Mauguin and Schönflies notation, the latter in parentheses. The Hermann-

Mauguin notation of the space groups includes also short names separated by slash-

es.  

ITC no. Space group Point group Bravais 

lattice 

1 p1 (C1) 1 (C1) oblique 

2
+
 p2 (C2) 2 (C2) oblique 

3 p1m1 / pm (CS
1
) m (Cs) p-rectangular 

4
* 

p1g1 / pg (CS
2
) 1 (C1) p-rectangular 

5 c1m1 / cm (CS
2
) m (Cs) c-rectangular 

6
+
 p2mm / pmm (C2v

1
) 2mm (C2v) p-rectangular 

7
*
 p2mg / pmg (C2v

2
) 2 (C2) p-rectangular 

8
*
 p2gg / pgg (C2v

3
) 2 (C2) p-rectangular 

9
+ 

c2mm / cmm (C2v
4
) 2mm (C2v) c-rectangular 

10 p4 (C4) 4 (C4) square 

11
+ 

p4mm / p4m (C4v
1
) 4mm (C4v) square 

12
*
 p4gm / p4g (C4v

2
) 4 (C4) square 

13 p3 (C3) 3 (C3) hexagonal 

14 p3m1 (C3v
1
) 3m1 (C3v) hexagonal 

15 p31m (C3v
2
) 31m (C3v) hexagonal 

16 p6 (C6) 6 (C6) hexagonal 

17
+ 

p6mm / p6m (C6v) 6mm (C6v) hexagonal 

 

Fig. 3.49 gives an overview over all symmetry elements inside morphological unit cells of 

netplanes and monolayers described by the 17 two-dimensional space groups where the sequence 

follows the numbering scheme and the symbolic notation used in the ITC [33]. This collects the 

sketches shown already in the extended discussion of space groups in Secs. 3.8.1 to 3.8.5. Further 

details concerning symmetry properties of two-dimensional space groups can be found in Refs. 

[23], [33], [34], [40], [86], [87]. 
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Fig. 3.49.  Symmetry elements inside morphological unit cells of monolayers de-

scribed by all 17 two-dimensional space groups. Non-symmorphic space groups are 

labels by asterisks (
*
) and space groups of highest point symmetry for a given Bra-

vais lattice by (
+
). Mirror lines are indicated by thick and glide lines by dashed lines. 

2-, 3-, 4-, and 6-fold rotation centers are shown by ellipses, triangles, squares, and 

hexagons, respectively, following the ITC notation. 
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3.9 Exercises 

3.1. Show that the (a) sc, (b) fcc, (c) bcc, and (d) hex (hcp) lattices can be built by stacking hex-

agonal netplanes. Determine for each lattice relationships between the intrinsic bulk lattice 

constant a, the netplane lattice constant a(h k l), and the distance between adjacent netplanes 

d(h k l). 

3.2. Calculate netplane-adapted lattice vectors for (h k l) monolayers described as 

(a) fcc Ni(1 1 1) 

(b) bcc Fe(1 1 0) 

(c) fcc Pd(1 1 3) 

(d) hex (hcp) Co(1 1 2) 

(e) diamond(1 2 3) 

(f) fcc(m 1 1), fcc(m 0 1),  m > 1 

For cubic crystals (h k l) refers to the sc notation. Determine atom densities of the monolay-

ers and compare with those of densest monolayers. 

3.3. Find the densest and second densest monolayers of the (a) sc, (b) fcc, (c) bcc, and  

(d) hex (hcp), (e) NaCl crystals. Determine for each lattice how many and which directions 

yield densest monolayers. 

3.4. Determine netplane-adapted lattice vectors and atom densities of monolayers of the graphite 

crystal with (a) (0 0 0 1), (b) (1 1 2 1), (c) (1 -2 1 1), (d) (1 -1 0 1) orientation (Miller-

Bravais indices, obtuse bulk lattice vectors). Characterize their geometric structures. What 

are the corresponding 3-index Miller indices? 

3.5. Consider a hexagonal lattice with (a) obtuse and (b) acute lattice vector representation and 

netplanes with orientations given in 3-index notation (h k l). Determine Miller-Bravais indi-

ces (l m n q) of the (0 0 1), (1 0 1), (1 1 1), (1 0 -1), (1 2 1), and (1 -3 5) oriented netplanes.  

3.6. The hex(hcp) crystal can be defined by lattice vectors R1, R2, R3 and a basis of two atoms 

where 

R1  =  a (1, 0, 0) , R2  =  a ( -1/2, (3)/2, 0 ) , R3  =  c ( 0, 0, 1 ) 

r1  =  (0, 0, 0) , r2  =  a ( 1/2, 1/(12), (2/3) )      c/a  =  (8/3) 
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with Ri, i = 1,2,3 and r1, r2 in Cartesian coordinates. Show that Miller indices (h k l) of 

monolayers which contain both types of atoms fulfill the Diophantine equation  

2 h + 4 k +3 l = 6N. 

3.7. Consider the (1 2 3) oriented netplane of the (a) fcc, (b) bcc, (c) diamond, (c) cubic 

zincblende, and (d) graphite crystal. How many and which netplanes of the crystal are sym-

metrically equivalent? 

3.8. Determine two-dimensional morphological unit cells and Wigner-Seitz cells of the monolay-

ers described in Exercise 3.2. 

3.9. Determine Miller indices (h k l) of all symmetry equivalent netplanes derived from a given 

netplane (ho ko lo) of a (a) fcc, (b) bcc, hex (hcp) lattice. 

3.10. Consider a crystal lattice described by initial lattice vectors Ro1, Ro2, Ro3 and by (h k l) net-

plane-adapted lattice vectors R1, R2, R3 where the transformation is given by 
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with integer-valued matrix elements tij. Corresponding reciprocal lattice vectors of the two 

lattice representations are Go1, Go2, Go3 and G1, G2, G3, respectively, with 
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Determine the relationship between the transformation matrices T
(h k l)

 and Q
(h k l)

. 

3.11. Consider a crystal lattice described by initial lattice vectors Ro1, Ro2, Ro3 and by (h k l) net-

plane-adapted lattice vectors R1, R2, R3 with a vector transformation T
(h k l)

 as in Exercise 

3.10. Determine Miller indices (h' k' l') corresponding to a vector transformation  

T
(h'k'l')

  =  (T
(h k l)

)
-1

. 

3.12. Consider a crystal lattice described by lattice vectors Ro1, Ro2, Ro3 and Miller indices  

(ho ko lo) with respect to the corresponding reciprocal lattice vectors. Further, transformed 

lattice vectors R1, R2, R3 with a vector transformation T
(h k l)

 are assumed to provide an 
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equivalent lattice description, analogous to Exercise 3.10, and yield Miller indices (h k l). 

Determine the Miller index transformation matrix M where  
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3.13. A netplane is defined in a Cartesian coordinate system (x, y) by lattice vectors 

R1 =  a ( 0, 3 ),     R2  =  a/2 ( 1, 27 ) 

Show by Minkowski reduction that the netplane is hexagonal. 

3.14. Determine Miller indices of polar and non-polar monolayers of the NaCl and CsCl crystals. 

Hint: polar monolayers are monoatomic. 

3.15. Show that the atom density (h k l) of (h k l) monolayers of sc, fcc, and bcc crystals (Miller 

indices in sc notation) is determined by 

 222
)(

p

lkh
lkh


    with    p = 1, 4, 2  for sc, fcc, and bcc, respectively.  

3.16. Find structurally different monolayers of equal atom density for crystals with (a) fcc and  

(b) bcc lattice. 

3.17. Consider a netplane with two inversion centers at ro1 and ro2. Show that the combination of 

two inversion operations i(ro2)i(ro1) corresponds to a shift by 2 (ro2 - ro1). 

3.18. The xy plane (in Cartesian coordinates) includes two 4-fold rotation axes along z whose cen-

ters are separated by vector R1 = a (1, 0, 0). Consider subsequent rotation operations by 90, 

180, 270 about the two centers generating new rotation centers in the xy plane. Show that 

infinitely many rotation operations create a periodic structure of rotation centers, corre-

sponding to a square netplane with perpendicular lattice vectors R1 = a (1, 0, 0),  

R2 = a (0,1, 0). 

3.19. Consider a netplane with inversion centers at r
i
 =  n1 r1 + n2 r2 ,  ni integer. Determine lattice 

vectors of the netplane. 

3.20. Consider a netplane with n1- and n2-fold rotation axes at the same center ro1. Prove that that 

the netplane has a p-fold rotation axis at ro1 with p = lcm(n1, n2). 
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3.21. Consider a rectangular netplane with orthogonal lattice vectors R1 and R2 and mirror sym-

metry. Show that if the netplane includes a mirror line, which does not point parallel or per-

pendicular to the lattice vectors, the netplane must also include glide lines. 

3.22. Which of the point symmetry elements of the bulk lattice are conserved in the netplanes re-

ferring to the monolayers described in Exercise 3.2? 

3.23. Which (h k l) netplanes of an fcc lattice can be described by rectangular unit cells? Deter-

mine general conditions for (h k l). 

3.24. The hcp crystal can be defined by lattice vectors R1, R2, R3 given in Exercise 3.6. Show that 

the atom density of primitive (h k l) monolayers is given by 

  222

)(

4

3

3

8

1

lkhkh

lkh



  

3.25. Consider a primitive monolayer and its different netplane descriptions. Which alternative 

Bravais lattices can be used to describe a monolayer corresponding to a (a) square, (b) primi-

tive rectangular, (c) centered rectangular, (d) hexagonal netplane? 

3.26. Lattice vectors of trigonal lattices, R1
trg

, R2
trg

, R3
trg

, can be represented by those of corre-

sponding hexagonal lattices, R1
hex

, R2
hex

, R3
hex

,  where transformation (3.35) 
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is one example of an obtuse representation.  

(a) Show that there are, altogether, 6 choices of obtuse and 6 of acute hexagonal 

representations and determine the corresponding transformations. 

(b) Evaluate the Miller index transformation  ( h
trg

 k
trg

 l
trg

 )  ( h
hex

 k
hex

 l
hex

 )  for each of 

the lattice transformations in (a). 

(c) The Miller index transformations in (b) results in constraints for h
hex

, k
hex

, l
hex

 reading 

-h
hex

 + k
hex

 + l
hex

  =  3 g  , h
hex

 - k
hex

 + l
hex

  =  3 g  , h
hex

 + k
hex

 - l
hex

 =  3 g 

h
hex

 + k
hex

 + l
hex

  =  3 g 

Which transformation belongs to which constraint? 
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4 IDEAL SINGLE CRYSTAL SURFACES 

Ideal single crystal surfaces, which result from truncating perfect three-dimensional bulk crys-

tals, provide only an approximate description of structural properties of many crystal surfaces that 

appear in nature. However, these model surfaces can be treated in an exact way mathematically and 

show general concepts which can easily be transferred to real crystal surfaces. Examples are the 

general classification of stepped and kinked surfaces or the treatment of chiral surfaces which will 

be discussed in detail in this section. 

In the present section (also in Secs. 5, 6) a number of examples deal with crystals of cubic 

symmetry, specifically fcc and bcc. In these examples we will always use Miller indices referring to 

simple cubic notation, see Sec. 3.4, without further specification since this notation is commonly 

used by surface scientists. Further, in all cases where Miller indices are used to denote only direc-

tions of netplane normal vectors their values will be normalized such that the indices do not have a 

common divisor. As an example, Miller indices of (3 9 18) and (1 3 6) netplanes are equivalent, 

where the latter notation will be used. Further, negative Miller indices will be written with a minus 

sign in front, i.e. h = -2, rather than given in crystallographic notation, i.e. h = 2 . 

 

4.1 Basic Definition, Termination 

The exact definition of an ideal single crystal surface starts from the truncation of a perfect 

three-dimensional bulk crystal parallel to one of its (h k l) monolayers which acts as a top layer 

with the crystal substrate below and vacuum above. (By convention the corresponding reciprocal 

lattice vector G(h k l) is defined such that it points from the substrate into vacuum.) As a result, the 

surface is periodic in two dimensions and its periodicity is determined by lattice vectors R1 and R2, 

which define the periodicity of the corresponding (h k l) netplane. Therefore, one can use Miller 

indices (h k l) to characterize the surface orientation and apply mathematical descriptions of mon-

olayers and netplanes also to ideal single crystal surfaces. This is illustrated in Fig. 4.1 which shows 

an irregular grain of an ideal fcc nickel single crystal exposing different bulk truncated surface sec-

tions which are labeled by their Miller indices (h k l). 
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Fig. 4.1.  Different bulk truncated surface sections of an ideal fcc nickel single crys-

tal with atoms shown as balls. The surfaces are indicated by their Miller indices. 

Single crystals with more than one atom type in the primitive unit cell can exhibit differently 

terminated surfaces for the same (h k l) orientation. If the crystal contains p > 1 non-equivalent at-

oms in the primitive unit cell then there are p parallel primitive monolayers originating at each atom 

of the cell which may describe the topmost layer of an ideal single crystal surface. Of these mono-

layers, some may fall on the same spatial plane depending on the actual (h k l) direction. This 

yields monolayers with identical netplanes but a (planar) basis with more than one atom type. As a 

result, for polyatomic crystals there are q  p different terminations of corresponding ideal single 

crystal surfaces described by (h k l). 

As an example, the sodium chloride, NaCl, crystal is described by an fcc lattice (as defined in 

(2.38)) of lattice constant a and two different elements, one sodium and one chlorine each, in its 

primitive unit cell, yielding p = 2. (The Na
+
 and Cl

-
 ions are positioned at r1

Na
 = a (0, 0, 0) and  

r2
Cl

 = a/2 (1, 1, 1) inside the fcc unit cell.) For (1 0 0) monolayers one obtains q = 1 since Na
+
 and 

Cl
-
 ions fall on the same plane. This results in only one (1 0 0) surface termination, where Na

+
 and 

Cl
-
 ions exist in equal amounts giving rise to a non-polar surface, see Fig. 4.2a. On the other hand, 

(1 1 1) monolayers of Na
+
 and Cl

-
 ions are separated from each other, hence  q = 2, which leads to 

two possible (1 1 1) surface terminations, one with Na
+
 and one with Cl

-
 ions at the top, see Fig. 

4.2b for the Na
+
 termination. These surfaces are highly polar and quite difficult to prepare experi-

mentally. The NaCl crystal structure also applies to MgO, resulting in the same surface termina-
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tions which were shown in Fig. 1.1. 

 

Fig. 4.2.  Different NaCl single crystal surfaces. (a) Non-polar NaCl(1 0 0) surface, 

(b) polar NaCl(1 1 1) surface with Na termination. 

A more complex example is given by the vanadium sesquioxide, V2O3, crystal whose struc-

ture is of corundum type with a trigonal-R (or equivalent hexagonal) lattice [31], see Sec. 2.4. The 

primitive unit cell of V2O3 contains ten atoms, 4  V and 6  O, yielding p = 10. Along the  

(1 1 1) direction (corresponding to (0 0 0 1) in the hexagonal 4-index notation) there are two sets of 

three different hexagonal monolayers each, hence q = 6, where the two sets are connected by inver-

sion symmetry. Each set contains two monolayers with V
3+

 ions (originating from two different V
3+

 

ions in the unit cell) and one with O
2-

 ions of higher density (originating from three different O
2-

 

ions in the unit cell). This allows three different (0 0 0 1) surface terminations shown in Fig. 4.3, the 

full metal termination VV'O…, the half metal termination V'OV…, and the oxygen termination  

OVV'…. Experimental and theoretical studies on real V2O3(0 0 0 1) surfaces indicate that the half-

metal V'OV… termination which is the least polar of the three terminations is energetically pre-

ferred [88]. 
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Fig. 4.3.  Structure of the V2O3 crystal (corundum lattice, trigonal-R) with three dif-

ferently terminated (0 0 0 1) surfaces, denoted VV'O…, V'OV…, OVV'…. and indi-

cated by red arrows. 

An even more complex example is the vanadium pentoxide, V2O5, crystal with an ortho-

rhombic-P lattice [31], see Sec. 2.4. The primitive unit cell of V2O5 contains 14 atoms, 4  V,  

10  O, yielding p = 14. This crystal has a layer structure and can be described by a periodic ar-

rangement of weakly binding physical layers along the (0 1 0) direction. (Note that, depending on 

the choice of the orthorhombic crystal axes, this termination may also be called (0 0 1) .) Each 

physical layer contains eight different monolayers (two with V
5+

 ions, six with O
2-

 ions) indicated 

in Fig. 4.4, hence q = 8. This results formally in eight different (0 1 0) surface terminations. How-

ever, for chemical reasons, i.e. as a result of strong local binding between the atoms, the termination 

of the real surface is assumed to be described always as shown in Fig. 4.4. Here singly coordinated 

vanadyl oxygen (dark red balls), labeled ‘8’ in the figure, forms the terminating monolayer [7]. 
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Fig. 4.4.  Structure of a physical layer of the (0 1 0) surface of a V2O5 crystal (ortho-

rhombic lattice). Atoms (gray for V, red for O) are numbered with respect to their 

monolayer sequence inside the physical layer. The lattice vectors R1, R2 of the layer 

illustrate the surface periodicity. 

All previous examples refer to single crystals which contain inversion symmetry. Therefore,  

(h k l) and (-h -k -l) oriented surfaces are equivalent and show the same termination schemes. This 

does not apply to single crystals without inversion centers, where (h k l) and (-h -k -l) oriented sur-

faces can be structurally different, which is also manifested in different physical and chemical prop-

erties. For example, gallium arsenide, GaAs, forms a crystal with a cubic zincblende lattice [31]. 

The primitive unit cell (fcc type) contains two atoms, Ga and As, yielding p = 2. This crystal has no 

inversion symmetry and, therefore, its monolayer stacking along the (1 1 1)  direction differs from 

that along (-1 -1 -1). Fig. 4.5 illustrates the structure of the two surfaces. The (1 1 1) surface allows 

two terminations, see Fig. 4.5a. Termination 1 yields arsenic atoms sitting on top of gallium at a 

large perpendicular distance to form the topmost hexagonal surface layer. Termination 2 yields a 

hexagonal surface layer of gallium atoms at the top, where these atoms are 3-fold coordinated with 

respect to the underlying As at a small perpendicular distance. The (-1 -1 -1) surface, see Fig. 4.5b 

offers the same two types of terminations as (1 1 1) except that the gallium and arsenic atoms are 

interchanged. Experiments indicate that termination 2 is energetically preferred for both surfaces 

resulting in a gallium terminated (1 1 1) and an arsenic terminated (-1 -1 -1) surface. 
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Fig. 4.5.  Structure of different terminations of the ideal (a) (1 1 1) and (b)  

(-1 -1 -1) oriented surface of GaAs. In both cases, the two terminations are labeled 

‘term. 1’ and ‘term. 2’ and atom balls are labeled accordingly. The hexagon to the 

right connects neighboring atoms of the topmost surface layer. 

 

The truncation of a perfect three-dimensional crystal by a periodic surface yields the crystal 

substrate with atoms below and vacuum above. This poses the question as to which of the substrate 

atoms are assigned to the surface and which need to be considered as bulk atoms. The definition of 

surface atoms is not unique and depends to some extent on the physical or chemical parameters 

which are to be described. Considering structural properties, a reasonable choice is to define surface 

atoms by their neighbor environment. As discussed in Sec. 2.6, each atom inside a bulk crystal is 

surrounded by atom neighbors which can be grouped into shells depending on their distance from 

the atom under consideration. The distances and numbers of atoms of the shells are determined only 

by the bulk crystal structure. When atoms from the substrate are close to the surface their neighbor 
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shells become incomplete compared with the perfect bulk environment since atoms above the sur-

face are missing. This shell behavior can be used to discriminate between bulk and surface atoms in 

a simple way: for a given number of shells, starting with the smallest, an atom will be considered a 

surface atom if any of its shells contains fewer atom members than obtained for the perfect bulk. 

Otherwise, the atom will be denoted as a bulk atom. In practice, for many low-Miller-index surfac-

es, first and second nearest neighbor shells are considered sufficient for a reasonable definition of 

surface atoms. The definition yields different results depending on the topmost layers of the (h k l) 

oriented surfaces. In particular, the number of surface layers required to reach the bulk part of the 

substrate will vary with (h k l). As an example, Table 4.1 lists for selected (h k l) surfaces of the fcc 

crystal the number of atoms in neighbor shells (1
st
 to 3

rd
) surrounding atoms of the topmost four 

monolayers of the surface. The different (h k l) entries are grouped according to decreasing mono-

layer density which shows that the number of topmost layers to reach the bulk from the surface in-

creases as the monolayer density decreases. This is clear from the present definition of bulk atoms 

requiring a distance from the surface which is determined by bulk crystal parameters irrespective of 

the surface orientation. In contrast, the (h k l) oriented monolayers are separated by distances which 

decrease with decreasing monolayer density. This is clear for the vicinal stepped  

(9 9 7) surface with wide (1 1 1) terraces, shown in Fig. 4.6, where the first and second atom neigh-

bor shells are completed only after 10 monolayers, and the third atom neighbor shell only after 18 

monolayers. Thus, at stepped and (kinked) surfaces, all atoms on the terraces should be viewed as 

surface atoms. 
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Table 4.1.  Atom neighbor shell behavior of selected (h k l) surfaces of the fcc crys-

tal. Columns 2 to 5 give for each atom in monolayer 1 to 4 from the surface the 

number of atoms n1, n2, n3 in its 1
st
 to 3

rd
 neighbor shells. Numbers ni are boldfaced 

if they reflect the bulk value. Column 6 lists smallest indices of layers with bulk 

atoms only, corresponding to n1, n2, n3 = 12, 6, 24. 

 

(h k l ) layer 1 2 3 4 Bulk 

layer 

(1 1 1) 9, 3, 15 12, 6, 21 12, 6, 24 12, 6, 24 3 

(1 0 0) 8, 5, 12 12, 5, 20 12, 6, 24 12, 6, 24 3 

(1 1 0) 7, 4, 14 11, 4, 18 12, 6, 20 12, 6, 24 4 

(3 1 1) 7, 3, 14 10, 5, 16 12, 5, 19 12, 6, 23 5 

(3 3 1) 7, 3, 12 9, 4, 16 11, 4, 19 12, 6, 19 6 

(2 1 0) 6, 4, 14 9, 4, 16 11, 5, 16 12, 5, 20 7 

(2 1 1) 7, 3, 12 9, 3, 16 10, 5, 17 12, 5, 19 7 

(9 9 7) 7, 3, 12 9, 3, 14 9, 3, 15 9, 3, 15 18 

 

 

Fig. 4.6.  Structure of the (9 9 7) surface of an fcc crystal with atoms near the sur-

face emphasized. Atom balls with all neighbor shells incomplete (‘true’ surface at-

oms, Me
0
) are painted light red, those with first and second neighbor shells complet-

ed (Me
2
) dark red, and those with the first to third neighbor shells completed (‘true’ 

bulk atoms, Me
3
) gray. 
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4.2 Morphology of Surfaces, Stepped and Kinked Surfaces 

The overall shapes (morphology) of (h k l) oriented single crystal surfaces are only partly de-

termined by the geometry of corresponding (h k l) monolayers. Local binding between atoms, which 

may involve several monolayers, will also become important. This is particularly evident for oxide 

surfaces, where local binding dominates the detailed surface structure, as illustrated in Fig. 4.4 for 

the V2O5(0 1 0) surface. Here atoms from eight different (h k l) monolayers contribute to the shape 

of the surface. In more compact crystals the morphology of (h k l) oriented surfaces is characterized 

often by sections referring to densest monolayers of the crystal (microfacets) forming terraces and 

being separated by steps which may be straight steps or broken steps (‘stepped steps’, commonly 

called kinked steps or kinks). Since the (h k l) orientation of these surfaces is often quite close to 

those of the densest monolayers, they are usually called vicinal surfaces. As an example, the (7 7 9) 

surface of an fcc crystal, see Fig. 4.7, is described by (1 1 1) terraces (the (1 1 1) monolayers of the 

crystal are the densest) separated by steps originating from  

(0 0 1) monolayers. Thus, the (7 7 9) monolayer, which consists of a rather open set of parallel atom 

rows, shown in Fig. 4.7 by light balls, does not show the surface morphology. 

 

Fig. 4.7.  Structure of the stepped (7 7 9) surface of an fcc crystal. Atom balls along 

the step lines (defining the (7 7 9) monolayer) are emphasized in light gray. Steps 

and terraces are labeled accordingly and illustrated by line frames.  

Further, the (5 6 8) surface of an fcc crystal, see Fig. 4.8, is characterized by (1 1 1) terraces 

separated by periodically broken steps (kinked steps) originating from (0 0 1) and (-1 1 1) monolay-

ers. As in the example before, the (5 6 8) monolayer which forms a very open set of atoms describ-
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ing the kink corners, shown in Fig. 4.7 by red balls, does not show the surface morphology. 

 

Fig. 4.8.  Structure of the kinked (5 6 8) surface of an fcc crystal. Atom balls along 

the kink lines are emphasized in light gray and red (the latter defining the (5 6 8) 

monolayer). Kinks and terraces are illustrated by line frames. 

Another complication can arise for crystal surfaces referring to large Miller indices. For ex-

ample, fcc single crystal surfaces corresponding to (h k l) = (2m 1 1) and m > 1 in sc notation can 

form alternating (1 0 0) terraces of widths given by m and m+1 atom rows, respectively. The terrac-

es are separated by (1 1 1) single height steps, see right part of Fig. 4.9 for m = 3 corresponding to 

an fcc(6 1 1) surface. Removing all atoms from the smaller of the two terraces results in a stepped 

surface of identical (1 0 0) terraces of widths given by 2m atom rows which are separated by (1 1 1) 

oriented double height steps as shown in the left part of Fig. 4.9. The appearance of steps (and 

kinks) of multiple atom height will be discussed in more detail in the next section. Other surface 

structures have also been discussed in Refs. [89], [90], [91], [92]. 
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Fig. 4.9.  Structure of the stepped (6 1 1) surface of a crystal with an fcc lattice, left 

part with double height steps and identical terraces, right part with single height 

steps and alternating narrow and wide terraces.  

From the examples of Fig. 4.7 it is clear that step edges at single crystal surfaces are formed by 

periodic atom rows along general lattice vectors RN (step edge vectors) which connect neighboring 

atoms referring to rather small interatomic distances. Thus, the periodicity of surfaces containing 

steps along RN is described by netplanes parallel to RN. As a consequence, corresponding monolay-

er normal vectors, pointing along reciprocal lattice vectors G(h k l) according to (3.6), must be per-

pendicular to RN. Thus, representations 

RN  =  p1 R1 + p2 R2 + p3 R3  , G(h k l)  =  h G1 + k G2 + l G3 (4.1) 

with integer pi and h, k, l yield 

RN G(h k l) =  (p1 R1 + p2 R2 + p3 R3) (h G1 + k G2 + l G3)  = 

 =  2 (p1 h + p2 k + p3 l) =  0 (4.2) 

where the orthogonality relation of real and reciprocal lattice vectors (2.96) has been applied. Rela-

tion (4.2) can be used to find (h k l)-indexed surfaces for a given edge vector RN but also to verify 

edge vectors RN at a stepped (h k l) surface. 

As an example, we consider the fcc lattice, defined by (2.102) and represented by simple cubic 

lattice vectors R1, R2, R3 in Cartesian coordinates. Then vectors RN connecting nearest neighbors 
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are given by 

RN  =  a/2 (0, 1, 1) ,  a/2 (1, 0, 1) ,  a/2 (1, 1, 0) (4.3) 

Relation (4.2) together with (4.3) and using (h k l) in sc notation results in six linear Diophantine 

equations 

h    k  =  0  , h    l  =  0  , k    l  =  0 (4.4) 

with solutions 

(h k l)  =  (m  m  n)  , =  (m  n  m)  , =  (m  n  n)  ,     m, n  integer (4.5) 

These Miller index triplets characterize orientations of all fcc surfaces with steps formed by rows of 

nearest neighbor atoms (which also include the atomically flat surfaces given by (1 1 1),  

(0 0 1)). 

If vectors RN connecting second nearest neighbors, given by 

RN  =  a (1, 0, 0) ,  a (0, 1, 0) ,  a (0, 0, 1) (4.6) 

are considered, an analogous procedure yields Miller index triplets 

(h k l)  =  (0  m  n)  , =  (m  0  n)  , =  (m  n  0)  ,     m, n  integer (4.7) 

defining orientations of all fcc surfaces with steps formed by rows of second nearest neighbor atoms 

(which also include the atomically flat surfaces given by (1 0 0), (0 1 0), (0 0 1)). 

 

4.3 Miller Index Decomposition 

Surfaces with large Miller index values (h k l) correspond, according to (3.8), to rather open 

monolayers of low atom density. They can be characterized in many cases morphologically by 

combinations of terraces with (ht kt lt) orientation separated by steps with (hs ks ls) orientation, as 

discussed in the previous section. Here the Miller index triplets (h k l), (ht kt lt), and (hs ks ls) are 

connected by an additivity theorem which is discussed in the following. 

Starting from a monoatomic single crystal with its primitive lattice described by lattice vectors 

Ro1, Ro2, Ro3 a stepped surface looks like that shown in Fig. 4.10, which sketches the stepped  

(3 3 5) surface of an fcc crystal. Here, step-adapted lattice vectors R1, R2, R3 can be constructed 

where R1 and R2 describe the periodicity of the terrace monolayers 
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Fig. 4.10.  Scheme of a Miller index decomposition for the stepped (3 3 5) surface of 

an fcc crystal. The atom balls along the step lines, forming a (3 3 5) monolayer are 

emphasized in red. The step-adapted lattice vectors R1, R2, R3 are sketched accord-

ingly. The elementary terrace and step sections of area Ft and Fs, respectively, are 

framed by dashed lines. 

with R1 pointing along the step edges and R3 along the connection between the lower and upper 

edge of each step. Let us assume further that terraces are nt vector lengths R2 ‘wide’ and the steps 

are ns vector lengths R3 ‘high’ (nt = 3 and ns = 1 in Fig. 4.10). Then the atoms at two adjacent step 

edges, A, B, and at C in Fig. 4.10, determine a plane with a normal vector defining the (h k l) direc-

tion of the stepped surface while R1 and R2 refer to (ht kt lt) of the terrace and R3 and R1 to  

(hs ks ls) of the step side ((h k l) = (3 3 5), (ht kt lt) = (1 1 1), and (hs ks ls) = (0 0 2) in Fig. 4.10). As a 

result, the reciprocal lattice vector G(h k l) of the stepped surface, which is perpendicular to the 

plane through atoms A, B, and C, is determined by 

G(h k l) =  2/ (AB  AC)  =  2/ { R1  (nt R2 - ns R3) }  = 

 =  2/ { nt (R1  R2) + ns (R3  R1) }  =  nt G(h k l)t + ns G(h k l)s 

   =  (R1  R2) R3 (4.8) 

Thus, after the three reciprocal lattice vectors have been decomposed into their Miller index combi-

nations, one obtains the additivity theorem for stepped surfaces 

(h k l)  =  nt (ht kt lt)  +  ns (hs ks ls) (4.9) 

The scalar factors nt, ns in this equation have a simple geometric meaning. The elementary 
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terrace section defined as the periodic repeat cell along the terrace, sketched by dashed lines in Fig. 

4.10, has an area Ft, where 

Ft  =  nt | R1  R2 | = nt (Vel/2) |G(h k l)t| (4.10) 

while the area Fs of the repeat cell of step side, also sketched by dashed lines in Fig. 4.10, is given 

by 

Fs  =  ns | R3  R1 | = ns (Vel/2) |G(h k l)s| (4.11) 

where | Ri  Rj | are the unit cell areas of the corresponding terrace and step planes. Thus, the factors 

nt and ns in (4.8) and (4.9), respectively, define the relative sizes of the periodic repeat cells along 

the terraces and the steps with respect to their corresponding unit cell areas. The definition of ter-

races and steps requires that the terrace area Ft be larger than that of the separating step Fs. Thus, if 

the elementary cells | R1  R2 | and | R3  R1 | are of comparable size the scalar factor nt in (4.9) will 

be larger than ns and (ht kt lt) will be the dominant component of the (h k l) triplet. In this spirit, the 

(h k l) oriented surface will be called vicinal surface with the (ht kt lt) (terrace) surface representing 

the vicinal partner. Thus, the stepped fcc(3 3 5) surface shown in Fig. 4.10 which decomposes to 

(3 3 5)  =  3 (1 1 1)  +  1 (0 0 2) 

is vicinal, with (1 1 1) being the vicinal partner. 

The additivity theorem (4.9) is the basis of the so-called step notation [93], [94] of stepped 

vicinal surfaces according to which an (h k l) surface is, in its general form, denoted as 

(h k l)    [ p1 (ht kt lt)    p2 (hs ks ls) ]  , p1  =  nt + 1  , p2  =  ns (4.12) 

Here the terrace width of nt R2 used above corresponds to (nt + 1) rows of terrace atoms used in the 

definition of the step notation. This definition was initially proposed for surfaces of cubic crystals 

(face- and body-centered) with Miller indices of simple cubic notation and single steps (ns = 1) [93] 

whereas the additivity theorem is more general and independent of the lattice type. Further, each of 

the Miller index triplets (h k l), (ht kt lt), and (hs, ks ls) in notation (4.12) is assumed to be scaled such 

that its indices do not have a common divisor. For example (2 2 0) is written as (1 1 0). Examples of 

the additivity theorem (4.9) for crystals with simple (sc), face-centered (fcc), and body-centered 

(bcc) cubic lattices together with the corresponding step notations are given in the Table 4.2.  

Table 4.2.  Decomposition of Miller indices of vicinal stepped surfaces of crystals 

with sc, fcc, and bcc lattices. The table includes corresponding step notations, see 
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text. Labels (sc) and (gen) refer to simple cubic and generic index notation. Constant 

p can assume any positive integer value. 

(h k l ) = nt (ht kt lt) + ns (hs ks ls) Step notation 

fcc (sc): 

(7 7 5)  =  6 (1 1 1) + (1 1 -1) 

(3 3 5)  =  3 (1 1 1) + (0 0 2) 

(9 1 1)  =  4 (2 0 0) + (1 1 1) 

(p+2 p+2 p)  =  (p+1) (1 1 1) + (1 1 -1) 

(p+2 p p)  =  p (1 1 1) + (2 0 0) 

(2p+1 1 1)  =  p (2 0 0) + (1 1 1) 

 

[7 (1 1 1)  (1 1 -1)] 

[4 (1 1 1)  (0 0 1)] 

[5 (1 0 0)  (1 1 1)] 

[(p+2) (1 1 1)  (1 1 -1)] 

[(p+1) (1 1 1)  (1 0 0)] 

[(p+1) (1 0 0)  (1 1 1)] 

fcc (gen): 

(5 5 1)  =  4 (1 1 0) + (1 1 1) 

(4 3 2)  =  3 (1 1 1) + (1 0 -1) 

 

[5 (1 1 0)  (1 1 1)] 

[4 (1 1 1)  (1 0 -1)] 

bcc (sc): 

(5 5 2)  =  5 (1 1 0) + (0 0 2) 

(6 6 10)  =  5 (1 1 2) + (1 1 0) 

(8 1 1)  =  4 (2 0 0) + (0 1 1) 

(p p 2)  =  p (1 1 0) + (0 0 2) 

(p+1 p+1 2p)  =  p (1 1 2) + (1 1 0) 

(2p 1 1)  =  p (2 0 0) + (0 1 1) 

 

[6 (1 1 0)  (0 0 1)] 

[6 (1 1 2)  (1 1 0)] 

[5 (2 0 0)  (0 1 1)] 

[(p+1) (1 1 0)  (0 0 1)] 

[(p+1) (1 1 2)  (1 1 0)] 

[(p+1) (1 0 0)  (0 1 1)] 

bcc (gen): 

(4 1 1)  =  4 (1 0 0) + (0 1 1) 

(1 1 2)  =  2 (0 0 1) + (1 1 0) 

 

[5 (1 0 0)  (0 1 1)] 

[3 (0 0 1)  (1 1 0)] 

sc (gen): 

(9 1 1)  =  9 (1 0 0) + (0 1 1) 

 

[10 (1 0 0)  (0 1 1)] 

 

Surfaces, for which the decomposition (4.9) suggests multiple-atom-height steps, ns > 1, can 

give rise to more complex structural behavior depending on local binding. For strong nearest neigh-

bor binding, like in metals with fcc and bcc lattices, these surfaces still form single-height steps 

with minimal variation of their terrace widths even if ns > 1. Here the multiple-atom-height step re-

gion, which has terraces of ‘width’ nt R2 and steps of ‘height’ ns R3, is partitioned in ns additional 

subterraces, 

((p + 1) ns - nt) terraces A of width   p R2   and  

(nt - p ns) terraces B of width   (p + 1) R2  ,          p = [nt / ns] (4.13) 

where [x] denotes the integer truncation function. (The mathematics behind this partitioning is 
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spelled out in Appendix E.1.) As an example, the (15 15 23) surface of a crystal with an fcc lattice, 

see Fig. 4.11, is decomposed in (1 1 1) terraces and (0 0 1) steps according to 

(15 15 23)  =  15 (1 1 1) + 4 (0 0 2) 

with four subterraces, one type A of width 3 R2 and three type B of widths 4 R2 filling the initial 

multiple-step region with 4 R3 ‘high’ steps and 15 R2 ‘wide’ terraces. 

 

Fig. 4.11.  Structure of the stepped (15 15 23) surface of an fcc crystal, with multi-

ple-atom-height steps (front) as well as with single-height steps and subterraces of 

variable width (back). 

The partitioning of multiple-atom-height step regions into subterraces A, B separated by sin-

gle-height steps according to (4.13) yields subterrace sequences which in general are not regular 

and can be evaluated by number theoretical methods as described in Appendix E.1. However, these 

exact mathematical sequences may not be observed at real crystal surfaces where diffusion process-

es also determine the different widths of subterraces with single-height steps for a given surface ori-

entation (h k l). 

Surfaces with large Miller index values (h k l) can also be characterized morphologically in 

some cases by combinations of terraces with (ht kt lt) orientation separated by kinked steps with  

(hs1 ks1 ls1) and (hs2 ks2 ls2) orientation. Analogous to stepped surfaces the Miller index triplets (h k l), 

(ht kt lt), (hs1 ks1 ls1), and (hs2 ks2 ls2) are connected by an additivity theorem which is proven in the 

following. 

Starting from a monoatomic single crystal with its primitive lattice described by Ro1, Ro2, Ro3 

a kinked surface looks like that shown in Fig. 4.12 which sketches the kinked fcc(11 13 19) sur-

face. Here, kink-adapted lattice vectors R1, R2, R3 can be constructed where R1 and R2 describe the 
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periodicity of the terrace monolayers, with the two vectors pointing along the two kink directions 

and R3 along the connection between the lower and upper corner of a kink.   

 

Fig. 4.12.  Scheme of a Miller index decomposition for the kinked (11 13 19) sur-

face of an fcc crystal. The atom balls at the kink centers, forming a (11 13 19) 

monolayer are emphasized in red. The kink-adapted lattice vectors R1, R2, R3 are 

sketched accordingly. The elementary terrace and two kink sections of area Ft, Fs1 

and Fs2 are framed by dashed lines. 

Let us assume further that the two kink edges are m1, m2 vector lengths R1, R2 ‘long’ (m1 = 3 and 

m2 = 1 in Fig. 4.12) and the terrace width between kinked steps is described by a vector  

Rt = n1 R1 + n2 R2 connecting the lower corner of one kink with the upper corner of an adjacent kink 

(n1 = 6 and n2 = 3 in Fig. 4.12). In addition, the kinks are assumed to be ns vector lengths R3 ‘high’ 

(ns = 1 in Fig. 4.12). Then the atoms at corners of adjacent kink lines, A, B, and C in Fig. 4.12, de-

termine a plane with a normal vector defining the (h k l) direction of the kinked surface. Further, R1 

and R2 refer to (ht kt lt) of the terrace, R3 and R1 to (hs1 ks1 ls1) of one kink side, and R2 and R3 to  

(hs2 ks2 ls2) of the other kink side ((h k l) = (11 13 19), (ht kt lt) = (1 1 1), (hs1 ks1 ls1) = (0 0 2),  

(hs2 ks2 ls2) = (-1 1 1) in Fig. 4.12). As a result, the reciprocal lattice vector G(h k l) of the kinked 

surface, which is perpendicular to the plane through atoms A, B, and C, is determined by 
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G(h k l) =  2/ (AB  AC)   

=  2/ (m1 R1 - m2 R2)  (n1 R1 + n2 R2 - m2 R2- ns R3)  

 =  2/ { (m1 n2 + m2 n1 - m1 m2) (R1  R2) +  m1 ns (R3  R1) + m2 ns (R2  R3) } 

 =  (m1 n2 + m2 n1 - m1 m2) G(h k l)t + m1 ns G(h k l)s1 + m2 ns G(h k l)s2 

  =  (R1  R2) R3 (4.14) 

Thus, after the four reciprocal lattice vectors have been decomposed into their Miller index combi-

nations, one obtains the additivity theorem for kinked surfaces 

(h k l)  =  (m1 n2 + m2 n1 - m1 m2) (ht kt lt) + m1 ns (hs1 ks1 ls1) + m2 ns (hs2 ks2 ls2) (4.15) 

The scalar factors in this equation have a simple geometric meaning. The elementary terrace 

section defined as the periodic repeat cell along the terrace, sketched by dashed lines in Fig. 4.12, 

has an area Ft, where 

Ft  =  pt | R1  R2 | = pt (Vel/2) |G(h k l)t|  , pt  =  (m1 n2 + m2 n1 - m1 m2) (4.16) 

while the areas Fs1, Fs2 of the two kink step sides, also sketched by dashed lines, are given by 

Fs1  =  ps1  | R3  R1 | = ps1 (Vel/2) |G(h k l)s1|  , ps1  =  m1 ns (4.17) 

Fs2  =  ps2  | R2  R3 | = ps2 (Vel/2) |G(h k l)s2|  , ps2  =  m2 ns (4.18) 

where | Ri  Rj | are the unit cell areas of the corresponding terrace and step planes. Thus, the factors 

pt, ps1, ps2 in (4.14), (4.15) define the relative sizes of the periodic repeat cells along the terraces and 

the two types of steps along the kink line with respect to their corresponding unit cell areas. The 

definition of terraces and steps requires that the terrace area Ft is larger than that of the separating 

steps Fs1 and Fs2. Thus, if the elementary cells | R1  R2 |, | R3  R1 |, and | R2  R3 | are of compara-

ble size the scalar factor pt in (4.16) will be larger than ps1 and ps2 and (ht kt lt) will be the dominant 

component of the (h k l) triplet. In this spirit, the (h k l) oriented surface will be called vicinal sur-

face with the (ht kt lt) (terrace) surface representing the vicinal partner. Thus, the kinked  

fcc(11 13 19) surface shown in Fig. 4.12 which decomposes to 

(11 13 19)  =  12 (1 1 1)  +  3 (0 0 2)  +  1 (-1 1 1) (4.19) 

is vicinal with (1 1 1) being the vicinal partner. 

The additivity theorem (4.15) for kinked surfaces can be written alternatively as 

(h k l)  =  pt (ht kt lt) + ns (hs' ks' ls') (4.20) 
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with pt according to (4.16) and 

(hs' ks' ls')  =  m1 (hs1 ks1 ls1) + m2 (hs2 ks2 ls2) (4.21) 

where relations (4.20) and (4.21) are identical to the additivity theorem (4.9) for stepped surfaces. 

Therefore, the kinked surface can also be understood as a stepped surface whose terraces are sepa-

rated by ‘steps’ which themselves are characterized in their orientation by stepped surfaces. As an 

example, the kinked fcc(11 13 19) surface shown in Fig. 4.12 with a decomposition according to 

(4.19) can also be interpreted as a combination of the ‘stepped’ surface 

(11 13 19)  =  12 (1 1 1)  +  1 (-1 1 7) 

with the stepped surface 

(-1 1 7)  =  3 (0 0 2)  +  1 (-1 1 1) 

The distinction between kinked and stepped surfaces becomes questionable in cases where the 

kink line sections are very short. As an illustration, Fig. 4.13 shows the fcc(10 2 0) surface which 

allows an interpretation as a kinked surface with (2 0 0) terraces and (1 1 1) / (1 1 -1) kink steps 

(sections a, b, c) according to 

(10 2 0)  =  4 (2 0 0)  +  1 (1 1 1)  +  1 (1 1 -1) 

but also as a stepped surface with (2 0 0) terraces separated by (2 2 0) steps (sections a, d) according 

to 

(10 2 0)  =  4 (2 0 0)  +  1 (2 2 0) 

  



216 

 

 

Fig. 4.13.  Structure of the (10 2 0) surface of an fcc crystal. Step and kink atoms are 

emphasized by lighter color. The kink decomposition is shown to the left (repeat 

cells labeled a, b, c and outlined by black lines). The step decomposition is shown to 

the right (repeat cells labeled a, d). 

The additivity theorem (4.15) is the basis of the so-called microfacet notation [94], [95] of 

vicinal surfaces according to which an (h k l) surface is, in its general form, denoted as 

(h k l)  =  a (ht kt lt) + b (hs1 ks1 ls1) + c (hs2 ks2 ls2) (4.22) 

This notation was initially proposed for crystals with cubic lattices (face- and body-centered) and 

Miller indices of simple cubic notation and single steps only, whereas the additivity theorem is 

more general and independent of the lattice type. Further, each of the Miller index triplets (h k l),  

(ht kt lt), (hs1, k s1, l s1), and (hs1, k s1, l s1) in (4.22) is assumed to be scaled such that its indices do not 

have a common divisor. For example (12 8 4) is written as (3 2 1). In addition, parameters a, b, c 

and , ,  are chosen as independent numbers (resulting in indexed number quantities like ‘34’), 

where , ,  denote the true decomposition given by (4.15) with  

  =  p1    ,   =  p2    ,   =  p3 (4.23) 

according to (4.16), (4.17), (4.18) while parameters a, b, c are scaled further to guarantee the addi-

tivity of the Miller indices in (4.22) which can be expressed formally by 

a  =  (p1 / )  gcd(ht, kt, lt)  , b  =  (p2 / )  gcd(hs2, ks2, ls2) 

c  =  (p3 /)  gcd(hs2, ks2, ls2)  ,   =  gcd(h, k, l) (4.24) 

with gcd(n1, n2, n3) denoting the greatest common divisor of the three integers n1, n2, n3, see Appen-
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dix E.1. 

As an example, for a crystal with an fcc lattice the additivity theorem for the (20 16 14) in-

dexed surface (simple cubic notation) reads 

(20 16 14)  =  15 (1 1 1) + 2 (2 0 0) + (1 1 -1) 

while the corresponding microfacet notation reads 

(10 8 7)  =  (15/2)15 (1 1 1) + 22 (1 0 0) + (1/2)1 (1 1 -1) 

Using generic Miller indices or simple cubic Miller indices with the correct numerical constraints, 

see (3.20b), (3.25b), yields 

a  =    =  p1    , b  =    =  p2    , c  =    =  p3 (4.25) 

making the indexed numbers unnecessary and resulting in a notation according to the additivity the-

orem (4.15). Examples of the additivity theorem for crystals with fcc and bcc lattices together with 

corresponding microfacet notations are given in Table 4.3.  
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Table 4.3.  Decomposition of Miller indices of vicinal kinked surfaces of crystals 

with fcc and bcc lattices. The table includes corresponding microfacet notations, see 

text. Labels (sc) and (gen) refer to the Miller index notations, simple cubic and ge-

neric Bravais, see above, and constant p can assume any positive integer value. 

(h, k, l )  =  a (ht kt lt) + b (hs1 ks1 ls1) + c (hs2 ks2 ls2) Microfacet notation 

fcc (sc): 

(17 11 9)  =  10 (1 1 1) + 3 (2 0 0) + (1 1 -1) 

(11 3 1)  =  4 (2 0 0) + 2 (1 1 1) + (1 1 -1) 

(17 15 1)  =  7 (2 2 0) + (1 1 1) + (2 0 0) 

(2p+7 2p+1 2p-1)  =  2p (1 1 1) + 3 (2 0 0) + (1 1 -1) 

(2p+1 3 1)  =  (p-1) (2 0 0) + 2 (1 1 1) + (1 1 -1) 

 

(2p+1 2p-1 1)  =  (p-1) (2 2 0) + (1 1 1) + (2 0 0) 

 

 

1010 (1 1 1) + 63 (1 0 0) + 11 (1 1 -1) 

84 (1 0 0) + 22 (1 1 1) + 11 (1 1 -1) 

147 (1 1 0) + 11 (1 1 1) + 21 (1 0 0) 

(2p)2p (1 1 1) + 63 (1 0 0) + 11 (1 1 -1) 

(2p-2)(p-1) (1 0 0) + 22 (1 1 1) + 

                                      + 11 (1 1 -1) 

(2p-2)(p-1) (1 1 0) + 21 (1 0 0) +  

                                      + 11 (1 1 1) 

fcc (gen): 

(10 13 14)  =  10 (1 1 1) + 3 (0 1 1) + (0 0 1) 

(2 6 7)  =  4 (0 1 1) + 2 (1 1 1) + (0 0 1) 

 

1010 (1 1 1) + 33 (0 1 1) + 11 (0 0 1) 

44 (0 1 1) + 22 (1 1 1) + 11 (0 0 1) 

bcc (sc): 

(8 7 3)  =  6 (1 1 0) + 2 (1 0 1) + (0 1 1) 

(15 10 3)  =  10 (1 1 0) + 3 (1 0 1) + (2 0 0) 

(18 16 4)  =  15 (1 1 0) + 3 (1 0 1) + (0 1 1) 

 

(2p+2 2p+1 3)  =  2p (1 1 0) + 2 (1 0 1) + (0 1 1) 

(2p+5 2p 3)  =  2p (1 1 0) + 3 (1 0 1) + (2 0 0) 

 

66 (1 1 0) + 22 (1 0 1) + 11 (0 1 1) 

1010 (1 1 0) + 33 (1 0 1) + 21 (1 0 0) 

(15/2)15 (1 1 0) + (3/2)3 (1 0 1) +  

                                   + (1/2)1 (0 1 1) 

(2p)2p (1 1 0) + 22 (1 0 1) + 11 (0 1 1) 

(2p)2p (1 1 0) + 33 (1 0 1) + 21 (1 0 0) 

bcc (gen): 

(1 2 6)  =  6 (0 0 1) + 2 (0 1 0) + (1 0 0) 

(1 3 15)  =  15 (0 0 1) + 3 (0 1 0) + (1 0 0) 

 

66 (0 0 1) + 22 (0 1 0) + 11 (1 0 0) 

1515 (0 0 1) + 33 (0 1 0) + 11 (1 0 0) 

 

Surfaces, for which the decomposition (4.15) suggests multiple-atom-height kinks, ns > 1, 

can result in much more complex structural behavior depending on local binding. This is analogous 

to stepped surfaces described above. For strong nearest neighbor binding, like in metals with fcc 

and bcc lattices, these surfaces still form kinks with single atom steps even if ns > 1. As an example 

the (37 25 17) surface of a crystal with an fcc lattice, see Fig. 4.14, decomposes into (1 1 1) terraces 

and (1 1 -1) / (2 0 0) kinks of double step height which is clear from the decomposition 

(37 25 17)  =  21 (1 1 1) + 2  2 (1 1 -1) + 2  3 (2 0 0) 

with   m1 = 2, m2 = 3, ns = 2, n1 = 7, n2 = 3 according to (4.15). Here single step height kink lines 

contain two sections differing in length and separate terraces of different width. Further, the corre-
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sponding kink lines are structurally more complex as indicated by the black lines in Fig. 4.14. 

 

Fig. 4.14.  Structure of the kinked fcc(37 25 17) surface with alternating single-

height kinks (back) and two lines of double-height kinks (front). The red atom balls 

define the (37 25 17) monolayer. Kink edges are emphasized by black lines. 

So far, the discussion of the shape of vicinal surfaces was restricted to monoatomic single crys-

tals with only one atom in the primitive unit cell (primitive crystals). A generalization to polyatom-

ic crystals with more than one atom in the primitive unit cell and/or different elements is straight 

forward since, according to Sec. 2.2.1, any general crystal can be decomposed formally into a set of 

primitive crystals with lattices which are identical to that of the general crystal. Thus, vicinal sur-

faces of polyatomic crystals can be considered as superpositions of those of their primitive compo-

nent crystals. However, the detailed local structure at the surfaces may be rather complicated de-

pending on the crystal type. As an illustration Fig. 4.15 shows an example of moderate complexity, 

the kinked (15 11 9) surface of cubic MgO. This surface can be decomposed in (1 1 1) terraces and 

(1 1 -1) / (2 0 0) kinks, where the terrace sections alternate between the two atom types leading to a 

highly polar ‘zebra-striped’ surface. 
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Fig. 4.15.  Structure of the kinked (15 11 9) surface of cubic MgO with alternating 

(1 1 1) terraces of Mg and O atoms. The atoms are shown in different color and la-

beled accordingly. 

A more complex example is given in Fig. 4.16 showing the structure of the stepped (0 1 8) surface 

of cubic strontium titanate, SrTiO3, (perovskite lattice) . This surface exhibits alternating  

(0 0 1) oriented terraces of binary TiO2 and SrO units. However, it must be emphasized that the 

structures of the MgO(15 11 9) and SrTiO3(0 1 8) surfaces shown in Figs. 4.15 and 4.16, respective-

ly, are to some extent academic. The corresponding real crystal surfaces that can be measured are 

very likely to be modified by interatomic binding effects leading to local relaxation of atom posi-

tions and reconstruction at the surface. This will be discussed in greater detail in Sec. 5. 
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Fig. 4.16.  Structure of the stepped (0 1 8) surface of a SrTiO3 crystal (perovskite 

lattice, cubic-P). The atoms are shown in different color and labeled accordingly. 

The surface-adapted lattice vectors illustrate the surface periodicity. 

Altogether, the two decomposition theorems (4.9) and (4.15) can be used to characterize gen-

eral (h k l)-indexed surfaces of single crystals by surfaces of high atom density, usually correspond-

ing to low Miller index values, which describe the surface morphology by combinations of dense 

terraces separated by steps and/or kinks. This can be achieved in the most general case by replacing 

the initial reciprocal lattice vectors Go1, Go1, Go1 which describe vector G(h k l) of the  

(h k l)-indexed surface according to 

G(h k l)  =  h Go1  + k Go2  + l Go3 (4.26) 

by a set of transformed reciprocal lattice vectors G1, G2, G3. The latter also form a basis of the re-

ciprocal lattice but at the same time refer to normal directions of high density monolayers. If the 

transformed vectors are represented by 

Gi  =  hi Go1  + ki Go2  + li Go3 ,   i = 1, 2, 3 (4.27) 

with corresponding Miller indices (hi ki li) then the transformation reads 
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Together with (4.26) this leads to 
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where ai, i = 1, 2, 3, are integer-valued coefficients which can be calculated by solving the system 

of linear Diophantine equations 
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with solutions 

      2332233223321

1
a khkhlhlhlklklkh 


  (4.31a)  

      3113311331132

1
a khkhlhlhlklklkh 


  (4.31b)  

      1221122112213

1
a khkhlhlhlklklkh 


  (4.31c)  

     122131221312213 khkhlhlhlklklkh   (4.31d) 

where for generic Miller indices  = 1 while for simple cubic Miller indices of fcc and bcc lattices 

 = 4 and  = 2, respectively, must be used, see Exercise 4.17. Thus, if the Miller indices (h k l) of 

the surface to be analyzed and those, (hi ki li), of the corresponding high atom density surfaces are 

known, relations (4.31) provide the decomposition coefficients ai. This suggests a simple trial-and-

error method to characterize the structure of a general (h k l) surface by terraces, steps, and kinks of 

surfaces with high atom density. 

In a first step, a set of reciprocal lattice vectors G with Miller indices (h k l), representing sur-

faces of high atom density, is evaluated. Of these, three reciprocal lattice vectors G1, G2, G3, and 

Miller indices (h1 k1 l1), (h2 k2 l2), and (h3 k3 l3) according to (4.27), are chosen such that they form a 

reciprocal lattice basis, i.e. 
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where  = 1 for generic Miller indices,  = 4 and  = 2 for sc Miller indices in fcc and bcc lattices, 

respectively. Then for each vector triplet G1, G2, G3 the decomposition coefficients a1, a2, a3 are 

evaluated using (4.31) where only vector triplets with coefficients ai  0 need to be considered. For 

these solutions the Miller indices (h1 k1 l1), (h2 k2 l2), (h3 k3 l3) and coefficients ai are rearranged 

such that a1  a2  a3  0 after which three different scenarios of surface structures can be distin-

guished 

(a) For a2 = a3 = 0 the (h k l) = (h1 k1 l1) oriented surface is characterized as a surface of high 

atom density. 

 (b) For a1  a2 > 0 and a3 = 0  the (h k l) oriented surface is stepped with (h1 k1 l1) representing 

the terrace surface (vicinal partner), with terraces of ‘width’ a1 and step ‘heights’ a2. Here 

the value a2 = 1 yields single atom steps while a2 > 1 refers to multiple atom steps where the 

latter may lead to subterraces with single atom steps as discussed above. 

(c) For a1  a2  a3 > 0  the (h k l) oriented surface is kinked with (h1 k1 l1) representing the 

terrace surface (vicinal partner). If g = gcd(a2, a3), then two cases can be distinguished, 

(ca) g = 1  there are continuous kink lines of a2 and a3 atom vectors long sections and 

adjacent terraces are separated by single atom steps. Here a3 = 1 yields single atom 

kinks while a3 > 1 refers to multiple atom kinks where the latter may result in more 

complex single atom kinks. 

(cb) g > 1  there are continuous kink lines of a2/g and a3/g atom vectors long sections 

and adjacent terraces are separated by multiple atom steps that are g atoms high 

which may result in more complex single atom steps with single atom kinks. 

The decomposition is most evident for (h k l) oriented surfaces where the decomposition coeffi-

cients ai are rather different with large terraces, corresponding to a1 distinctly larger than  

a2, a3, and, in the case of kinked surfaces, large kink lines with small kink edges, corresponding to 

a2 > 1 and a3 = 1. This must be considered when choosing meaningful vector triplets G1, G2, G3 and 

Miller indices (h1 k1 l1), (h2 k2 l2), (h3 k3 l3) for the decomposition. An example is the fcc(16 10 8) 

surface which decomposes to 



224 

 

(16 10 8)  =  9 (1 1 1) + 3 (2 0 0) + (1 1 -1) 

On the other hand, decompositions with very similar values ai may not yield a clear structural 

description. Here an example is the fcc(21 13 3) surface shown in Fig. 4.17 which decomposes to 

(21 13 3)  =  5 (2 2 0) + 4 (2 0 0) + 3 (1 1 1) 

showing (1 1 1) terraces with a fairly complex kink structure. Surfaces of this type may not be 

called vicinal. 

 

Fig. 4.17.  Structure of the (21 13 3) surface of an fcc crystal. The atoms of the top-

most monolayer are emphasized by lighter color. The surface unit cell is outlined by 

black lines with surface lattice vectors R1, R2 labeled accordingly. 

As examples of general decompositions, we consider crystals with an fcc lattice, where high-

density surfaces are given by the Miller index families {1 1 1}, {2 0 0}, {2 2 0} with altogether 26 

(h k l) members. Here useful example decompositions are 

(h k l) =  (k + l)/2  (1 1 1) + (h - l)/2  (1 1 -1) + (h - k)/2  (1 -1 1) 

 =  (k + l)/2  (1 1 1) + (k - l)/2  (1 1 -1) + (h - k)/2  (2 0 0) 

 =  l  (1 1 1) + (h - l)/2  (2 0 0) + (k - l)/2  (0 2 0) 

 =  h/2  (2 0 0) + k/2  (0 2 0) + l/2  (0 0 2)              {even (h k l) only} 

 =  l  (1 1 1) + (k - l)/2  (2 2 0) + (h - k)/2  (2 0 0) (4.33) 
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Crystals of bcc lattices offer high-density surfaces described by the Miller index families  

{1 1 0}, {2 0 0}, {2 1 1} with altogether 42 (h k l) members. Here useful example decompositions 

are 

(h k l) =  (-h + k + l)/2  (0 1 1) + (h - k + l)/2  (1 0 1) + (h + k - l)/2  (1 1 0) 

 =  k  (1 1 0) + l  (1 0 1) + (h - k - l)/2  (2 0 0) 

 =  -k  (1 -1 0) + (h + k - l)/2  (2 0 0) + l  (1 0 1) 

 =  (h - k)  (2 1 1) + (-h + 2k)  (1 1 0) + (-h + k + l)/2  (0 0 2) (4.34) 

The characterization of general (h k l)-indexed surfaces according to the above recipe allows 

one to distinguish between surfaces of high atom density, stepped, and kinked vicinal surfaces. 

While the underlying Miller index decomposition is not unique it is most general and applies to sur-

faces of crystals with any Bravais lattice type. An alternative distinction between stepped and 

kinked surfaces has been proposed for crystals with highly symmetric cubic and hexagonal (hcp) 

lattices [96]. Here a stepped surface is defined by the atoms of its terrace edges forming linear ar-

rays with nearest neighbor distances separating the atoms. This definition is rather intuitive but may 

not be applicable to crystals with general Bravais lattices. 

 

4.4 Chiral and Achiral Surfaces 

There is an additional structural property, handedness or chirality (kheir () is Greek for 

‘hand’), which can be used to discriminate between surfaces of single crystals [96] but is of much 

more general relevance [97]. For example, chiral molecules have been found to be optically active 

in the presence of circularly polarized light [97], and large organic biomolecules can react quite dif-

ferently with their environment depending on their chiral components [98]. Further, chiral crystal 

surfaces have attracted much interest since their interaction with large (chiral) adsorbates has been 

found, in some cases, to differ dramatically depending on their chiral orientation (enantioselective 

adsorption) [99], [100]. This will be discussed in Sec. 6.7. 

The formal definition of a general three-dimensional chiral object is that it cannot be super-

imposed onto its mirror image. This definition has also been used to describe symmetry properties 

of molecules: applying a mirror operation creates an image molecule, which may or may not be 

brought in coincidence with the initial species by a simple rotation and translation. If there is no co-

incidence possible the molecule will be called chiral and in the coincidence case it will be called 
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achiral. The two mirror partners of a chiral molecule are also known as enantiomers. As an exam-

ple, Fig. 4.18 shows the two enantiomers of bromochlorofluoromethane, BrClFCH, where mirror-

ing creates two different species, a right-handed R-BrClFCH (‘R-’ for ‘rectus’, latin for right) and a 

left-handed S-BrClFCH molecule (‘S-’ for ‘sinister’, latin for left) using a nomenclature according 

to the stereochemical rules [101]. Here the peripheral atoms see different arrangements of atom 

neighbors. For example, rotating R-BrClFCH clockwise about its C-H axis moves the bromine to-

wards the chlorine atom whereas rotating S-BrClFCH about its C-H axis to move the bromine  

 

Fig. 4.18.  Balls-and-sticks models of the two enantiomers of bromochlorofluoro-

methane, BrClFCH, with a mirror plane in between. The right- and left-handed vec-

tor triplets R1, R2, R3, and R1', R2', R3', referring to the R-BrClFCH and S-BrClFCH 

species, respectively, are shown at the bottom. 

towards chlorine requires an anticlockwise rotation. The different orientation is also clear from the 

interatomic vectors R1, R2, R3, pointing from the central carbon to fluorine, chlorine , and bromine, 

and shown at the bottom of Fig. 4.18. These vectors form a right-handed triplet while their mirror 

images R1', R2', R3' form a left-handed triplet. 

The example shows that the concept of chirality is connected mathematically with the handed-

ness of vector triplets in three-dimensional space. A non-coplanar vector triplet R1, R2, R3 is called 

right-handed if the corresponding volume product, V = (R1  R2) R3 , see Appendix F, assumes a 

positive value, whereas the triplet is considered to be left-handed if V is negative. The three point 

symmetry operations, mirroring, inversion, and rotation, affect the handedness of a vector triplet 

differently depending on the operation. 
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(a) A mirror operation (ro, m) with respect to a plane of normal vector m through the origin 

ro = 0 is, according to (3.89), defined by a transformation 

r'  =  (0, m) r  =  r  -  2 (r m) m (4.35) 

As a result, the vector triplet R1, R2, R3 is transformed to R1', R2', R3', where, as proven in 

Appendix F, 

V'  =  (R1'  R2') R3'  =  - (R1  R2) R3  = -V (4.36) 

This shows that mirroring changes the handedness of vector triplets. 

(b) An inversion i(ro) with respect to the origin ro = 0 is, according to (3.64), defined by a trans-

formation 

r'  =  i(0) r  =  - r (4.37) 

Therefore, the vector triplet R1, R2, R3 is transformed to R1', R2', R3', where the volume 

product with respect to the inversion center yields 

V' =  (R1'  R2') R3'  =  [ (- R1)  (- R2) ] (- R3 )  =  -V (4.38) 

This shows that inversion changes also the handedness of vector triplets. 

(c) A (clockwise) rotation C(ro, e) by an angle  about an axis along e through the rotation 

center at the origin ro = 0  is, according to (3.73), (3.74) and using a representation 

r  =  x1 e1 + x2 e2 + x3 e3 xi  =  r ei  ,     i  =  1, 2, 3 (4.39) 

where e1, e2, e3 = e are Cartesian unit vectors with respect to the rotation axis along e3, de-

fined by a transformation 

r'  =  C (r)  =  x1' e1 + x2' e2 + x3' e3 (4.40) 

with 
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 (4.41) 

Thus, the vector triplet R1, R2, R3 is transformed to R1', R2', R3', where the volume product 

with respect to the rotation center at the origin ro = 0 is yields 

V' =  (R1'  R2') R3'  =  (R1  R2) R3  =  V (4.42) 
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as can be proven by simple calculus using (4.39) and (4.40). This shows that rotation does 

not change the handedness of vector triplets. 

Altogether, inversion and mirroring change the handedness of corresponding vector triplets while 

rotation does not. Thus, applying a combination of different rotations with a mirror operation or 

with an inversion will always change the handedness of vector triplets describing the atom positions 

of a molecule and may lead to a molecule of different conformation. In this case the molecule is 

called chiral. On the other hand, a molecule with mirror or inversion symmetry will not change its 

shape when combinations of mirroring, inversion, or rotation are applied and the molecule is called 

achiral. Therefore, chirality can be based on the behavior of a system with respect to mirroring or 

inversion and, hence, the existence of corresponding mirror planes or inversion centers. This 

equivalence is also clear from the fact that the inversion operation i(ro) can always be represented 

by a combination of mirroring (ro, m) and a 180 rotation C180(ro, m) 

i(ro)  =  (ro, m) C180(ro, m)  =  C180(ro, m) (ro, m) (4.43) 

which can be proven using the above transformations. In the following, we will focus on the defini-

tion of chirality based on mirror symmetry which is common practice in the literature. 

It should be mentioned in passing that in general chirality is associated with atom centers in a 

molecule, so-called chiral centers, where mirror operations change the handedness of the atom ar-

rangement near the center. In the BrClFCH molecule shown in Fig. 4.18 the carbon center acts as 

the chiral center distinguishing between R-BrClFCH and S-BrClFCH. However, larger molecules 

may contain several chiral centers. As an example, Fig. 4.19 shows the tartaric acid (TA) molecule 

[102], C4O6H6, which includes two chiral carbon centers, denoted as C* in the figure, which can be 

both left- and right-handed. Hence, there are four possible isomeric species. In (R,R)-TA and  

(S,S)-TA, see Fig. 4.19, both carbon centers are left-handed or both right-handed according to the 

Cahn-Ingold-Prelog rules [101] and the two species are enantiomers connected by mirror imaging. 

In the other two, (L,R)-TA and (R,L)-TA, one of the carbon centers is left- and the other right-

handed such that they are structurally identical and achiral (usually refered to as meso tartaric acid 

and diastereoisomeric with respect to the chiral species). 
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Fig. 4.19.  Balls-and-sticks models of the two enantiomers of tartaric acid (TA) from 

crystal data [102], (a) (R,R)-TA and (b) (S,S)-TA. The atom balls labeled C* refer to 

the two chiral carbon centers. 

The concept of chirality can also be applied to extended systems such as bulk single crystals. 

For example, according to the basic definition, a primitive crystal which contains inversion centers 

by definition will always be achiral. Surfaces of ideal single crystals are terminated by (h k l) ori-

ented monolayers which are described by netplane-adapted lattice vectors R1 and R2, where a stack-

ing vector R3 connects adjacent parallel monolayers, see Sec. 4.1. Here a surface can be considered 

to be chiral if it does not exhibit mirror symmetry along any plane perpendicular to the surface. 

These surfaces always have chiral partners which can be obtained by applying a mirror operation to 

the initial surface with the mirror plane perpendicular to the surface. The mirroring transforms the 

netplane-adapted lattice vectors R1 and R2 such that the vector product R1  R2 changes its sign but 

not its absolute value. This vector R1  R2 defines (up to a constant factor) the reciprocal lattice vec-

tor G(h k l) and, hence, the Miller indices of the surface, see (3.6). Therefore, the chiral partner of 

the (h k l) surface is defined by Miller indices (-h -k -l). 

The two chiral partners of an (h k l) oriented surface may also be assigned a handedness which 

is most evident for kinked surfaces of primitive crystals. It was shown previously, see (4.14), that 

the reciprocal lattice vector G(h k l) of a kinked surface can be written as a sum of three contribu-

tions,{(m1 n2 + m2 n1 - m1 m2) G(h k l)t}, {m1 ns G(h k l)s1}, and {m2 ns G(h k l)s2}, characterizing its ter-

race orientation and those of the two steps defining the kink. Sorting the three contributions accord-
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ing to their lengths yields the three vectors Gi, i = 1, 2, 3, pointing out of the surface where G1 is 

assumed to be of smallest and G3 of largest length. Then the (h k l) surface is called right-handed, 

also denoted as (h k l)
R
, if the vectors G1, G2, G3 form a right-handed system, quantified by the vol-

ume product 

Vch  =  (G1  G2) G3 (4.44) 

being positive, whereas the surface is called left-handed, denoted as (h k l)
S
, if G1, G2, G3 form a 

left-handed system and Vch is negative. This assignment is unique if the lengths of the three vectors 

Gi are all different and is compatible with the nomenclature proposed in the literature [103], [104].  

As an example, Fig. 4.20a shows the chiral (11 9 5) surface of an fcc crystal, described by  

(1 1 1) terraces with kinks of (1 1 -1) and (1 0 0) steps (confirming the additivity relation  

(11 9 5) = 7 (1 1 1) + 2 (1 1 -1) + (2 0 0 ) ). The corresponding volume product Vch equals to 

Vch  =   ( (2 0 0)  (2 2 -2) ) (7 7 7) = 28   >  0 

where  is a global positive constant. Hence, the surface is right-handed and may be written as  

(11 9 5)
R
. The chiral partner surface (-11 -9 -5) shown in Fig. 4.20b (a mirrored copy of the surface 

section in Fig. 4.20a) is left-handed and may be termed (-11 -9 -5)
S
. The kink lines, emphasized by 

light balls in Fig. 4.20, show the difference between the two surfaces quite clearly. In contrast, fcc 

bulk crystals are intrinsically achiral in three dimensions since they contain multiple mirror sym-

metry. However, none of the mirror planes is perpendicular to the (11 9 5) surface which is why the 

corresponding surface is chiral. 
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Fig. 4.20.  Structure of the (a) kinked fcc(11 9 5)
R
 surface with (1 1 1) terraces and 

(1 1 -1) / (1 0 0) kinks, (b) chiral partner surface fcc(-11 -9 -5)
S
. The atoms along the 

kink lines are emphasized by light balls. The surface-adapted lattice vectors illus-

trate the surface periodicity. 

There are cases where, after sorting, two of the vectors Gi are equal in length. Then the above 

sorting process does not lead to a unique solution and the volume product Vch can become positive 

or negative depending on the sequence chosen for the vectors Gi. This can appear for general Bra-

vais lattices where the concept of dense monolayers, forming terraces separated by steps and kinks, 

is less evident and the concept of chirality may not be applicable. Here sorting the reciprocal lattice 

vectors G(h k l)t, G(h k l)s1, G(h k l)s2 themselves according to their length can provide a unique 

assignment. In cases where two vectors Gi are equal in length and also their scalar prefactors agree 

with each other the assignment of a handedness of the surface becomes unclear and the surface has 

to be considered achiral. This happens for example for stepped surfaces with open step edges such 

that the edges may also be interpreted as kink lines. A simple example is the achiral fcc(4 1 0) 

surface shown in Fig. 4.21 whose Miller indices can be decomposed as 

(4 1 0)  (8 2 0) = 3 (2 0 0) + (2 2 0) 

suggesting a stepped surface with (1 0 0) oriented terraces separated by (1 1 0) steps or as 
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(4 1 0)  (8 2 0) = 3 (2 0 0) + (1 1 1) + (1 1 -1) 

suggesting a kinked surface with (1 0 0) oriented terraces separated by kink lines of symmetric  

(1 1 1) and (1 1 -1) step sections. 

 

Fig. 4.21.  Structure of the fcc(4 1 0) surface described by (1 0 0) terraces with  

(1 1 0) steps (left part) or with (1 1 -1) / (1 1 -1) kinks (right part). The step and kink 

areas are outlined by black lines. The surface-adapted lattice vectors in red illustrate 

the overall surface periodicity. 

As stated earlier, an (h k l) surface is considered to be achiral only if there is at least one mir-

ror plane of the crystal which is perpendicular to the surface. Thus, all parallel (h k l) monolayers 

which are stacked from the surface towards the bulk must share one or several mirror planes per-

pendicular to the surface. As an example, Fig. 4.22 shows the achiral (3 3 1) surface of an fcc crys-

tal, described by (1 1 1) terraces with (1 1 -1) steps (confirming the additivity relation  

(3 3 1) = 2 (1 1 1) + (1 1 -1)). The mirror plane perpendicular to the steps and, thus, perpendicular 

to the surface is indicated in Fig. 4.22 by the red line labeled . In addition, the isolated topmost 

monolayer (formed by the atoms at the step edges) as well as all underlying isolated monolayers 

contain a mirror line on the mirror plane labeled . 
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Fig. 4.22.  Structure of the achiral stepped fcc(3 3 1) surface with (1 1 1) terraces 

and (1 1 -1) steps. The mirror plane perpendicular to the surface is indicated by a red 

line labeled . The netplane-adapted lattice vectors (left- and right-handed) illustrate 

the surface periodicity.  

In Sec. 3.6.4 it was shown that netplanes containing mirror lines correspond to either primitive 

rectangular (including square) or centered rectangular (including hexagonal) lattices in two dimen-

sions. This two-dimensional symmetry applies to each separate monolayer near the (h k l) surface. 

However, the overall three-dimensional symmetry and morphology near the surface, determining 

the surface chirality, is also influenced by the netplane-adapted vector R3 connecting adjacent mon-

olayers. For example, the fictitious monoatomic triclinic crystal with lattice vectors 

R1  =  a (1, 0 , 0) , R2  =  a (0, 1, 0) , R3  =  a (1/2, 1/3, 1/2) (4.45) 

yields a (0 0 1) oriented surface shown in Fig. 4.23 in a parallel projection perpendicular to the sur-

face. Here each of the (0 0 1) monolayers with lattice vectors R1, R2 given by (4.45) is of square 

symmetry including mirror lines. However, the (0 0 1) surface combining all monolayers has no 

mirror symmetry and is chiral. 
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Fig. 4.23.  Structure of the chiral (0 0 1) surface of a fictitious primitive triclinic 

crystal, see text. The netplane-adapted lattice vectors R1, R2, R3 illustrate the mono-

layer and bulk periodicity. The atoms of the topmost four monolayers are painted 

differently and labeled accordingly. 

In addition to chiral surfaces, there is often an infinite but discrete set of achiral (h k l) surfaces 

of a crystal depending on its symmetry. This set can be determined by simple geometric considera-

tions. Achiral (h k l) surfaces have been defined by the existence of at least one mirror plane of the 

corresponding bulk crystal pointing perpendicular to the surface. This means, in particular, that the 

mirror plane normal vector m must point parallel to the surface. Hence, vector m must be per-

pendicular to the surface normal vector pointing along the reciprocal lattice vector G(h k l). This can 

be used to find the Miller indices of all possible achiral (h k l) surfaces of a single crystal.  

Consider an (h k l) surface of an ideal single crystal with lattice vectors Ro1, Ro2, Ro3. Then the 

normal vector m of any mirror plane defined by (ro, m) in the crystal can be represented by 

m  =  x1 Ro1 + x2 Ro2 + x3 Ro3 (4.46) 

The corresponding reciprocal lattice of the crystal is given by vectors Go1, Go2, Go3 according to 

(2.95) and an (h k l) surface is defined by its normal vector along 

G(h k l)  =  h Go1 + k Go2 + l Go3 (4.47) 

Thus, the condition of an achiral surface with vector m perpendicular to G(h k l) results in a linear 

equation 

G(h k l) m  =  x1 h + x2 k + x3 l  =  0 (4.48) 

where the orthogonality relation of real and reciprocal lattice vectors (2.96) has been used. There-

fore, all achiral (h k l) surfaces of a single crystal can be obtained by considering normal vectors m 

of all mirror planes of the crystal and then selecting (h k l) according to (4.48) for each vector m. 
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This procedure is most general and applies to single crystals with any lattice. 

As examples of finding all achiral surfaces we consider cubic crystals which may be simple, 

face-, or body-centered. The simple cubic lattice with lattice vectors 

R1
sc

  =  a (1, 0, 0) ,    R2
sc

  =  a (0, 1, 0) ,    R3
sc

  =  a (0, 0, 1) (4.49) 

in Cartesian coordinates offers nine mirror planes, shown in Fig. 4.24, which are decribed by nor-

mal vectors m with 

m =  (1, 0, 0) ,  (0, 1, 0) ,  (0, 0, 1) ,  and 

m =   (1, 1, 0) ,   (1, 0, 1) ,   (0, 1, 1) ,    =  1/2 (4.50) 

 

Fig. 4.24.  The nine mirror planes of a primitive simple cubic crystal, (a) - (i). Crys-

tal atoms of nearest neighbors are connected by sticks. Mirror planes are indicated 

by boundaries between light and dark regions labeled + and -. All mirror planes go 

through the center of the cube. Cartesian coordinates are included in (a). 

This results, according to (4.48), in nine different sets of Miller indices (h k l) describing normal 

directions of achiral surfaces of simple cubic crystals, which are listed in Table 4.4. 
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Table 4.4.  Possible sets of Miller indices (h k l) describing orientations of achiral 

surfaces of cubic crystals. Parameters m, n are integer-valued with at least one being 

non-zero.  

Set Constraint (4.48) (h k l) 

1 h  =  0 (0  m  n) 

2 k  =  0 (m  0  n) 

3 l  =  0 (m  n  0) 

4, 5 h  k  =  0 (m  m  n) 

6, 7 h  l  =  0 (m  n  m) 

8, 9 k  l  =  0 (m  n  n) 

 

Fcc and bcc lattices, describing many metal single crystals, share all mirror planes with those 

of the sc lattice. Therefore, achiral surfaces of the corresponding crystals are characterized by all 

sets of Miller indices (in simple cubic notation) given in Table 4.4. This also applies to the polya-

tomic crystals MgO and NaCl, described by fcc lattices, or to CsCl, described by a simple cubic lat-

tice. Note that the Miller indices in simple cubic notation given in Table 4.4 can be applied to fcc 

and bcc crystals without the constraints discussed in Sec. 3.4 since they describe directions only. 

The achiral surfaces of fcc crystals listed in Table 4.4 can all be connected with flat high den-

sity surfaces, determined by low Miller index directions (1 1 1), (0 0 1), and (0 1 1) including their 

symmetry equivalents. They also appear for stepped surfaces composed of high density terraces and 

steps as discussed in Secs. 4.2 and 4.3. This is clear from the additivity theorem of Miller indices 

(4.9) for stepped surfaces which allows decomposing the indices of all sets in Table 4.4. As exam-

ples, consider sets 1 and 4 with positive indices m, n. Here the additivity theorem (note the fcc con-

straints for Miller indices in simple cubic notation required for quantitative evaluations) yields 

set 1 : (0  2m  2n) =  m (0 2 0)  +  n (0 0 2) 

  =  (m-n) (0 2 0)  +  n (0 2 2) m    n 

  =  (n-m) (0 0 2)  +  m (0 2 2) m    n (4.51a) 
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set 4 : (2m  2m  2n) =  (m+n) (1 1 1)  +  (m-n) (1 1 -1) m    n 

  =  2m (1 1 1)  +  (n-m) (0 0 2) m    n 

  

 (2m+1  (2m+1)  2n+1)  = 

  =  (m+n+1) (1 1 1)  +  (m-n) (1 1 -1)  , m    n 

  =  (2m+1) (1 1 1)  +  (n-m) (0 0 2)  , m    n (4.51b) 

with the other sets leading to analogous results. As an illustration, Fig. 4.22 shows a model of the 

achiral stepped fcc(3 3 1). This may suggest that all stepped (h k l) surfaces of fcc crystals are achi-

ral which can be proven mathematically for surfaces with steps formed by atom rows with smallest 

or second smallest interatomic distance, see Sec. 4.2. Larger interatomic distances result in kinked 

surfaces which are chiral. 

The achiral surfaces of bcc crystals listed in Table 4.4 can also be connected with flat high 

density surfaces, determined here by low Miller index directions (1 1 0), (1 0 0), (2 1 1) including 

their symmetry equivalents. However, in contrast to fcc crystals stepped (h k l) surfaces of bcc crys-

tals may be either achiral or chiral. Examples of achiral stepped surfaces from Table 4.4 (with bcc 

constraints for Miller indices in simple cubic notation and m, n > 0) are 

set 1 : (0  m  m+2n) =  m (0 1 1)  +  n (0 0 2) (4.52a) 

set 4 : (m  m  2n) =  m (1 1 0)  +  n (0 0 2) (4.52b) 

In contrast, Fig. 4.25 shows a model of the stepped chiral (1 2 3) surface of a bcc iron crystal (ac-

cording to the additivity theorem (1 2 3) = 2 (0 1 1) + (1 0 1)) together with its chiral (-1 -2 -3) part-

ner surface. In this figure the black lines perpendicular to the steps at both surfaces illustrate the 

missing mirror symmetry which results in chirality. 
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Fig. 4.25.  Structure of the (a) perfect stepped (1 2 3) surface of bcc iron with  

(0 1 1) terraces and (1 0 1) steps, and (b) its chiral partner surface given by  

(-1 -2 -3). The atom balls along the step lines are emphasized by light color. Black 

lines perpendicular to the steps indicate the chirality of the surfaces, see text. The 

netplane-adapted lattice vectors R1 and R2 illustrate the surface periodicity.  

The three-dimensional lattice of a hexagonal crystal can be described in Cartesian coordinates 

by lattice vectors (obtuse representation, see Sec. 2.2.2.1.) 

R1  =  a (1, 0, 0) , R2  =  a (-1/2, 3/2, 0) , R3  =  c (0, 0, 1) (4.53) 

and includes seven mirror planes, shown in Fig. 4.26. The corresponding normal vectors m can be 

decribed by 

m =  (cos , sin , 0) ,    =  0, 30, 60, 90, 120, 150 ,  and 

m =  (0, 0, 1) (4.54) 

or by seven lattice directions along 

R  =  R1  , R  = 2 R1 + R2 , R  =  R1 + R2 , R  =  R1 + 2 R2 

R  =  R2  , R  =  -R1 + R2 , R  =  R3  (4.55) 
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Fig. 4.26.  The seven mirror planes of a hexagonal crystal, (a) six vertical planes, (b) 

one horizontal plane. Crystal atoms of nearest neighbors are connected by sticks. 

Mirror planes are indicated by boundaries between light and dark regions labeled + 

and -. All mirror planes go through the center of the hexagonal prism. The lattice 

vectors are included in (a). 

This results, according to (4.48), in seven different sets of Miller indices (h k l), (l m n q) describing 

normal directions of achiral single crystal surfaces which are listed in Table 4.5. 

 

Table 4.5.  Possible sets of Miller indices (h k l), (l m n q) describing orientations of 

achiral surfaces of hexagonal crystals. The Miller indices are given in generic and in 

Miller-Bravais (4-index) notation. Parameters m, n are integer-valued with at least 

one being non-zero. 

Set Constraint (4.48) (h k l) 

generic 

(l m n q) 

Miller-Bravais 

1 h = 0 (0 m n) (0 m -m n) 

2 2 h + k = 0 (m -2m n) (m -2m m n) 

3 h + k = 0 (m -m n) (m -m 0 n) 

4 h + 2 k = 0 (2m -m n) (2m -m -m n) 

5 k = 0 (m 0 n) (m 0 -m n) 

6 h - k = 0 (m m n) (m m -2m n) 

7 l = 0 (m, n, 0) (m, n, -m-n 0) 

 

As an illustration, Fig. 4.27 shows a model of the perfect stepped (1 0 -1 5) surface of a hexagonal 

cobalt crystal which is achiral. According to the additivity theorem, the corresponding Miller-

Bravais indices can be decomposed according to 

(1 0 -1 5) = 5 (0 0 0 1) + (1 0 -1 0) 

which refers to set 5 of Table 4.5. Here the crystal lattice is given by hexagonal lattice vectors  

R1, R2, R3 according to (4.53) with c/a = 1.623 for cobalt, quite close to the value (8/3) = 1.633 for 
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the ideal hexagonal close-packed crystal. Further, the primitive unit cell contains two atoms located 

at 

r1  =  0 , r2  =  2/3 R1 + 1/3 R2 + 1/2 R3 (4.56) 

These atoms, denoted Co
1
 and Co

2
 in Fig. 4.27, form alternating hexagonal (0 0 0 1) terraces of dif-

ferent widths on the (1 0 -1 5) surface and are separated by (1 0 -1 0) steps. The hexagonal shape of 

the terraces and their relative positioning leads to mirror planes perpendicular to the steps and, thus, 

to an achiral (1 0 -1 5) surface. 

 

Fig. 4.27.  Structure of the stepped (1 0 -1 5) surface of hexagonal (hcp) cobalt with 

(0 0 0 1) terraces. The atoms Co
1
 and Co

2
, referring to the two atoms in the primitive 

hcp unit cell, are distinguished by light and dark gray. The mirror plane perpendicu-

lar to the surface is indicated by a red line labeled . The netplane-adapted lattice 

vectors (left- and right-handed) illustrate the surface periodicity.  
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4.5 Exercises 

4.1. Determine the densest (close-packed) surfaces of (a) sc, (b) fcc, (c) bcc, (d) hex (hcp), (e) 

diamond, and (f) CsCl crystals. 

4.2. How many differently terminated surfaces for given (h k l) are there for perfect crystals of 

Ni, GaAs, NaCl, CsCl, graphite? Give the maximum number of terminations and determine 

Miller indices of corresponding surface orientations. Find orientations with less than the 

maximum number of terminations. 

4.3. Determine Miller indices of polar and non-polar surfaces of NaCl and CsCl crystals. 

Hint: polar surfaces of these crystals are monoatomic. 

4.4. Analyze surfaces of an fcc crystal with sc Miller indices  

(a) (0 1 m) m >  1 

(b) (1 1 m) m >  1 

(c) (m-1 m m+1) m >  1 

(d) (m m m+2) m >  1 

(e) (m m m+4) m >  1 

(d) (7 8 11) 

(d) (1 31 108) 

by their structure. Characterize terraces, steps, and kinks by their orientations and 

widths/heights. 

4.5. Consider the rutile TiO2 crystal defined in Exercise 2.23. Analyze ideal surfaces of the bulk 

truncated crystal with orientations 

(a)   (0 0 1) , (b)   (1 0 0) , (c)   (0 1 1) , (d)   (1 1 1) 

Determine for each orientation the number and structure of different terminations. Find point 

symmetry elements of the TiO2 bulk crystal which also appear at the surface. 

4.6. Which Miller index values (h k l) of the simple cubic lattice are not strictly valid for numeri-

cal evaluations of fcc and bcc lattices when sc indexing is used? Characterize netplanes and 

surface structures described by Miller indices (in sc notation) 

(a) (h k l)  =  (2m  2m  2p+1) for crystals with an fcc lattice. 

(b) (h k l)  =  (2m 2m 2p+1) for crystals with a bcc lattice. 



242 

 

Discuss example surfaces. 

4.7. Determine conditions for surfaces of bcc crystals to possess steps consisting of 

(a) atom rows with smallest interatomic distance. Show that corresponding Miller in-

dices can be represented by ( m  n  (m+n) ), ( m  n  (m-n) ) in sc notation. 

(b) atom rows with second smallest interatomic distance. Show that corresponding 

Miller indices can be represented by ( 0  m  n ), ( m  0  n ), ( m  n  0 ) in sc nota-

tion. 

4.8. Determine Miller indices of a crystal with a bcc lattice and a surface of consisting of 6 (near-

est neighbor) atom distances wide terraces with single atom steps. 

4.9. Give an example of a kinked surface of a silicon crystal with (1 1 1) terraces. 

4.10. Visualize the facet edge of a stepped surface of an fcc crystal where (1 1 1) and (1 0 0) in-

dexed surfaces join (Miller indices in sc notation). 

 

4.11. Determine neighbor shells (1
st
 to 5

th
 neighbors) for atoms of the 1

st
, 2

nd
, ... surface layer of 

the 

(a) (1 0 0),  (1 1 0),  and (1 1 1) surfaces of an fcc crystal. 

(b) (1 0 0),  (1 1 0),  and (1 1 1) surfaces of an bcc crystal. 

From which surface layer on are the 3
rd

 neighbor shells complete (reflecting those of the 

bulk)? 

4.12. Decompose the Miller index triplets (h k l) of netplanes into those of densely packed net-

planes and give the formal decomposition relations for 

(a) fcc(7 9 9) 

(b) bcc(1 1 10) 

(c) hex (hcp)(0 0 0 1) 

(d) hex (hcp)(5 1 -6 0) 

(e) sc(7 8 11) 

Characterize surfaces with Miller index orientations (h k l) given in (a) - (e). 

4.13. Give alternative netplane decompositions for the (4 3 1) surface of a crystal with an fcc lat-

tice (sc notation). Visualize the decompositions. 
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4.14. Build a surface of a crystal with an fcc lattice which consists of alternating 6 and 7 atom dis-

tances long kinks and determine corresponding sc Miller indices. Which general irregulari-

ties of the kink sequences can arise for crystals with an fcc lattice? 

4.15. Show that the stepped (1 2 3) surface of a crystal with a bcc lattice is chiral. Discuss the ge-

ometric structure of the two chiral partner surfaces. 

4.16. Show that the hexagonal graphite crystal, defined in Exercise 2.7, allows all achiral surfaces 

given in Table 4.5. 

4.17. Prove that in the Miller index decomposition for Miller indices of fcc and bcc lattices using 

the sc notation a scaling factor  = 4 and  = 2, respectively, is required in relations (4.31). 

4.18. Molecules with n > 1 chiral centers allow 2
n
 different arrangements of their left- and right-

handed centers distinguishing between isomeric species. Of these, pairs of molecules are en-

antiomers if their chiral centers are complementary in handedness. (The members of other 

pairs are called diastereomers.) 

(a) Show that there are up to 2
(n-1)

 different enantiomer pairs. 

(b) For which chiral arrangements can the molecules with n > 1 chiral centers become 

achiral? 

4.19. Determine the chirality (left- or right-handedness, denoted X = L, S in (h k l)
X
 ) of the fol-

lowing kinked surfaces of cubic bulk substrate (Miller indices in sc notation) 

(a) sc :  (6 2 1)
X
 ,  (7 5 1)

X
 ,  (10 3 1)

X
 ,  (10 7 1)

X
 ,  (13 3 1)

X
. 

(b) fcc :  (5 3 1)
X
 ,  (6 4 3)

X
 ,  (8 5 4)

X
 ,  (8 7 4)

X
 ,  (10 8 5)

X
 ,  (17 1 3)

X
. 

(c) bcc :  (11 10 3)
X
 ,  (12 7 1)

X
 ,  (16 3 1)

X
,  (16 -3 -1)

X
,  (16 1 3)

X
. 
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5 REAL CRYSTAL SURFACES 

Atoms at real crystal surfaces appearing in nature experience a different local binding envi-

ronment (connected with different atom coordination) as compared to atom sites inside the bulk 

crystal. This leads to structures of real surfaces which differ from those of simple bulk truncation 

discussed for ideal single crystal surfaces. The differences may be rather small, examples are many 

elemental metal surfaces, but can also be quite substantial for semiconductor or oxide surfaces. Real 

surfaces can be restructured locally by bond changes including making and breaking of bonds 

which may result in an overall disordered structure. In many other cases, surfaces will still exhibit 

a two-dimensionally periodic atom arrangement. However, the periodicity, specific atom positions, 

and the placement of atom layers may be different from those of bulk layers. These effects are usu-

ally described by surface relaxation and reconstruction, where details as well as nomenclature 

have been treated differently in the literature [94]. However, the basic concepts discussed in this 

section are universal. Real crystal surfaces are often covered by adsorbates which introduces addi-

tonal structural features as will be treated in Sec. 6. 

 

5.1 Surface Relaxation 

The effect of surface relaxation is the simplest modification observed for real surfaces. It as-

sumes that the (h k l) surface of a substrate, whose bulk lattice is given by a netplane-adapted lattice 

vectors R1, R2, R3, is terminated by overlayers forming (h k l) monolayers, identical to those of the 

substrate. However, relative positions of the overlayer atoms near the surface, expressed by inter-

layer distances and lateral shifts, deviate from corresponding positions in the bulk. This is de-

scribed in the simplest case by complete overlayers shifting slightly with respect to their bulk posi-

tions. In most cases that are observed in experiments [22], [23] these shifts happen perpendicular 

to the surface, either towards (inwards relaxation) or away from the substrate (outwards relaxa-

tion). 

Formally, atom positions of relaxed overlayers near the surface are described by 

R
(m)

  =  ri + n1 R1 + n2 R2  +  s
(m)

  ,    n1, n2 integer,   i = 1, …p (5.1) 

for layer m near the surface where ri refers to positions of atoms inside the unit cell of the bulk lat-

tice, n1, n2 are integer-valued coefficients accounting for the overlayer (netplane) periodicity, and 
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s
(m)

 is a shift vector corresponding to the absolute positioning of layer m. As an illustration, Fig. 5.1 

shows the (0 0 1) surface of a fictitious crystal with a simple cubic lattice (lattice constant a), where 

the topmost layer no. 1 is relaxed inwards by 10% and shifted sideways by vector v and layer no. 2 

is relaxed inwards by 30%. 

 

Fig. 5.1.  Hypothetical (0 0 1) surface section of a crystal with a simple cubic lattice 

(lattice constant a) with the two topmost overlayers relaxed, see text. Layer indices 

(by ‘# i’) and inter-layer distances are indicated. 

Shift vectors s
(m)

 are equal to (n3 R3) for bulk truncated surfaces of ideal single crystals. Further, 

s
(m)

 is expected to approach the bulk value (n3 R3) for layers positioned well below the surface. Re-

laxation occurs for most metal surfaces, where, so far, mainly monolayer shifts perpendicular to the 

surface have been considered [105] (typical shifts amount to 1 - 5% of the inter-layer spacing), with 

only few examples of lateral shifts in cases of stepped surfaces [22], [23]. 

 

5.2 Surface Reconstruction 

Real surfaces which differ structurally from simple bulk truncation other than by relaxation are 

described as reconstructed surfaces. Reconstruction of a single crystal surface may result in sur-

face disorder or may yield a periodic surface structure including minor or sizeable displacements 

of the atoms and different periodicity compared with the bulk. Further, additional or fewer atoms 

may exist in the layer unit cells compared with those of an ideal bulk truncation. In the periodic 

case the (h k l) surface of the substrate is terminated by monolayers that exhibit a two-dimensional 

periodicity given by vectors R1' and R2'. These vectors can differ from those of the corresponding (h 

k l) bulk netplanes, R1 and R2, to form superlattices. In addition, the building units (two-
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dimensional unit cells) of the surface monolayers may contain a number of atoms different from 

that of the bulk layers. These monolayers will be called overlayers in the following. 

Surface reconstruction is usually combined with relaxation such that atom positions of mono-

layers near the surface are described mathematically by 

R
(m)

  =  ri' + n1 R1' + n2 R2'  +  s
(m)

  (5.2) 

for layer m near the surface where ri' refer to atom positions inside the reconstructed overlayers 

(which may or may not include positions of the initial bulk crystal), n1, n2 are integer-valued coeffi-

cients accounting for the overlayer periodicity, and s
(m)

 is a shift vector which describes possible 

layer relaxation. The periodicity vectors R1' and R2' can be connected with those of the (h k l) bulk 

netplanes, R1 and R2, by linear 2  2 transformations, written in matrix form as 
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assuming surface-adapted lattice vectors R1, R2, R2 describing the bulk periodicity. As a conse-

quence, the unit cell area F' of a reconstructed overlayer is given by 

F' =  | R1'  R2' |  =  | (m11 R1 + m12 R2)  (m21 R1 + m22 R2) |  = 

 =  | (m11 m22 - m12 m21) (R1  R2)|  = | det (M) | F (5.4) 

where F is the unit cell area of the (h k l) bulk netplane. Thus, | det (M) | gives the ratio of the unit 

cell area F' of the overlayer and that, F, of the corresponding bulk layers. The transformation matrix 

M in (5.3), called reconstruction matrix and sometimes written as (m11 m12 | m21 m22) for conven-

ience, allows a classification of reconstructed periodic surfaces into three categories, 

(a) Reconstruction with commensurate superlattices is described by a reconstruction matrix M 

according to (5.3) containing only integer-valued elements mij. In this case the periodicity 

vectors R1', R2' of the overlayer are also general vectors of the (h k l) bulk netplane and the 

unit cell area of the overlayer is an integer multiple of that of the bulk netplane. This in-

cludes systems, for which matrix M equals the unit matrix and the reconstructed overlayer 

is of the same periodicity as the (h k l) bulk netplane. As a simple example Fig. 5.2 com-

pares the ideal (1 1 0) surface of fcc platinum with the so-called (1  2)-missing-row recon-

structed surface [106] taken from the Surface Structure Database, SSD 78.77, where eve-

ry second row of atoms of the topmost (1 1 0) layer is missing. This results in a reconstruc-

tion matrix 
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20

01
M   ,            F'  =  2 F (5.5) 

 

Fig. 5.2.  Ideal (left) and the (1  2) reconstructed Pt(1 1 0) surface (right). The layer 

periodicity vectors are indicated in red for both surface structures. 

Note that in this example and the following ones we make use of the so-called Wood nota-

tion to denote the overlayer periodicity such as ‘(1  2)’ or (centered) ‘c(2  2)’. This nota-

tion will be discussed in detail in Sec. 6.3. 

Another example is the centered (2  2) reconstruction of the (1 0 0) surface of bcc 

tungsten [22] taken from the Surface Structure Database, SSD 74.14, and illustrated by Fig. 

5.3. Here the reconstruction matrix M is given by 








 


11

11
M   ,            F'  =  2 F (5.6) 

In addition to the transformed periodicity, atom positions of the topmost overlayer are dis-

placed by alternating lateral shifts as indicated by red arrows in Fig. 5.3 which yields diago-

nal zig-zag rows of tungsten atoms. Thus, this type of reconstruction may also be called 

displacive. 
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Fig. 5.3.  Ideal (upper right) and c(2  2)-reconstructed W(1 0 0) surface (lower left). 

The layer periodicity vectors are shown separately for the ideal substrate (black) and 

the reconstructed overlayer (red). Corresponding atom displacements are indicated 

by red arrows. 

As more complicated examples, we mention surface structures, in which commensurate 

reconstruction is combined with major repositioning of individual atoms near the surface. 

An example is given by the symmetric dimer (2  1)  [107] and the buckled dimer c(4  2)  

reconstructed (1 0 0) surfaces of silicon [108], see Fig. 5.4, where alternating rows of sur-

face atoms are shifted laterally as well as up and down forming surface dimers in order to 

optimize their Si-Si bonds. 
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Fig. 5.4.  The Si(1 0 0) surface, (a) ideal unreconstructed (1  1), (b) reconstructed 

(2  1) with symmetric dimers in top layer, (c) reconstructed c(4  2) with buckled 

dimers in top layer. The corresponding overlayers are shown in red with their lattice 

vectors sketched in black. 

The buckled dimer c(4  2) reconstruction [108] shown in Fig. 5.4c is an example of a 

more general behavior of reconstructed overlayers which, as a result of their coupling with 

the substrate, are not strictly planar with atoms shifted up and down resulting in buckled 

surfaces. In general, these perpendicular shifts can be described by modulation functions 

z(r), where r denotes lateral positions along the surface. Due to the lateral periodicity of 

the overlayers z(r) is also a periodic function. Thus, it may be represented by a Fourier 

expansion with respect to the overlayer periodicity. The modulation of atom positions is not 

restricted to reconstructed overlayers only but may also reach deeper into the substrate mak-

ing the definition of corresponding modulation functions for substrate layers necessary. Fur-

ther, the concept of modulated atom positions, described by appropriate modulation func-

tions, can also be applied to all other types of reconstruction discussed below. 

A very complex example is given by the dimer-adatom-stacking-fault (DAS) model 

of the (7  7) reconstructed (1 1 1) surface of silicon [109], [110], see Fig. 5.5, where the 

topmost three monolayers of the surface reconstruct. Here Si adatoms stick out of the sur-

face, Si2 dimers stabilize in long trenches which cross to form open holes, and the rest atoms 
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together with the adatoms yield a mirror symmetry inside the surface unit cell (not existing 

in the bulk) described as a stacking fault  

 

Fig. 5.5.  Structure of the reconstructed Si(1 1 1) - (7  7) surface according to the 

dimer-adatom-stacking-fault (DAS) model. The overlayer is removed at the bottom 

right to reveal the ideal bulk termination of Si(1 1 1). The different Si atom types are 

labeled accordingly. The periodicity vectors of the overlayer and of the ideal bulk 

termination are sketched in black. 

(b) Reconstruction with coincidence superlattices, sometimes also called high-order com-

mensurate (HOC) or scaled commensurate lattices, is described by a reconstruction matrix 

M according to (5.3) which contains rational- and integer-valued elements mij with at least 

one being rational. Thus, matrix M can be written as 
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where qij = 1 corresponds to an integer rij. Together with ci = lcm(qi1, qi2) denoting the least 

common multiple (see Appendix E.1) of the two denominators qi1, qi2, i = 1, 2, this matrix 

can be written as a reconstruction matrix 
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to yield 
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where elements rij' and ci are integer-valued. Thus, if the initial overlayer lattice R1', R2' in 

(5.3) is represented by a lattice with a larger unit cell given by scaled lattice vectors 

R1''  =  c1 R1' , R2''  =  c2 R2' (5.10) 

then the resulting matrix M in (5.8) is replaced by an integer-valued matrix and the superlat-

tice will be commensurate. This property of matrix M explains the nomenclature ‘scaled 

commensurate’ for this type of reconstruction. The distinction between simple commensu-

rate and coincidence superlattices may be considered somewhat artificial. However, we will 

keep this distinction to indicate that coincidence superlattices connect non-primitive unit 

cells of the overlayer, larger than corresponding primitive cells, with those of the substrate. 

In contrast, (simple) commensurate superlattices connect primitive unit cells of the over-

layer with those of the substrate. 

As an example of a coincidence superlattice, Fig. 5.6 shows a postulated structure of the 

(1 1 1) oriented gold surface [111], referred to as Au(1 1 1) - (3  22)rect, where the top-

most gold layer forms a hexagonal lattice which is compressed unilaterally along R2 by 

4.35% (= 1/23) such that 23 atom distances of the overlayer along R2 coincide with 22 at-

oms distances of the substrate. As a consequence, the primitive unit cell of the surface is 

rectangular and given by scaled lattice vectors 

R1''  =  2 R1 - R2 , R2''  =  22 R2 (5.11) 

which are orthogonal and where |R1''| = 3 |R1| (explaining the nomenclature  

‘(3  22)rect’). The overlayer atoms of the rows along R2 compensate their lateral com-

pressive stress by gradually shifting their positions normal to the surface, as illustrated in 

Fig. 5.6b. This results in a periodically buckled surface, where the buckling can be de-

scribed by a modulation function z(r) as discussed before.  
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Fig. 5.6.  (a) Coincidence superlattice of the Au(1 1 1) - (3  22)rect surface shown 

by its overlayer (red) and the topmost substrate layer (black) for a normal view. The 

common unit cell is emphasized in gray with scaled lattice vectors R1'', R2'' indicat-

ed. (b) Parallel view of the unit cell along R1'' illustrating the perpendicular dis-

placement (buckling) of the overlayer atoms. 

As another example, Fig. 5.7 shows a fictitious surface with two graphene layers, i.e. 

graphite monolayers with honeycomb structure, corresponding to a reconstruction matrix 
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discussed below, see also (5.27). This surface forms a coincidence lattice with scaled lattice 

vectors Ri'' = 12 Ri' according to (5.10) and shows a hexagonal moiré pattern whose perio-

dicity vectors R1
p
, R2

p
 (not included in Fig. 5.7) can be described by  
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as discussed in detail in Sec. 6.5. This leads to 
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which shows that the coincidence lattice is also commensurate with the moiré lattice and 

the unit cell area given by the scaled lattice vectors R1'', R2'' is three times, i.e. an integer 

multiple of, the periodicity cell area suggested by the moiré pattern. This is a more general 

result of coincidence lattices forming moiré patterns as shown in Sec. 6.5. 

 

Fig. 5.7.  Coincidence superlattice of two graphene sheets, see text. The scaled lat-

tice vectors R1'', R2'' of the top layer are shown in red, those of the bottom layer in 

black. 

(c) Reconstruction with incommensurate superlattices is described by a reconstruction matrix 

M containing elements mij of which at least one is irrational, i.e. cannot be represented by 

an integer or a rational number. In this case at least one of the periodicity vectors R1', R2' in 

(5.3) cannot be described by lattice vectors of the corresponding (h k l) substrate netplane 

using integer- or rational-valued linear combinations. Further, the combined surface system 

(overlayer with substrate layers) is not strictly periodic in two dimensions. As an example, 

Fig. 5.8 shows a (1 0 0) surface of fcc gold [112] taken from the Surface Structure Database, 

SSD 79.80. Here the topmost overlayer is reconstructed with a slightly distorted hexagonal 

structure, while the (1 0 0) monolayers of the substrate are of square geometry and also 

slightly distorted near the surface. Assuming a perfectly hexagonal overlayer on a substrate 

with exact square lattice this results in a reconstruction matrix 
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where  ( 0.95) is the ratio of the lattice constants of the reconstructed layer and the initial 

(1 0 0) monolayer. 

 

Fig. 5.8.  Hexagonal reconstructed Au(1 0 0) surface. Atoms of the top reconstructed 

and the underlying substrate layers are painted differently with periodicity vectors 

sketched accordingly. 

An esthetically pleasing class of incommensurate superlattices is given by surfaces with 

rotational superlattices. Here the topmost overlayer retains its internal lattice (except for 

minor lateral distortions and buckling) but is rotated by an angle α with respect to the under-

lying substrate layer. Simple algebraic calculus shows that the reconstruction matrix M of a 

rotational superlattice is given by 
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 (5.16) 

assuming an anti-clockwise rotation of the overlayer by an angle α, where the angle between 

the lattice vectors R1 and R2 of the (h k l) bulk netplane is . These surface systems exhibit 

spatial interference patterns, so-called moiré patterns as shown above, which have been 

observed for many surfaces as will be discussed in great detail in Sec. 6.5.  

While rotational superlattices are incommensurate in general a detailed mathematical 

analysis shows that, depending on the angles , α, and the ratio q of the vector lengths R2 

and R1, they can also yield coincidence superlattices which bridges between incommensu-

rate and high-order commensurate surface systems. As a conceptual example, we consider a 
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simple cubic substrate with a (0 0 1) oriented surface, where the monolayers of the substrate 

are described by square lattices with lattice vectors given by  

R1  =  a (1, 0) , R2  =  a (0, 1) (5.17) 

(ignoring the third dimension normal to the surface). Further, we assume that the topmost 

monolayer (overlayer) is rotated with respect to the substrate layers by an angle α with 

tan(α) = n2 / n1 where n1, n2 are positive integers. Then the reconstruction matrix (5.16) with 

q = 1,  = 90 reads 
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and the lateral lattice vectors of the overlayer, R1', R2' are given by 
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Thus, the lattice vectors (5.19) describe, in general, an incommensurate overlayer. Howev-

er, for selected integer values n1, n2 with 

n1
2
 + n2

2
  =  N

2
  ,         N  integer (5.20) 

which correspond to a discrete set of angles α where 

cos (α)  =  n1 / N ,     sin (α)  =  n2 / N (5.21) 

the reconstruction matrix (5.18) becomes 
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M  (5.22) 

and describes a coincidence lattice reconstruction, as discussed above. Thus, if the rotated 

overlayer lattice R1', R2' of (5.3) is represented by non-primitive lattice vectors R1'', R2'' with 

R1''  =  N R1' , R2''  =  N R2' (5.23) 

the resulting matrix transformation between (R1, R2) and (R1'', R2'') based on (5.19), (5.22), 

and (5.23) is integer-valued and the overlayer will be high-order commensurate. This is il-

lustrated in Fig. 5.9 for n1 = 4, n2 = 3 (hence N = 5 corresponding to α = 36.87). The super-

cell, given by R1'', R2'', is common to both the substrate and overlayer lattice, and contains 

25 atoms per unit cell in each layer. However, it does not represent the primitive cell of the 
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compound system, which is given by vectors Ro1'', Ro2'' with 
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as sketched in Fig. 5.9 where only 5 atoms are included in the unit cell of each layer. 

 

Fig. 5.9.  Commensurate rotational overlayer on a substrate with square lattice cor-

responding to α = 36.87, see text. The common unit cells, primitive cell with over-

layer lattice vectors Ro1'', Ro1'' to the left, scaled cell with vectors R1'', R2'' to the 

right, are emphasized in gray. 

The above relations (5.17) to (5.23) are valid for any rotational overlayer on a substrate 

with a square lattice and corresponding values n1, n2, N result in coincidence lattices. This 

includes cases where n1 and N become quite large while n2 remains much smaller, leading 

to rotational superlattices with quite small rotation angles α. (Actually, solutions of the Py-

thagorean equation (5.20) can be generated explicitly by an algorithm discussed in Appen-

dix E.4.) As an example, Fig. 5.10 shows the superlattice corresponding to n1 = 84,  

n2 = 13, N = 85 (reflecting an angle α = 8.797) exhibiting a clear moiré pattern. Here a 

supercell, defined by R1'', R2'' according to (5.23), with 85
2
 = 7225 overlayer atoms would 

be common to the substrate and the overlayer lattice. As before, a more detailed analysis ev-

idences periodicity with much smaller lattice vectors Ro1'', Ro2'' where 
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as sketched in Fig. 5.10. Here only 85 overlayer atoms are included in the primitive cell. 
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Fig. 5.10.  Commensurate rotational overlayer on substrate with square lattice corre-

sponding to α = 8.797 sketched at the bottom, see text. The lattice vectors Ro1, Ro2 

of the primitive common unit cell are indicated accordingly. 

In cases of truly incommensurate rotational superlattices the reconstruction matrix M 

according to (5.16) must contain irrational elements. However, these elements can always 

be approximated by rational numbers which, altogether, results in an approximate recon-

struction matrix M which describes a coincidence lattice as discussed above for substrates 

with square lattice. As an example for hexagonal lattices, a reconstructed surface with two 

graphene layers, rotated by α = 8 with respect to each other, corresponds to a reconstruc-

tion matrix M according to (5.16) (setting  = 60) 
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This matrix can be approximated by  
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describing reconstruction with a coincidence superlattice, shown in Fig. 5.7, which is visual-

ly indistinguishable from that of the incommensurate overlayer structure describing 8 rota-

tion.  

The transformation matrix M describing transformations between lattice vectors of the ideal 

bulk-truncated and the reconstructed surface forms the basis of the 2  2 matrix notation to charac-

terize reconstructed surfaces. For a general single crystal surface of a substrate Sub with Miller 

indices (h k l) and its topmost layer reconstructed according to reconstruction matrix M the  
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2  2 matrix notation can be written as 

Sub (h k l) - M    =    Sub (h k l) -









2221

1211

mm

mm
 (5.28) 

with an alternative notation 

Sub (h k l) - (m11 m12 | m21 m22) (5.29) 

where the latter in its one-line format is easier to write than (5.28). Examples are  

 Pt(1 1 0) - 








20

01
  or  Pt(1 1 0) - (1 0 | 0 2) 

describing the (1  2) reconstructed Pt(1 1 0) surface, see Fig. 5.2, 

 W(1 0 0) - 








 11

11
  or  W(1 0 0) - (1 1 | -1 1) 

describing the c(2  2) reconstructed W(1 0 0) surface, see Fig. 5.3, 

 Si(1 0 0) - 






 

12

12
  or  Si(1 0 0) - (2 -1 | 2 1) 

describing the c(4  2) reconstructed Si(1 0 0) surface, see Fig. 5.4c, 

 C(0 0 0 1) - 








 85

53
  or C(0 0 0 1) - (3 5 | -5 8) 

yielding an approximate description of a graphite C(0 0 0 1) surface with its topmost layer ro-

tated by 8 at its top, see Fig. 5.7. 

These notations have been introduced some time ago [94] and have also been recommended by the 

International Union of Pure and Applied Chemistry (IUPAC) [86]. However, they are used by sur-

face scientists much less frequently compared with the Wood notation, see Sec. 6.3.  
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5.3 Growth Processes 

The geometric structure of crystal surfaces is determined, apart from static inter-atomic cou-

pling, also by dynamic details of diffusion and nucleation which eventually result in thin film for-

mation and crystal growth. These processes are completely analogous for thin film and adsorbate 

layer formation, and the corresponding structural details can be discussed on the same footing, see 

also Sec. 6.1. Overlayers (adsorbate layers) are composed of foreign atoms or molecules at a sub-

strate surface which, depending on layer thickness, may also be called heteroepitaxial (thin) films. 

These are distinguished from overlayers whose atoms are of the same chemical type as those of the 

substrate surface, usually termed homoepitaxial (thin) films and which become important for crys-

tal growth. 

The growth of an overlayer has to be initiated by nucleation centers at the substrate surface 

where adsorbing atoms or molecules, from gas phase or diffusing at the substrate surface, can stabi-

lize to form larger surface aggregates which may eventually lead to closed overlayers. These nucle-

ation centers can be adsorbate particles, which approach the surface and bind at preferred surface 

sites (e.g. near steps or kinks), or surface perturbations, such as lattice imperfections (e.g. disloca-

tions, defects, or vacancies) and impurities. Their position and arrangement is governed by complex 

individual binding properties, surface diffusion, and thermodynamic behavior. Thus, there are only 

few general qualitative criteria as to structural details of nucleation centers. This aspect goes beyond 

the scope of the present book and further details of the underlying physics can be found in Ref. [35]. 

The growth of adsorbate overlayers and thin films has been discussed for a long time where 

three basic growth modes have been considered [113] and verified by experiment [35]. These 

modes can be distinguished roughly by energetic quantities which consider binding between atoms 

within the overlayer as well as between overlayer and substrate atoms. In the following, we restrict 

our discussion of crystal growth to elemental overlayers and substrates, e.g. elemental metal sys-

tems with growth modes shown schematically in Fig. 5.11. However, it must be emphasized that 

growth mechanisms of molecular adsorbate overlayers can be described in a completely analogous 

way. 
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Fig. 5.11.  Schematic sketch of the three different growth modes, (a) Frank-Van-der-

Merwe (layer-by-layer), (b) Volmer-Weber (three-dimensional clusters), (c) Stran-

ski-Krastanov (clusters above monolayer). Overlayer (substrate) atoms are shown in 

red (gray) where those above the first adsorbate layer are painted in lighter red. The 

amount of deposited species is denoted by a coverage  (monolayer coverage where 

 = 1 refers to one overlayer atom per substrate atom). 

(a) Frank-Van-der-Merwe (FM) growth mode (layer-by-layer growth, see Fig. 5.11a). This 

mode assumes that binding between overlayer and substrate atoms dominates or is compara-

ble in strength with binding between overlayer atoms. Here, adsorbing atoms stabilize at 

neighboring surface sites, forming monolayer islands at small coverage. With increasing 

coverage these islands grow until a complete monolayer film is obtained. At larger coverage 

(and assuming inter-layer binding to dominate), a second monolayer film starts to build 

above the first continuing the layer-by-layer growth process where each single layer is com-

pleted before the next starts to build. For heteroepitaxial growth, where the atoms of the 
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overlayers differ from those of the substrate, the building process is often accompanied by 

local stress or strain acting on each overlayer which, after equilibration, gives rise to layer 

dependent structural variations. 

As an example, ultra-thin films of iron, 1 - 20 monolayers (ML) thick, are found to grow in 

layer-by-layer mode on the (1 0 0) surface of the fcc copper single crystal substrate [114], 

[115] with different structural phases. For very thin Fe layers, 1-4 ML, the lateral lattice 

constants of the overlayers and of the Cu substrate agree while the distances between adja-

cent monolayers in the film are larger by 4% compared with those of the substrate, resulting 

in a centered tetragonal film lattice. Above 10ML thickness the Fe films assume a bcc lattice 

structure, the generic bulk structure of iron, with a (1 1 0) surface termination [114].  

(b) Volmer-Weber (VW) growth mode (three-dimensional cluster growth, see Fig. 5.11b). 

This mode assumes that binding between overlayer atoms dominates or is comparable in 

strength with binding between overlayer and substrate atoms. Here, adsorbing atoms stabi-

lize at the substrate surface forming three-dimensional clusters, often in the shape of several 

layers thick islands, where the size of the clusters and/or their density at the surface increas-

es with increasing adsorbate coverage. Only at very large coverage do the clusters combine 

to form a closed and often quite rough overlayer surface.  

Many noble metals grow on insulator or semiconductor substrate in the Volmer-Weber 

mode; for an overview see e.g. [116]. Examples are silver clusters growing on a mica sub-

strate or gold growing on MgF2 [116]. 

(c) Stranski-Krastanov (SK) growth mode (mixed layer-by-layer and cluster growth, see 

Fig. 5.11c). This mode combines the two previous modes where it is assumed that binding 

between overlayer atoms and between overlayer and substrate atoms are of comparable 

strength. Here adsorbing atoms stabilize initially at the substrate surface forming monolayer 

islands which grow until one or a few complete monolayers (often called wetting layers) 

are reached. After this, additional adatoms bind on top of the wetting layers in three-

dimensional clusters of increasing size and/or density. 

Metals are found to often grow on metal and insulator substrates in the Stranski-Krastanov 

mode; for an overview see e.g. [117]. Examples are gold and silver growing on a tungsten 

substrate [118] or silver growing on a silicon substrate [119]. 
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At vicinal metal surfaces with flat terraces separated by steps or kinks, sites near step or kink 

atoms can be assumed to act as nucleation centers for homoepitaxial growth. As a consequence, at-

oms from the gas phase, or adsorbed at terrace sites and diffusing along the terrace, will stabilize at 

regular surface sites next to step or kink atoms. This leads to a continuation of the terraces, possibly 

changing terrace widths and causing additional step irregularities. Here one can distinguish between 

two different growth scenarios. First, with increasing coverage atoms may stabilize by forming sin-

gle atom rows along step or kink lines where each row is completed before atoms adsorb at sites of 

the next row. This is the 1-dimensional equivalent of Frank-Van-der-Merwe growth and does not 

introduce new structural features except for kinks due to incomplete atom rows. Alternatively, at-

oms may adsorb near step or kink lines also allowing for incomplete rows which results in irregular 

step and kink structures and can be considered equivalent to Volmer-Weber growth. As an illustra-

tion, Fig. 5.12 shows a stepped (5 5 3) surface of a fictitious fcc metal substrate where atoms of the 

same element type adsorb according to a Frank-Van-der-Merwe type, Fig. 5.12a, and a Volmer-

Weber type growth scenario, see Fig. 5.12b. 

 

Fig. 5.12.  Schematic sketch of (a) Frank-Van-der-Merwe type and (b) Volmer-

Weber type growth at a stepped (5 5 3) surface of a fcc metal substrate. Adsorbate 

(substrate) atoms (of the same element type) are shown in red (gray). 

So far, heteroepitaxial growth processes at the substrate surface have been considered only for 

systems where the adsorbing species does not intermix with substrate atoms. Intermixing can hap-

pen if the adsorbates react chemically with substrate atoms which results in a surface composition 

with an interface region where there is no clear phase separation beween adsorbate and substrate. 

Examples are surface oxides or sulfides originating from oxygen and sulfur adsorption at metal sub-

strates. Further, adsorbing metal atoms can mix with surface atoms of a metal substrate to form sur-
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face alloy layers which, in their composition, may not exist as bulk alloys, see Ref. [120]. Structural 

details of these systems can be very complex and have to be treated on an individual basis, going 

beyond the scope of this book. As an illustration, Fig. 5.13 shows experimental structures of indium 

adsorbed on the Cu(1 1 1) surface [121] where alloying of the topmost surface layer occurs accord-

ing to a (2  2) overlayer, representing a Cu3In surface alloy, Fig. 5.13a, as well as according to a 

(3  3)R30 overlayer with Cu2In composition, see Fig. 5.13b. So far, Cu2In and Cu3In have not 

been observed as bulk alloys. 

 

Fig. 5.13.  Cu(1 1 1) + In surface section with alloy formation at the topmost layer, 

(a) (2  2) overlayer with Cu3In composition, (b) (3  3)R30 overlayer with 

Cu2In composition. Indium (copper) atoms are shown in red (gray). The lattice vec-

tors of the overlayer and of the Cu substrate are sketched in red and black, respec-

tively. 

 

5.4 Facetting 

Real surfaces of single crystals may be rough beyond simple buckling of their topmost layers 

and can combine small flat surface sections of different (h k l)-indexed orientation. This structural 

feature is called facetting. Facets are also found in crystallites and nanoparticles where they confine 

the particle surface and determine the global shape as discussed in Sec. 2.7. At extended single 

crystal surfaces, facet formation is often observed as a consequence of thermal equilibration after 

sputtering by atom or ion beams or as a result of etching and polishing. It originates from physical 

and chemical processes, where an (h k l) surface of a flat single crystal can be stabilized energetical-

ly by introducing finite sections of differently oriented (h' k' l') surface sections. 
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Other examples are oxide crystals, where surfaces with highly polar termination can lower 

their electrostatic energy by forming local facets with non-polar termination. This has been pro-

posed for the highly polar (1 1 1) surface of MgO (NaCl lattice, see Sec. 1), where thermal treat-

ment (annealing at high temperatures) produces facets, whose sides resemble non-polar (0 0 1),  

(0 1 0), and (1 0 0) terminated surfaces [122]. This is illustrated in Fig. 5.14 showing a section of a  

MgO(1 1 1) surface with two pyramids terminated by non-polar facets. 

 

Fig. 5.14.  Ionic MgO(1 1 1) surface section with two pyramids terminated by facets 

of non-polar (0 0 1), (0 1 0), and (1 0 0) monolayers. The facet edges are empha-

sized by white lines. Corresponding netplane orientations are labeled with adapted 

lattice vectors indicated accordingly. 

Another example is given in Fig. 5.15, where two stepped surfaces of an fcc(7 1 1) ) crystal, 

describing (1 0 0) terraces with (1 1 1) steps, and fcc(10 0 2), describing (1 0 0) terraces with (0 0 1) 

steps, join to form a facet edge. 
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Fig. 5.15.  Facet edge separating stepped (7 1 1) and (10 0 2) surfaces of an fcc crys-

tal. Step edges are indicated by darker balls and facet edge atoms are connected by a 

red line. 

Facet edges will be denoted in the following by (h k l) / (h' k' l'), where (h k l) and (h' k' l') are 

the Miller indices of the two surface sections which join to form the edge. Further, facet edges are 

called positive if the two joining surface sections form a roof-shaped arrangement with respect to 

the underlying crystal bulk. In contrast, negative facet edges result from surface sections forming a 

trough-shaped arrangement with respect to the bulk. This is illustrated in Fig. 5.16, where positive 

and negative edges of (0 0 1) / (1 1 1) facets of a fcc crystal surface are shown. Evidently, a facetted 

surface which still gives the appearance to be flat on a larger scale must contain both positive and 

negative facet edges. 
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Fig. 5.16.  Structure of surface sections near positive and negative edges of  

(0 0 1) / (1 1 1) facets of a crystal with an fcc lattice. The positive (negative) edge is 

indicated by its facet edge vector R+ (R-) in red. 

The direction of a facet edge is defined by the facet edge vector, Rfacet, which points parallel to 

the cutting line of the corresponding two surface sections. If their orientations are defined by Miller 

indices (h k l) and (h' k' l'), respectively, then vector Rfacet, common to both netplanes, is perpendicu-

lar to both reciprocal lattice vectors G(h k l) and G(h' k' l') as given by (3.6). Therefore, Rfacet can be rep-

resented by the (scaled) vector product 

Rfacet =   (G(h k l)  G(h' k' l'))  = 

 =   (h Go1 + k Go2 + l Go3)  (h' Go1 + k' Go2 + l' Go3)  = 

 =   { (k l' - l k') (Go2  Go3) + (l h' - h l') (Go3  Go1)  

  + (h k' - k h') (Go1  Go2) }  = 

 =   (2)
2
/ { (k l' - l k') Ro1 + (l h' - h l') Ro2 + (h k' - k h') Ro3 } 

   =  ( Ro1  Ro2 )Ro3  (5.30) 

where the reciprocity between real space and reciprocal lattice vectors, discussed in Sec. 2.5, has 

been applied. Thus, fixing the scaling factor  in (5.30) at 

 22


  (5.31) 

yields a facet edge vector Rfacet which equals a general lattice vector. Vector Rfacet is of smallest 

length along its direction if the Miller indices (h k l) and (h' k' l') have no common divisor larger 
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than 1, i.e. if  gcd(h k l) = gcd(h' k' l') = 1. Relation (5.30) with (5.31) can also be expressed mathe-

matically in a simpler determinantal form as 



















3o2o1o

facet

RRR

detR l'k'h'

lkh

 (5.32) 

Swapping the two top rows in matrix (5.32) changes only the sign of its determinant and, hence, the 

direction of Rfacet. Thus, edge vectors Rfacet of an (h k l) / (h' k' l') facet and of its corresponding  

(h' k' l') / (h k l) facet (one belongs to a positive and the other to a negative facet edge, see Fig. 5.16) 

are always equal in length but opposite in direction. 

 

Fig. 5.17.  Structure of a facet edge separating (h k l) and (h' k' l') oriented surface 

sections. The facet angle facet and the corresponding reciprocal lattice vectors G(h k l) 

and G(h' k' l') are labeled accordingly. Edge atoms are emphasized by light balls. 

The two surface sections joining at the facet edge form a facet angle facet. as illustrated in Fig. 

5.17. This angle can be evaluated by considering the scalar product of the corresponding normal 

vectors along G(h k l) and G(h' k' l') as 

cos facet  =  (G(h k l) G(h' k' l')) / (|G(h k l)| |G(h' k' l')|) (5.33) 

As examples, Table 5.1 lists angles facet and edge vectors Rfacet of facets formed by high-density  

(h k l) surfaces of crystals with fcc and bcc lattices calculated using (5.32) and (5.33). 

  



268 

 

Table 5.1.  Angles facet and edge vectors Rfacet of facets formed by selected  

(h k l) surfaces of crystals with (a) fcc and (b) bcc lattices. The facets (h k l) /  

(h' k' l') are listed according to monolayer density with (h k l)  (h' k' l'). All Miller 

indices are given in sc notation. The edge vectors are defined by Cartesian coordi-

nates (x, y, z), normalized to lattice constant a, and refer to the vectors of smallest 

length. 

(a)  Face-centered cubic lattice 

 Facet 

(h k l) / (h' k' l') 
cos facet  ,  facet [] Rfacet / a 

1 (1 1 1) / (-1 1 1) 1/3 , 70.53 (0, -1/2, 1/2) 

2 (1 1 1) / (0 0 2) 1/3 , 54.74 (1/2, -1/2, 0) 

3 (1 1 1) / (0 2 2) (2/3) , 35.26 (0, -1/2, 1/2) 

4 (0 0 2) / (0 2 0) 0 , 90.00 (-1, 0, 0) 

5 (0 0 2) / (0 2 2) 1/2 , 45.00 (-1, 0, 0) 

6 (1 1 1) / (1 1 3) 5/33 , 29.50 (1/2, -1/2, 0) 

7 (0 0 2) / (1 1 3) 3/11 , 25.24 (-1/2, 1/2, 0) 

8 (7 1 1) / (10 0 2) 34/1326 , 20.98 (1/2, -1, 5/2) 

 

 (b)  Body-centered cubic lattice 

 Facet 

(h k l) / (h' k' l') 
cos facet  ,  facet [] Rfacet / a 

1 (0 1 1) / (1 0 1) 1/2 , 60.00 (1/2, 1/2, -1/2) 

2 (0 1 1) / (1 1 0) 1/2 , 60.00 (-1/2, 1/2, -1/2) 

3 (1 0 1) / (1 1 0) 1/2 , 60.00 (-1/2, 1/2, 1/2) 

4 (0 1 1) / (0 0 2) 1/2 , 45.00 (1, 0, 0) 

5 (0 1 1) / (1 1 2) (3/4) , 30.00 (1/2, 1/2, -1/2) 

6 (0 0 2) / (1 2 1) 1/6 , 65.91 (-2, 1, 0) 

7 (0 0 2) / (1 1 2) 2/6 , 35.26 (-1, 1, 0) 

8 (1 1 2) / (1 2 1) 5/6 , 33.56 (-3/2, 1/2, 1/2) 

 

Many open surfaces of single crystals expose small local planar sections of high atom density 

corresponding to low Miller index netplanes. Therefore, they are often considered to be (micro) 

facetted. As an illustration, the (2 1 1) oriented surface of bcc tungsten can conceptually be thought 

of as being stepped with (1 0 1) oriented terraces and (1 1 0) oriented steps. (The additivity theorem 

for Miller indices (4.9) of stepped surfaces yields (2 1 1) = (1 0 1) + (1 1 0) ). But this surface may 

also be described as consisting of facetted stripes with (1 0 1) and (1 1 0) orientation reflecting the 

densest monolayers of the bcc lattice, see Fig. 5.18. This is one simple example where stepped (or 
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kinked) surfaces of single crystals may also be called (micro) facetted. 

 

Fig. 5.18.  Perspective view of a W(2 1 1) surface with (1 0 1) and (1 1 0) facet 

stripes. The (2 1 1)-adapted lattice vectors are shown at the lower left. Joining facet 

areas are sketched by red lines and labeled accordingly. 

More complex examples of facetting, where many facet edges of different type can occur, are 

given, for example, by curved surfaces. These appear at crystalline spheres, cylinders, and tips, and 

are of great physical interest in connection with metal tips used in field emission or for scanning 

tunneling microscopy [34]. As an illustration, Fig. 5.19 shows a spherical section of an fcc crystal 

which may model the tip of a scanning tunneling microscope. This hemisphere exposes facets of 

different (h k l) oriented surfaces of high density (labeled in the figure) with stepped and kinked 

transitions between them. 
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Fig. 5.19.  Spherical section of an fcc crystal exposing different (h k l) oriented fac-

ets of high atom density. The facets are labeled by their Miller indices. 

 

5.5 Exercises 

5.1. Consider a (0 0 1) oriented surface of a fictitious monoatomic crystal with an sc lattice de-

scribed by Minkowski-reduced lattice vectors Ro1, Ro2, Ro3. As a result of surface relaxation 

the inter-layer separation di,i+1 along Ro3 is affected according to 

di,i+1  =  Ro3 ( 1 + qi )  ,   i = 1, 2 … 

where index i counts monolayers from the surface top. Discuss variations in the neighbor 

shells (up to 5
th

 shell) of atoms of the three topmost surface layers assuming qi values  

q1  =  -0.2 ,  q2  =   -0.1 ,  q3  =   0.05 ,  qi = 0.0  for i > 4. 

5.2. Consider the (0 0 1) oriented surface of a Pd crystal (fcc lattice, lattice constant a = 3.89 Å). 

The topmost four monolayers are relaxed perpendicular to the surface with interlayer dis-

tances di,i+1 varying according to d12 = 1.0487 do, d23 = 1.0025 do, d34 = 0.9922 do,  

d45 = 1.0025 do  (do denotes the bulk interlayer spacing). Determine the geometric structure 

of neighbor shells (up to 3
rd

 nearest neighbors) of atoms of the three topmost surface layers. 

5.3. Consider a Ni(0 0 1) surface (fcc lattice) with c(2  2) reconstruction of the topmost surface 

layer. Give alternative representations of the reconstructed layer (matrix definition). 
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5.4. Consider a Cu(1 1 1) and (0 0 1) surface (fcc lattice) with the surface layer rotated by 10°.  

Determine the approximate lateral lattice constant of the resulting superlattice. 

5.5. Consider the superposition of two adjacent fcc monolayers which are rotated by small angles 

 with respect to each other. Determine the resulting geometry as a function of the rotation 

angle  and discuss corresponding superlattices for monolayers oriented (1 1 1) and (0 0 1). 

5.6. Discuss the Cu(1 1 0) surface (fcc lattice) with missing row reconstructions, (2  1) and  

(1  2), of the first layer. 

(a) Determine corresponding reconstruction matrices. 

(b) Evaluate monolayer orientations of the corresponding microfacets. 

5.7. Discuss the structure of a Si(0 0 1) surface (diamond lattice) with a missing row reconstruc-

tion of the first layer. Determine the reconstruction matrix. Calculate distances of neighbor 

shells (up to 3
rd

 neighbors) of atoms of the three topmost surface layers 

5.8. Discuss the structure of a Si(1 1 0) surface (diamond lattice). Show that this surface allows 

only one unique termination. 

5.9. Consider a Si(0 0 1) surface (diamond lattice) 

(a) without relaxation or reconstruction. Show that the two possible terminations differ 

only by a 90 rotation about the surface normal. 

(b) with a buckling c(4  2) dimer reconstruction of the first layer. Determine neighbor 

shell radii of the atoms of the reconstruction layer. 

5.10. Discuss the model of the (7  7) reconstructed Si(1 1 1) surface according to a LEED analy-

sis by S.Y. Tong et al. [110], see Fig. 5.5. How many atoms does each of the elementary 

cells of the first three surface layers contain? 

5.11. Consider rotational reconstruction with isotropic scaling of the top layer (overlayer) of a 

primitive simple cubic lattice at the (0 0 1), (0 1 1), and (1 1 1) surface. Determine rotation 

angles which yield coincidence lattice overlayers. Which values do the scaling constants of 

the lattice vectors assume for a given rotation? Hint: use results of Appendix E.4. 

5.12. Consider rotational reconstruction with isotropic scaling of the top layer (overlayer) of a 

primitive hexagonal lattice. Determine rotation angles which yield coincidence lattice over-
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layers. Which values do the scaling constants of the lattice vectors assume for a given rota-

tion? Hint: use results of Appendix E.4. 

5.13. Consider rotational reconstruction of the topmost overlayer of a primitive tetragonal crystal. 

Determine constraints for the lattice constants a, c and for Miller indices (h k l) to yield co-

incidence lattice overlayers. 

5.14. Consider rotational reconstruction of the topmost overlayer of the (0 0 1), (1 0 0), and (1 0 1) 

oriented surface of a primitive tetragonal crystal. Determine lattice constants a, c to yield co-

incidence lattice overlayers. 

5.15. Consider a Pd(0 0 1) surface (fcc lattice) with a crystallite of palladium forming a pyramid 

of square base of on top of it. (The internal structure of the crystallite is assumed to be iden-

tical to that of the bulk crystal.) 

(a) Determine Miller indices of the four facet planes of the pyramid. 

(b) Calculate the angle between two crossing facet planes of the pyramid. 

5.16. Consider a Ni(1 1 1) surface (fcc lattice) with a crystallite of palladium forming a pyramid of 

triangular base of on top of it. (The internal structure of the crystallite is assumed to be iden-

tical to that of the bulk crystal.) 

(a) Determine Miller indices of the three facet planes of the pyramid. 

(b) Calculate the angle between two crossing facet planes of the pyramid. 

5.17. Consider fcc metal single crystals terminated by surfaces of orientations given by Miller in-

dices (1 1 0), (1 1 3), (2 1 1). These surfaces may be interpreted as microfacetted. Determine 

Miller indices of corresponding facets. 

5.18. Consider bcc metal single crystals terminated by surfaces of orientations given by Miller in-

dices (0 0 1), (1 1 2), (0 1 3), (1 1 1). These surfaces may be interpreted as microfacetted. 

Determine Miller indices of corresponding facets. 

5.19. Consider an fcc crystal sphere with an atom in its center and including all atoms up to a dis-

tance r =  5a from the center (a = lattice constant). 

(a) Characterize surface sections of the ball corresponding to densest monolayers. 

(b) Discuss transitions between sections of low (h k l) index monolayers as a result of 

the ball curvature. 

(c) How many atoms does the ball contain? 
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5.20. Consider a lattice being described by two equivalent lattice vector sets R1, R2, R3 and  

R1', R2', R3' with 
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Then facet edge vectors Rfacet  can be represented by either of the lattice vector sets. Show 

that  
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where (h k l), (h' k' l') and (H K L), (H' K' L') are Miller indices referring to the two lattice 

vector sets. Hint: use results of Secs. 5.4 and 3.4.  
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6 ADSORBATE LAYERS 

6.1 Definition and Classification 

Adsorption at single crystal surfaces of (h k l) orientation can be described by foreign atoms 

and/or molecules - they will be called adsorbates or adparticles in this section - binding to a sub-

strate and forming overlayers. Hence, adsorption processes are closely related with growth mecha-

nisms at single crystal surfaces where different growth modes have been discussed in Sec. 5.3, and 

structural aspects are completely analogous in both types of systems. If the adparticles are identical 

in type with atoms of the substrate, adsorption increases only the substrate at its corresponding sur-

face, possibly introducing additional surface reconstruction treated in Sec. 5.2. This will not lead to 

new structure details and can be ignored in the present section. 

Structural properties of adsorbate overlayers depend strongly on the interaction between the 

adsorbates and the substrate surface, as well as between different adsorbates within the overlayer 

depending on the overlayer density. The latter is usually defined by an adsorbate coverage  which 

is given by the ratio of the number density of adsorbates in the overlayer and the atom density of the 

topmost substrate layer, where  = 1 is defined as monolayer coverage. In cases of very weak ad-

sorbate-substrate and adsorbate-adsorbate interactions at low coverage, adsorbate particles can dif-

fuse easily on the substrate surface and corresponding overlayers cannot be expected to show any 

structural order. They will form completely disordered two-dimensional gas or liquid films. Ex-

amples are light rare gas atoms, like helium or neon, physisorbed at low coverage  << 1 at metal 

surfaces, where interatomic coupling is governed by Van-der-Waals type interactions [123]. These 

cases are not relevant for general crystallographic considerations. 

If the adsorbate-substrate interaction becomes stronger while the adsorbate-adsorbate interac-

tion is still weak, the adsorbates may bind only at specific geometric sites of the substrate surface. 

At low adsorbate coverage,  < 1, not all equivalent surface sites will be populated by adsorbates 

and there is a disordered distribution of populated sites. Thus, corresponding adsorbate overlayers 

can be described structurally by fixed overlayer lattices, which are commensurate with the lattice of 

the substrate surface. However, not all overlayer lattice sites are occupied by adsorbates. These dis-

ordered systems are usually called two-dimensional lattice gas systems. An example is given by 

the adsorption of ammonia on the Cu(1 1 1) surface at low coverage [124]. Fig. 6.1 illustrates a pos-

sible structure of a the Cu(1 1 1) + (disordered) - NH3 system for an NH3 coverage  = 1/3. Here 
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NH3 molecules stabilize always on top of copper atoms of the substrate surface (which forms a hex-

agonal lattice) where only 1/3 of the top sites are occupied. 

 

Fig. 6.1.  Structure of the Cu(1 1 1) + (disordered) - NH3 adsorbate system. The lat-

tice vectors of the NH3 adsorbate lattice for a complete (1  1) overlayer are shown 

in black. The random population of the lattice sites by NH3 molecules corresponds 

to a coverage  = 1/3. Unoccupied lattice sites are indicated by open circles. 

If, on the other hand, the adsorbate-substrate interaction is weak while the adsorbate-adsorbate 

interaction becomes strong, then adsorbates may, at lower coverage, combine to two-dimensional 

islands or form three-dimensional clusters at the surface which are randomly distributed. Their 

structural properties are influenced very little by those of the substrate surface and have to be treat-

ed individually. At higher adsorbate coverage islands and clusters can increase in size and form de-

fect-free periodic overlayers which are oriented randomly on the surface and whose lattices are, in 

general, not expected to be commensurate with that of the substrate. There are also cases of partial-

ly disordered adsorbate systems. Here we mention only overlayers which are periodic in one di-

mension and disordered in the other forming periodic adsorbate rows on the surface that are posi-

tioned in a disordered fashion. 

In addition, there are many adsorbate systems [22] where the adsorbates interact strongly with 

the substrate and also couple with each other at large enough coverage forming two-dimensionally 

periodic overlayers. Thus, the discussion of structural properties of these adsorbate systems is, 

from a crystallographic point of view, completely analogous to that of single crystal surfaces with 

topmost layers that are relaxed or reconstructed, see Secs. 5.1 and 5.2. It is also strongly connected 
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with structural aspects of homoepitaxial crystal growth discussed in Sec. 5.3. Differences arise only 

in that the atom types (elements) in adsorbate overlayers will differ from those of the substrate. On 

the other hand, heteroepitaxial thin films are in their structural description analogous to adsorbate 

overlayers and can be treated at the same footing. Altogether, we can distinguish between three cas-

es. 

(a) Adsorbate overlayers can form commensurate overlayer lattices. Here the lattice vectors of 

the overlayers, R1' and R2', are connected with those of the substrate, R1 and R2, by an inte-

ger-valued transformation matrix M according to (5.3). Further, the adsorbates stabilize in 

one or several specific sites at the substrate surface as will be discussed below. An example 

from the Surface Structure Database, SSD 28.6.8.45, is the adsorption of CO on the  

Ni(1 1 0) surface, formally described as Ni(1 1 0) + p2mg(2  1) - 2CO [125], shown in Fig. 

6.2, where 











10

02
M  

Here the CO molecules stabilize in bridge sites between Ni atoms of the topmost substrate 

layer, where their molecular axes are tilted alternatingly to the left and right of the Ni ridges, 

with two CO molecules in each overlayer unit cell. 

 

Fig. 6.2.  Structure of the Ni(1 1 0) + p2mg(2  1) - 2CO adsorbate system. The lat-

tice vectors of the CO adsorbate layer and of the Ni substrate are sketched in red and 

black, respectively. 
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More complex cases of commensurate superlattices include large molecular adsorbates at 

reconstructed single crystal surfaces of metals where the adsorbates bind at preferred sur-

face sites. As an example, C60 adsorbate molecules, so-called ‘buckyballs’, form a  

4  4 superlattice on the Cu(1 1 1) surface [126] which is described as  

 

Fig. 6.3.  Structure of the Cu(1 1 1) + (4  4) - C60 adsorbate system. The lattice vec-

tors of the C60 adsorbate layer and of the Cu substrate are sketched in red and black, 

respectively. Cu atoms of the 1
st
 and 2

nd
 substrate surface layer, labeled Cu

1
 and Cu

2
, 

are shown in light and dark gray, the C60 adsorbates in red with bond sticks. One 

adsorbate is removed to illustrate the missing 1
st
 layer Cu atoms. 

Cu(1 1 1) + (4  4) - C60, see Fig. 6.3. Here the topmost layer of the Cu substrate (1
st
 layer) 

is reconstructed forming a 4  4 overlayer with hexagonal holes described by seven missing 

Cu atoms. These holes act as binding sites for the C60 adsorbates which sit above 3-fold hol-

low sites of the 2
nd

 surface layer where they bind with three copper atoms of the layer. 

(b) Adsorbate overlayers can form coincidence lattices, sometimes also called high-order 

commensurate (HOC) or scaled commensurate lattices. Here the transformation matrix M, 

connecting lattice vectors of the overlayer with those of the substrate surface according to 

(5.3), contains integer and rational matrix elements mij with at least one rational. Coinci-

dence lattices can appear for metal overlayers on a substrate of a different metal where the 

two metal lattice constants do not match each other. As an illustration, Fig. 6.4 shows a fic-
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titious adsorbate system with a hexagonal overlayer of fcc metal B adsorbed at a (1 1 1) sur-

face of an fcc metal A (only the topmost hexagonal substrate layer is shown). Here the lat-

tice constant of metal B is larger than that of metal A by 6.25% (= 1/16). This results in a 

coincidence lattice overlayer structure described by a transformation matrix 











170

017

16

1
M  (6.1) 

In this system the overlayer of metal B forms a hexagonal coincidence lattice with the sub-

strate. The common hexagonal supercell is given by multiples of the substrate lattice vec-

tors, R1'' = 17 R1 and R2'' = 17 R2, also evidenced by the hexagonal interference pattern in 

Fig. 6.4. 

 

Fig. 6.4.  Structure of a fictitious adsorbate system with a hexagonal overlayer of fcc 

metal B (red balls) on a (1 1 1) surface of an fcc metal A (gray balls). The substrate 

is represented by its topmost layer. The lattice constant of metal B is larger than that 

of metal A by 6.25% = 1/16. The lattice vectors of the common superlattice, R1'', 

R2'', are sketched accordingly. 

In real adsorbate overlayer systems, coincidence lattices are usually combined with a mod-

ulation of overlayer (and substrate) atom positions perpendicular and parallel to the surface 

as a result of local binding effects. Therefore, overlayer atom positions inside the unit cell of 

the coincidence lattice are described only approximately by lattice vectors defined by ra-

tional-valued transformation matrices M such as (6.1). An example is the adsorption of gra-

phene, a graphite monolayer with honeycomb structure, on the (0 0 0 1) surface of rutheni-

um which has been observed by LEED and STM [127]. Here the graphene overlayer forms, 
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together with the topmost Ru layers, a coincidence superlattice where very small lateral dis-

tortions are combined with perpendicular warping, see Fig. 6.5b. High-order commensurate 

(HOC) overlayers will be discussed in more detail in Secs. 6.4 and 6.5. 

 

Fig. 6.5.  Graphene overlayer adsorbed on the Ru(0 0 0 1) surface. The Ru surface is 

shown by its topmost three layers. (a) View perpendicular to the surface. The super-

lattice periodicity, 12  12 for the Ru substrate and 13  13 for graphene from DFT 

simulations, is indicated by lattice vectors. (b) View almost parallel to the surface 

demonstrating the overlayer warping. 

(c) Adsorbate overlayers can form incommensurate overlayer lattices. Here the transformation 

matrix M, connecting lattice vectors of the overlayer with those of the substrate surface ac-

cording to (5.3), contains matrix elements mij, of which at least one is irrational. In this 

case the combined adsorbate-substrate system is not strictly periodic in two dimensions. An 

example from the Surface Structure Database, SSD 47.54.1, is the adsorption of Xe atoms 

adsorbed on the Ag (1 1 1) surface [128] shown in Fig. 6.6. Here both the Xe adsorbate 

overlayer and the topmost substrate layer form hexagonal lattices. However, their lattice 

constants are different and, in addition, the relative orientation of the two layers with respect 
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to each other may vary. The orientation shown in Fig. 6.6 is only one of many possibilities 

where the overlayer can be rotated and shifted laterally. Analogous to the earlier examples, 

the Xe overlayer may not be completely flat with modulations due to local binding effects 

which are, however, expected to be small in the present case. Also, the slightest lateral ad-

sorbate-substrate interaction may contract or expand the overlayer into a commensurate re-

lationship, perhaps with a large coincidence supercell reflecting a high-order commensurate 

lattice. The latter corresponds formally to approximating all elements of the real-valued 

transformation matrix M by rational numbers for which many mathematical algorithms have 

been proposed [129]. 

 

Fig. 6.6.  Structure of the incommensurate Ag(1 1 1) + Xe system. The periodicity 

vectors of the Xe adsorbate layer and of the Ag substrate are shown for one possible 

orientation only with overlayer vectors chosen to be parallel to those of the sub-

strate. 

 

6.2 Adsorbate Sites 

The structural characterization of an adsorbate covered surface also includes quantitative de-

tails about all surface positions where the adsorbates stabilize as well as about orientation and 

changed internal structure in cases of molecular adsorbates. These details are basically determined 

by the local binding of each adsorbate with its nearby atoms of the substrate surface, i.e. those of 

the topmost substrate layers. The planar substrate surface of a single crystal with ideal bulk termina-

tion, i.e. of two-dimensional lateral periodicity and defined by Miller indices (h k l), is also charac-

terized by its lateral point symmetry reflecting a two-dimensional point symmetry group, see Sec. 
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3.8. As a result, there are preferred lateral sites inside the elementary cell of the substrate surface 

which are compatible with its symmetry, so-called high-symmetry sites. In many surface systems 

adsorbates are found to stabilize laterally at or near these high-symmetry sites with a perpendicular 

distance zads. The latter is usually measured from the plane through the topmost (h k l) monolayer of 

the substrate where zads > 0 will be called above and zads < 0 below the surface. In the following, 

examples of high-symmetry sites at surfaces of different symmetry are discussed and illustrated by 

results from measured adsorbate systems. Additional sites can be inspected in Appendix A which 

collects the most important high-symmetry sites of common surfaces. In the following, all example 

structures are denoted by ‘SSD n.m’ where n.m refers the corresponding structure to the entry num-

ber of the Surface Structure Database (NIST Version 5 or oSSD), see Sec. 7.2 and Appendix H. 

At ideal substrate surfaces with square netplanes and appropriate point symmetry, see Section 

3.8.4, the primitive periodicity cell offers three distinct lateral high-symmetry sites, shown in Fig. 

6.7, (a) the top site, (b) the 4-fold hollow site, and (c) the 2-fold bridge site.  

 

Fig. 6.7.  Primitive periodicity cell of a substrate with square lattice. The lateral 

high-symmetry sites, (a) top, (b) hollow, and (c) bridge, are shown by red circles. 

The gray balls indicate substrate atoms of different layers and all possible point 

symmetry elements of the cell are included by corresponding symbols, see Sec. 

3.8.4. 

At the top site the adsorbate atom or molecule stabilizes directly above a substrate atom at the 

surface, see Fig. 6.7, site (a). This allows strong directional binding of the adsorbate with the sub-

strate which can be a result of strong covalent bond formation at the surface. An example of period-

ically ordered molecular adsorbates is Ni(1 0 0) + c(2  2) - CO [130], SSD 28.6.8.8, shown in Fig. 

6.8, where the CO molecules adsorb in top sites with carbon pointing to the surface and  

zads(C) = 1.70 Å. 
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Fig. 6.8.  Structure of the Ni(1 0 0) + c(2  2) - CO adsorbate system. The lattice 

vectors of the CO adsorbate layer and of the Ni substrate are shown in red and black, 

respectively. 

At the 4-fold hollow site the adsorbate atom or molecule stabilizes laterally in the center be-

tween four substrate atoms at the surface which form the periodicity cell, see Fig. 6.7, site (b). This 

allows for largest coordination at the surface which can be due to major electrostatic interactions 

appearing for ionic adsorbates. An example of periodically ordered atomic adsorbates is  

Cu(1 0 0) + c(2  2) - Cl [131], SSD 29.17.7, shown in Fig. 6.19 below, where the chlorine atoms 

adsorb in hollow sites with zads = 1.59 Å. 

At the 2-fold bridge site the adsorbate atom or molecule stabilizes laterally between two adja-

cent substrate atoms at the surface, see Fig. 6.7, site (c). An example of periodically ordered atomic 

adsorbates is Ir(1 0 0) + (1  2) - O [132], SSD 77.8.4, where the oxygen atoms adsorb in bridge 

sites with zads = 1.30 Å. 

At ideal substrate surfaces with hexagonal netplanes and appropriate point symmetry, see Sec-

tion 3.8.5, the primitive periodicity cell offers four distinct lateral high-symmetry sites, shown in 

Fig. 6.9, (a) the top site, (b) the 3-fold hcp hollow site, (c) the 3-fold fcc hollow site, and  

(d) the 2-fold bridge site. 
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Fig. 6.9.  Primitive and rectangular periodicity cells of a substrate with hexagonal 

lattice based on cubic and hexagonal close-packed bulk structures. The lateral high-

symmetry sites, (a) top, (b) hcp hollow, (c) fcc hollow, and (d) bridge, are shown by 

red circles. The gray balls indicate substrate atoms of different layers and the point 

symmetry elements of the cell are included by corresponding symbols, see Sec. 

3.8.5. 

At the top site the adsorbate atom or molecule stabilizes directly above a substrate atom at the 

surface, see Fig. 6.9, site (a), which allows strong directional binding of the adsorbate with the sub-

strate. An example of periodically ordered atomic adsorbates is Cu(1 1 1) + (2  2) - Cs [133], SSD 

29.55.1, where the Cs atoms adsorb in top sites with zads = 3.01 Å. Further,  

Rh(1 1 1) + (3  3)R30 - CO [134], SSD 45.6.8.7a, is an example of periodically ordered mo-

lecular adsorbates where the CO molecules adsorb in top sites with carbon pointing to the surface 

and zads(C) = 1.81 Å. 

Surfaces with hexagonal netplanes can offer two different 3-fold hollow sites depending on the 

structure of the substrate layers below the topmost layer. For cubic and hexagonal close-packed 

crystals these are the hcp hollow site, see Fig. 6.9, site (b), where there is a substrate atom of the 2
nd

 

surface layer directly underneath the adsorbate site and the fcc hollow site, see Fig. 6.9, site (c), 

where an atom of the 3
rd

 surface layer is underneath. An example of periodically ordered atomic 

adsorbates is Ni(1 1 1) + (2  2) - O [135], SSD 28.8.75a, where oxygen atoms adsorb in fcc hollow 

sites with zads = 1.09 Å. Also the CO molecules of the molecular adsorbate system  

Pd(1 1 1) + (3  3)R30 - CO [136], SSD 46.6.8.13, shown in Fig. 6.20 below, adsorb in fcc hol-

low sites with carbon pointing to the surface and zads(C) = 1.25 Å. Further, the NO molecules of  

Ni(1 1 1) + c(4  2) - 2NO [137], SSD 28.7.8.8, shown in Fig. 6.10, adsorb in both fcc and hcp hol-

low sites with nitrogen pointing to the surface and zads(N) varying between 1.18 and 1.32 Å. (Actu-

ally, the topmost nickel layer is not exactly planar while the nitrogen centers are co-planar, resulting 
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in different zads(N) values.) 

 

Fig. 6.10.  Structure of the Ni(1 1 1) + c(4  2) - 2NO adsorbate system. NO mole-

cules in fcc hollow sites are painted lighter that those in hcp hollow sites. The lattice 

vectors of the NO adsorbate layer and of the Ni substrate are shown in red and 

black, respectively. 

At the 2-fold bridge site the adsorbate atom or molecule stabilizes laterally between two adja-

cent substrate atoms at the surface, see Fig. 6.9, site (d). An example of molecular adsorption is 

Cu(1 1 1) + (disordered) - C2H2 [138], SSD 29.6.1.6, shown in Fig. 6.11, where the two carbon at-

oms of the acetylene adsorbate bend slightly asymmetrically over bridge sites such that they ap-

proach adjacent fcc and hcp hollow sites where zads(C) amounts to 1.38 Å (fcc) and 1.44 Å (hcp), 

respectively. Due to the 3-fold symmetry of the clean Cu(1 1 1) surface there are three equivalent  

bridge site structures with the orientation of the C2H2 adsorbate rotated by 120. Of these only one 

orientation is shown in Fig. 6.11. 
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Fig. 6.11.  Structure of the Cu(1 1 1) + (disordered) - C2H2 adsorbate system. The 

lattice vectors of the Cu substrate are shown in black. 

At ideal substrate surfaces with primitive rectangular netplanes and appropriate point sym-

metry, see Section 3.8.2, the primitive periodicity cell offers four distinct lateral high-symmetry 

sites, shown in Fig. 6.12, (a) the top site, (b) the 2-fold long bridge site, (c) the 2-fold short bridge 

site, and (d) the 4-fold hollow site, sometimes also called center site. 

 

Fig. 6.12.  Primitive cell of a substrate with primitive rectangular lattice based on 

cubic bulk structures. The lateral high-symmetry sites, (a) top, (b) long bridge, (c) 

short bridge, and (d) hollow, are shown by red circles. The gray balls indicate sub-

strate atoms of different layers and the point symmetry elements of the cell are in-

cluded by corresponding symbols, see Sec. 3.8.2. 

At the top site the adsorbate atom or molecule stabilizes directly above a substrate atom at the 

surface, see Fig. 6.12, site (a). An example of periodically ordered molecular adsorbates is  

Cu(1 1 0) + (2  1) - CO [139], SSD 29.6.8.7, where the CO molecules adsorb in top sites with car-

bon pointing to the surface and zads(C) = 1.87 Å. 
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At the 2-fold long bridge site the adsorbate atom or molecule stabilizes laterally between two 

adjacent substrate atoms at the surface, see Fig. 6.12, site (b). An example of atomic adsorption was 

suggested for Ag(1 1 0) + ( 2  1) - O [140], SSD 47.8.4, shown in Fig. 6.13, where the oxygen at-

oms stabilize between silver atoms of the topmost substrate row with zads = 0.2 Å, i.e. only slightly 

above the surface plane through the rows.  

 

Fig. 6.13.  Structure of the Ag(1 1 0) + (2  1) - O adsorbate system. The lattice vec-

tors of the O adsorbate layer and of the Ag substrate are shown in red and black, 

respectively. 

At the 2-fold short bridge site the adsorbate atom or molecule also stabilizes laterally between 

two adjacent substrate atoms at the surface but the substrate atoms are closer together than at the 

long bridge site, see Fig. 6.12, site (c). An example of periodically ordered atomic adsorbates is 

Pt(1 1 0) + c(2  2) - Br [106], SSD 78.35.1, shown in Fig. 6.14, where the bromine atoms adsorb in 

short bridge sites above the topmost substrate rows with zads = 2.04 Å. Further, the CO molecules of 

the molecular adsorbate system Ni(1 1 0) + p2mg(2  1) - 2CO [125], SSD 28.6.8.45, shown in 

Fig. 6.2, adsorb quite near short bridge sites. Here their molecular axes are alternately tilted with 

respect to the surface normal as discussed below. 
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Fig. 6.14.  Structure of the Pt(1 1 0) + c(2  2) - Br adsorbate system. The lattice 

vectors of the Br adsorbate layer and of the Pt substrate are shown in red and black, 

respectively. 

At the 4-fold hollow site the adsorbate atom or molecule stabilizes laterally in the center be-

tween four substrate atoms at the surface which form the periodicity cell, see Fig. 6.12, site (d). An 

example of periodically ordered atomic adsorbates is Ni(1 1 0) + c(2  2) - S [141], SSD 28.16.57b, 

where the sulfur atoms adsorb in hollow sites with zads = 0.77 Å. 

At ideal substrate surfaces with centered rectangular netplanes and appropriate point sym-

metry, see Section 3.8.3, the primitive periodicity cell offers two distinct lateral high-symmetry 

sites, shown in Fig. 6.15, (a) the top site and (b) the 4-fold hollow site. Further, there is an addition-

al site, (c) the so-called 3-fold hollow site, which is not exactly of high symmetry but is treated on 

the same footing since it has been observed in a number of surface systems. 
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Fig. 6.15.  Primitive cell of a substrate with centered rectangular lattice based on 

cubic bulk structures. The lateral high-symmetry sites, (a) top, (b) 4-fold hollow, and 

(c) 3-fold hollow, are shown by red circles. The gray balls indicate substrate atoms 

of different layers and the point symmetry elements of the cell are included by cor-

responding symbols, see Sec. 3.8.3. 

At the top site the adsorbate atom or molecule stabilizes directly above a substrate atom at the 

surface, see Fig. 6.15, site (a). Examples for this type of site do not seem to exist in the literature. 

At the 4-fold hollow site the adsorbate atom or molecule stabilizes laterally between four sub-

strate atoms at the surface, two adjacent and two at larger distance, see Fig. 6.15, site (b). An exam-

ple of periodically ordered atomic adsorbates is Fe(1 1 0) + (2  2) - S [142], SSD 26.16.4, where 

the sulfur atoms adsorb with zads = 0.77 Å. 

At the 3-fold hollow site the adsorbate atom or molecule stabilizes laterally between three sub-

strate atoms at the surface forming a triangle with two equal sides and one larger by only 15%, see 

Fig. 6.15, site (c). An example of periodically ordered atomic adsorbates is  

W(1 1 0) + (2  1) - O [143], SSD 74.8.1, shown in Fig. 6.16, where the oxygen atoms adsorb with 

zads = 1.25 Å. 
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Fig. 6.16.  Structure of the W(1 1 0) + (2  1) - O adsorbate system. The lattice vec-

tors of the O adsorbate layer and of the W substrate are shown in red and black, re-

spectively. 

In the example system Ni(1 1 1) + c(4  2) - 2NO [137] discussed above, see Fig. 6.10, adsorp-

tion at both fcc and hcp hollow sites of the hexagonal substrate surface appears in the same struc-

ture. This illustrates that ordered adsorbate overlayers are not always connected with only one sin-

gle adsorption site and mixed site adsorption can occur. Another example is  

Pt(1 1 1) + c(4  2) - 2CO [144], SSD 78.6.8.4, shown in Fig. 6.40 below, where CO molecules ad-

sorb in both top and bridge sites of the hexagonal substrate surface with carbon pointing to the sur-

face and zads(C) = 1.85 Å for the top site and 1.55 Å for the bridge site. 

Apart from adsorption at sites near substrate atoms of the otherwise unreconstructed surface, 

adsorbates can also replace substrate atoms at the surface (substitutional adsorption). A simple 

example is Cu(1 0 0) + c(2  2) - Pd [145], SSD 29.46.2, where palladium and copper atoms of the 

topmost layer form a checkerboard structure resulting in surface alloying. Another example is  

Cu(1 1 0) + c(2  2) - Mn [146], SSD 29.25.8, shown in Fig. 6.17, where manganese and copper 

atoms in alternating sequence form the topmost surface rows. 
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Fig. 6.17.  Structure of the Cu(1 1 0) + c(2  2) - Mn adsorbate system. The lattice 

vectors of the Mn / Cu atoms of the topmost layer and of the Cu substrate are shown 

in red and black, respectively. 

So far, adsorbate structure has been characterized by lateral surface sites and perpendicular dis-

tances zads of the adsorbate from the topmost substrate plane. For molecular adsorbates this needs 

to be supplemented by parameters which describe the orientation of the adsorbate relative to the 

surface and the internal molecular structure where the latter may be distorted if compared with 

structure of the free molecule. For example, the information stating which part of an adsorbate mol-

ecule points to the substrate and the inclination of a molecular axis with respect to the surface nor-

mal of the substrate are essential for a complete structural characterization. Assuming no internal 

distortion of the adsorbed molecule, three angles are needed to specify the orientation of a non-

symmetrical molecule relative to a surface. As a simple example, the CO molecule is found to ad-

sorb in many cases with its molecular axis along the surface normal and with its carbon end point-

ing towards the substrate, see Ni(1 0 0) + c(2  2) - CO in Fig. 6.8. However, the molecular axis of 

CO can also be tilted away from the surface normal as shown for Ni(1 1 0) + p2mg(2  1) - 2CO in 

Fig. 6.2. The latter illustrates the more general result that adsorbates may adsorb differently depend-

ing on their coverage on the substrate surface due to adsorbate -adsorbate interaction. In the  

Ni(1 1 0) + p2mg(2  1) - 2CO system adjacent CO adsorbate molecules, getting quite near to each 

other, try to minimize their mutual repulsion by tilting in different direction whereas in the  

Ni(1 0 0 + c(2  2) - CO system the adsorbates are further away and stabilize in equal orientation. 

  



291 

 

Further, adsorbate atoms or molecules are expected to influence the structure of the underlying 

substrate by inducing relaxation and reconstruction. This may create new adsorption sites which do 

not exist at the clean surface. As an example, the clean Cu(1 1 0) - (1  1)  surface [147], SSD 

29.65, exists as an unreconstructed bulk terminated structure with primitive rectangular lattice. In 

contrast, in the Cu(1 1 0) + (2  3) - 4N system [148], SSD 29.7.10, see Fig. 6.18, the nitrogen ad-

sorbate reconstructs the top copper layer to form a buckled nearly square lattice. Another example 

of large structural effects of the adsorbate on the substrate is the Si(1 1 1) surface. Without adsorb-

ates this surface shows a complex (7  7) reconstruction [109], [110] described by the DAS model, 

see Fig. 5.5. After hydrogen adsorption the reconstruction disappears completely, yielding a simple 

Si(1 1 1) + (1  1) - H adsorbate system [149], SSD 14.1.30, with an unreconstructed substrate and 

top-site-bonded hydrogen atoms.  

 

Fig. 6.18.  Structure of the Cu(1 1 0) + (2  3) - 4N adsorbate system. The lattice 

vectors of the unreconstructed substrate to the left are shown in black while those of 

the reconstructed surface to the right are shown in red. 

 

6.3 Wood Notation of Surface Structure 

As a simpler alternative to the matrix notation, the structure of ordered reconstructed single 

crystal surfaces as well as of ordered adsorbate layers is often characterized by the Wood notation 

[150]. Here we adopt mainly the nomenclature used in Ref. [94]. It should be mentioned in passing 

that a number of attempts have been made to suggest alternative notation schemes which could give 
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a unique description of surface structure of any complexity [44], analogous to notations used in bulk 

crystallography [33]. These include generalizations of the 2  2 matrix notation [100] or a scheme 

proposed by the authors of the NIST Surface Structure Database (SSD)  [23], see Sec. 7. However, 

these schemes have never been widely accepted within the surface science community, in contrast 

to the Wood notation. 

As a first example of the Wood notation the so-called (1  2)-missing-row reconstructed plati-

num surface was discussed in Sec. 5.2. This surface is denoted as Pt(1 1 0) - (1  2) ) where the pe-

riodicity of the topmost (1 1 0) surface layer is described as ‘(1  2)’ and every second row of atoms 

of this layer is missing. The notation refers to a rectangular lattice of the topmost layer whose sec-

ond lattice vector is enlarged by a factor 2 compared with that of the underlying substrate lattice 

while the first remains unchanged, see Fig. 5.2. As a result, the corresponding reconstruction matrix 

M is given by (5.5).  

A slightly more complex example is given by the Cu(1 0 0) surface with a periodic chlorine 

overlayer of half the density of the topmost Cu layer [131] shown in Fig. 6.19. 

 

Fig. 6.19.  Structure of the Cu(1 0 0) + c(2  2) - Cl adsorbate system. The periodici-

ty vectors of the Cl adsorbate layer and of the Cu substrate are shown in red and 

black, respectively. 

The example, taken from the Surface Structure Database, SSD 29.17.7, is commonly denoted as 

Cu(1 0 0) + c(2  2) - Cl following the Wood notation, where the periodicity of the Cl adsorbate 

layer is characterized by ‘c(2  2)’. This corresponds to a centered rectangular overlayer with rec-
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tangular lattice vectors twice those of the underlying substrate layer. The overlayer periodicity can 

also be described by a primitive square lattice with lattice vectors increased by a factor 2 and ro-

tated by 45 with respect to those of the substrate. Thus, the corresponding reconstruction matrix M 

is given by 








 


11

11
M  

and, within the Wood notation scheme, the overlayer structure can be written as  

Cu(1 0 0) + (2  2)R45 - Cl. The appearance of irrational numbers, 2, in the notation still leads 

to an integer-valued reconstruction matrix characterizing the commensurate overlayer. This applies 

also to the Pd(1 1 1) + (3  3)R30 - CO adsorbate structure [136], SSD 46.6.8.13, shown in Fig. 

6.20. Here the lattices of both the substrate and the CO overlayer are hexagonal with the lattice vec-

tors of the overlayer increased by a factor 3 and rotated by 30 with respect to those of the  

 

Fig. 6.20.  Structure of the Pd(1 1 1) + (3  3)R30 - CO adsorbate system. The 

periodicity vectors of the CO adsorbate layer and of the Pd substrate are shown in 

red and black, respectively. 

substrate. For this structure, using obtuse hexagonal vector pairs, the transformation matrix M is 

given by 
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11

12
M  

The general case of the Wood notation of a reconstructed surface is formally given by 

Sub(h k l) - ( 1  2 )R -  Sub (6.2a) 

and a general surface with an adsorbate overlayer is written as 

Sub(h k l) + ( 1  2 )R -  Ovl (6.2b) 

where it is assumed that the substrate ‘Sub’ is described by stacking two-dimensionally periodic 

layers with periodicity vectors R1 and R2 representing (h k l) Miller index planes. In addition, either 

the topmost substrate layer at the surface is reconstructed yielding a periodic reconstruction layer 

(which may actually include more than one substrate layers), formula (6.2a), or the surface is cov-

ered by a periodic overlayer ‘Ovl’, formula (6.2b). In both cases, the periodicity vectors R1' and 

R2' of the topmost (over)layer are given by linear combinations of the substrate surface vectors R1 

and R2 where for 

(a)  = ‘p’ (primitive) vector R1' equals the substrate surface vector R1 rotated  

anti-clockwise by an angle  along the surface plane and scaled by  

factor 1 to yield |R1'| = 1 |R1| . The same procedure is applied  

to R2 using angle  and scaling factor 2 to yield R2'. (6.3a) 

(b)  = ‘c’ (centered) vectors R1', R2' describe a centered two-dimensional 

lattice starting from a primitive set R1p', R2p' constructed according 

to (a) followed by a linear transformation 

R1'  =  1/2 (R1p' + R2p') ,     R2'  =  1/2 (-R1p' + R2p')     . (6.3b) 

Further, the unit cell of the reconstructed substrate surface is assumed to contain   1 non-

equivalent species ‘Sub’ and in the adsorbate system the unit cell of the overlayer may contain  

  1 non-equivalent species ‘Ovl’ of the same type. The general Wood notation (6.2) is often sim-

plified by omitting  if  = ‘p’, omitting  if  = 1, and omitting ‘R ‘ if  = 0. The qualifier  has 

been used in a few cases to also give additional information about the overlayer lattice and its 

symmetry. An example is given by the Ni(1 1 0) + p2mg(2  1) - 2CO adsorbate system [125], see 

Fig. 6.2, where the unit cell of the CO overlayer is described in its two-dimensional symmetry by 

symmetry group p2mg. 
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The most complex case, adsorption of a reconstructed overlayer at a reconstructed substrate 

surface, would be denoted as 

Sub(h k l) - o( o1  o2 )Ro - o Sub + ( 1  2 )R -  Ovl (6.4) 

where in addition to (6.2b) the substrate reconstruction would be described in analogy with that of 

the overlayer as ‘- o( o1  o2 )Ro - o Sub’. This added complication which has been observed 

only rarely will be ignored in the following. 

The Wood notation can describe both commensurate and incommensurate overlayers. How-

ever, it is not general due to its restrictions in the overlayer periodicity introduced by (6.3) which 

equates the angle between the lattice vectors R1' and R2' with that between R1 and R2 as discussed in 

Appendix C. The periodicity information of the Wood notation can be expressed alternatively by a 

2  2 matrix transformation  according to (5.3), i.e. given by 




































2

1

c,p
2

1

2221

1211

2

1

R

R
M

R

R

mm

mm

'R

'R
 (6.5) 

referring to the reconstruction matrix Mp,c which may also be written as (m11 m12 | m21 m22). 

If the periodicity vectors R1 and R2 of the substrate form an angle , i.e. (R1 R2) = R1 R2 cos(),  

then simple algebra, see Appendix C, yields 

 for ‘primitive’ overlayers denoted by  ‘… - p(1  2)R - …’ 
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 for ‘centered’ overlayers denoted by  ‘… - c(1  2)R - …’ 

  
























)sin()sin(q)sin(q)sin(

)sin()sin(q)sin(q)sin(

sin2

1
M

2

1

121

2

1

121

c
 (6.6b) 

In the following, examples of Wood notations are listed together with corresponding transfor-

mation matrices describing the overlayer periodicity for different types of Bravais lattices character-

ized by the parameters q and  . 
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 Overlayers on a substrate with square netplane (e.g. fcc(1 0 0), bcc(1 0 0), diamond(0 0 1), 

zincblende(0 0 1) ), where R1 = R2,   = 90, see Fig. 6.21. Example notations are 

(a) p(a  b) = (a  b) : 









b0

0a
M

p
       a, b integer (6.7a) 

(b) c(4  2) : 











12

12
M

c
 (6.7b) 

(c) c(2  2) = (2  2)R45 : 











11

11
MM

pc
 (6.7c) 

(d) p(a2  b2) 45 : 











bb

aa
M

p
 (6.7d) 

 

Fig. 6.21.  Overlayer unit cells on a substrate with square lattice, (a) to (d), see text. 

Overlayer and substrate lattice vectors are shown in black and gray, respectively. 

The overlayer unit cell is emphasized in gray. 
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 Overlayers on a substrate with rectangular netplane (e.g. fcc(1 1 0), diamond(1 1 0), 

zincblende(1 1 0) ), where R1  R2,   = 90, see Fig. 6.22. Example notations are 

(a) p(a  b) = (a  b) : 









b0

0a
M

p
       a, b integer (6.8a) 

(b) p(2  2) = (2  2) : 









20

02
M

p
 (6.8b) 

(c) fcc(1 1 0):  c(2  2) : 











11

11
M

c
 (6.8c) 

 

Fig. 6.22.  Overlayer unit cells on a substrate with rectangular lattice, (a) to (c), see 

text. Overlayer and substrate lattice vectors are shown in black and gray, respective-

ly. The overlayer unit cell is emphasized in gray. 
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 Overlayers on a substrate with hexagonal netplane (e.g. fcc(1 1 1), diamond(1 1 1), 

zincblende(1 1 1), graphite(0 0 0 1) ), where R1 = R2,   = 120 (obtuse representation), 

see Fig. 6.23. Example notations are 

(a) p(a  b) = (a  b) : 









b0

0a
M

p
       a, b integer (6.9a) 

(b) c(2  2)  (also called (2  1) ) : 
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(c) c(4  2) : 
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(d) p((a
2
 - ab + b

2
)  (a
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 - ab + b

2
)) R  with 

    cos   =  (a - 1/2 b) / ((a
2
 - ab + b

2
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Specific cases are 

(d1) (a, b)  =  (2, 1) 

 (3  3)R30  : 
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p
 (6.9e) 

(d2) (a, b)  =  (3, 1) 

 (7  7)R19.1  : 
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 (6.9f) 

(d3) (a, b)  =  (4, 1) 

(13  13)R13.9  : 
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 (6.9g) 
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Fig. 6.23.  Overlayer unit cells on a substrate with hexagonal lattice, (a) to (f), see 

text. Overlayer and substrate lattice vectors are shown in black and gray, respective-

ly. The overlayer unit cell is emphasized in gray. 

Further mathematical details as well as special cases of Wood notations are given in Appendix C. 

 

6.4 High-Order Commensurate (HOC) Overlayers 

As mentioned in Sec. 6.1 adsorbate overlayers can form a high-order commensurate (HOC) 

lattice structure which is formally defined by a transformation matrix M, connecting lattice vectors 

of the overlayer Ro1', Ro2' with those of the substrate surface, Ro1 and Ro2, according to 
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where all elements mij are rational or integer-valued with at least one being rational. Thus, the 

transformation matrix can be written as 
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with  
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(Function gcd(x, y) denotes the greatest common divisor, see Appendix E.1.) This means that ma-

trix M can always be represented by a product of an inverted matrix B and a matrix A where both 

matrices are integer-valued. As a consequence, relation (6.10) with (6.11) can be rewritten as 
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Therefore, in a HOC lattice structure one can always find a superlattice with superlattice vectors  

R1' and R2' of the overlayer which are commensurate with those of the substrate Ro1 and Ro2. The 

corresponding supercell describing the periodicity shared by the two vector sets, R1', R2' and 

 Ro1', Ro2', has an area 

    2o1o2o1o21s RRAdet'R'RBdet'R'RF   (6.14) 

with 

  21 nnBdet   (6.15) 

The supercell spanned by R1', R2' may not be the smallest possible cell, the primitive supercell of 

the HOC lattice structure. This is clear by a simple numerical example. Let us assume a transfor-

mation matrix M and its representation by (6.11), (6.12) where 
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which according to (6.14) leads to a supercell size Fs = 169 | Ro1'  Ro2' |. However, an alternative 

representation of matrix M as 
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leads to a supercell size Fs = 13 | Ro1'  Ro2' | which is smaller by a factor 13 and represents the 

primitive supercell. This is illustrated for a rectangular substrate lattice and M according to (6.16) in 

Fig. 6.24 where the supercell corresponding to the initial matrix A in (6.16) and the primitive super-

cell corresponding to matrix A' in (6.17) are sketched. 
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Fig. 6.24.  Fictitious rectangular substrate with HOC overlayer structure according 

to (6.16). The initial and primitive supercells with superlattice vectors are outlined in 

gray and red, respectively. 

The reduction of superlattice vector sets R1', R2', determined initially by (6.11), (6.12), (6.13), 

to yield a primitive set R1'', R2'' (providing the smallest supercell) can be achieved by number theo-

retical methods as described in detail in Appendix E.5. The basic idea is that if R1', R2' can be re-

duced then there must be an alternative set of reduced (primitive) superlattice vectors R1'', R2'' 

which represent the initial superlattice vectors with 
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 (6.18) 

As a result, the reduced vectors R1'', R2'' yield according to (6.13) 
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In addition, the vectors R1'', R2'' also represent general lattice vectors of both the overlayer and the 

substrate surface. This means that the transformation matrices A', B' with 

BT'B,AT'A
11 

  (6.20) 

must be integer-valued and leave the transformation matrix M unchanged, i.e. 

'A'BABM 11 
  (6.21) 
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As a result, the size of the reduced supercell of the overlayer is determined by 
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red

s RR
Tdet

Adet
RR'Adet"R"RF  

 
 
   Tdet

F
'R'R
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'R'R'Bdet s

2o1o2o1o   (6.22) 

such that | det(T) | can be understood as a reduction factor of the cell sizes corresponding to the two 

representations. Since the determinants of A, A', B, B', and T are all integer-valued, relation (6.22) 

shows further that the integer det(T) must be a common divisor of both integers det(A) and det(B) 

with an upper limit given by 

      Bdet,AdetgcdgTdet1
.def

  (6.23) 

Thus, relations (6.22), (6.23) show that for g = 1, and hence |det(T)| = 1, the initial supercell vectors 

R1', R2' cannot be reduced further and R1', R2' yields already the primitive cell size. On the other 

hand, a value of g > 1 indicates that reduction is possible with a largest reduction factor given by 

|det(T)| = g. This can be used to quantify the cell size reduction in going from the initial HOC lattice 

representation (6.13) to the primitive representation (6.19). Further, the reduced transformation ma-

trices A', B' for |det(T)| = g can be evaluated by a number theoretical algorithm given in Appendix 

E.5. In the numerical example (6.16) the corresponding values are g = gcd( 221, 169) = 13, yielding 

a supercell size which is 13 times larger than that given by the matrices of (6.17), which confirms 

the above result. 

Recent experimental studies on the adsorption of C60 fullerene molecules (‘buckyballs’) at the 

hexagonal Pb(1 1 1) surface have shown an ordered C60 overlayer with HOC lattice structure de-

scribed as Pb(1 1 1) + (403)/7  403)/7)R22.85 - C60 [151], see Fig. 6.25. This corresponds to a 

transformation matrix M with 
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Fig. 6.25.  Structure of the Pb(1 1 1) + (403)/7  403)/7)R22.85 - C60 adsorbate 

system. The lattice vectors of the primitive superlattice are sketched in red and the 

supercell is outlined in black. 

Here gcd(|det(A)|, |det(B)|) = gcd( 403, 49) = 1. Thus, representation (6.24) cannot be reduced fur-

ther and the superlattice vectors sketched in Fig. 6.25 reflect the primitive cell of the HOC lattice 

structure. 

The Pb(1 1 1) - C60 adsorbate system is an example of a more general group of HOC lattice 

structures, hexagonal overlayers on hexagonal substrate, which has also been discussed in the liter-

ature [152]. Using an acute representation for the substrate lattice vectors Ro1 and Ro2 with  

Ro1 = Ro2 = R, any commensurate hexagonal overlayer with lattice vectors Ro1', Ro2' can be de-

scribed by a transformation 

integern,m,
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 (6.25) 

since the resulting vectors Ro1', Ro2' are of equal length 

 Rnmnm'R'R 22

2o1o   (6.26) 

and form an angle of 60 as can be shown by simple vector calculus. As a consequence, HOC lat-

tice structures involving hexagonal overlayer and substrate lattices can be defined by transfor-

mations 
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or 
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with 

     'n'm'n'm,/'nm'mnb,/'nn'n'mma 22   (6.29) 

Here the corresponding vector lengths are 
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  (6.30) 

Relations (6.28), (6.29) allow determining a joint superlattice with vectors R1', R2' where 
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and 

 Rnmnm'R'R 22

21   (6.32) 

According to the discussion above, the superlattice cell spanned by vectors R1', R2' cannot be re-

duced further in size if the integer-valued determinants in (6.31) are coprime, i.e. if 

gcd(m
2
 + n

2
 + mn, m'

2
 + n'

2
 + m'n') =  1  (6.33) 

For the Pb(1 1 1) - C60 adsorbate system the present general formalism yields 

m = 14,  n = 9,  m' = 7,  n' = 0    and hence     gcd(403, 49) = 1 (6.34) 

which verifies the result obtained above. 

HOC lattice structures formed by overlayers on substrate where both lattices are square can be 

treated analogous to the hexagonal case. Here commensurate overlayers with square lattice vectors 

Ro1', Ro2' of the overlayer and Ro1, Ro2 of the substrate (Ro1 = Ro2 = R) can be described by a trans-

formation 
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 (6.35) 

since the resulting vectors Ro1', Ro2' are of equal length 

 Rnm'R'R 22

2o1o   (6.36) 

and form an angle of 90 as can be shown by simple vector calculus. Thus, HOC lattice structures 

involving square overlayer and substrate lattices can be defined by transformations 
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or 
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with 

    22 'n'm,/'nm'mnb,/'nn'mma   (6.39) 

where the corresponding vector lengths are 
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As before, relations (6.38), (6.39) allow to determine a joint superlattice with vectors R1', R2' where 
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and 

 Rnm'R'R 22

21   (6.42) 

The superlattice cell spanned by vectors R1', R2' cannot be reduced further in size if the integer-

valued determinants in (6.41) are coprime, i.e. if 

gcd(m
2
 + n

2
, m'

2
 + n'

2
)  =  1  (6.43) 
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6.5 Interference Lattices 

Interference lattices and quasi-periodic long-range order at adsorbate covered surfaces ex-

pressed by one- and two-dimensional moiré patterns have been known for some time but have at-

tracted considerable attention more recently in connection with graphene, a graphite monolayer 

with honeycomb structure, adsorbing at metal surfaces. (In the following, graphene will be named 

‘Gra’ in all structure formulas using the Wood notation.) As an example, experimental LEED and 

STM studies [127] suggest that graphene adsorbing on the hexagonal (0 0 0 1) surface of ruthenium 

forms a commensurate phase with a coincidence lattice described by a supercell of 25  25 carbon 

honeycombs on a 23  23 supercell of the hexagonal Ru(0 0 0 1) substrate. This was simulated by 

DFT calculations with different (smaller than observed) coincidence lattices [127] where Fig. 6.5 

shows results for the Ru(0 0 0 1) + (12/13  12/13) - Gra structure. Here the lateral long-range order 

is evident in the view perpendicular to the substrate surface, see Fig. 6.5a. In addition, the lateral 

structure is combined with perpendicular warping of the graphene layer shown in Fig. 6.5b, which 

is characterized by local distortion away from the substrate when carbon gets near the ruthenium 

surface.  

Boron nitride (h-BN) monolayers adsorbed on the (1 1 1) surface of rhodium have also been 

found to form coincidence lattices. These are described by 13  13 supercells of hexagonal B3N3 

rings on top of 12  12 supercells of the Rh(1 1 1) substrate surface [153]. Analogous to the previ-

ous example, the coincidence lattice structure includes warping of the boron nitride overlayer. In-

terestingly, the warping of this overlayer leads to local indentation towards the substrate when ad-

sorbate atoms get near the rhodium surface which is opposite to the previous example. However, in 

this section structural details of overlayer warping will be ignored and focus will be put on the lat-

eral structure. 

Another example is an observed rotational superlattice formed by a silver monolayer on the 

Ni(1 1 1) substrate surface described as Ni(1 1 1) + (1.167  1.167)R2.4 - Ag [154] in Wood nota-

tion. This structure can be represented approximately by a HOC lattice structure with a transfor-

mation matrix 
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 (6.44) 

reflecting Ni(1 1 1) + (1.155  1.155)R2.2 - Ag which is shown in Fig. 6.26 (only the overlayer 
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and the topmost substrate layer are included). The figure illustrates nicely that the combination of  

 

Fig. 6.26.  Structure of the Ni(1 1 1) + (1.155  1.155)R2.2 - Ag adsorbate system. 

The lattice vectors RM1, Rm2 of the moiré pattern are labeled accordingly. 

the Ag adsorbate and the Ni substrate lattices yields a structure with a clear lateral interference pat-

tern (moiré pattern) of local areas (moirons) which form a hexagonal lattice with lattice vectors 

RM1 and RM2. The general formalism to describe these two-dimensional interference lattices quanti-

tatively will be discussed in the following.  

 

6.5.1 Basic formalism 

The basis of the formalism [155], [156] is a lateral surface structure combining a two-

dimensional periodic substrate layer described by lattice vectors Ro1 and Ro2, with an overlayer 

whose periodicity is given by lattice vectors Ro1', Ro2' with 
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'R

'R
 (6.45) 

where the 2  2 matrix M quantifies the linear transformation as discussed in Sec. 6.1. For real-

valued  M we define an integer approximant matrix MI whose elements aij are the integers nearest to 

mij, see Appendix E.5. Therefore, MI characterizes the commensurate structure closest to that given 

by matrix M. 
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As discussed in Appendix G, any functions f
S
(r), f

O
(r), describing lateral spatial properties of 

the substrate surface and of the overlayer by themselves can be represented by corresponding infi-

nite Fourier series as 
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  i    j, k, j', k'  integer (6.46b) 

with, in general, complex valued coefficients 
S

k,jc and 
O

'k,'jc , respectively, (which, at the real three-

dimensional surface, may depend on a third coordinate perpendicular to the surface) and reciprocal 

lattice vectors Go1, Go2 and Go1', Go2' derived from orthogonality relations (2.96), i.e. 

ijojoiojoi 2'R'GRG     ,       j, k = 1, 2 (6.47) 

as discussed in Sec. 2.5. Note that in (6.46) we use a matrix notation for scalar products with vec-

tors 
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which proves to be useful for the following. 

The real space transformation (6.45) together with orthogonality relations (6.47) leads to a 

transformation of the reciprocal space lattice vectors of the substrate and the overlayer given by 
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where M
+
 denotes the transposed and M

-1
 the inverted matrix M with M

-1+
 being the combination. 

According to (6.46) the superposition of the property functions f
S
(r) of the substrate and f

O
(r) 

of the overlayer describing spatial properties of the combined system can be written as 
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This superposition is non-periodic for real-valued transformation matrices M. In contrast, for 

commensurate lateral surface structures the matrix M is integer-valued, thus, agreeing with its in-

teger approximant MI. Then in reciprocal space 
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and we can write 
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where 
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Thus, each substrate component in (6.46a) can be written as 
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where )r(f O

'k,'j is an overlayer component in (6.46b) referring to indices j', k' which can be different 

from j, k. Thus, for commensurate structures each substrate component (6.54) can be combined with 

a corresponding overlayer component and Fourier expansion (6.50) becomes altogether periodic 

with the overlayer lattice vectors Ro1', Ro2' describing its periodicity. 

The basic mathematical idea of an interference lattice in a combined substrate/overlayer system 

is that all or an infinite subset of components )r(f S

k,j of the substrate expansion (6.50) interfere with 

corresponding components )r(f O

'k,'j of the overlayer which exhibit identical or very similar spatial 

variation. 
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If each component )r(f S

k,j interferes with a corresponding component )r(f O

'k,'j  (basic or first or-

der interference) the superposition component can, together with (6.49), (6.53), be written as 
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with a modulation factor )r(k,j  given by 
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and 
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Thus, the superposition component )r(f k,j of (6.55) is a periodic function modulated by a factor 

)r(k,j  which itself is a periodic function with lattice vectors GM1 and GM2 in reciprocal space. This 

corresponds to a lattice in real space with lattice vectors RM1 and RM2 (moiré lattice vectors) ac-

cording to 
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with a transformation matrix P (moiré matrix) given by 

   
M

1
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1
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MM1MMMP


    where     MMM

1
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  (6.59) 

If the structure of the combined substrate/overlayer system is approaching commensurability, which 

is expressed mathematically by the transformation matrix M in (6.45), (6.58) getting near its integer 

approximant MI, then matrix P becomes rather large and the moiré lattice vectors RM1 and RM2 in 

(6.58) will be considerably larger than the lattice vectors Ro1 and Ro2 of the substrate. This geometry 

describes a long-range modulation whose periodicity is perceived as a periodic interference pattern 
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associated with moiré patterns as will be illustrated in the following. 

Moiré patterns have been found for graphene overlayers on a number of hexagonal metal sub-

strate surfaces where an isotropically scaled (  ) overlayer structure has been discussed in the 

literature, for references see e.g. [155]. Here the transformation matrix M connecting lattice vectors 

Ro1' and Ro2' of the graphene layer with those, Ro1 and Ro2, of the metal substrate according to (6.45) 

is given by 

Me

Gra,1
0

0
M

a

a













  (6.60) 

where  is a scaling factor determined by the ratio of the lattice constants agra and aMe of the gra-

phene overlayer and of the metal substrate, respectively. Table 6.1 lists experimental  values 

Table 6.1.  Scaling factors  and moiré factors  for scaled (  ) overlayers of gra-

phene on different metal substrates, see text. The references denote experimental 

studies where the moiré patterns have been identified. 

Substrate   

Pt(1 1 1) [157] 0.89 8.09 

Ir(1 1 1) [158], [159] 0.91 10.11 

Ru(0 0 0 1) [127] 0.92 11.50 

Rh(1 1 1) [157], [160] 0.93 13.28 

Cu(1 1 1) [161] 0.97 32.33 

Ni(1 1 1) [162] 1.00  

 

for different metal substrates where moiré patterns have been observed. This shows that for gra-

phene  values lie always near  = 1 such that the integer approximant of M equals the unit matrix 

MI = 1. This leads to a moiré matrix P according to (6.59) 



















1
,1

0

0
P  (6.61) 

with  denoting the moiré factor. As an example, Fig. 6.27 shows a simulation of a graphene over-

layer on the Pt(1 1 1) surface where  = 0.89. Here a hexagonal moiré lattice corresponding to a lat-
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tice constant amoiré = 8.09 aPt is obtained which confirms the moiré pattern observed by experiment 

[157]. 

 

Fig. 6.27.  Moiré pattern of a graphene overlayer on the Pt(1 1 1) surface for a view 

perpendicular to the surface with moiré lattice vectors RM1, RM2 included. 

The moiré matrix P of (6.61) shows in general that isotropic overlayer scaling always results in 

moiré lattice vectors RM1 and RM2 that point along the directions of the substrate lattice vectors  

Ro1 and Ro2, respectively. Thus, the moiré lattice is of the same Bravais lattice type as that of the 

substrate. Further, (6.58) together with (6.61) shows that moiré lattice vectors diverge in their 

lengths when  approaches  = 1 which corresponds to lattice constants of the overlayer and sub-

strate lattices getting very close. In this limit the moiron arrangement will become very open with 

extremely large moirons (giant scaling) that may be too large to be observable. This is consistent 

with experimental findings for graphene overlayers on Ni(1 1 1) substrate [162] where the surface 

lattice constants differ by less that 1%. 

High-order interference is obtained by an infinite subset of substrate components )r(f d,S

k,j , 

given by 
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in the Fourier expansion (6.46a), interfering with corresponding overlayer components )r(f O

'k,'j . Here 

the integer-valued matrix d selects the infinite subset and can thus be considered an interference 

order matrix where d = 1 (or more generally det(d) = 1) refers to first order interference discussed 

above. Then analogous to (6.55) the superposition components can be written as 
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with a modulation factor )r(d

k,j where 
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and 
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As before, the superposition component )r(f d

k,j of (6.62) is a periodic function modulated by a factor 

)r(d

k,j  which itself is a periodic function with a lattice 
d

2M

d

1M G,G in reciprocal space that corre-

sponds to a lattice with lattice vectors 
d

2M

d

1M R,R (high-order moiré lattice vectors) in real space 

according to 
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with a transformation matrix P (high-order moiré matrix) given by 
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  (6.67) 

If the structure of the combined substrate/overlayer system is approaching high-order commensura-

bility, expressed formally by the transformation matrix (M d) in (6.66) getting near its integer ap-
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proximant MI, then matrix P
d
 is diverging and the moiré lattice vectors 

d

2M

d

1M RandR  in (6.66) will 

be considerably larger than the lattice vectors Ro1 and Ro2 of the substrate. The resulting long-range 

modulation can explain periodic high-order moiré patterns. Since these patterns refer to interference 

of only a subset of Fourier components representing the substrate periodicity their visual perception 

may not be as pronounced as that of first order moiré patterns. Further, high-order interference in 

two dimensions will in general depend on a 2  2 order matrix d rather than on a scalar quantity un-

less the matrix is restricted to an integer multiple d of the unit matrix as assumed elsewhere [163]. 

As an example, high-order moiré patterns have been found in experiment for graphene over-

layers on the Ir(1 1 1) surface [158], [159] where the overlayer is rotated by almost 30 with respect 

to the hexagonal substrate surface. This system, characterized in Wood notation as  

Ir(1 1 1) + (0.9  0.9)R29.5 - Gra, can be approximated by a HOC lattice structure with a trans-

formation matrix (using the acute representation of the hexagonal lattice) 
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describing Ir(1 1 1) + ((124/151)  (124/151))R29.5 - Gra which is shown in Fig. 6.28 (only the 

overlayer and the topmost substrate layer are included). Here the hexagonal interference pattern is 

clearly visible with moiré lattice vectors RM1 and RM2 included in Fig. 6.28. 
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Fig. 6.28.  High-order moiré pattern of a graphene overlayer on the Ir(1 1 1) surface 

for a perpendicular view with high-order moiré lattice vectors RM1, RM2 included. 

This pattern can be described by high-order interference [163] assuming a simplified ‘second’ order 

matrix d and an appropriate integer approximant MI with 
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which yields for the moiré matrix according to (6.67) after some calculus  
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and results, in agreement with experiment [159], in a hexagonal moiré lattice with vectors RM1 and 

RM2 of lengths 

Ir1o1M1M 124R124RR a  (6.69) 

where aIr is the lattice constant of the hexagonal Ir(1 1 1) substrate. Further, the moiré lattice is ro-



316 

 

tated by 8.948 with respect to the substrate lattice which confirms the previous analysis [163]. 

If matrix M in (6.45) describes a coincidence lattice of a HOC lattice structure, see Sec. 6.4, i.e. 

if M can be represented by two integer matrices A, B with 

ABM
1

  (6.70) 

then the moiré matrix (6.67) describing interference yields 

      AdAMBABdABMP
1
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111
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  (6.71) 

with d = 1 referring to basic interference. As a consequence, the transformation between the moiré 

lattice vectors, ,RandR
d

2M

d

1M  and those of the substrate lattice, Ro1 and Ro2, given by (6.66), can be 

written as 
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where R1 and R2 are the superlattice vectors describing the HOC supercell according to (6.13). 

Since the matrices A, B, MI, and d appearing on the right side of (6.72) are all integer-valued the 

superlattice vectors R1 and R2 are given by integer-valued linear combinations of vectors RM1 and 

RM2. Therefore, the moiré lattice with vectors RM1 and RM2 can serve as a basis to define the coinci-

dence lattice of the HOC structure. 

As a simple example, graphene adsorbed on the hexagonal Ru(0 0 0 1) surface, which has been 

discussed earlier, was found to form a HOC coincidence lattice structure where 25 graphene cells fit 

on 23 Ru unit cells. This yields a lattice transformation (6.10) with a transformation matrix 
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Hence, according to (6.58), (6.59) the moiré lattice vectors RM1 and RM2 are given by 
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while the superlattice vectors R1 and R2 of the overlayer defined by (6.13) are 
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Thus, the superlattice vectors R1 and R2 are twice as large as their moiré counterparts, RM1 and RM2, 

as shown in Fig. 6.29 which confirms relation (6.72). 

 

Fig. 6.29.  Graphene overlayer adsorbed on the Ru(0 0 0 1) surface. The Ru sub-

strate is shown by its topmost layer with gray atom balls while the honeycomb ele-

ments of the graphene are simplified by red balls. The supercell is emphasized in 

gray with superlattice vectors R1, R2 and moiré lattice vectors RM1, RM2 labeled ac-

cordingly.  

 

6.5.2 Interference and Wood Notation 

Further quantification of moiré lattices is obtained for surfaces where the overlayer structure 

can be characterized using the Wood notation (6.2), see Sec. 6.3. In the present section only the 

primitive notation ‘… - p(1  2)R - …’ (or ‘… - (1  2)R - …’ in short) will be considered. 

According to (6.6a), the 2  2 transformation matrix of an overlayer structure characterized as  

‘… - (1  2)R - …’ is given by 
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where q,  refer to the type of Bravais lattice. If the nearby commensurate overlayer structure de-

scribed by the integer approximant MI corresponds to a Wood notation ‘… - (I1  I2)RI - …’ 

based on the same Bravais lattice, i.e. if 
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then the transformation matrix MM in (6.67) can be represented in Wood notation as 

IM
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with a transformation matrix MM given by 
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If we further assume that the order matrix for high-order interference can be restricted to a multiple 

of the unit matrix, i.e. to 
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then the (high-order) moiré matrix P
d
 according to (6.67) can be written as 
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where 

    =  1 + d
2 
M1 M2 - d (M1 + M2) cos(M) - d (M2 - M1) cot() sin(M) (6.82) 

Using (6.81), (6.82) together with (6.66) one can derive parameters which are quite intuitive and 

can be actually measured in experiments performed for the overlayer structures. A comparison of 

the lengths of the moiré lattice vectors 
d

2M

d

1M R,R  with those of the substrate surface, Ro1 and Ro2 

yields the moiré factors i with 
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  ,    (i,j) = (1,2), (2,1) (6.83) 

and the moiré angles i defined by the angles between the moiré lattice vectors and their substrate 

counterparts, are given by  

)cos(d2d1

d)(cos

RR

RR
)(cos

MMj

2

Mj

2

MjM

oiMi

oiMi
i




  ,    (i,j) = (1,2), (2,1) (6.84) 

Special cases are systems where the integer approximant matrix MI equals the unit matrix which 

refers to Ii = 1, I = 0 resulting in 
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  ,    (i,j) = (1,2), (2,1) (6.85) 

for the moiré parameters as discussed in detail in [155]. This simplifies further for isotropic scaling 

combined with rotation, where 1 = 2 = , to yield 
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As a first example, we consider the graphene overlayer on the Pt(1 1 1) surface discussed earli-

er. This system which has been observed in experiments [157] can be described in Wood notation 

as Pt(1 1 1) + (0.89  0.89) - Gra, reflecting an isotropically scaled overlayer with  = 0.89 and no 

rotation, = 0. Here the integer approximant structure is (1  1) corresponding to I = 0 such that 

equations (6.86) are applicable and yield a hexagonal first order moiré lattice with 





 0,09.8

1
i  (6.87) 

which is shown in Fig. 6.27 confirming the result discussed above.  

Another example where equations (6.86) can be applied is a rotated graphene overlayer ad-
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sorbed on top of graphene. For this system a rotation angle α = 3.5 has been claimed by experiment 

[164]. Thus, in Wood notation the overlayer structure is described as Gra + (1  1)R3.5 - Gra and 

exhibits a hexagonal first order moiré pattern where according to (6.86)  
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which is shown in Fig. 6.30. 

 

Fig. 6.30.  Graphene overlayer adsorbed on a graphene layer for a rotation angle  

 = 3.5 (indicated by lines at the bottom) with moiré vectors RM1, RM2 included. 

The lattice vectors Ro1, Ro2 of the underlying graphene monolayer are sketched at the 

lower left where a magnification by a factor 5 is applied for better visibility. 

The combination of rotated and scaled overlayers has been found in experiments for graphene 

adsorbed on hexagonal boron nitride (h-BN) [165]. In this system the lattice constant of the gra-

phene overlayer is smaller by 3% compared with that of the h-BN lattice and the overlayer is rotat-

ed by a rather small angle of 3 yielding a h-BN + (0.97  0.97)R3 - Gra structure in Wood nota-

tion. This can be approximated by a HOC lattice structure with a transformation matrix 
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representing h-BN + (0.971  0.971)R3 - Gra. The resulting hexagonal first order moiré pattern 

according to (6.86) leads to  = 16.52 and  = 63.00. This is illustrated in Fig. 6.31a where in the 

simulation the graphene C6 and B3N3 honeycombs are replaced by gray and red balls for better visi-

bility. For comparison, Fig. 6.31b shows a corresponding simulation of the overlayer structure  

h-BN + (0.971  0.971)R0 - Gra, i.e. without rotation, defined by a transformation matrix 
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The resulting moiré pattern is dramatically changed, representing a much larger moiré lattice,  

 = 34.00 and  = 0.00, with well separated moirons compared to those of the overlayer structure 

with a small rotation. Further, the rotation of the overlayer by only 3 leads to a moiron lattice ro-

tated by a sizeable 63.00 which may be described as a giant rotation. This is a more general result 

found for overlayer structures with small rotation angles  and where the lattice mismatch is small, 

reflected by scaling factors i 1. In fact, it can be shown by simple Taylor expansion that for even 

smaller values of  the moiré angle  in (6.86) can be approximated by  






1
 (6.89) 

which substantiates the general result. 
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Fig. 6.31.  Graphene overlayer adsorbed on a hexagonal boron nitride layer for a 

rotation angle of (a)  = 3.0, (b)  = 0.0. The graphene C6 and B3N3 honeycombs 

are simulated by gray and red balls for better visibility. Moiré vectors RM1, RM2 are 

indicated accordingly. 

Another interesting example of a rotated and scaled overlayer is the  

Ir(1 1 1) + ((124/151)  (124/151))R29.5 - Gra adsorbate system [159] discussed above, see Fig. 

6.28, which exhibits a second order moiré pattern. Here the integer approximant MI, given by (6.68) 

can be written as  
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reflecting a (3  3)R30 structure in Wood notation according to (6.77). Using (6.78) this results 

in scaling factors M = (124/453) = 0.5232 and rotation angles M = -0.4187. Thus, applying 

(6.82), (6.83), (6.84) for second order interference, d = 2, yields moiré factors i = 124 and moiré 

angles i = 8.948 which confirms the previous analysis.  

An important result of the present formalism is that for isotropically scaled overlayers with 

scaling factors M1 = M2 = M the moiré factors 1 and 2 given by (6.83) are equal and do not de-

pend explicitly on the type of Bravais lattice. Likewise, the moiré angles 1 and 2 defined by 

(6.84) agree with each other and are independent of the Bravais lattice type. Thus, for isotropically 

scaled and rotated overlayers the type of Bravais lattice of a possible moiré lattice is always that of 

the initial substrate. As an illustration, Fig. 6.32 shows moiré patterns for fictitious surface struc-
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tures with different Bravais lattices where the patterns result from rotation by  = 4 and isotropic 

scaling by p = 0.95. This corresponds in all examples to a moiré angle  = 55.71 and a moiré factor 

 = 11.252. For all four Bravais lattice types with symmetry, i.e. for primitive and centered rectan-

gular, square, and hexagonal lattices, the moiré lattice type agrees with that of the substrate and 

overlayer lattice. While this theoretical result is quite clear its experimental verification seems to 

exist only for hexagonal surface systems so far. 
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Fig. 6.32.  Moiré patterns of overlayers with different Bravais lattices, (a) primitive 

rectangular (p-rect., Ro1/Ro2 = 1.3), (b) centered rectangular (c-rect., (Ro1, Ro2) = 

75), (c) square, (d) hexagonal (hex.) reflecting a (0.95  0.95)R4 overlayer struc-

ture. Moiré unit cells are emphasized in red with moiré vectors RM1, RM2 labeled 

accordingly. Substrate unit cells and lattice vectors Ro1, Ro2 are included at the lower 

left insets with a magnification factor 3 applied for better visibility. 
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6.5.3 Anisotropic Scaling, Stretching and Shifting 

While the Bravais lattice type of moiré lattices resulting from rotated and isotropically scaled 

overlayers always agrees with that of the overlayer structure, anisotropic scaling with scaling fac-

tors M1  M2 can lead to moiré patterns which do not reflect the initial Bravais lattice. As an illus-

tration Fig. 6.33 shows two moiré patterns of a fictitious (distorted) hexagonal overlayer on hexag-

onal substrate which refer to (0.94  0.98)R5 (Fig. 6.33a) and to (0.98  0.94)R(-5) (Fig. 6.33b) in 

Wood notation. In both cases the moiré pattern is characterized by distorted ellipsoidal moirons 

forming an almost rectangular lattice. In addition, the moirons are frizzy at their boundaries exhibit-

ing a spiral structure where the spirals rotate clockwise in the left and anti-clockwise in the right 

pattern of Fig. 6.33. Thus, the two patterns may be considered chiral pairs. 

 

Fig. 6.33.  Moiré patterns of a fictitious (distorted) hexagonal overlayer on hexago-

nal substrate described as (a) (0.94  0.98)R5, (b) (0.98  0.94)R(-5). Moiré vec-

tors RM1, RM2 are labeled accordingly. 

Anisotropically scaled overlayers without rotation, reflecting (1  2) overlayers in Wood no-

tation with (1  1) as the integer approximant, i.e. MI = 1, are characterized by transformation ma-

trices M according to (6.45) with 
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Thus, they can lead to periodic first order moiré patterns with lattice vectors RM1 and RM2 defined 

by (6.58) with a moiré matrix P according to (6.59) given as 
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yielding moiré factors i and moiré angles i according to (6.83), (6.84)  
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Here the limit 1 = 1, 2  1, corresponding to a (1  2) overlayer, leads to a diverging moiré factor 

1. This means that the moiré lattice vector RM1 tends to infinity such that the interference along 

RM1 disappears while that along RM2 remains. As a result the moiré pattern is periodic only in one 

dimension, exhibiting moirons as parallel infinite stripes (1-dimensional moirons) rather than con-

fined regions where the stripes are perpendicular to Ro2. This has been observed in experiments for 

the gold surface whose reconstruction has been characterized as Au(1 1 1) - (3  22)rect [111]. As 

discussed in Sec. 5.2, the topmost surface layer experiences a lateral compression such that 23 at-

oms of the overlayer fit in a cell with 22 atoms of the substrate along Ro2. This leads to a transfor-

mation matrix M and to a moiré matrix P with  
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which confirms the observed arrangement of striped moirons, shown in Fig. 5.6. 

One-dimensional moiré patterns can also be found in overlayer structures where the overlayer 

lattice is stretched with respect to the substrate lattice. The lattice vectors Ro1', Ro2' of stretched 

overlayers are described by a transformation 

  2,1i,eeRR'R oioioi   (6.93) 

where  is a stretch factor and e, e' are unit vectors with e defining the stretch direction and e' being 

perpendicular to e. Overlayer structures resulting from stretching cannot be described by Wood no-

tation since the angle between Ro1' and Ro2' differs in general from that between Ro1 and Ro2. How-

ever, transformation (6.93) can be written as   
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with 
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where 
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After some calculation this leads to  

 
  0M1det,

'x'x

'x'x

x0

0x

'xx'xx
M1

12

12

2

1

1221

























  (6.97) 

As a result, the moiré matrix P according to (6.59) with MI = 1 becomes singular, thus, excluding a 

two-dimensional moiré pattern. However, stretching along direction e can lead to spatial variations 

which are perceived as 1-dimensional moiré stripes but the detailed analysis is rather complex. As 

an illustration, Fig. 6.34 shows a fictitious (distorted) hexagonal overlayer on hexagonal substrate 

where the overlayer (red balls) is stretched by a factor  = 8/7 along vector e = (2 Ro1 + Ro2)/7 with 

respect to the substrate layer (gray balls). Thus, the moiron stripes repeat periodically along e with a 

periodicity length given by vector R = 8 (2 Ro1 + Ro2) while the stripes are not exactly perpendicular 

to e.  
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Fig. 6.34.  Moiré patterns of a fictitious (distorted) hexagonal overlayer (red balls) 

on hexagonal substrate (gray balls) where the overlayer is stretched by a factor  = 

8/7 along vector R included in the figure. 

Moiré lattices are also affected by lateral shifts of the overlayer. A global shift vector s translat-

ing the otherwise rigid overlayer can always be represented by lattice vectors Ro1 and Ro2 of the 

substrate, i.e. by 
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where the shift does not influence the periodicity of the overlayer structure but changes the origin of 

the corresponding lattice. As a result, the origin of the moiré lattice vectors 
d

2M

d

1M R,R given by 

(6.66) is shifted by 
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Since moiré lattice vectors RM1 and RM2 do in general not point along directions of the substrate lat-

tice vectors Ro1 and Ro2, vectors s and SM may also point in different directions. Further, the lenghts 

of the corresponding shift vectors may be quite different. As an illustration, we assume an overlayer 

structure to represent a combination of isotropic scaling and rotation described as (  )R in 

Wood notation. Thus, the lattice vectors of the moiré lattice, ,RandR
d

2M

d

1M  are connected with 

those of the substrate lattice, Ro1 and Ro2, where moiré parameters ,  are given by (6.86). Then 

the ratio of the shift lengths is given by 
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  (6.100) 

and the angle between the shift vectors s and SM yields with (6.86) after some calculus 
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M

M
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Thus, for (  )R overlayer structures the shift vectors of the moiré lattice and of the substrate 

lattice, SM and s, respectively, are connected by the same relationships (6.86) as the lattice vectors 

themselves. This is evident from Fig. 6.35 which shows shift directions of the overlayer and of the 

moiré lattice for two overlayer structures. In Fig. 6.35a, referring to  

Ir(1 1 1) + (0.906  0.906)R0 - Gra [159], the graphene overlayer is scaled but not rotated such 

that the moiré lattice vectors are parallel to those of the iridium substrate. Thus, the moiré lattice 

and the overlayer both shift in parallel, i.e. horizontally in Fig. 6.35a. In Fig. 6.35b, referring to (fic-

titious) Ir(1 1 1) + (0.906  0.906)R5 - Gra, the graphene overlayer is scaled and rotated leading to 

moiré lattice vectors which point in directions different from those of the substrate lattice vectors. 

Therefore, the moiré lattice shifts in a diagonal direction while the overlayer shifts horizontally. 

However, in both cases the moiron shifts are much larger than the corresponding overlayer shifts, 

where according to (6.100) amplification factors SM/s = 9.61 (without rotation) and 7.22 (with rota-

tion) are found. 
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Fig. 6.35.  Graphene overlayer adsorbed on the Ir(1 1 1) surface for structures (a) 

Ir(1 1 1) + (0.906  0.906) - Gra, (b) Ir(1 1 1) + (0.906  0.906)R5 - Gra (ficti-

tious). The moiré vectors RM1, RM2 are shown in red. Shift directions of the overlay-

er and of the moiré lattice are denoted by black and red double headed arrows 

Moiré lattices of shifted overlayers can be observed at stepped metal surfaces. As an illustra-

tion, Fig. 6.36 shows the simulation of a moiré pattern for graphene spreading over a monoatomic 

step on the Ir(1 1 1) surface [155], [166]. Here the Ir atoms at adjacent terraces experience a lateral 

shift of -s = (Ro1 - 2 Ro2) / 3 (shown by a red arrow denoted ‘-s’ in the figure inset at the bottom 

right), corresponding to a relative shift s of the graphene layer. This results, according to (6.98), 

(6.99), in a parallel shift SM = (RM1 - 2 RM2) / 3 (shown by a red arrow denoted ‘SM’ in the figure) of 

the moiron arrangement between the terraces. 
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Fig. 6.36.  Graphene overlayer adsorbed at a stepped Ir(1 1 1) surface. Adjacent ter-

races are shown in red (lower terrace) and light gray (upper terrace) with moiré vec-

tors RM1, RM2 included. The inset at the bottom right shows an enlarged local area 

near the step edge with lattice vectors Ro1, Ro2 at the two terraces. The vector labled 

‘-s’ denotes the lateral atom shift between upper and lower terrace. 

 

6.6 Symmetry  and Domain Formation 

As pointed out in Sec. 6.1, structure concepts discussed for the topmost layers of relaxed or re-

constructed surfaces of real crystals can be used analogously to characterize adsorbate layers at sur-

faces. This applies in particular to symmetry properties. In the case of reconstructed or adsorbate 

layers at surfaces - both will be called overlayers in the following - those with commensurate su-

perlattices are expected to exhibit highest symmetry, where two aspects are important. First, the 

overlayer and the substrate surface share a common periodicity (i.e. translational symmetry), that of 

the superlattice, with lattice vectors R1', R2'. These lattice vectors are given by integer-valued com-

binations of the two-dimensional lattice vectors of the substrate surface, R1 and R2, according to 

(5.3). Further, the area of the superlattice unit cell is an integer multiple of that of the substrate sur-

face. Second, point symmetry elements, common to the overlayer and the substrate surface, will 
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combine to form the two-dimensional space group of the superlattice representing the joint overlay-

er / substrate surface. This space group may be identical to that of the overlayer (and can never in-

clude additional symmetry elements). But it can also represent lower symmetry compared with that 

of each subsystem given by the two corresponding space groups. 

Formally, the combination of two-dimensional space groups of overlayer and substrate lattices 

can be based on the notion that all two-dimensional symmetry elements appearing in an atom layer 

can be translated into three-dimensional ones at the surface. Thus, rotation axes in two-

dimensional atom layers reflect rotation axes pointing perpendicular to the layers in three-

dimensional space. Likewise, mirror lines in two-dimensional layers correspond to mirror planes 

perpendicular to the layers in three dimensions. Finally, glide lines in two-dimensional layers trans-

late to glide planes perpendicular to the layers in three dimensions. Then the joint two-dimensional 

space group of the overlayer and substrate layers collects the two-dimensional equivalents of all 

those three-dimensional symmetry elements that are shared by both layers. 

As an example, we consider the adsorption of oxygen on the (1 1 0) surface of fcc rhodium, for 

which experimental studies [167], SSD 45.8.7, have shown a Rh(1 1 0) + p2mg(2  1) - 2O over-

layer structure shown in Fig. 6.37. Here oxygen atoms are placed at tilted bridge sites along the 

 

Fig. 6.37.  Structure of the Rh(1 1 0) + p2mg(2  1) - 2O adsorbate system. O ad-

sorbate and Rh substrate atoms are shown in red and gray. Lattice vectors of the 

adsorbate layer and substrate are shown in red and black. 

topmost rows of Rh atoms in an alternating fashion (left and right tilt). As a result, the unit cell of 
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the oxygen overlayer, containing two oxygen atoms, is rectangular with lattice vectors along and  

perpendicular to the substrate atom rows, where R1' = 2 R1 and R2' = R2 define the superlattice. Fur-

ther, the point symmetry elements of the overlayer are those of space group p2mg sketched in Fig. 

6.38a. In contrast, point symmetry elements of the substrate lattice, shown in Fig. 6.38b, form the 

space group p2mm (for group notations see Sec. 3.8.6), where the unit cell area is half that of the 

superlattice cell. (The sketch of Fig. 6.38a includes two unit cells of the substrate to reflect the su-

perlattice periodicity.) All 2-fold rotation centers of the oxygen overlayer as well as the two  

 

Fig. 6.38.  Surface symmetry elements of the Rh(1 1 0) + p2mg(2  1) - 2O adsorb-

ate system. (a) O adsorbate symmetry elements, space group p2mg. (b) Rh(1 1 0) 

substrate symmetry elements, space group p2mm. The sketch includes two unit cells 

of the substrate to reflect the adsorbate periodicity. All symmetry elements are de-

noted according to ITC. 

mirror lines also appear in the symmetry sketch of the substrate. Further, the glide lines of the over-

layer with periodicity vectors R1' = 2 R1 are consistent with the parallel mirror lines of the substrate 

along R1. Thus, all symmetry elements of space group p2mg exist in both subsystems and this space 

group describes all point symmetry elements of the combined overlayer / substrate surface. So in 

this example the space group of the overlayer happens to be identical to that of the combined sys-

tem.  

An example where the space group of the combined system represents lower symmetry com-

pared with that of the overlayer superlattice is the Al(1 1 1) + (1  1) - O adsorbate system [168] , 

SSD 13.8.19, shown in Fig. 6.39. Here the unit cell of the separate oxygen overlayer includes point 

symmetry elements described by the hexagonal space group p6mm, see upper left pattern of Fig. 

6.39 which is identical to the symmetry of the unit cells of each underlying aluminum substrate lay-

er. However, the substrate layer cells are shifted laterally with respect to those of the adsorbate 
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overlayer. As a result, there are fewer point symmetry elements in the combined overlayer / sub-

strate system than in the adsorbate and substrate layers themselves and the symmetry of the com-

bined system is described by space group p3m1, see lower right pattern of Fig. 6.39. 

 

Fig. 6.39.  Structure of the Al(1 1 1) + (1  1) - O adsorbate system. The figure in-

cludes symmetry patterns of space group p6mm of the separate overlayer and sub-

strate (top left) as well as of space group p3m1 of the combined overlayer/substrate 

surface (bottom right). All symmetry elements are denoted according to ITC. 

Table 6.2 gives an overview of allowed space groups  for all combinations of commensurate 

overlayer and substrate lattices sharing point symmetry elements (including glide lines). Here the 

rows denote the two-dimensional substrate lattice at the surface and columns refer to space groups 

of the combined overlayer / substrate superlattice. The table shows that in numerous cases the 

symmetry of the substrate lattice allows different superlattice symmetries depending on the lattice 

vectors R1', R2' of the superlattice. A full analysis of compatible overlayer symmetries can be ob-

tained by an interactive computational tool, LEEDpat [169], which allows finding all possible 

overlayer space groups for a given commensurate superlattice and a substrate space group. 
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Table 6.2.  Allowed space groups of combined overlayer / substrate superlattices. 

The table is split into two parts because of space limitations. 

(a) Space groups no. 1 - 2 (oblique), 3, 4, 6 - 8 (p-rectangular), 5, 9 

(c-rectangular) of the combined overlayer / substrate superlattice 

Substrate 

lattice 

Combined overlayer / substrate superlattice 

 (1) 

p1 

(2) 

p2 

(3) 

p1m1 

(4) 

p1g1 

(5) 

c1m1 

(6) 

p2mm 

(7) 

p2mg 

(8) 

p2gg 

(9) 

c2mm 

(1) p1 any -- -- -- -- -- -- -- -- 

(2) p2 any any -- -- -- -- -- -- -- 

(3) p1m1, 

   m=0 

any -- 0 0 0 -- -- -- -- 

(4) p1g1, 

   g=0 

any -- -- 0 -- -- -- -- -- 

(5) c1m1, 

   m=0 

any -- 0 0 0 -- -- -- -- 

(6) p2mm, 

   m=0,90 

any any 0, 90 0, 90 0, 90 0, 90 0, 90 0, 90 0, 90 

(7) p2mg, 

   m=0, g=90 

any any 0 0, 90 0 -- m=0, 

g=90 

0, 90 -- 

(8) p2gg, 

   g=0,90 

any any -- 0, 90 -- -- -- 0, 90 -- 

(9) c2mm, 

   m=0,90 

any any 0, 90 0, 90 0, 90 0, 90 0, 90 0, 90 0, 90 

(10) p4 any any -- -- -- -- -- -- -- 

(11) p4mm, 

   m=0,45 

any any 0, 45 0, 45 0, 45 0, 45 0, 45 0, 45 0, 45 

(12) p4gm, 

   g=0 

any any 45 0, 45 45 45 45 0, 45 45 

(13) p3 any -- -- -- -- -- -- -- -- 

(14) p3m1, 

   m=90 

any -- 90 90 90 -- -- -- -- 

(15) p31m, 

   m=0 

any -- 0 0 0 -- -- -- -- 

(16) p6 any any -- -- -- -- -- -- -- 

(17) p6mm, 

   m=0,90 

any any 0, 90 0, 90 0, 90 0, 90 0, 90 0, 90 0, 90 
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(b) Space groups no. 10 - 12 (square), 13 - 17 hexagonal) of the 

combined overlayer / substrate superlattice 

Substrate 

lattice 

Combined overlayer / substrate superlattice 

 (10) 

p4 

(11) 

p4mm 

(12) 

p4gm 

(13) 

p3 

(14) 

p3m1 

(15) 

p31m 

(16) 

p6 

(17) 

p6mm 

(1) p1 -- -- -- -- -- -- -- -- 

(2) p2 -- -- -- -- -- -- -- -- 

(3) p1m1, 

   m=0 

-- -- -- -- -- -- -- -- 

(4) p1g1, 

   g=0 

-- -- -- -- -- -- -- -- 

(5) c1m1, 

   m=0 

-- -- -- -- -- -- -- -- 

(6) p2mm, 

   m=0,90 

-- -- -- -- -- -- -- -- 

(7) p2mg, 

   m=0, g=90 

-- -- -- -- -- -- -- -- 

(8) p2gg, 

   g=0,90 

-- -- -- -- -- -- -- -- 

(9) c2mm, 

   m=0,90 

-- -- -- -- -- -- -- -- 

(10) p4 any -- -- -- -- -- -- -- 

(11) p4mm, 

   m=0,45 

any  0, 45 0, 45 -- -- -- -- -- 

(12) p4gm, 

   g=0 

any  -- 0 -- -- -- -- -- 

(13) p3 -- -- -- any -- -- -- -- 

(14) p3m1, 

   m=90 

-- -- -- any 0 90 -- -- 

(15) p31m, 

   m=0 

-- -- -- any 90 0 -- -- 

(16) p6 -- -- -- any -- -- any -- 

(17) p6mm, 

   m=0,90 

-- -- -- any 0, 90 0, 90 any 0, 90 

 

In the tables lattice vectors R1, R2 of the substrate are oriented such that R1 points along the hori-

zontal x axis, except for centered rectangular lattices where (R1 + R2) is assumed to point along x, 

see Fig. 3.49. The table entries ‘any’, 0, 45, and 90 denote allowed azimuthal angles (in degrees) 

of mirror (m) and glide (g) lines or planes relative to the substrate lattice while ‘--‘ refers to in-

compatible symmetries. Symmetry degenerate orientations, such as 120 rotations for hexagonal 

lattices, are not included in the list. The numbering sequence follows the scheme used in the ITC 

[33]. 

In addition to the compatibility rules given in Table 6.2, overlayers of the same structure can 

be oriented differently with respect to a substrate surface with symmetry, where the resulting over-
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layer / substrate systems are energetically degenerate. At real crystal surfaces this degeneracy gives 

rise to domain formation where finite patches of the differently oriented overlayers coexist and can 

be observed by diffraction or imaging experiments [34], [94]. As an example, we consider the ad-

sorption of carbon monoxide on the (1 1 1) surface of fcc platinum, where experimental studies 

[144], SSD 78.6.8.4, have yielded a Pt(1 1 1) + c(4  2) - 2CO overlayer structure as shown in a 

perspective view in Fig. 6.40. Here CO molecules are placed at top and bridge sites above the  

 

Fig. 6.40.  Structure of the Pt(1 1 1) + c(4  2) - 2CO adsorbate system. The perio-

dicity vectors of the CO adsorbate layer and of the Pt substrate are shown in red and 

black, respectively. 

hexagonal Pt surface layer, where the unit cell of the CO overlayer, containing two molecules, is 

rectangular with lattice vectors R1' = 2 R1 and R2' = R1 + 2 R2 defining the superlattice. The point 

symmetry elements of the overlayer are those of space group p2mm while the substrate symmetry is 

described by p3m1. This yields a combined two-dimensional symmetry pattern represented by 

space group p1m1. The symmetry is more evident in the view normal to the surface shown in Fig. 

6.41. This figure shows the three energetically degenerate orientations of CO overlayers which are 

rotated by 120 with respect to each other as a consequence of the 3-fold rotational symmetry of the 

substrate lattice. Thus, the substrate symmetry gives rise to three different rotational domains on 

the real surface.  
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Fig. 6.41.  Structure of rotational domains of the Pt(1 1 1) + c(4  2) - 2CO adsorb-

ate system with the three equivalent rotational domains. The domains are separated 

by black lines. 

Rotational domains of overlayers can appear whenever the substrate surface symmetry includes 

a rotation axis which is not shared by the overlayer. Domain formation can also be found for other 

symmetry elements of the substrate surface. A mirror plane of the substrate can induce two mir-

rored domains of overlayers as suggested by experiments for the Ni(1 1 0) + c(2  2) - CN adsorb-

ate system [170], SSD 28.6.7.2, shown in Fig. 6.42. Here CN molecules are found to adsorb as tilt-

ed species at bridging sites along the topmost rows of Ni atoms with the tilt pointing always in the 

same direction laterally. This offers a second, energetically degenerate, geometric configuration 

where the tilt occurs to the other side, which can give rise to two mirrored domains. Actually, in the 

present system the two domains can be connected by a 2-fold rotation perpendicular to the surface 

and can, therefore, also be considered 2-fold rotational domains. 
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Fig. 6.42.  Structure of mirror domains of the Ni(1 1 0) + c(2  2) - CN adsorbate 

system. The two domains are separated by a black line. 

Further, a glide line of the substrate surface can induce two glide line domains of overlayers 

which may also appear for the Ni(1 1 0) + c(2  2) - CN adsorbate system [170] as illustrated in 

Fig. 6.43. Here the glide line operation creates a second, energetically degenerate, structure of the 

CN adsorbate with its tilt pointing to the other side with respect to the surface normal. This is com-

bined with a shift by half an overlayer lattice vector along the glide line indicated by a red arrow in 

Fig. 6.43. 

 

Fig. 6.43.  Structure of glide line domains of the Ni(1 1 0) + c(2  2) - CN adsorbate 

system. The domains are separated by a black dashed line. The shift vector along the 

glide line is indicated by a red arrow. 
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In addition to point symmetry elements of the substrate surface its translational symmetry can 

also induce different domains, so-called translational domains. As an example, we consider the 

adsorption of atomic hydrogen on the (1 1 0) surface of rhodium where experiments found a  

Rh(1 1 0) + (1  3) - H adsorbate structure [171], SSD 45.1.5, as illustrated by Fig. 6.44. Here hy-

drogen atoms adsorb in 3-fold sites at the slopes of the (1 1 0) troughs of the rhodium surface. The 

hydrogen rows can be moved laterally in their perpendicular direction by a lattice vector of the sub-

strate lattice, indicated by a red arrow in Fig. 6.44, to yield altogether three energetically degenerate 

configurations. This results in three different translational domains. 

 

Fig. 6.44.  Structure of translational domains of the Rh(1 1 0) + (1  3) - H adsorbate 

system. The domains are separated by a black line with the shift vector indicated in 

red. 

Another example of translational domains is given by the adsorption of atomic oxygen on the 

(1 1 0) surface of silver, where experiments show a Ag(1 1 0) + (2  1) - O adsorbate structure 

[172], as illustrated by Fig. 6.45. Here oxygen atoms adsorb between silver atoms of the topmost 

rows of the (2  1) reconstructed substrate forming rows of alternating Ag and O atoms. These rows 

may be shifted laterally in their perpendicular direction by a lattice vector of the substrate lattice, 

illustrated by a red arrow in Fig. 6.45, which yields an energetically degenerate configuration. The 

resulting two structures form different translational domains. While the two domains are completely 

equivalent the lateral shift between them, reflecting a structural phase inversion, can be observed in 

electron scattering experiments [34], [94] since it gives rise to scattering phase changes between 

adjacent domains. Therefore, these translational domains are sometimes also called anti-phase do-
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mains. 

 

Fig. 6.45.  Structure of  translational (anti-phase) domains of the  

Ag(1 1 0) + (2  1) - O adsorbate system. The domains are separated by a black line 

with the shift vector indicated in red. 

 

6.7 Adsorption at Surfaces and Chirality 

Structural aspects of adsorption involving chiral adsorbates as well as chiral substrate surfaces 

have attracted wide scientific interest because these systems have been found to show exciting 

physical and chemical properties which are also important for practical applications. Examples are 

enantioselective catalytic reactions which are used by the chemical industry to produce different 

drugs. In many cases, chiral adsorption systems refer to organic molecular adsorbates and/or kinked 

metal surfaces [173], [174], [175] where a large variety of structural elements have been observed. 

These can be rather complex and have to be studied on a case-by-case basis which goes far beyond 

the scope of this book. Therefore, this section focuses only on a few general guidelines and basic 

results that can be illustrated by simple examples. 

The chirality of adsorbate systems can be classified into four different groups depending on the 

chirality of the overlayer and the substrate taken separately. Achiral or chiral overlayers may com-

bine with achiral or chiral substrate surfaces. Here achiral overlayers on achiral substrate represent 

the simplest group while chiral overlayers on chiral substrate are the most complex. 
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The adsorption of single achiral molecules on an achiral surface can create either an achiral or 

a chiral adsorbate system depending on the adsorption site and on the orientation of the adsorbate at 

the surface. If the substrate and the adsorbate share a mirror plane perpendicular to the surface the 

combined adsorbate system is achiral. This is illustrated in Fig. 6.46 for ammonia adsorption on the 

Cu(1 1 1) surface where experiments for Cu(1 1 1) + (disordered) - NH3 [124], SSD 29.7.1.3, yield 

at rather low coverage a disordered overlayer structure with NH3 stabilizing with its nitrogen end at 

top sites of the metal substrate while positions of the hydrogen centers could not be determined. In 

Fig. 6.46a it is assumed that the NH3 is structurally analogous to the free molecule with its 3-fold 

rotation axis perpendicular to the surface. The three hydrogen centers are rotated such that one of 

the three molecular mirror planes, indicated by a red line in Fig. 6.46a, coincides with a substrate 

mirror plane, parallel to the horizontal black line. As a consequence, a mirror operation with respect 

to the common mirror plane reproduces the adsorbate system and the system is achiral. It should be 

mentioned in passing that the adsorption of single atoms at mirror-symmetry sites of an achiral sur-

face will always result in an achiral adsorbate system whereas other adsorption sites of the atom re-

sult in chirality. 

 

Fig. 6.46.  Structure of the Cu(1 1 1) + (disordered)-NH3 adsorbate system with 

ammonia in different orientation, (a) achiral and (b) chiral. The upper and lower 

parts of the figures show the adsorbate and its mirror image. The black line indicates 

a mirror plane perpendicular to the substrate surface while the red lines refer to mir-

ror planes of the separate NH3 adsorbate. 

In Fig. 6.46b the upper half shows the NH3 adsorbate at the top site where, however, the three 

hydrogen centers are rotated about the molecular rotation axis anti-clockwise by 15, indicated by 
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the label S-NH3. As a consequence, the adsorbate does not share a mirror plane with the substrate 

surface. This is clear from comparing the upper red line in Fig. 6.46b, denoting a molecular mirror 

plane, with the horizontal black line referring to the closest mirror plane of the substrate. Thus, ap-

plying a mirror operation with respect to the mirror plane of the substrate leads to an adsorbate 

structure shown in the lower half of Fig. 6.46b with ammonia labeled R-NH3. The two adsorbate 

structures are different and cannot be brought into coincidence by rotation about the surface normal 

and/or translation. Thus, they are chiral partners and the adsorbate system is chiral. The structural 

difference between the two enantiomeric forms may be emphasized further by relaxation of the sub-

strate and lifting of its mirror symmetry due to the presence of the asymmetrically positioned ad-

sorbate. While the two enantiomers are energetically equivalent there may be an energy barrier be-

tween them which hinders easy transformation such that the two species become stable and can, at 

higher coverages, exist in well separated domains. For the present Cu(1 1 1)+NH3 adsorbate system, 

this is difficult to observe and one would assume an achiral structure to be preferred since the 

asymmetric adsorbate structure may not reflect equilibrium. However, more complex achiral mole-

cules are expected to yield adsorption with two enantiomeric structures which are well separated by 

energetic barriers and can be clearly identified. 

So far, chirality was discussed as a local phenomenon occurring near the adsorbate site (local 

chirality). Chiral structures can also be formed by atoms or achiral molecules arranged as chiral 

clusters or islands at achiral surfaces, which can be considered as cooperative chirality. This is il-

lustrated by Fig. 6.47 which shows a fictitious chiral arrangement of six NH3 adsorbates on the 

Cu(1 1 1) surface together with its enantiomeric image where the two structures are denoted  

R-(NH3)6 and S-(NH3)6. 
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Fig. 6.47.  Structure of the two enantiomers of a cooperative chiral arrangement of 

NH3 adsorbates on the Cu(1 1 1) surface, denoted R-(NH3)6 and S-(NH3)6, in a view 

along the surface normal. The black line indicates a mirror plane perpendicular to 

the substrate surface. 

Cooperative chirality at achiral surfaces can be obtained with both chiral and achiral adsorbates 

and is found for large molecular networks assembling at metal surface. A fairly complex example is 

rubrene adsorbed on the Au(1 1 1) surface [176]. This aromatic molecule, C42H28, combining  

tetracene with four phenyl rings, is chiral and can form large symmetric flower-like supramolecular 

structures with up to 150 molecules on the Au(1 1 1) surface where both left- and right-handed 

structures have been identified [176]. 

The adsorption of single chiral molecules on an achiral surface will always create a chiral ad-

sorbate system with energetically equal or different enantiomeric structures. As an example, the ad-

sorption  of tartaric acid (TA), C4O6H6, on the Cu(1 1 0) surface has been studied experimentally in 

great detail [174], [177], [178]. As discussed in Sec. 4.4, the free TA molecule contains two chiral 

carbon centers and forms two enantiomers, right-handed (R,R)-TA and left-handed (S,S)-TA, see 

Fig. 4.19. Upon adsorption the TA molecule is deprotonated, losing hydrogen from its opposite 

COOH ends, and the resulting tartrate, C4O6H4, is distorted, bridging between the dense copper at-

om rows on the (1 1 0) surface with its two COO ends binding with copper along the rows. This is 

illustrated in Fig. 6.48 where the two tartrate adsorbates are labeled according to their free TA mol-

ecule enantiomers, (R,R)-TA and (S,S)-TA. As a consequence of the substrate symmetry the two 

species are expected to be energetically equivalent if they bind in symmetrically equivalent sites.  
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Fig. 6.48.  Structure of the two enantiomers of tartrate, (R,R)-TA (left) and (S,S)-TA 

(right), adsorbed on the Cu(1 1 0) surface. The adsorbate atoms are color coded as 

explained at the bottom. 

At higher adsorbate coverage chiral adsorbates can form ordered overlayer structures with dif-

ferent two-dimensional periodicity in larger domains. As an illustration, Fig. 6.49 shows the ob-

served structures [177], [178] of enantiopure overlayers of the two chiral tartrate species (R,R)-TA 

and (S,S)-TA, on the Cu(1 1 0) surface. They refer to an adsorbate coverage  = 16.7% (1/6) and 

can be described as Cu(1 1 0) - (9 0 | 1 2) - 3(R,R)-TA and Cu(1 1 0) - (9 0 | -1 2) - 3(S,S)-TA in  

2  2 matrix notation. When mixtures of left- and right-handed tartrate are adsorbed on the  

Cu(1 1 0) surface the two species are found to form well separated enantiopure domains [178] with 

the geometric structures shown in Fig. 6.49. However, enantiomers may also mix at the surface to 

produce two-dimensionally periodic or randomly structured overlayers. The latter seems to occur 

for the adsorption of 1:1 (i.e. racemic) mixtures of left- and right-handed tartrate on the Cu(1 1 0) 

substrate where some patches suggest disorder [178].  
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Fig. 6.49.  Structure of enantiopure tartrate overlayers on the Cu(1 1 0) surface, (a) 

Cu(1 1 0)-(9 0 | 1 2)-(R,R)-TA and (b) Cu(1 1 0)-(9 0 | -1 2)-(S,S)-TA. The color 

coding of the adsorbate atoms is identical to that used in Fig. 6.48. 

Fig. 6.48 illustrates further that the combined adsorption of the two (R,R)-TA and (S,S)-TA en-

antiomers on the Cu(1 1 0) surface leads to an achiral adsorbate pair and, thus, to an altogether achi-

ral adsorbate system. This is a more general result which can be associated with cooperative achi-

rality where clusters of chiral adsorbates with different chirality on an achiral substrate can result in 

an achiral adsorbate system.  
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The adsorption of single atoms or single achiral molecules on a chiral surface will always cre-

ate a chiral system independent of the actual adsorption site or orientation of the adsorbate at the 

surface. Here the resulting chirality is determined by that of the substrate. However, at higher cov-

erage achiral adsorbates may arrange as chiral clusters or islands reflecting cooperative chirality as 

discussed earlier. At chiral surfaces this leads to four different chiral conformations where the sub-

strate / adsorbate combinations with equal handedness, Sub
R
 + R-Ads and Sub

S
 + S-Ads, form en-

antiomers as do combinations with opposite handedness, Sub
R
 + S-Ads and Sub

S
 + R-Ads. As an 

illustration, Fig. 6.50 shows kinked chiral iron surfaces described as left-handed Fe(25 20 3)
S
 and 

right-handed Fe(-25 -20 -3)
R
, which form substrate enantiomers. These surfaces are both covered by 

two chiral islands of nine cobalt atoms each, denoted R-Co9 and S-Co9, which are island enantio-

mers. Transitions between the two island types of these fictitious systems can be achieved by sur-

face diffusion of cobalt along the substrate terraces, oriented (1 1 0) for Fe(25 20 3)
S
 and  

(-1 -1 0) for Fe(-25 -20 -3)
R
. As a result of differences in the adsorbate sites and binding the two 

island enantiomers at the left-handed substrate surface, Fig. 6.50a, are energetically different, which 

also holds for the right-handed substrate surface, Fig. 6.50b. However, for symmetry reasons the  

S-Co9 island at Fe(25 20 3)
S
 and the R-Co9 island at Fe(-25 -20 -3)

R
 are energetically equivalent, 

which is also true for R-Co9 at Fe(25 20 3)
S
 and S-Co9 at Fe(-25 -20 -3)

R
. 

 

Fig. 6.50.  Structure of chiral cobalt islands, R-Co9 and S-Co9, at a kinked chiral iron 

surface, (a) left-handed Fe(25 20 3)
S
 and (b) right-handed Fe(-25 -20 -3)

R
. Adsorbate 

(substrate) atoms are shown in red (gray) with those along the kink lines emphasized 

in dark gray. The islands are denoted R for right- and S for left-handed and their 

orientations are outlined by white rectangles.  
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The adsorption of single chiral molecules on a chiral surface will always create a chiral sys-

tem. Assuming adsorbates with only one chiral center leads to an overall chiral adsorbate system 

with four different conformers, completely analogous to the discussion for cooperative chirality of 

chiral clusters at chiral surfaces. For the following, we consider chiral substrates, represented by 

kinked vicinal surfaces, right-handed Sub(h k l)
R
 and left- handed Sub(h k l)

S
, and chiral adsorbates 

R-Ads and S-Ads. For vicinal surfaces with wide (locally achiral) terraces between the chiral kink 

lines we can distinguish two different scenarios. First, chiral adsorbates may stabilize at terrace sites 

far away from the kink sites. Then the handedness of the substrate may be irrelevant. Thus, the dis-

cussion of local chiral behavior is analogous to that of chiral molecules at achiral surfaces. Second, 

chiral adsorbates may stabilize near kink sites forming the chiral substrate centers. Here all four 

conformers need to be considered and can lead to different structural behavior. 

As an example, the adsorption of chiral fluoro-amino-methoxy (FAM) on the kinked copper 

surface Cu(8 7 4) has been examined in theoretical (DFT) studies [179] where it was found that sta-

bilization near the chiral centers of the kink lines is energetically preferred. The free FAM mole-

cule, FNH2CHO, with a chiral carbon center, is distorted by adsorption such that its nitrogen end 

binds on top of a kink atom of the copper substrate while its oxygen end binds at a 3-fold fcc site 

near the kink edge, as shown on Fig. 6.51. This basic binding scheme is independent of the chirality 

of the adsorbate. However, further structural details are quite different between the adsorbed  

R-FAM and S-FAM enantiomers. At the right-handed Cu(8 7 4)
R
 surface, Fig. 6.51a, the left-

handed S-FAM bends over the kink edge with a CH group sticking out of the surface and its C-F 

bond pointing towards the lower terrace. In contrast, the right-handed R-FAM, while bending over 

the kink edge, stabilizes with its fluorene sticking out of the surface and its CH group pointing to-

wards the lower terrace. For both adsorbates the local surface structure is also affected by relaxation 

of the substrate atoms near the adsorption site. At the left-handed Cu(-8 -7 -4)
S
 surface, Fig. 6.51b, 

the equilibrium structures of the adsorbates are complementary to those at the Cu(8 7 -4)
R
 surface, 

with a C-F bond parallel and a C-H bond perpendicular to the substrate surface for R-FAM and vi-

ceversa for S-FAM. This creates, altogether, four adsorbate structures which can interact differently 

with approaching reactants.  
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Fig. 6.51.  Structure of chiral fluoro-amino-methoxy (FAM) adsorbates at chiral 

centers of a kinked copper surface, (a) right-handed Cu(8 7 4)
R
, (b) left-handed  

Cu(-8 -7 -4)
S
. Both figures include the two adsorbate enantiomers, R-FAM and S-

FAM labeled accordingly. The color coding of the atoms is explained between the 

figures. The figures illustrate the general adsorption behavior but do not reflect exact 

computed atom coordinates. 

 

6.8 Exercises 

6.1. Consider the unrelaxed (0 0 1) surface of a tungsten single crystal (bcc lattice, lattice con-

stant a = 3.160 Å) with sulfur atoms adsorbed in a c(2  2) overlayer. Sulfur is assumed to 

adsorb in hollow sites at a distance from the nearest tungsten atoms of d(W-S) = 2.456 Å. 

Discuss structural details of the adsorbate system. Evaluate neighbor shells of the adsorbate 

center. 

6.2. Consider unrelaxed surfaces of a nickel single crystal (fcc lattice, lattice constant  

a = 3.520 Å) with CO adsorbed in periodic overlayers (interatomic distance  

d(C-O) = 1.137 Å). Discuss adsorbate structure and symmetry at the surface for adsorbate 

systems 

(a) Ni(1 0 0) + c(2  2) - CO ;    perpendicular CO in on top positions , 

(b) Ni(1 1 0) - (2  1) + (2  2) - CO ;    Ni substrate missing row reconstructed, tilted 

CO in bridge positions above topmost Ni rows , 
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(c) Ni(1 1 1) + (3  3)R30 - CO ;    CO in bridge positions , 

(d) Ni(1 1 0) - p2mg(2  1) + (2  2) - 2CO ;    tilted CO in bridge positions above top-

most Ni rows , analogous to structure shown in Fig. 6.2, 

(e) Ni(1 1 1) + c(4  2) - CO ;    perpendicular CO in hollow positions . 

Assume, for all systems, CO adsorption with carbon pointing towards the substate with a 

distance d(Ni-C) = 1.840 Å and tilt angles of 15. 

6.3. Consider the unreconstructed (1 1 1) surface of a silicon single crystal (diamond lattice, lat-

tice constant a = 5.431 Å) with hydrogen atoms in a (1  1) overlayer adsorbed at on top po-

sitions (hydrogen ‘terminators’). Evaluate neighbor shells of the hydrogen center up to 6
th

 

nearest neighbors assuming an adsorbate distance d(H-Si) =  1.000 Å. 

6.4. Consider the (0 0 1) surface of a copper single crystal (fcc lattice, lattice constant  

a = 3.610 Å) with atomic oxygen adsorbed 

(a) in an ideal c(2  2) overlayer structure with oxygen in 4-fold centered hollow sites at 

a perpendicular distance z(O-Cu) =  0.800 Å from the topmost Cu layer, see Fig. 

6.52. 

 

Fig. 6.52.  Structure of the Cu(0 0 1) + c(2  2) - O adsorbate system. Substrate and 

adsorbate lattice vectors are indicated in red and black. 

(b) in a (22  2)R45 overlayer with the topmost Cu layer (22  2)R45 missing 

row reconstructed, see Fig. 6.53. Oxygen is assumed to adsorb at 3-fold centered hol-
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low sites of the reconstructed substrate layer (substrate atoms Cu' in Fig. 6.53, per-

pendicular distance z(O-Cu) =  0.700 Å). 

 

Fig. 6.53.  Structure of the Cu(0 0 1) - (22  2)R45 + 2O adsorbate system. Sub-

strate and adsorbate lattice vectors are indicated in red and black. 

Describe both systems in 2  2 matrix notation. Determine symmetry elements of the surfac-

es and evaluate corresponding space groups. Evaluate neighbor shells of the adsorbate cen-

ters. 

6.5. Consider the (1 1 1) surface of a palladium single crystal (fcc lattice, lattice constant  

a = 3.890 Å) with atomic xenon adsorbed in a hexagonal overlayer (interatomic distance 

d(Xe-Xe) = 4.384 Å). One lattice vector of the Xe overlayer is assumed to be co-linear with 

one lattice vector of the topmost Pd substrate layer. Further, one Xe atom is assumed to ad-

sorb in on top position. Determine minimum and maximum Xe-Pd neighbor distances for a 

planar Xe overlayer. 

6.6. Consider the (1 1 1) surface of an aluminum single crystal (fcc lattice, lattice constant  

a = 4.050 Å) with carbon dioxide, CO2, adsorbed at very low coverage . Discuss possible 

structures with commensurate overlayers and determine supercells with corresponding  

2  2 matrices and Wood notations. Calculate intermolecular distances at the surface. Dis-

cuss possible adsorbate sites. 

6.7. Consider the stepped (1 1 3) surface of a silver single crystal (fcc lattice, lattice constant  

a = 4.090 Å) with sulfur atoms adsorbed at very low coverage . Assume adsorbate struc-

tures to be described by a model of hard spheres. Here interatomic distances d(S-Ag) are de-

termined by touching spheres of radii corresponding to the covalent radii rcov of the atoms 
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involved, where rcov(Ag) = 1.45 Å, rcov(S) = 1.02 Å. Determine perpendicular distances z of 

the adsorbate at different substrate positions (on top, bridge, central sites; at  terraces, near 

steps). Here perpendicular distances z are defined with respect to the normal vector of the  

(1 1 3) surface. For which structure is z smallest? 

6.8. Consider sulfur adsorption with a (5  5) coincidence lattice on the unrelaxed Ag(1 1 1) sur-

face in a model of hard spheres as in Exercise 6.7 using the same structure parameters. De-

termine possible symmetric structures with 9, 16, 25, 36, 49 sulfur atoms in the coincidence 

supercell. Calculate interatomic distances d(S-S) accounting for possible buckling of the sul-

fur layer according to the model of hard spheres. 

6.9. Determine the Wood notation of the adsorbate systems defined by 2  2 matrix notation as 

(a) Cu(1 0 0) + (1 1 | -1 1) - O (b) Ni(1 1 1) + (1 2 | -1 1) -CO 

(c) Ni(1 1 1) + (4 1 | -1 3) - NH3 (d) Pd(1 1 0) + (1 1 | -1 2) - NO 

(e) W(1 1 0) + (2 2 | -2 4) - O (e) W(1 1 1) + (6 1 | -1 5) 

Determine adsorbate coverages  of these adsorbate systems. 

6.10. Quantify Wood notation parameters p,  of commensurate surface overlayers at different 

crystal faces 

(a) fcc(1 1 1) + (3  p)R - … (b) fcc(1 1 1) + (p  (7/2))R - … 

(c) fcc(1 1 1) + (p  p)R13.898 - … (d) fcc(1 1 1) + c(p  4p)R7.598 - … 

(e) fcc(1 1 0) + (23  3)R - … (f) fcc(1 1 0) + (32  3/2)R - … 

(g) fcc(1 0 0) + (5  5)R - … (h) fcc(1 0 0) + (p  2p)R26.565 - … 

(i) bcc(1 1 0) + c(3  5)R - … (j) bcc(1 0 0) + (5  5) R - … 

6.11. Consider the adsorbate system Ni(1 1 1) + (3  3)R30 - CO where CO adsorbs in bridge 

positions with its molecular axis (a) perpendicular, (b) parallel to the surface. Identify possi-

ble rotational and mirror domains. Evaluate corresponding 2  2 matrices connecting the lat-

tice vectors of each domain with those of the substrate. 

6.12. Consider benzene, C6H6, adsorption on the (1 1 1) surface of a substrate with an fcc lattice. 

Give examples of commensurate overlayers for different coverage and orientations of the 

adsorbate which allow 2, 3, and 6 domains at the surface. 

6.13. Show that the (1 0 0) surface of an ideal fcc or bcc single crystal cannot have commensurate 

overlayers with hexagonal lattice. Hint: use results from Appendix E.4. 
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6.14. Show that the (1 1 0) surface of an ideal fcc or bcc single crystal cannot have commensurate 

overlayers with hexagonal lattice. Hint: use results from Appendix E.4. 

6.15. Assume that a substrate surface has two overlayers with different lattice where both overlay-

ers are commensurate with respect to the substate. Show that the overlayers are in general 

high-order commensurate whith respect to each other. When are they (1
st
 order) commensu-

rate? 

6.16. Consider an overlayer on top of a substrate layer with given Bravais lattice type (square, rec-

tangular, hexagonal). Which lattice types are allowed for the overlayer to be commensurate? 

6.17. Show that all commensurate hexagonal overlayers on top of hexagonal substrate can be de-

scribed in Wood notation as (p  p)R with p = (m
2
 + n

2
 + mn) and  

tan() = 3 n / (2m + n) where m, n are integers. Determine corresponding 2  2 transfor-

mation matrices between overlayer and substrate lattice vectors. Discuss acute and obtuse 

representations of the hexagonal lattice. 

6.18. Consider a commensurate overlayer (lattice vectors Ro1' and Ro2') on top of hexagonal sub-

strate with lattice vectors Ro1 and Ro2 in acute representation. Show that the transformation 

according to  

integern,m,
R

R

nmn

nm

'R

'R

2o

1o

2o

1o




























 

results in a hexagonal overlayer lattice. 

6.19. Consider a high-order commensurate (HOC) overlayer with square lattice vectors Ro1' and 

Ro2' on top of substrate with square lattice vectors Ro1 and Ro2. 

(a)  Show that in the lattice vector transformation can be written as 

integer'n,'m,n,m,
R

R

mn

nm

'm'n
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(b) Assume further that the vector lengths of Ro1' and Ro1 are identical and show that the 

matrix elements m, n, m', n' must be solutions of the Diophantine equation 

2222 'n'mnm   
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6.20. Consider a high-order commensurate (HOC) overlayer with hexagonal lattice vectors Ro1' 

and Ro2' on top of hexagonal substrate with lattice vectors Ro1 and Ro2 (both lattices in acute 

representation). Assume further that the vector lengths of Ro1' and Ro1 are identical. Show 

that in the corresponding transformation according to (6.27) the integer parameters  

m, n, m', n' must be solutions of the Diophantine equation 

'n'm'n'mnmnm 2222   

6.21. Show that a commensurate hexagonal overlayer with lattice vectors Ro1' and Ro2' on hexago-

nal substrate with lattice vectors Ro1 and Ro2 (both lattices in obtuse representation) can be 

described by a transformation 

integern,m,
R

R

nmn

nm

'R

'R

2o

1o

2o

1o




























 

6.22. Consider an overlayer structure where the substrate is Wood-representable and the overlayer 

is stretched with respect to the substrate along direction e by a factor . For which directions 

e and Bravais lattice types is the overlayer structure Wood-representable? 

6.23. Relations (6.86) can be inverted to compute the parameters ,  of a p(  )R overlayer 

structure from (measured) moiré parameters , . Determine the inverted relationships and 

prove that 

)cos(d2d1',
'

d)(cos
)(cos,

'

22 








  

6.24. Well separated moiré patterns are observed for moiré factors  > 5. Consider isotropically 

scaled and rotated overlayers with an integer approximant MI = 1 and evaluate the range of 

scaling factors  and rotation angles  which fulfill the condition  > 5. 
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7 EXPERIMENTAL ANALYSIS OF REAL CRYSTAL SURFACES 

7.1 Experimental Methods  

Truly quantitative structure determinations of single crystal surfaces and adsorbate systems 

by experiment are intrinsically difficult. While three-dimensionally periodic bulk crystal structures 

can be measured routinely with the help of X-ray diffraction methods, a complete surface structure 

analysis requires usually a combination of different experimental methods to yield a unique result. 

Methods that can contribute to a quantitative analysis of structural details of real crystal surfaces 

must be able to probe mainly atoms near the surface, ignoring those of the inner substrate. This 

excludes standard X-ray diffraction methods from surface analyses. X-ray photons can penetrate 

deep in to the bulk and, therefore, yield structural bulk information, with that from surface atoms 

representing only a minor perturbation. However special geometric arrangements of the X-ray 

beam with respect to the single crystal surface, so-called grazing incidence geometry [34], can also 

yield structural information pertaining to the surface. Other diffraction methods, such as low energy 

energy electron diffraction (LEED), have proven to be particularly useful in identifying surface 

structure. These methods rely on the interference of particles that scatter (often multiple times) from 

periodic arrangements of atoms at single crystal surfaces which are ordered over a relatively wide 

area. If the surface structure deviates strongly from periodic ordering, for example, as a result of 

large size imperfections or disordered adsorbate structure, local (small-area) diffraction becomes 

more useful. For these systems local diffraction methods, such as photoelectron diffraction (PED) 

or surface extended X-ray absorption fine structure (SEXAFS), can be used to obtain quantitative 

information about local environments of surface atoms including coodination and binding angles. 

In general, methods that can provide information about structural details at real crystal surfac-

es and adsorbate systems include those based on scattering, diffraction, imaging, as well as spec-

troscopy, and use photons, electrons, or atoms and ions. A detailed discussion of each method as 

well as of its merits in connection with quantitative determination of surface structure is beyond the 

scope of this book. Corresponding methods are well documented in the surface science literature, 

see e.g. Refs. [34], [94], [180]. In Table 7.1 we list only example methods by their names where the 

list may not be exhaustive. 
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Table 7.1.  Experimental methods used to determine surface structure. The methods 

are given by their names, where capital letters in the names are meant to explain the 

acronyms included in the table. Details of the different methods are given, for ex-

ample, in Ref. [34]. 

Method by name Acronym 

(a) Imaging methods  

 Scanning Tunneling Microscopy STM 

 Atomic Force Microscopy AFM 

 Transmission Electron Microscopy TEM 

  

(b) Diffraction methods  

 Low Energy Electron Diffraction LEED 

 Medium Energy Electron Diffraction   MEED 

 Reflection High Energy Electron Diffraction RHEED 

 Transmission Electron Diffraction TED 

 Low Energy Positron Diffraction LEPD 

 PhotoElectron Diffraction  PED 

 X-Ray Diffraction  XRD 

 (Surface) Extended X-ray Absorption Fine Structure (S)EXAFS 

 Grazing Incidence X-Ray Diffraction GI-XRD 

 X-ray Standing Wavefield absorption XSW 

 Atom diffraction AD 

  

(c) Scattering methods  

 High-Resolution Helium Atom Scattering HRHAS 

 Low Energy Ion Scattering LEIS / IS 

 Medium Energy Ion Scattering MEIS / IS 

 High Energy Ion Scattering HEIS / IS 

 Thermal Energy Atom Scattering TEAS 

 Inelastic Molecular Beam Scattering IMBS 

 Time-Of-Flight Scattering And Recoiling Spectroscopy TOF-SARS 

  

(d) Spectroscopy methods  

 Near-Edge X-ray Absorption Fine Structure or 

 X-ray Absorption Near-Edge Spectroscopy 

NEXAFS 

XANES  

 (High-Resolution) Electron Energy Loss Spectroscopy (HR)EELS 

 Surface Electron Energy Loss Fine Structure SEELFS 

 (Fourier Transform) Reflection Absorption Infrared 

 Spectroscopy 

(FT)RAIRS 
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7.2 Surface Structure Compilations 

As a result of the experimental complexity the number of quantitatively solved surface struc-

tures is rather small compared to that of bulk crystal structures. As of 2012, more than 800,000 bulk 

crystal structures have been published and stored in crystal structure databases, such as CSD (Cam-

bridge Structural Database) [181], ICSD (Inorganic Crystal Structure Database) [182], Crystmet 

[183], NAD (Nucleic Acid Database) [184], or PDB (Protein Data Bank) [185]. In contrast, as of 

2004 (when there were about 400,000 published bulk crystal structures) the NIST Surface Structure 

Database (SSD)  listed only about 1400 surface structures that are quantitatively complete in all de-

tails, with an estimated additional 150 structures published between 2004 and 2014.  

A number of compilations of crystallographic information on surfaces and interfaces have been 

published in the literature or are available in electronic form. Early tabulations by Somorjai and Van 

Hove [36] give mostly two-dimensional structure information, i.e. lateral periodicity patterns, of 

ordered monolayers of atoms and molecules with only few results of three-dimensional parameters. 

Examples are adsorbate layer spacings and adsorption bond lengths. Here the lateral periodicity was 

derived mainly from LEED measurements. A more detailed listing of three-dimensional structure 

parameters with many early literature references is included in the LEED book by Van Hove et al. 

[94]. The structure information in the review by Ohtani et al. [186] with an extensive list of refer-

ences for surfaces with and without ordered adsorbates is strictly two-dimensional describing the 

surfaces only by their lateral symmetry pattern. Most of the tables of [186] can also be found in the 

textbook by Somorjai [12]. 

More recent three-dimensional structure parameters have been published in the Atlas of Sur-

face Structures [23] based on data of the electronic NIST Surface Structure Database, Version 1, 

discussed below which includes all quantitatively known surface structures until 1991. The second 

volume of this Atlas also gives graphical representations of the surfaces yielding a good qualitative 

overview of the structures examined at that time. (Many of these structures are still relevant at pre-

sent.) Further, a review chapter of the Landolt-Börnstein Series [187] lists quantitative structure 

parameters from experiments on adsorbates at metal and semiconductor surfaces where the data are 

complete until 2002. 

http://en.wikipedia.org/wiki/Crystal_structures
http://en.wikipedia.org/wiki/Databases
http://en.wikipedia.org/wiki/Crystal_structures
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Another resource of quantitative surface structure data is the Surface Crystallographic In-

formation Service (SCIS) where the printed version [25] includes references until the end of 1987. 

The SCIS book was complemented by database software allowing an easy search and basic visuali-

zation of published surface structure on a personal computer. The SCIS software was updated in a 

second version to include references until the end of 1992. The SCIS software project was succeed-

ed by the development of the NIST Surface Structure Database (SSD) which was published and 

distributed by the National Institute of Science and Technology (NIST) between 1992 and 2010 

with biennial updates until the end of 2003. The distribution of the latest version 5 of SSD by NIST 

has been discontinued but it remains available as an open source database (open SSD, oSSD) and 

can be downloaded from the web, see Appendix H. Complete compilations of quantitative surface 

structure data published after 2004 have not yet appeared in the literature. 

So far, the NIST Surface Structure Database (SSD)  [22], [23], [24] is the only complete criti-

cal compilation of reliable crystallographic information available on surfaces and interfaces. The 

database provides access to detailed text and graphical information for 1379 experimentally deter-

mined atomic-scale structures which have been published until 2004 (SSD version 5). It can be con-

sidered to cover all classical surface structures which have not been revised after 2004 or have only 

experienced very minor modifications in distances or angles since then. More recent published sur-

face structures, which are not included in SSD, concern mainly single crystal surfaces with rather 

complex reconstruction and/or large molecules or molecular networks [188], [189]. An example is 

shown in Fig. 7.1 where scanning tunneling microscopy (STM) measurements together with theo-

retical DFT studies have identified large organic molecules, 1,3,5-tris(pyridyl)benzene (TPyB) 

forming an ordered hexagonal network on the hexagonal Cu(1 1 1) surface [190] which is described 

in Wood notation as Cu(1 1 1) - (63  63)R30 + 2TPyB - 3Cu. 
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Fig. 7.1.  Structure of a molecular adsorbate network on copper substrate described 

as Cu(1 1 1) - (63  63)R30 + 2TPyB - 3Cu. The adsorbate atoms are shown in 

different size and color, small / dark gray for carbon, small / dark red for nitrogen, 

very small / light gray for hydrogen, and large / light red for adsorbate copper. Sub-

strate copper is shown by large / dark red balls. 

SSD is a critical compilation of published structure data. This means, in particular, that struc-

ture information provided by experimentalists or taken from the literature was checked for com-

pleteness and consistency before being included in the database. Symmetry or qualitative geometry 

information only, which is available for many single crystal surfaces and adsorbate systems, did not 

qualify a surface system to be entered in SSD. This applies specifically to numerous recent structure 

studies on complex overlayers where only scanning tunneling microscopy (STM) is used to obtain a 

qualitative impression of the surface with very limited quantitative structural details. 

In the following, we discuss a few results from statistical analyses of the SSD data which have 

been provided by M. A. Van Hove (Hong Kong Baptist University) and refer to structures solved 

until 2004. These results can shed some light on the types of surfaces and interfaces that are known 

quantitatively but also on the use of different experimental methods to obtain quantitative surface 

structure. First, of the 1379 entries contained in the SSD database the majority, 1363 (98.8%), con-

cerns the clean substrate surface with or without adsorbate overlayers while 16 (1.2%) are intersti-

tial structures with foreign atoms inside the substrate. Table 7.2 lists further details about the 
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Table 7.2.  Number of quantitatively solved surface and interface structures until 

2004 taken from the Surface Structure Database (SSD, V. 5). The data are grouped 

according to substrate type, element composition, electronic property, basic struc-

ture, see text. 

Element  

composition 

Entries Electronic 

property 

Entries Basic  

structure 

Entries 

Elemental 1148 (83%) Metal 1124 (81%) Unrecon- 

structed 

1054 (76%) 

Compound  121 (9%) Semi- 

conductor 

215 (16%) Recon- 

structed 

325 (24%) 

Alloy 106 (8%) Insulator 40 (3%)   

Other  4 (< 1%) Semimetal 7 (< 1%)   
 

kinds of substrates that were examined. The majority of substrates appearing in SSD are elemental 

substrates, where transition metals, such as Co, Ni, V, Mo, Ru, Rh, Pd, Pt, and W dominate due to 

the relatively easy growth and preparation of corresponding single crystals and their surfaces. In 

addition, substrates of elemental semiconductors, such as Si and Ge, and of compound semicon-

ductors, such as GaAs, CdSe, CdTe, and InP, have been analyzed by their surface structure due to 

their great technological importance. They account for 16% of all entries in SSD. Finally, the ma-

jority of entries in SSD, 76%, refer to unreconstructed substrate surfaces. 

Table 7.3 lists details about the kinds of adsorbates that were examined. Of all SSD entries 961 

(68%) refer to adsorbate systems. Of these, the majority, 720 entries, concern atomic adsorbates, 

such as H, N, O, Cl, S, Na, K, Cs, Al, Fe, and Mn, while a smaller group includes molecular ad-

sorbates, such as CO, CN, NO, N2, PFx, and small hydrocarbons. An even smaller group is given by 

compound adsorbate systems where the adsorbates can mix with atoms of the substrate surface  
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Table 7.3.  Number of quantitatively solved surface and interface structures until 

2004 taken from the Surface Structure Database (SSD, V. 5). The data are grouped 

according to adsorbate type and adsorbate structure, see text. 

Adsorbate 

type 

Entries Adsorbate 

structure 

Entries 

Atomic 720 (52%) Overlayer 716 (52%) 

Molecular 173 (13% Pseudomorphic 101 (7%) 

Compound 38 (3%) Substitutional 74 (5%) 

Mixed atomic / 

molecular 

18 (1%) Epitaxial 39 (3%) 

Thin films 12 (1%) Interstitial 15 (1%) 

  Other 16 (1%) 
 

forming mixed surface layers. Examples are surface alloy layers, such as those formed by Na which 

penetrates into the top layer of the Al(1 1 1) surface [191]. Finally, there are a small number of en-

tries with both atoms and molecules coadsorbed at the surface, such as O and C6H6 on the  

Ru(0 0 0 1) surface, as well as with metal adsorbates that form thin overlayer films, such as Ni 

films on top of a Cu(1 0 0) substrate. 

As to details of the adsorbate morphology, Table 7.3 shows that the majority, 716 (52%), of all 

SSD entries describe adsorbates that form ordered or disordered overlayers, such as CO on the  

Ni(1 0 0) surface. A smaller group of entries, 101 (7%), concerns pseudomorphic layers of adsorb-

ates in positions which continue the crystal structure of the substrate. Examples are metal adsorb-

ates on a metal substrate, such as Fe films on top of a Cu(1 1 0) substrate. Another group, 74 entries 

(5%), is given by adsorbates that occupy positions of substrate atoms at the surface forming mixed 

adsorbate / substrate atom layers (substitution). Examples are again metal adsorbates on a metal 

substrate which yield surface alloy layers, such as Au adsorbates at a Cu(1 0 0) substrate. Mixed 

adsorbate / substrate atom layers can also occur when adsorbate atoms assume interstitial positions 

between atoms of substrate layers near the surface. This group includes 15 entries (1%), where an 

example is given by O atoms adsorbing onto and penetrating into the Al(1 1 1) surface. Further, one 

group of 39 systems (3%) is described by (epitaxial) adsorbate overlayers of crystalline structure 

where the overlayer lattice does not match that of the substrate. An example is the adsorption of Xe 

atoms forming (slightly distorted) hexagonal overlayers on top of a Ag(1 1 1) substrate, whose sub-

strate surface is also hexagonal but whose lattice constant differs from that of the overlayer. There 

are numerous examples of surface systems that do not fit uniquely into one of the different groups 
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discussed above but the above schemes can give a sound basis for a general classification of surface 

structure.  

Further, an inspection of the SSD data shows that of all experimental methods used in surface 

structure evaluations low-energy electron diffraction (LEED) is by far the most often applied 

method which covers about 65% of all surface structure determinations contained in SSD. In fact, in 

the beginning of quantitative surface structure analysis, between 1969 and 1980, LEED was the on-

ly method available. This is illustrated in Fig. 7.2 which shows the number of quantitatively solved 

surface and interface structures as a function of the publication year until 2004 according to the  

 

Fig. 7.2. Number of quantitatively solved surface and interface structures as a func-

tion of the publication year, see text. The data are given separately for all measured 

structures and for those using LEED. 

SSD data. Quantitative results from experimental methods other than LEED have started to appear 

in the literature only after 1980, and even in 2004 surface structure studies applying LEED still 

outnumbered those using other methods. This is also clear from a listing of all surface and interface 

structures solved until 2004 as a function of the methods applied as given in Table 7.4.  
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Table 7.4.  Number of quantitatively solved surface and interface structures until 

2004 as a function of the methods used. The methods are given by their acronyms 

explained in Table 7.1. 

Method Entries Method Entries Method Entries 

LEED 891 (65%) TOF-SARS 13 (1%) AED 3 (<1%) 

PED 132 (10%) NEXAFS 11 (1%) SEELFS 2 (<1%) 

IS 117 (8%) RHEED 10 (1%) TED 1 (<1%) 

SEXAFS 67 (5%) LEPD 5 (<1%) AD 1 (<1%) 

XSW 63 (5%) HREELS 4 (<1%) STM 1 (<1%) 

XRD 55 (4%) MEED 3 (<1%)   

 

The table shows that, besides LEED, photoelectron diffraction (PED), ion scattering (IS), surface 

extended X-ray absorption (SEXAFS), and X-ray Standing Wavefield absorption (XSW) were the 

five topmost experimental methods applied to quantitative surface analysis covering 93% of all 

solved surface and interface structures. 

 

7.3 Database Formats for Surface and Nanostructures 

The collection of quantitative surface and nanostructure data is of vital importance for a scien-

tific understanding and documentation of many properties of these systems. This is required for ar-

chiving purposes but also when structural data of a group of systems are analyzed by their similari-

ties or screened in their characteristic differences. Further, quantitative structure data are needed for 

theoretical postprocessing when ‘intelligent guesses’ from experiments are used as input for visuali-

zation and for numerical simulation. 

In general, structure information includes quantitative numerical parameters, such as lattice 

constants, interatomic distances, or bond angles, as well as symmetry properties. Further, a com-

plete characterization must contain textual descriptions, such as system preparation and experi-

mental methods together with estimates of instrumental and methodological errors. This requires 

standard data formats which are commonly accepted and widely adopted. The issue has been dis-

cussed extensively in the surface science literature [192], [193], [194] of which we mention in the 

following only some of the most important points raised [194]. 

In the past, numerous data formats for documenting structural parameters derived from bulk 



364 

 

and surface crystallography have been proposed for different purposes. Examples are three-

dimensional crystal data formats, such as 

 CIF (Crystallographic Information Framework) [195] which is adopted by the Interna-

tional Union of Crystallography for the documentation of bulk crystal data, 

 PDB (Protein Data Bank) [196] which is a generally accepted documentation format for 

crystals of biological macromolecules, 

 different formats used in simulations and theoretical studies with standard computer 

codes, such as VASP (Vienna Ab initio Simulation Package) [197],  

or data formats developed specifically for surface structure, such as 

 SSD (Surface Structure Database)  [23], [27] which was proposed as a combined numer-

ical and textual data format for submitting quantitative surface structures to the NIST 

SSD database [22], 

 SURVIS (SURface VISualizer) [27] which was developed for the visualizer tool Survis 

inside the NIST SSD project and documented in the Survis and Balsac manuals, 

 BALSAC  (Build and Analyze Lattices, Surfaces, And Clusters) [26] which is the stand-

ard format of the visualizer and analysis tool Balsac, 

or general data formats for documenting atom positions, such as 

 XYZ which is widely supported by quantum chemical and solid state physics codes (alt-

hough no formal specification has been published so far) and collects Cartesian coordi-

nates and element specifications of all atoms in the bulk, at a surface, or in a molecule. 

While the data formats mentioned above (and many others) have been used and proven valua-

ble for information exchange within different scientific communities no format has been generally 

adopted as a single data format for documenting structure and properties of the bulk, of surfaces or 

of nanoparticles. This is partly due to the fact that different scientific groups put emphasis on differ-

ent aspects of structure data. Thus, formats which are complete in one community may not be flexi-

ble enough to serve the purposes of another. As a consequence, a generally acceptable structure data 

format has to be either developed from scratch or updated from an existing format addressing the 

kind of structures which are examined today and may be studied in the near future. These will be 

mainly nanostructures and complex surfaces including molecular networks, i.e. structures that very 
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often have lower dimensionality and order than two-dimensionally periodic surfaces. 

In the following, we list the most important requirements which an ideal structure data format 

has to fulfill according to Ref. [194] to conveniently document experimental and theoretical results 

from surface and nanostructures. The data format should 

 describe all theoretical and experimental methods in enough detail to enable reproduc-

tion of the results. This may require different accuracies depending on the experiment 

but also on the theoretical methods applied.  

 allow the combination of results from multiple techniques in a single structure determi-

nation. This includes experimentally as well as theoretically obtained data. 

 have a consistent scheme allowing coordinate listings of all three- and lower-

dimensional structures as well as combinations thereof. Examples include carbon nano-

tubes or graphene layers adsorbed incommensurately on a single-crystal surface. 

 allow documenting incomplete structural results which may arise in complex systems. 

Examples include hydrogen atom positions at surfaces which may not be determined in a 

given structure while all other atoms have been evaluated. In nanostructures many more 

partial structure determinations are to be expected. 

 be unique and machine-readable but also include human-readable tags. It should be de-

scribed in the open literature and should be free of copyright protection. 

 be sufficiently simple and intuitive to allow easy conversion of past published results to 

complement a structure collection. This could be achieved by appropriate conversion 

utilities. 

Further, there should be an a priori agreement on the data format within the community of experi-

mental and theoretical crystallographers, surface scientists and nanoscientists. This can be enforced 

by concensus between the major journal and book publishers in publication policies. 

The development of a general structure data format which obeys all or most of the above re-

quirements is a major task which requires a lot of conceptual work but also the ability of convincing 

the scientific community of its value and need. Besides, such a development project may not be 

‘scientifically rewarding’. Therefore, the authors of Ref. [194] have proposed a ‘hybrid universal 

format’ in which different already existing file formats may appear in the same structure file for dif-
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ferent parts of a complex structure; for further details see [194]. 

 

7.4 Exercises 

7.1. Discuss the basic physical mechanisms which are applied in the different structure determi-

nation methods listed in Table 7.1. Explain the need of different methods to arrive at a 

unique structure determination. 

7.2. Consider a (fictitious) database of experimental and theoretical surface structures where each 

structure needs to be documented in complete form. 

(a) Which structure parameters are required for each entry? 

(b) Which additional information should be included for each surface structure? 

7.3. Consider the entry of a surface structure in a database with the following parameters 

-  crystal: monoatomic nickel, fcc lattice, bulk symmetry, lattice constant,  

lattice vectors, bulk unit cell (shape and volume), atom density. 

-  surface: orientation (1 0 0), square lattice, monolayer symmetry, monolayer spacing 

lateral and perpendicular (bulk value), 2  2 reconstruction matrix, perpen-

dicular relaxation of the topmost monolayers (in % of monolayer spacing), 

surface unit cell (shape and volume). 

Which of these data entries can be generated from a minimal set of parameters? Determine a 

minimal set. 

7.4. What are possible uses of a surface structure database? Discuss examples. 

7.5. Why are different formats for surface structure documentation needed? Discuss examples of 

possible advantages and disadvantages. 
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8 NANOTUBES 

Nanotubes form an important class of nanoparticles which may exhibit spatial periodicity 

and can, thus, be described structurally in a way analogous to crystalline material. They have be-

come a major area of research in recent years since these systems exhibit extremely interesting new 

electronic and chemical properties. Examples are nanotubes that provide new substrate material for 

catalytically active particles but may also act as catalysts themselves [14], [16]. The most prominent 

and oldest members of the nanotube family are carbon nanotubes observed as early as 1952 [198] 

but attracting attention only much later [199], [200]. Meanwhile, very different materials, such as 

Si, BN, VOx, TiO2, WS2, MoS2, and MnO have been found to form nanotubes [14], [15], [16]. 

While physical and chemical properties of these systems have been widely discussed in the litera-

ture, the present section focuses on crystallographic aspects. The structure of nanotubes depends 

very much on their preparation [14], [201], where the crystal structure of the corresponding bulk 

material may give some hints. In the following, we consider a special class of nanotubes derived 

from rolling sections of single crystal layers, which also includes carbon nanotubes. It should be 

emphasized that the nanotubes discussed as examples in this section, originating from NaCl crystal 

layers, are meant only to illustrate the basic crystallographic concepts. They have not been prepared 

by experiments so far and may be difficult to produce due to the highly ionic character of their con-

stituent atoms.  

 

8.1 Basic Definition 

The construction of nanotubes considered in this section starts from infinitely long strips of 

finite width, cut out of a planar two-dimensionally periodic layer parallel to an (h k l) netplane of a 

perfect single crystal. These strips are then rolled up joining their parallel borders to yield long cy-

lindrical tubes whose circumference equals the strip width. For the sake of simplicity, we confine 

ourselves first to nanotubes originating from (h k l) monolayers. As an example, Fig. 8.1 shows a 

part of the NaCl(1 2 2) (6, 1) nanotube representing a rolled up section of a (1 2 2) monolayer of the 

perfect cubic NaCl crystal with (6, 1) denoting the rolling direction explained in the following. 
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Fig. 8.1.  Structure of a NaCl(1 2 2) (6, 1) nanotube section, see text. 

As discussed in Sec. 3.2, the periodicity of an (h k l) monolayer is given by netplane-adapted 

lattice vectors R1 and R2 which result from linear transformations of the initial lattice vectors Ro1, 

Ro2, Ro3 of the bulk crystal according to 

R1  =  t11 Ro1 + t12 Ro2 + t13 Ro3 (8.1a) 

R2  =  t21 Ro1 + t22 Ro2 + t23 Ro3 (8.1b) 

where tij are (integer-valued) elements of a transformation matrix T
(h k l)

 referring to Miller indices 

(h k l) as given by (3.11), (3.12), or (3.13). The definition of a nanotube requires an additional lat-

tice vector along the monolayer, called rolling vector Rr, which can be written as 

Rr  =  m R1 + n R2 ,     m, n  integer (8.2) 

where m, n are commonly referred to as rolling indices. The rolling vector, starting at any point of 

the (h k l) monolayer, is used to construct an infinitely long strip extending perpendicular to vector 

Rr with a width equal to the length of Rr. This is illustrated in Fig. 8.2 for the (1 2 2) monolayer of a 

NaCl crystal where a strip section (emphasized by a gray background in Fig. 8.2) is defined in its 

width by a rolling vector Rr with m = 6, n = 1. Rolling the strip along Rr such that its two edges 
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Fig. 8.2.  Structure of a NaCl(1 2 2) monolayer including a section of the nanotube 

strip defined by a rolling vector m = 6, n = 1. The strip is emphasized in gray with 

netplane-adapted lattice vectors R1, R2 and the rolling vector Rr labeled accordingly. 

coincide creates a circular tube where atoms positioned exactly at one edge of the planar strip will 

coincide with their counterparts connected by vector Rr on the other edge. The resulting nanotube is 

commonly labeled by the decomposition (8.2) of the rolling vector Rr as an (m, n) nanotube. Thus, 

the strip shown in Fig. 8.2 corresponds to the (6, 1) nanotube of NaCl(1 2 2) displayed in Fig. 8.1. 

In mathematical terms, the rolling procedure can be achieved by a non-linear coordinate 

transformation  (x, y, z)    (xt, yt, zt)  in Cartesian space with 

xt  =   · cos   , yt  =   · sin   , zt  =  z 

  =  (Rr - x) / 2π  ,   =  (y / Rr) 360 x    Rr  (8.3) 

where the Cartesian coordinate system is chosen such that the x axis is perpendicular to the mono-

layer with x = 0 defining the monolayer plane. Further, the y axis points along the rolling vector Rr, 

and the z axis points along the strip border in the monolayer. Inverting the rolling vector direction 

by going from Rr to -Rr corresponds in (8.3) to a transformation 

(x, y, z)    (x, -y, -z)    (xt, -yt, -zt) (8.4) 

which does not change the structure of the nanotube. Thus, rolling indices (m, n) and (-m, -n) reflect 

identical nanotubes. 
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As mentioned earlier, the oldest examples of nanotubes are carbon nanotubes created by roll-

ing sections of honeycomb structured (0 0 0 1) monolayers of hexagonal graphite (so-called gra-

phene layers), shown in Fig. 8.3. These monolayers form the basis of layer-type graphite crystals 

but can also exist in nature as separate graphene sheets, either in aqueous solution or adsorbed at 

solid surfaces. Carbon nanotubes have been classified according to their structure and symmetry 

 

Fig. 8.3.  Structure of a graphite(0 0 0 1) monolayer (graphene). The monolayer in-

cludes three different nanotube rolling vectors, Rr
(8,0)

, Rr
(8,3)

 and Rr
(5,5)

, see text. The 

lattice vectors R1 and R2 of the monolayer are shown in red. 

given by the rolling indices (m, n) in (8.2). Here the indices are commonly based on an acute repre-

sentation of the graphene netplane lattice vectors R1 and R2 ((R1, R2) = 60), which is also used 

for the present discussion. The following three types of nanotubes can be distinguished: 

(a) For m  0, n = 0, nanotubes are described as zigzag tubes which is evident from the di-

rection of the corresponding rolling vectors Rr pointing along zigzag carbon rows of the 

graphene sheet. As an illustration, Fig. 8.4a shows a section of the (8, 0) carbon nanotube 

defined by the rolling vector Rr
(8, 0)

 sketched in Fig. 8.3. Due to the 6-fold rotational 

symmetry of the graphene layer there are three equivalent zigzag nanotubes described by 

(m, 0), (0, m), and (m, -m). 

(b) For m = n  0, nanotubes are described as armchair tubes which is also clear from the 

direction of the corresponding rolling vectors Rr pointing along meandering carbon rows 

of the graphene sheet. As an illustration, Fig. 8.4b shows a section of the (5, 5) carbon 

nanotube defined by the rolling vector Rr
(5, 5)

 sketched in Fig. 8.3. Due to the 6-fold rota-

tional symmetry of the graphene layer there are six equivalent armchair nanotubes de-
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scribed by (m, m), (-m, 2m), and (2m, -m). 

 

Fig. 8.4.  Structure of symmetric carbon nanotubes, (a) zigzag (8, 0) and (b) arm-

chair (5, 5) tube. The zigzag and armchair cuts are emphasized by red atom balls at 

the top.  

(c) For m, n  0, m  n, nanotubes are described by spiral networks of carbon honeycombs 

without mirror symmetry along the tube axis. This implies that there are always chiral 

pairs of nanotubes, where one arises from the other by mirroring with respect to a plane 

along the nanotube axis. As an illustration, Fig. 8.5 shows a sections of a chiral pair of 

carbon nanotubes, denoted (8, 3) and (3, 8); the rolling vector Rr
(8, 3)

 is sketched in  

Fig. 8.3. Here the spiral networks of the two nanotubes proceed in different directions. 

Due to the mirror symmetry of the graphene layer there are three equivalent chiral pairs 

of nanotubes for each (m, n) described by (m, n) with (n, m), with (m+n, -n), and with 

(-m, m+n). 
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Fig. 8.5.  Chiral pair of carbon nanotubes, (a) (8, 3) and (b) (3, 8) tube. The spiral 

structures are emphasized by red atom balls at the top. 

 

8.2 Nanotubes and Symmetry 

Ideal linear nanotubes can also be characterized by their symmetry properties, which derive 

from translational and point symmetry of their defining monolayers. As a result of translational 

symmetry of these layers, defined by lattice vectors R1 and R2, nanotubes can exhibit combined 

translational and rotational symmetry. Considering a general lattice vector R of the netplane with 

R  =  k1 R1 + k2 R2 ,    k1, k2  integer (8.5) 

the rolling transformation (8.3) shows immediately that changes of its components along the rolling 

vector Rr, pointing along coordinate y and affecting only angle  in (8.3), are transformed to rota-

tional increments on the tube. In contrast, changes of its components perpendicular to Rr, point-

ing along coordinate z in (8.3), are transformed to linear shifts parallel to the axis of the tube. This 

means, in particular, that rows of atoms at equal distances along vector R, with components both 

parallel and perpendicular to Rr, on the monolayer, yield spiral arrangements on the corresponding 

nanotube. This is illustrated by the NaCl(1 2 2) (6, 1) nanotube in Fig. 8.1 where the Na and Cl spi-

rals, relating to dense atom rows along R1 on the monolayer, see Fig. 8.2, are evident. In contrast, if 

vector R points along the rolling vector Rr then atom rows along R on the monolayer lead to rings 

on the nanotube. This is shown in Fig. 8.6a for the NaCl(1 2 2) (8, 0) nanotube with its the Na and 
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Cl rings. On the other hand, if vector R is perpendicular to Rr then atom rows along R on the mon-

olayer result in rows parallel to the axis of the nanotube, as demonstrated in Fig. 8.6b for the 

NaCl(1 2 2) (0, 6) nanotube showing Na and Cl rows. 

 

Fig. 8.6.  Structures of symmetric NaCl(1 2 2) nanotubes, (a) (8, 0) and (b) (0, 6) 

tubes. 

Nanotubes originating from general monolayers appear usually as chiral pairs of tubes, 

where one derives from the other by mirroring with respect to a plane along the nanotube axis. The 

two tubes can be thought of as arising from rolling monolayer strips above and below the layer 

which corresponds to the coordinate transformation (8.3) as well as to the complementary transfor-

mation  (x, y, z)    (xt', yt', zt')  in Cartesian space with 

xt'  =   · cos   , yt'  =   · sin   , zt'  =  z 

  =  (Rr + x) / 2π  ,   =  (-y / Rr) · 360  x    -Rr  (8.6) 

For monolayers with mirror symmetry (mirror lines in the corresponding netplane) chiral pairs of 

nanotubes can also be obtained by two different rolling vectors Rr and Rr' (rolling at the same side 

of the layer) where Rr' is a mirror image of Rr. As an illustration, Fig. 8.7 shows the chiral pairs of 

NaCl(1 2 2) (6, 1) and (6, -1) nanotubes. 
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Fig. 8.7.  Chiral pair of NaCl(1 2 2) nanotubes, (6, 1) to the left and (6, -1) to the 

right. The red line between the tubes denoted  is meant to indicate the mirror sym-

metry between the two tubes. 

If a mirror line  exists perpendicular to the rolling vector Rr in the monolayer then there is 

always a second mirror line ' parallel to the first at a distance 1/2 Rr which can be proven analo-

gous to the discussion of mirror lines in Sec. 3.6.4. Then the rolling transformation converts the two 

mirror lines,  and ', on the monolayer into a mirror plane which goes through the axis of the cor-

responding nanotube. As a result, the nanotube exhibits mirror symmetry along its tube axis and is 

achiral. This is illustrated in Fig. 8.8 for a (1 1 1) monolayer of an fcc crystal and a rolling vector 

Rr
(6,0)

. The mirror lines,  and ' of the monolayer in Fig. 8.8a lie on a mirror plane of the nanotube 

along its axis, see Fig. 8.8b, illustrating its mirror symmetry and achirality. 
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Fig. 8.8.  (a) Structure of a fcc(1 1 1) monolayer including a nanotube strip (empha-

sized in gray) with rolling vector Rr
(6, 0)

. The netplane-adapted lattice vectors R1 and 

R2 are shown in red and mirror lines , ' as thick lines. (b) fcc(1 1 1) (6, 0) nano-

tube corresponding to the nanotube strip in (a). 

Mirror lines  parallel to the rolling vector Rr in the monolayer are converted by the rolling trans-

formation to mirror planes pointing perpendicular to the nanotube axis. Thus, corresponding nano-

tubes exhibit again mirror symmetry and are achiral. Fig. 8.8 can also be used to illustrate this 

behavior. The fcc(1 1 1) monolayer contains, in addition to its mirror lines perpendicular to Rr
(6,0)

 

indicated in Fig. 8.8a, mirror lines parallel to Rr
(6,0)

. The resulting mirror symmetry of the nanotube 

perpendicular to its axis is quite clear from Fig. 8.8b. 

According to (8.3) and (8.6), the netplane coordinate z perpendicular to the rolling vector Rr 

in the monolayer is transformed by the tube rolling procedure to yield coordinate zt or zt' along the 

nanotube axis. Thus, translational periodicity of the nanotube along its axis is connected with 

periodicity of the corresponding monolayer along the direction perpendicular to the rolling vector. 

This means, in particular, that the monolayer must contain lattice vectors Rs perpendicular to the 

rolling vector Rr to yield a nanotube with  translational symmetry. If vector Rs, represented as 

Rs  =  p R1 + q R2 ,     p, q  integer (8.7) 

denotes the smallest of these perpendicular vectors then according to (8.2) 

Rs Rr =  (p R1 + q R2) (m R1 + n R2)  = 

 =  (m R1
2
 + n R1 R2) p + (n R2

2
 + m R1 R2) q  =  0 (8.8) 
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Together with representation (8.1) of the lattice vectors R1 and R2 this yields equations 

F1 p + F2 q  =  0 or F1 / F2  =  - q / p (8.9) 

where 

ojoi

3

1i

3

1j
j2i1j1i11 RR)ttnttm(F  

 

 (8.10a)  

ojoi

3

1i

3

1j
j2i1j2i22 RR)ttmttn(F  

 

 (8.10b) 

Thus, translational periodicity of a nanotube along its axis requires that the ratio F1 / F2 assumes a 

rational value. This requirement can be satisfied for all (h k l) monolayers of crystals whose lattic-

es are 

(a) cubic (sc, fcc, bcc), since 

 Roi
2
  =  a

2
 ,     Roi Roj  =  0 , i  j , for sc lattices 

 Roi
2
  =  1/2 a

2
 ,     Roi Roj  =  1/4 a

2
 , i  j , for fcc lattices 

 Roi
2
  =  3/4 a

2
 ,     Roi Roj  =  -1/4 a

2
 , i  j , for bcc lattices 

(b) hexagonal close-packed (hcp) (i.e. hexagonal with a ratio c/a = (8/3), since 

 Ro1
2
  =  Ro2

2
  =  a

2
 ,  Ro3

2
  =  8/3 a

2
 ,     Ro1 Ro2  =  1/2 a

2
 ,  Roi Ro3  =  0 , i  3 

(c) primitive orthorhombic or tetragonal with lattice constants a, b, c, resulting in rational 

values of (b/a)
2
 and (c/a)

2
, since 

 Ro1
2
  =  a

2
 ,  Ro2

2
  =  (b/a)

2
 a

2
,  Ro3

2
  =  (c/a)

2
 a

2
,     Roi Roj  =  0 , i  j 

Further, translational periodicity of nanotubes is also guaranteed for selected (h k l) monolayers 

crystals with other Bravais lattices. As examples we mention  

(d) (0 0 0 1) monolayers of  hexagonal lattices, 

(e) (0 0 1) monolayers of tetragonal lattices, 

(f) (1 1 1) monolayers of trigonal lattices. 

In general, a nanotube can be achiral only if it exhibits mirror symmetry where possible mir-

ror planes are either perpendicular to the tube axis or contain the axis. Thus, unrolling an achiral 

nanotube will always create a strip inside an (h k l) monolayer which contains a mirror line  either 
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perpendicular or parallel to the rolling vector Rr. This means, in particular, that symmetry properties 

of the corresponding (h k l) monolayer must be described by a two-dimensional space group which 

contains at least one mirror line. This excludes, according to Table 3.13 and Fig. 3.49, monolayers 

with symmetry described by space groups 1, 2 (oblique), 4, 8 (p-rectangular), 10 (square), and 13, 

16 (hexagonal). 

 

8.3 Complex Nanotubes 

Nanotubes can assume much more complex geometric arrangements compared with those de-

fined by rolling single crystal monolayers which were discussed so far. In particular, structural de-

tails of thicker nanotubes do not need to be immediately connected with rolling single crystal lay-

ers. As an example, silicon nanotubes with thicker walls have been proposed to possess polygonal 

rather than circular cross sections consisting of distorted crystalline material and described as hol-

low nanowires [201]. This is illustrated by Fig. 8.9 which shows a model of a silicon nanotube with 

thick walls made of single crystal bulk silicon and a hexagonal cross section. 

 

Fig. 8.9.  Structure of a thick silicon nanotube of hexagonal cross section simulated 

by a balls-and-sticks model based on the crystal structure of bulk silicon. 

On the other hand, rolled nanotubes can also exhibit rather complex structures. As an example, 

we mention multi-walled nanotubes of carbon, which have been observed [202]. Here foreign at-
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oms may be inserted between the walls to yield intercalation nanotubes. As an illustration,  

Fig. 8.10 shows a fictitious double-walled carbon nanotube composed of a (12, 3) tube (outer wall) 

and a (7, 3) tube (inner wall). 

 

Fig. 8.10.  Structure of a fictitious double-walled carbon nanotube combining a  

(12, 3) tube (outer wall, gray) with a (7, 3) tube (inner wall, red). 

Rolled nanotubes can be composed of even thicker crystal layers. This is of particular interest 

for crystals with layer-type lattices, where strong chemical binding exists inside physical layers  

combining several monolayers. These physical layers can then be rolled to form complex nano-

tubes. As an example, vanadium pentoxide, V2O5, discussed in Sec. 4.1, is described by a layer-

type orthorhombic lattice with 14 atoms (4 vanadium, 10 oxygen atoms) in the unit cell. Here  

(0 1 0) oriented physical layers (of 8 monolayers each, see Fig. 4.4,) are loosely coupled to form the 

layer-type crystal. These physical layers may serve as building units for V2O5 nanotubes, which has 

also been confirmed experimentally [203]. As an example, Fig. 8.11 shows a model of a section of a 

V2O5(0 1 0) (0, 5) nanotube (referring to netplane-adapted lattice vectors R1 and R2 given in Fig. 

4.4) which arises from one physical layer. The singly coordinated vanadyl oxygen atoms sticking 

out of this nanotube surface are assumed to be catalytically active.  
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Fig. 8.11.  Structure of a (0, 5) nanotube of a (0 1 0) oriented physical layer of the 

V2O5 crystal. 

Even more complex shapes of nanotubes have been observed by experiment [202], in particu-

lar, for carbon. Examples are flexible (‘spaghetti’ type) carbon nanotubes, nanotube junctions (re-

minding of junctions of tree branches), or toruses, which together with many other nanotube struc-

tures can be viewed at the nanotube web site [202]. However, from a crystallographic point of view 

these systems have to be considered on a system-by-system basis and are, therefore, of limited in-

terest for the present general discussion of nanotubes. 

 

8.4 Exercises 

8.1. Consider a (1 1 0) oriented monolayer of an fcc crystal (lattice constant a) and nanotubes 

originating from the monolayer with rolling vectors Rr
(m, n)

 according to (8.2). 

(a) Determine radii Rtube(m, n) of the nanotubes as a function of a, m, n. Hint: the re-

quired netplane-adapted lattice vectors R1 and R2 can be represented by 

  R1  = a/2 (1, 0, 0) , R2  = a (0, 1, 0) 

(b) Which of the (m, n) nanotubes are translationally periodic? Along which direction? 

(c) Determine indices (m n) and (m', n') of chiral pairs of nanotubes. Which (m, n) nano-

tubes are achiral? 
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8.2. Show that (m, n) nanotubes of (0 0 0 1) monolayers of graphite are always translationally 

periodic along the tube axis.Calculate periodicity lengths L(m, n). Calculate tube radii 

Rtube(m, n). 

8.3. Discuss symmetry elements of (m, n) nanotubes of fcc(1 1 1) and bcc(1 1 0) monolayers. 

8.4. Consider a (monoatomic) monolayer with Minkowski-reduced lattice vectors R1 and R2 de-

scribing a Bravais lattice with symmetry and a rolling vector Rr
(m, n)

 according to (8.2). 

(a) Calculate radii Rtube(m, n) and periodicity lengths L(m, n) (if applicable) of transla-

tionally periodic (m, n) nanotubes referring to different Bravais lattices.  

(b) Find constraints for the lattice vectors R1 and R2 such that there are no translationally 

periodic (m, n) nanotubes. Discuss examples for different Bravais lattices. 

8.5. Consider a nanotube constructed from a p-rectangular monolayer with symmetry properties 

according to space group no. 6, see Table 3.13, and a rolling vector Rr
(m, n)

 according to (8.2). 

Show that all chiral partners of the (m, n) nanotube are given by (m', n') = (m, -n). For 

which (m, n) values are the nanotubes achiral?  

8.6. Consider a nanotube constructed from a c-rectangular monolayer with symmetry properties 

according to space group no. 9, see Table 3.13, and a rolling vector Rr
(m, n)

 according to (8.2). 

Show that with orthogonal lattice vectors all chiral partners of the (m, n) nanotube are given 

by (m', n') = (m, -n). For which (m, n) values are the nanotubes achiral?  

8.7. Consider a nanotube constructed from a square monolayer with symmetry properties accord-

ing to space group no., see Table 3.13, and a rolling vector Rr
(m, n)

 according to (8.2). Show 

that all chiral partners of the (m, n) nanotube are given by (m', n') = (m, -n), (n, -m). For 

which (m, n) values are the nanotubes achiral?  
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8.8. Consider a nanotube constructed from a hexagonal monolayer with symmetry properties ac-

cording to space group no. 17 of ITC [33], see Table 3.13, and a rolling vector Rr
(m, n)

 ac-

cording to (8.2). Show that all chiral partners of the (m, n) nanotube are given by 

acute lattice vectors: (m', n') = (n, m), (m+n, -n), (-m, m+n) 

obtuse lattice vectors: (m', n') = (n, m), (m-n, -n), (m, m-n) 

For which (m, n) values are the nanotubes achiral?  

8.9. Discuss chiral pairs of (m, n) nanotubes of (1 0 0), (1 1 0), and (1 1 1) oriented monolayers 

of gold crystals. For which values of m, n are corresponding nanotubes achiral? 

8.10. Compare (m, n) nanotubes of (1 1 0) oriented monolayers of nickel crystals with those of 

vanadium. Which nanotubes are achiral for both nickel and vanadium? 

8.11. Consider fictitious (m, n) nanotubes of dense (h k l) monolayers of NaCl and CsCl crystals. 

Which nanotubes include both elements? Discuss examples. 

8.12. Hexagonal boron nitride, BN, is described by a layer-type crystal structure which is analo-

gous to that of graphite. Thus, (0 0 0 1) monolayers of BN have a honeycomb appearance 

and can be defined by a two-dimensional lattice with lattice and lattice basis vectors 

R1  =  a (1, 0) , R2  =  a (1/2, 3/2) , r1
B
  =  (0, 0) , r2

N
  =  (1/3, 1/3) 

Determine achiral (m, n) nanotubes of (0 0 0 1) BN and show that there are only two differ-

ent types. 

8.13. Consider a monolayer with lattice vectors of a square netplane and two different elements A, 

B in the unit cell, described by 

R1  =  a (1, 0) , R2  =  a (0, 1) , r1
A
  =  (0, 0) , r2

B
  =  (x, y) ,    0 < x, y < 1 

Determine values x, y which allow achiral (m, n) nanotubes.  
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APPENDICES 

 

A Sketches of High-Symmetry Adsorbate Sites 

This appendix gives an overview of the most common sites which are considered for adsorb-

ates stabilizing at single crystal surfaces of high symmetry. Each site is sketched in (a) a view along 

the surface normal and (b) a view parallel to the surface where the sites are grouped according to 

bulk crystal structure, A.1 fcc, A.2 bcc, A.3 hcp, A.4 diamond, and A.5 zincblende and surface ori-

entation (h k l). Here the substrate is shown as a collection of gray and light red shaded atom balls 

near the adsorption site where the gray shading distinguishes between different atom layers becom-

ing darker for layers deeper below the surface. Neighboring atoms of each layer are labeled Nx ac-

cording to their layer index (N = 1 (topmost), 2, 3, …) and distance from the adsorption site (x = a 

(nearest), b, c, …). The adsorption site is shown by a small dark red ball representing the adsorbate 

center and larger light red balls referring the substrate atoms nearest to the adsorbate. The dashed 

line in each view (a) denotes the cutting plane used for the view in (b). 

 

A.1 Face-centered cubic (fcc) surface sites 

Details of the sketches are explained in the beginning of Appendix A. 

  

Fig. A.1.  fcc(1 1 1) top Fig. A.2.  fcc(1 1 1) bridge 
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Fig. A.3.  fcc(1 1 1) hcp-hollow Fig. A.4.  fcc(1 1 1) fcc-hollow 

  

Fig. A.5.  fcc(1 1 1) substitutional Fig. A.6.  fcc(1 0 0) top 
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Fig. A.7.  fcc(1 0 0) bridge Fig. A.8.  fcc(1 0 0) 4-fold hollow 

  

Fig. A.9.  fcc(1 0 0) substitutional Fig. A.10.  fcc(1 1 0) upper top 



385 

 

  

Fig. A.11.  fcc(1 1 0) long-bridge Fig. A.12.  fcc(1 1 0) short-bridge 

  

Fig. A.13.  fcc(1 1 0) 3-fold hollow Fig. A.14.  fcc(1 1 0) central 4-fold hollow 
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Fig. A.15.  fcc(1 1 0) upper substitutional 
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A.2 Body-centered cubic (bcc) surface sites 

Details of the sketches are explained in the beginning of Appendix A. 

  

Fig. A.16.  bcc(1 1 0) top  Fig. A.17.  bcc(1 1 0) 3-fold hollow 

  

Fig. A.18.  bcc(1 1 0) central hollow Fig. A.19.  bcc(1 0 0) top 
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Fig. A.20.  bcc(1 0 0) bridge Fig. A.21.  bcc(1 0 0) 4-fold hollow 

  

Fig. A.22.  bcc(1 0 0) 4-fold interstitial 
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A.3 Hexagonal close-packed (hcp) surface sites 

Details of the sketches are explained in the beginning of Appendix A. 

  

Fig. A.23.  hcp(0 0 0 1) top  Fig. A.24.  hcp(0 0 0 1) fcc-hollow 

  

Fig. A.25.  hcp(0 0 0 1) hcp-hollow Fig. A.26.  hcp(0 0 0 1) tetrahedral interstitial 
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Fig. A.27.  hcp(0 0 0 1) octahedral interstitial Fig. A.28.  hcp(1 0 -1 0) 4-fold center 

  

Fig. A.29.  hcp(1 0 -1 0) short-bridge Fig. A.30.  hcp(1 0 -1 0) 3-fold hollow 
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A.4 Diamond surface sites 

Details of the sketches are explained in the beginning of Appendix A. 

  

Fig. A.31.  Diamond(1 1 1) top Fig. A.32.  Diamond(1 1 1) bridge 

  

Fig. A.33.  Diamond(1 1 1) T4 Fig. A.34.  Diamond(1 1 1) substitutional top 
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Fig. A.35.  Diamond(1 0 0) 4-fold center Fig. A.36.  Diamond(1 0 0) continuation bridge 

 

  



393 

 

A.5 Zincblende surface sites 

Details of the sketches are explained in the beginning of Appendix A. 

  

Fig. A.37.  Zincblende(1 1 1) top Fig. A.38.  Zincblende(-1 -1 -1) top 
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B Parameter Tables of Crystals  

This appendix lists the most common lattice types and corresponding lattice parameters of el-

emental crystals at standard temperature and pressure. 

Table B.1.  Lattices of elemental single crystals. The Bravais lattice types are abbreviated as listed 

at the bottom of the table. 

Element Lattice Element Lattice Element Lattice Element Lattice 

1 H hex 26 Fe bcc 51 Sb rhl 76 Os hex 

2 He hex 27 Co hex 52 Te hex 77 Ir fcc 

3 Li bcc 28 Ni fcc 53 I ort 78 Pt fcc 

4 Be hex 29 Cu fcc 54 Xe fcc 79 Au fcc 

5 B tet 30 Zn hex 55 Cs bcc 80 Hg rhl 

6 C dia 31 Ga ort 56 Ba bcc 81 Tl hex 

7 N hex 32 Ge dia 57 La hex 82 Pb fcc 

8 O mcl 33 As rhl 58 Ce fcc 83 Bi rhl 

9 F mcl 34 Se hex 59 Pr hex 84 Po cub 

10 Ne fcc 35 Br ort 60 Nd hex 85 At -- 

11 Na bcc 36 Kr fcc 61 Pm -- 86 Rn (fcc) 

12 Mg hex 37 Rb bcc 62 Sm rhl 87 Fr (bcc) 

13 Al fcc 38 Sr fcc 63 Eu bcc 88 Ra -- 

14 Si dia 39 Y hex 64 Gd hex 89 Ac fcc 

15 P tcl 40 Zr hex 65 Tb hex 90 Th fcc 

16 S ort 41 Nb bcc 66 Dy hex 91 Pa tet 

17 Cl ort 42 Mo bcc 67 Ho hex 92 U ort 

18 Ar fcc 43 Tc hex 68 Er hex 93 Np ort 

19 K bcc 44 Ru hex 69 Tm hex 94 Pu mcl 

20 Ca fcc 45 Rh fcc 70 Yb fcc 95 Am -- 

21 Sc hex 46 Pd fcc 71 Lu hex 96 Cm -- 

22 Ti hex 47 Ag fcc 72 Hf hex 97 Bk -- 

23 V bcc 48 Cd hex 73 Ta bcc 98 Cf -- 

24 Cr bcc 49 In tet 74 W bcc 99 Es -- 

25 Mn cub 50 Sn tet 75 Re hex 100 Fm -- 

 
bcc = body-centered cubic cub = cubic dia = diamond fcc = face-centered cubic 

hex = hexagonal mcl = monoclinic ort = orthorhombic rhl = rhombohedral 

tcl = triclinic tet = tetragonal 
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Table B.2.  Lattice constants of face- and body-centered cubic single crystals. The lattice definitions 

are given in Cartesian coordinates at the bottom of the table. 

(a)  Face-centered cubic (fcc) 

Element a [Å]  Element a [Å] 

10 Ne 4.43  54 Xe 6.20 

13 Al 4.05  58 Ce 5.16 

18 Ar 5.26  70 Yb 5.49 

20 Ca 5.58  77 Ir 3.84 

28 Ni 3.52  78 Pt 3.92 

29 Cu 3.61  79 Au 4.08 

36 Kr 5.72  82 Pb 4.95 

38 Sr 6.08  86 Rn --- 

45 Rh 3.80  89 Ac 5.31 

46 Pd 3.89  90 Th 5.08 

47 Ag 4.09  

 

R1
fcc

  =  a/2 (0, 1, 1) R2
fcc

  =  a/2 (1, 0, 1) R3
fcc

  =  a/2 (1, 1, 0) 

(b)  Body-centered cubic (bcc) 

Element a [Å]  Element a [Å] 

3 Li 3.49  42 Mo 3.15 

11 Na 4.23  55 Cs 6.05 

19 K 5.23  56 Ba 5.02 

23 V 3.02  63 Eu 4.61 

24 Cr 2.88  73 Ta 3.31 

26 Fe 2.87  74 W 3.16 

37 Rb 5.59  87 Fr --- 

41 Nb 3.30  

 

R1
bcc

  =  a/2 (-1, 1, 1) R2
bcc

  =  a/2 (1, -1, 1) R3
bcc

  =  a/2 (1, 1, -1) 
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Table B.3.  Lattice constants of hexagonal single crystals. The lattice definition is given in Cartesian 

coordinates at the bottom of the table. Lattice constant ratios c/a may be compared with the ideal 

value (c/a)
hcp

 = (8/3) = 1.63299 for a hexagonal close-packed (hcp) crystal. Note that some the 

crystals may contain several atoms in the primitive unit cell, two atoms for hcp crystals with lattice 

basis vectors given at the bottom. 

Element a [Å] c/a   Element a [Å] c/a  

1 H 3.75 1.731  52 Te 4.45 1.330 

2 He 3.57 1.633  57 La 3.75 1.619 

4 Be 2.29 1.567  59 Pr 3.67 1.614 

7 N 4.039 1.651  60 Nd 3.66 1.614 

12 Mg 3.21 1.624  64 Gd 3.64 1.588 

21 Sc 3.31 1.594  65 Tb 3.60 1.581 

22 Ti 2.95 1.588  66 Dy 3.59 1.573 

27 Co 2.51 1.622  67 Ho 3.58 1.570 

30 Zn 2.66 1.856  68 Er 3.56 1.570 

34 Se 4.36 1.136  69 Tm 3.54 1.570 

39 Y 3.65 1.571  71 Lu 3.51 1.585 

40 Zr 3.23 1.593  72 Hf 3.20 1.582 

43 Tc 2.74(?) 1.604(?)  75 Re 2.76 1.615 

44 Ru 2.70 1.584  76 Os 2.74 1.579 

48 Cd 2.98 1.886  81 Tl 3.46 1.599 

 

R1
hex

  =  a (1, 0, 0) R2
hex

  =  a (-1/2, 3/2, 0) R3
hex

  =  a (0, 0, c/a) 

r1
hcp

  =  a (0, 0, 0) r2
hcp

  =  a (1/2, 1/12, (2/3)) 
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C Mathematics of the Wood Notation 

This appendix gives further mathematical details of the Wood notation [150] introduced in Sec. 

6.3 to denote the structure of reconstructed single crystal surfaces as well as of adsorbate layers 

[94]. As explained in Sec. 6.3 the formal definition of the Wood notation reads 

Sub(h k l) - ( 1  2 )R for reconstructed surfaces (C.1a) 

and 

Sub(h k l) + ( 1  2 )R -  Ovl for adsorbate surfaces (C.1b) 

where, for the sake of simplicity and because of the rare occurrence, we ignore possible substrate 

reconstruction in the presence of an adsorbate treated by notation (6.4). 

 

C.1 Basic Formalism and Examples 

The periodicity information of the Wood notation given in (C.1) may be expressed alternatively by 

a more general 2  2 matrix transformation according to (5.3). Surface-adapted lattice vectors  

R1 and R2 of the substrate, forming an angle  , can be represented by orthonormal unit vectors e1 

and e2 and written in matrix notation as 
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This relation can be inverted to yield 
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Rotating the orthonormal vector set e1, e2 anti-clockwise by an angle  corresponds to a transfor-

mation 
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Therefore, rotating the two lattice vectors R1 and R2 anti-clockwise by an angle  and scaling each 

by a factor 1 and 2, respectively, leads to transformed overlayer lattice vectors R1' and R2', given 

by 
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 (C.5) 

This proves representation (6.6a) for the transformation matrix Mp, which connects the substrate 

lattice vectors R1 and R2 with those, R1' and R2',  of the overlayer in the case of primitive overlay-

ers denoted by ‘… - p( 1  2 )R - …’. It should be noted that matrix Mp appearing in (C.5) is 

identical to the transformation matrix (5.16), describing rotational overlayers for scaling factors  

1 = 2 = 1. 

Corresponding lattice vectors R1'' and R2'' of centered overlayers with respect to R1' and R2' of 

the primitive overlayers are described by 

R1''  =  (R1' + R2') / 2  , R2''  =  (-R1' + R2') / 2 (C.6) 

which yields a transformation 

























































2

1

c
2

1

p
2

1

2

1

R

R
M

R

R
M

11

11

2

1

'R

'R

11

11

2

1

"R

"R
 (C.7) 

and, using (C.5), results in 
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This proves relation (6.6b) for the transformation matrix Mc, connecting the substrate lattice vectors 

R1 and R2 with those, R1'' and R2'', of the overlayer in the case of centered overlayers denoted by 

‘… - c( 1  2 )R - …’. 

In the following, we discuss special cases of primitive overlayers, described by transformation 

matrices Mp of (C.5), where q is the ratio of the lengths of the periodicity vectors R1 and R2, i.e.  

q = R2 / R1 (C.9) 

a) For primitive rectangular substrate lattices the periodicity vectors R1 and R2 are orthogo-

nal ( = 90) which yields for p( 1  2 )R 
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Here commensurate overlayers are subject to integer-valued elements mij where 

1 cos()  =  m11 1 q
-1

 sin()  =  m12 (C.11a, b) 

2 q sin()  =  -m21 2 cos()  =  m22 (C.11c, d) 

Simple examples are 

 Rotation angle  = 0 and integer i = ni leading to  

p( n1  n2 )R0 or ( n1  n2 ) with 
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 Rotation angle  = 90 and 1 = n1q ,  2 = n2/q ,  n1, n2 integer, leading to 

p( 1  2 )R90 with 
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 (C.13) 

Other combinations of 1, 2, and  lead in many cases to incommensurate overlayers. 

b) For centered rectangular substrate lattices the periodicity vectors R1 and R2 are of equal 

length (q = 1) and angle  differs from 60, 90, and 120 which yields 
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Here commensurate overlayers are subject to integer-valued elements mij where 

1 sin( - )  =  m11 sin() 1 sin()  =  m12 sin() (C.15a, b) 
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2 sin()  =  -m21 sin() 2 sin( + )  =  m22 sin() (C.15c, d) 

This means in particular that 

1 cos()  =  m11 + m12 cos( )   and    2 cos()  =  m22 + m21 cos( ) (C.16) 

A simple example is 

 Rotation angle  = 0 and integer i = ni leading to  

p( n1  n2 ) or ( n1  n2 ) with 











2

1

p n0

0n
M  (C.17) 

Other combinations of 1, 2, and  lead in many cases to incommensurate overlayers. 

c) For square substrate lattices the periodicity vectors R1 and R2 are orthogonal (  = 90) 

and of equal length (q = 1) which yields 
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Here commensurate overlayers are subject to integer-valued elements mij where 

1 cos()  =  m11 1 sin()  =  m12 (C.19a, b) 

2 sin()  =  -m21 2 cos()  =  m22 (C.19c, d) 

Simple examples are 

 Rotation angle  = 0 and integer i = ni leading to  

p( n1  n2 ) or ( n1  n2 ) with 
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 Rotation angle  = 90 and integer i = ni, leading to  

p(n1  n2 )R90 with 
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 Rotation angles -90 <  < 90,   0 , with 

 cos() = m / (m
2
 + n

2
)
1/2

 ,     sin() = n / (m
2
 + n

2
)
1/2

 

 1 = a (m
2
 + n

2
)
1/2

 ,  2 = b (m
2
 + n

2
)
1/2

 ,     a, b > 0   integer 

       m, n > 0   integer ,   gcd( m, n ) = 1 

leading to p(1  2 )R with 
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Other combinations of 1, 2, and  lead in many cases to incommensurate overlayers. 

d) For hexagonal substrate lattices in acute representation (  = 60) the periodicity vectors 

R1 and R2 are of equal length (q = 1) which yields 
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Here commensurate overlayers are subject to integer-valued elements mij where 

1 sin(60 - )  =  c m11 1 sin()  =  c m12 (C.24a, b) 

2 sin()  =  -c m21 2 sin(60 + )  =  c m22 ,    c  =  3/2 (C.24c, d) 

This means in particular that  

1 cos()  =  m11 + (m12/2)    and       2 cos()  =  m22 + (m21/2) (C.25) 

Simple examples are 

 Rotation angle  = 0 and integer i = ni leading to  

p( n1  n2 ) or ( n1  n2 ) with 
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 Rotation angle  = 60 and integer i = ni leading to  

p( n1  n2 )R60 with 
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 Rotation angle  = 120 and integer i = ni leading to  

p( n1  n2 )R120 with 
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 Assuming  i  =  ni (a
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+ a b + b
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with a, b, c, and pi  integer, leading to  

p( 1  2 )R with 
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This includes cases of 

-  a = b = 1 ,  n1 = n2 = 1,  
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-  a = 2 ,  b = 1 ,  n1 = n2 = 1,  
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-  a = 3 ,  b = 1 ,  n1 = n2 = 1,  
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  :   p(13  13)R13.1 

Other combinations of 1, 2, and  lead in many cases to incommensurate overlayers. 

e) For hexagonal substrate lattices in obtuse representation (  = 120) the periodicity vec-

tors R1 and R2 are of equal length (q = 1) which results in 
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Here commensurate overlayers are subject to integer-valued elements mij where 

1 sin(60 + )  =  c m11 1 sin()  =  c m12 (C.31a, b) 

2 sin()  =  -c m21 2 sin(60 - )  =  c m22 ,    c  =  3/2 (C.31c, d) 

This means in particular that 

1 cos()  =  m11 - 1/2 m12     and       2 cos()  =  m22 - 1/2 m21 (C.32) 
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Simple examples are 

 Rotation angle  = 0 and integer i = ni leading to  

p( n1  n2 ) or ( n1  n2 ) with 
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 Rotation angle  = 120 and integer i = ni leading to  

p( n1  n2 )R120 with 
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 Rotation angle  = 240 and integer i = ni leading to  

p( n1  n2 )R240 with 
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 Assuming  i  =  ni (a
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This includes cases of 

-  a = 2 ,  b = 1 ,  n1 = n2 = 1,  
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-  a = 3 ,  b = 1 ,  n1 = n2 = 1,  
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-  a = 4 ,  b = 1 ,  n1 = n2 = 1,  
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Other combinations of 1, 2, and  lead in many cases to incommensurate overlayers. 
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C.2 Wood-Representability 

Lattice structures given by Wood notation (6.2) and (C.1) make it always possible to construct 

corresponding 2  2 transformations matrices Mp,c according to (C.5) and (C.8). However, not all  

2  2 matrices refer to transformations which can be characterized by a Wood notation. The math-

ematical reason behind it is that 2  2 matrices are determined by four parameters, the matrix ele-

ments mij, allowing four degrees of freedom whereas the Wood notation allows only three, given by 

the two stretch parameters, 1 and 2, and the rotation angle . The fourth degree of freedom does 

not appear because the Wood notation assumes that the angle   between the lattice vectors R1' and 

R2' of the overlayer agrees with that between the lattice vectors R1 and R2 of the substrate surface. 

This constraint can be used to select all 2  2 matrices which correspond to transformations in 

Wood notation and will be called Wood representable in the following. 

In a general lattice transformation according to (5.3) 
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the area of the periodicity cell of the overlayer, given by F' = |R1'  R2'|, can be written as 

        sinRRMdetRRMdet'sin'R'R'R'R'F 21212121  (C.38) 

where   and  ' are the angles formed by vectors R1 and R2 and by R1' and R2', respectively. If 

transformation (C.37) allows a primitive Wood notation then angles   and  ' must be equal. 

Thus, (C.38) leads to 
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and hence with 
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relation (C.39) yields  
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Relation (C.42) is the mathematical constraint for matrices M to be Wood-representable yielding 

transformations according to the primitive Wood notation, denoted as p( 1  2 )R where 
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These relations depend, apart from all matrix elements mij, on the geometry specifications of the 

substrate lattice given by q and   which distinguishes between Bravais lattice types.  

a) For primitive rectangular substrate lattices, q  1 and   = 90, Wood-representable ma-

trices M according to (C.42) are subject to  
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b) For centered rectangular substrate lattices, q = 1 and    60, 90, 120, Wood-

representable matrices M according to (C.42) are subject to  
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c) For square substrate lattices, q = 1 and   = 90, Wood-representable matrices M accord-

ing to (C.42) are subject to  

0mmmm 22122111   (C.48) 

yielding 
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d) For hexagonal substrate lattices in acute representation, q = 1 and   = 60, Wood-

representable matrices M according to (C.42) are subject to 
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e) For hexagonal substrate lattices in obtuse representation, q = 1 and   = 120, Wood-

representable matrices M according to (C.42) are subject to  
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If transformation (C.37) allows a centered Wood notation, described as c( 1  2 )R, then its 

transformation matrix Mc can be written as the product of a simple transformation matrix T and ma-

trix Mp which provides the corresponding transformation according to a primitive Wood notation, 

p( 1  2 )R, i.e. 

c
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MTM,MTM


  (C.54) 

where 
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Therefore, testing a matrix Mc for Wood-representability according to the centered Wood notation 

can be achieved by first determining the corresponding matrix Mp using (C.54), (C.55), (C.56) fol-

lowed by testing Mp applying the criteria given in (C.42) and (C.44) to (C.53). 

Combining Wood-representable transformations. Lattice transformation defined in Wood 

notation (6.2) or (6.4) and their corresponding 2  2 matrices Mp,c according to (C.5) and (C.8) can 

be combined to yield other lattice transformations. Here we restrict the discussion to the primitive 

Wood notation p( 1  2 )R and 2  2 matrices Mp given by (C.5). 

Applying two Wood-representable transformations, p( 1'  2' )R' and p( 1  2 )R in se-

quence corresponds to transformations 
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such that after some basic calculus 
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which is a Wood-representable transformation given by 

p( 1'  2' )R' * p( 1  2 )R  =  p(1'1  2'2)R('+) (C.60) 

Thus, the application of two Wood-representable transformations yields again a Wood-

representable transformation. In addition, swapping the sequence of application of the two trans-

formations yields the same final transformation. Therefore, the order in which the two transfor-

mations are applied does not affect the final result. 
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Next, for every Wood-representable transformation one can construct an inverse transfor-

mation. Considering Mp defined by (C.5) we find 

det(Mp)  =  1 2 (C.61) 

and hence 
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1  (C.62) 

which is again a Wood-representable matrix of a transformation referring to p(1
-1

  2
-1

)R(-) such 

that together with (C.60)  

p( 1  2 )R * p(1
-1

  2
-1

)R(-)  =  p(1  1) (C.63) 

where p(1  1) with Mp = 1 can be considered the Wood-representable unit transformation. Alto-

gether, the set of all Wood-representable transformations described as p( 1  2 )R and applied to 

a given Bravais lattice form an (infinite) Abelian group. 
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D Mathematics of the Minkowski Reduction 

This appendix discusses mathematical details of the Minkowski reduction used to obtain sym-

metrically appropriate lattice vectors Ro1 and Ro2 from initial lattice vectors R1 and R2, see Sec. 

3.3. 

Let us assume that R1 and R2 are lattice vectors of a two-dimensional lattice with lengths R1 and R2. 

Then vector r inside the plane spanned R1 and R2 and by defined by  

r  =  R2 - x R1 (D.1) 

has a squared length 

r
2
  =  |r|

2
  =  R2

2
 + x

2
 R1

2
 - 2 x (R1R2) (D.2) 

which, by varying x, reaches its minimum for 

x  =  xmin  =  (R1R2) / R1
2
 (D.3) 

The resulting smallest vector r = rmin with 

rmin  =  R2 - xmin R1  =  R2 - ((R1R2) / R1
2
) R1 (D.4) 

is perpendicular to R1, since 

(R1 rmin)  =  (R1R2) - ((R1R2) / R1
2
) (R1R1)  =  0 (D.5) 

However, in general rmin will not be a lattice vector itself. The lattice vector R2' represented by  

(D.1), nearest to rmin in length, is given by 

R2'  =  R2 - {xmin} R1 (D.6) 

where function {x} denotes the integer nearest to a real number x as introduced in Appendix E.1. 

Then for the length square |R2'|
2
 we obtain 

|R2'|
2
 =  R2

2
 + {xmin}

2
 R1

2
 - 2 {xmin} (R1R2) 

 =  R2
2
 - {xmin} (2 xmin - {xmin}) R1

2
  =  R2

2
 - p(xmin) R1

2
 (D.7) 

where the mixing factor 

p(x)  =  {x} (2 x - {x}) (D.8) 

is symmetric in x and assumes only positive values as discussed in Appendix E.1, i.e. 

p(-x)  =  p(x)    0 (D.9) 
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Thus, the reduction  R2    R2'  yields according to (D.7)  

|R2'|
2
    R2

2
 (D.10) 

which proves that it can only decrease the length of vector R2 or leaves its length unchanged. The 

latter means that  

{xmin}  =  0       or       -1/2    xmin  <  1/2 (D.11) 

and, together with (D.3), leads to 

-R1
2
    2 (R1R2)  <  R1

2
 (D.12) 

In addition, transformation (D.6) will always lead to a vector R2' of finite length, i.e. |R2'| > 0 since 

R1 and R2 are assumed to be linearly independent. A reduction analogous to (D.1) can be applied to 

reduce the length of R1, yielding 

R1'  =  R1 - {xmin'} R2  ,         with     xmin'  =  (R1R2) / R2
2
 (D.13) 

where the reduction can only decrease the length of vector R1 or leaves its length unchanged. The 

latter results in 

-R2
2
    2 (R1R2)  <  R2

2
 (D.14) 

Relations (D.6) , (D.12) , (D.13), and (D.14) form the basis of an iterative algorithm, the Min-

kowski reduction, which can be used to determine a lattice vector set Ro1, Ro2 with vectors that are 

the smallest in length. We consider an iterative transformation starting with 

(k = 0)     R1
(k)

 = R1 ,        R2
(k)

 = R2 (D.15) 

where each iteration step contains two reductions. First, vector R2
(k)

 is reduced according to (D.6) 

which can be written as a linear transformation ( R1
(k)

, R2
(k)

 )    (R1
(k)

, R2
(k+1)

 ) with 
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 (D.16) 

Then vector R1
(k)

 is reduced according to (D.13) which can be written as a linear transformation  

( R1
(k)

, R2
(k+1)

 )    ( R1
(k+1)

, R2
(k+1)

 ) with 
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 (D.17) 
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Since the transformation matrices in (D.16), (D.17) are integer-valued and their inverse matrices 
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k  (D.18) 

exist and are also integer-valued, the reduced lattice vectors R1
(k+1)

 and R2
(k+1)

 of (D.17) provide the 

same lattice description as R1
(k)

 and R2
(k)

. However, the vector lengths of R1
(k+1)

 and R2
(k+1)

 are 

equal or smaller compared with those of R1
(k)

 and R2
(k)

. 

Since the two vector lengths R1
(k+1)

 and R2
(k+1)

 have both a finite lower bound, the continued 

reductions (D.16), (D.17) will, after N iteration steps, converge to a final vector set 

Ro1  =  R1
(N)

 ,        Ro2  =  R2
(N)

 (D.19) 

which cannot be reduced further. This means in particular that the transformation matrices in 

(D.16), (D.17) will become unit matrices resulting in 

{xN}  =  {xN'}  =  0 (D.20) 

which, according to (D.11), (D.16), and (D.17), leads to 

-Ro1
2
    2 (Ro1Ro2)  <  Ro1

2
 (D.21a) 

-Ro2
2
    2 (Ro1Ro2)  <  Ro2

2
 (D.21b) 

or finally to 

-min ( Ro1
2
, Ro2

2
 )    2 (Ro1Ro2)  <  min ( Ro1

2
, Ro2

2
 ) (D.22) 

Relation (D.22) forms the basic condition for Minkowski-reduced (MR) lattice vectors, see also 

(3.16). 

Assuming Ro1 and Ro2 to form MR lattice vectors according to (D.22), the squared distance d
2
 

of any lattice vector in this lattice can be written as 

d
2
  =  (n1 Ro1 + n2 Ro2)

 2
  =  n1

2
 Ro1

2
 + n2

2
 Ro2

2
 + 2 n1 n2 (Ro1Ro2) (D.23) 

If n1n2  0 and (Ro1Ro2)  0 or if  n1n2 < 0 and (Ro1Ro2)  0 this leads together with (D.22) to  

d
2
    (n1

2
 + n2

2
) min ( Ro1

2
, Ro2

2
 )    min (Ro1

2
, Ro2

2
 ) (D.24) 

If, on the other hand, n1n2 < 0 and (Ro1Ro2)  0 or if  n1n2 > 0 and (Ro1Ro2)  0and we obtain 
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d
2
 =  n1

2
 Ro1

2
 + n2

2
 Ro2

2
 - 2 |n1| |n2| |(Ro1Ro2)| 

   (n1
2
 + n2

2
 - |n1| |n2|) min (Ro1

2
, Ro2

2
 ) 

   1/2 ( (|n1| - |n2|)
2
 + n1

2
 + n2

2
 ) min (Ro1

2
, Ro2

2
 ) 

   min (Ro1
2
, Ro2

2
 ) (D.25) 

This proves that at least one of the two lattice vectors Ro1 and Ro2 connects lattice points of smallest 

distance in the lattice. 

If vectors Ro1 and Ro2 span an angle γ then (D.22) can be written as 

- min(q, 1/q)    2cos (γ)  <  min(q, 1/q)  ,      q  =  Ro2 / Ro1 (D.26) 

which leads to absolute limits 

-1/2    cos (γ)  <  1/2 60  <  γ    120 (D.27) 

Thus, Minkowski-reduced lattice vectors can span only angles γ between 60 and 120.  

Analogues of the Minkowski reduction to bulk lattices have been proposed [42], [43], [49] 

where for acute lattice representations the reduced lattice vectors Ro1, Ro2, Ro3 are found to obey 

-min ( Roi
2
, Roj

2
 )    2 (RoiRoj)  <  min ( Roi

2
, Roj

2
 )     i, j = 1, 2, 3,    i  j (D.28) 

Then the squared distance d
2
 of any lattice vector in this lattice can be written as 

d
2
 =  (n1 Ro1 + n2 Ro2 + n3 Ro3)

 2
  = 

 =  n1
2
 Ro1

2
 + n2

2
 Ro2

2
 + n3

2
 Ro3

2
 + 2 n1 n2 s12 + 2 n1 n3 s13 + 2 n2 n3 s23 (D.29) 

with 

sij  =  RoiRoj  >  0 ,     i, j = 1, 2, 3,    i  j  (acute representation) (D.30) 

Relation (D.29) together with (D.28) yields for n1  0, n2  0, and n3  0 or for n1 < 0, n2 < 0, and  

n3 < 0  

d
2
    n1

2
 Ro1

2
 + n2

2
 Ro2

2
 + n3

2
 Ro3

2
    (n1

2
 + n1

2
 + n1

2
) s

2
    s

2
 (D.31) 

with 

s
2
  =  min ( Ro1

2
, Ro2

2
, Ro3

2
) (D.32) 

For n1  0, n2  0, and n3 < 0 or for n1 < 0, n2 < 0, and n3  0 relation (D.29) together with (D.28) 

yields  
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d
2
 =  n1

2
 Ro1

2
 + n2

2
 Ro2

2
 + n3

2
 Ro3

2
 + 2 |n1| |n2| s12 - 2 |n1| |n3| s13 - 2 |n2| |n3| s23 

  1/2 ( (|n1| - |n3|)
2
 + n1

2
 + n3

2
 ) min (Ro1

2
, Ro3

2
 )  + 

   +  1/2 ( (|n2| - |n3|)
2
 + n2

2
 + n3

2
 ) min (Ro2

2
, Ro3

2
 ) 

  1/2 [ (|n1| - |n3|)
2
 + n1

2
 + n3

2
  +  (|n2| - |n3|)

2
 + n2

2
 + n3

2
 ] s

2
 

  s
2
  (D.33) 

For all other combinations of positive and negative mixing factors ni ,i = 1, 2, 3, proof s analogous 

to (D.33) yield the same result such that, altogether, we obtain 

d
2
    min ( Ro1

2
, Ro2

2
, Ro3

2
) (D.34) 

which shows that for acute lattice representations relation (D.28) guarantees that the reduced lattice 

vector set contains the lattice vector of smallest length. 
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E Details of Number Theory 

In different sections of this book number theoretical methods are applied and functions used. 

This appendix discusses only some basic details. Further information and additional proofs may be 

obtained from the mathematical literature [204], [205], [206]. 

 

E.1 Basic Definitions and Functions 

The present definitions deal with the most basic functions and their properties which are neces-

sary for the number theoretical algorithms discussed in Secs. E.2 to E.5. 

The integer truncation function f(x) = [x] (written with square brackets) is defined for real num-

bers x as the largest integer n with n  x. Thus, if 

n  =  [x]     then     n    x  <  (n+1) (E.1) 

Examples are 

 [1.98] = 1 ,  [5] = 5 ,  [4.5] = 4 ,  [-0.6] = -1 ,  [-3.5] = -4 ,  [-7.3] = -8 

Note that in some textbooks the integer truncation function for negative x is defined as  

x < 0  :    [x ]  =  -[-x] (E.2) 

which would yield [-0.6] = 0, [-3.5] = -3, [-7.3] = -7, leading to an negative integer value 

increased by 1 compared to the present definition. 

The nearest integer function g(x) = {x} (written with curly brackets) is defined for real numbers x 

as the integer n nearest to x, where values x = m + 1/2, m integer, are defined as  

{x} = m + 1. Thus, the nearest integer function can be expressed by the integer truncation 

function given by (E.1) as 

g(x)  =  {x}  =  [x + 1/2] (E.3) 

Examples are 

 {1.98} = 2 ,  {5} = 5 ,  {2.5} = 3,  {-0.6} = -1 ,  {-3.5} = -3 ,  {-7.3} = -7 

The modulo function mod(n, m) = n | m is defined for positive integers m, n as the (integer) re-

mainder of an integer division of n by m, i.e. by 

mod(n, m)  =  n | m  =  n  -  [n/m] m (E.4) 
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This definition includes cases where  0  <  n  <  m  yielding 

n | m  =  n     for  0    n  <  m (E.5) 

Examples are 

 8 | 3 = 2 ,  19 | 7 = 5 ,  5 | 6 = 5 ,  64 | 8 = 0 ,  181 | 9 = 1 ,  9 | 12 = 9 

The greatest common divisor gcd(m, n) of two integers m, n is defined as the largest (positive) 

integer factor (divisor) that is common to both numbers, i.e. if 

m  =  c p  ,     n  =  c q       with integer c > 0, p, q (E.6) 

and c is the largest of all factors, then 

gcd(m, n)  =  gcd(n, m)  =  c (E.7) 

If either m or n (or both) are negative integers, then we set 

gcd(m, n)  =  gcd(|m|, |n|)  =  c (E.8) 

which yields always positive values for gcd(m, n). Further, if  

 the two integers m, n are equal then 

gcd(m, n)  =  m (E.9) 

 two different integers m, n do not contain a common factor > 1 then  

gcd(m, n)  =  1 (E.10) 

and the integers are called coprime. 

 one of two integers m, n equals zero, for example n = 0, then we define 

gcd(m, 0)  =  gcd(0, m)  =  m (E.11) 

 m, n are integers and m is a multiple of n then  

gcd(m, n)  =  gcd(n, m)  =  n (E.12) 

 m, n are integers then  

gcd(m
2
, n

2
)  =  gcd(m, n)

2
 (E.13) 

 m, n are integers with a = gcd(m, n), then  

gcd(m, m+n)  =  a gcd(m/a, (m+n)/a) (E.14) 
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The greatest common divisor function can be generalized to more than two integers by a 

recursive procedure, where  

gcd(n1, n2, … , nN) =  gcd(n1, gcd(n2, … , nN))  = 

 =  gcd(n1, gcd(n2, gcd(n3, … , nN)))  = 

 =  gcd(n1, gcd(n2, gcd(n3, gcd(… , gcd(nN-1, nN))…) (E.15) 

Examples are 

gcd(87, 9) = 3 ,  gcd(147, 49) = 49 ,  gcd(122, 11) = 1 ,  gcd(18, 192) = 6 

gcd(18, 192, 333) = 3 

In the discussion of the Minkowski reduction of Appendix D, the nearest integer function ap-

pears in a composite function p(x) for real-valued x , see (D.7), (D.8), which is defined by 

p(x)  =  {x} ( 2 x - {x} ) (E.16) 

The definition (E.3) of the nearest integer function {x} yields  

{x} = n ,    n integer     for      n - 1/2    x  <  n + 1/2 (E.17) 

Thus we can write function p(x) as a linear function 

p(x)  =  n ( 2 x - n )     for      n - 1/2    x  <  n + 1/2 (E.18) 

At the boundary xb = n + 1/2 between the intervals [ n - 1/2, n + 1/2 ) and [ n + 1/2, n + 3/2 ) func-

tion p(x) yields values 

from the left : p(xb-)  =  n (2 x - n)  =  n (n + 1) 

from the right : p(xb+)  =  (n + 1) (2 x - n - 1)  =  n (n + 1) (E.19) 

which shows that p(x) is a continuous function. Further, if x  n + 1/2 then 

{x}  =  n       implies       {-x} = -n (E.20) 

resulting in 

p(-x)  =  p(x) (E.21) 

For x = n + 1/2 we obtain 

{x}  =  n + 1       and, hence,       {-x} = -n - 1 + 1  = -n (E.22) 

and thus 

p(-x)  =  (-n - 1) (-n)  =  n (n + 1)  =  p(x) (E.23) 
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This shows that function p(x) is symmetric with respect to x. Finally, relation (E.18) shows that 

p(x) varies linearly with x inside the interval [ n - 1/2, n + 1/2 ) where 

p(n - 1/2)  = n (n - 1)    p(x)    p(n + 1/2)  = n (n + 1) (E.24) 

Altogether, p(x) has been proven to assume always positive values, see also Fig. E.1. Further, p(x) 

is close to parabolic shape which is clear from the fact that the parabolic function f(x) = x
2
 - 1/4 co-

incides with p(x) at all points x = n + 1/2. 

 

Fig. E.1  Graph of function p(x) inside the interval [-3.5, +3.5]. 

The least common multiple lcm(m, n) of two integers m, n is defined as the smallest  

integer which contains both numbers as factors, i.e. if 

m  =  a p  ,     n  =  b p    where    p  =  gcd(m, n) (E.25) 

then 

lcm(m, n)  =  a b p  =  m n / gcd(m, n) (E.26) 

Further, if 

 two integers m, n are equal, then 

lcm(m, n) = m (E.27) 

 two different integers m, n are coprime, then 

lcm (m, n) = m n (E.28) 
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 one of two integers m, n equals zero then lcm(m, n) is undefined 

 one of two integers m, n equals 1, then 

lcm(m, 1)  =  gcd(1, m)  =  m (E.29) 

Analogous to the greatest common divisor, the least common multiple function can be 

generalized to more than two integers by a recursive procedure, where  

lcm(n1, n2, … , nN) =  lcm(n1, lcm(n2, … , nN))  = 

  =  lcm(n1, lcm(n2, lcm(n3, … , nN)))  = 

 =  lcm(n1, lcm(n2, lcm(n3, lcm(… , lcm(nN-1, nN))...) (E.30) 

Examples are 

lcm(87, 9) = 261 ,  lcm(147, 49) = 147 ,  lcm(122, 11) = 1342 

lcm(18, 81, 6) = 162  . 

The partitioning of multiple-atom-height step regions into subterraces A and  B separated by 

single-height steps, discussed in Sec. 4.3, can be phrased mathematically as the problem to subdi-

vide the positive integer w into h integers wi < w where wi are of smallest variation. (In (4.13)  

ns corresponds to h and nt to w.) This is equivalent to approximating a linear function f(x) = (h/w) x 

with integer h and w by a step function g(x) = [(h/w) x] where wi , i = 1, h refers to the intervals of 

constant g(x) as sketched in Fig. E.2 for w = 18, h = 5. 

 

Fig. E.2  Graph of linear function f(x) (red) and step function g(x) (black) for x in-

side [0, 18], see text. The short and long steps are labeled A and B, respectively.  

First, we note that 

w  =  p h  + r   ,   p = [w/h]      with  0  r < h (E.31) 
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which suggests a partitioning of number w into two kinds, (h-r) numbers A of size wi = p and  

r numbers B of size wi = (p+1). This guarantees that the sum of all wi equals w and, in addition, that 

the variation between the different wi is smallest. If w is an integer multiple of h, then r = 0 in 

(E.31) and there are only type A numbers. Otherwise, there are type A and type B numbers which 

differ by 1. 

While the number of different wi values is clear the sequence of type A and B numbers is not 

regular and can be obtained from 

  h,1i,pp1i
h

w
i

h

w
w ii 


































  (E.32) 

where 

 

































 1i

h

r
i

h

r
pi  (E.33) 

for 0  r < h can only equal 0 or 1 distinguishing between type A and type B numbers. Here (E.33) 

yields for the first number p1 = [r/h] = 0 such that w1 = p (type A number) and for the last number  

ph = [r] - [r - r/h] = 1 such that wh = (p+1) (type B number). However, the intermediate numbers 

wi, 1 < i < h , alternate between p and p+1 in an irregular way. As an example, the combination  

w = 18, h = 5, p = 3, r = 3 yields the sequence BBABA shown in Fig. E.2. 

 

E.2 Euclid’s Algorithm  

There is a simple number theoretical method to find the greatest common divisor gcd(a, b) of 

two integers a, b, see Appendix E.1, usually referred to as Euclid’s algorithm and discussed in this 

appendix. 

First, we note that we can restrict ourselves to positive integers a, b using definition (E.8) for 

negative integers. Second, for  a = b  the greatest common divisor gcd(a, b) is equal to the argu-

ments, i.e. 

gcd(a, a)  =  a (E.34) 
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which does not require further evaluation. Further, gcd(a, 0) = a and gcd(a, 1) = 1 do not merit any 

consideration. In the more general case of b > a > 0 the greatest common divisor c = gcd(a, b) im-

plies that  

a  =  c p  ,     b =  c q       with integer p, q,  c > 0 (E.35) 

Thus, we obtain for the auxiliary parameter b'  

b'  =  b | a  =  b - [b/a] a  =  ( q - [q/p] p ) c  =  c q' (E.36) 

(Definitions of the modulo and the integer truncation function are given in Appendix E.1.) Hence, 

parameter b' contains c = gcd(a, b) as a factor and, on the other hand, must be smaller then a, ac-

cording to the definition of the modulo function. As a result, 

gcd(a, b)  =  gcd(a, b')       where     b  >  a  >  b'    0 (E.37) 

If b' = 0 then b is a multiple of a, and according to (E.12), gcd(a, b) = a. Otherwise, the reduction 

can be continued by reducing parameter a to yield a' analogous to (E.36) which yields an even 

smaller pair of numbers a', b' with the greatest common divisor being equal to that of the initial pair. 

Further reductions will eventually lead to one of the two numbers assuming the value zero with the 

other to yield gcd(a, b). This finishes the algorithm usually attributed to the Greek mathematician 

Euclid. Its computational procedure can be formally described by the iteration 

a0  =  a > 0 ,    b0  =  b > 0 ,    k  =  0 

if  (a0 = b0)   then       gcd(a, b) = a0 finish 

(*) ak+1  =  ak - [ak/bk] bk ,    bk+1  =  bk - [bk/ak] ak 

if  (ak+1 = 0)   then       gcd(a, b) = bk+1 finish 

if  (bk+1 = 0)   then       gcd(a, b) = ak+1 finish 

k  =  k + 1 goto (*) (E.38) 

For example finding gcd(333, 90) with this algorithm reads 

(a, b)  = (333, 90)    (63, 90)    (63, 27)    (9, 27)    (9, 0) 

and hence gcd(333, 90)  =  9. 

Euclid’s algorithm can be used recursively to find the greatest common divisor of a set of in-

tegers n1, n2, …, nN according to definition (E.15). 
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E.3 Linear Diophantine Equations 

In Sec. 3.2 it was shown that netplane-adapted lattice vectors can be obtained by matrix trans-

formations, see (3.11), (3.12), (3.13), where corresponding matrix elements result from solutions of 

inhomogenous linear Diophantine equations in two variables, i.e. equations of the type 

a x  +  b y  =  c (E.39) 

with given integer constants a, b, c and unknown integer varables x and y to be determined. This 

appendix discusses an iterative method to find solutions of (E.39), where the method is closely con-

nected with Euclid’s algorithm of Appendix E.2. 

First, we can restrict ourselves to positive constants a, b, and c, since equation (E.39) can al-

ways written with positive constants by changing the corresponding signs of the solutions x, y, for 

example 

a  <  0,  b  >  0, and c    0  leads to         |a| (-x)  +  b y  =  c (E.40a) 

a  <  0,  b  <  0, and c    0  leads to         |a| (-x)  +  |b| (-y)  =  c (E.40b) 

a  >  0,  b  >  0, and c  <  0  leads to         |a| (-x)  +  |b| (-y)  =  |c| (E.40c) 

For c = 0 and finite a, b equation (E.39) becomes a homogeneous linear Diophantine equation 

which possesses an infinite number of integer solutions xo, yo given by 

xo  =  p (b / g)  , yo  =  -p (a / g)     p integer  , g  =  gcd(a, b) (E.41) 

Thus, any particular integer solution xp, yp of the corresponding inhomogeneous equation (E.39) 

with c  0 can be used to construct an infinite set of solutions, xp + xo, yp + yo  by adding those of 

the homogeneous equation, given by (E.41), since 

a (xp + xo)  +  b (yp + yo)  =  a xp  +  b yp  =  c (E.42) 

In the following we will discuss an algorithm to find a particular integer solution x, y of equa-

tion (E.39) where we can restrict ourselves to solutions for c = 1. A solution of (E.39) for c  1 can 

be easily obtained from that for c = 1 by scaling, since equation 

a x  +  b y  =  1 (E.43) 

can be transformed to 

a x'  +  b y'  =  c with     x'  =  c x ,     y'  =  c y (E.44) 
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Constants a and b of equation (E.43) must be coprime, i.e. constrained to 

gcd(a, b) = 1 (E.45) 

Otherwise, equation (E.43) has no solution. As an example 

117 x  +  18 y  =  9 (13 x  +  2 y)  =  1 (E.46) 

has no integer solution x, y since the right hand side of (E.46) is not a multiple of  9. 

In order to determine a particular solution of equation (E.43) we consider a transformation 
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and, thus, 

 
  





































 

'y

'x

1b/a

a/b1

'y

'x
T

y

x 1
 (E.48) 

where for a  b either [b / a] or [a / b] must equal zero. This transforms equation (E.43) into 

a x + b y =  a (x' - [b/a] y') + b (y' - [a/b] x') 

 =  (a - [a/b] b) x' + (b - [b/a] a) y'  =  a' x' + b' y'  =  1 (E.49) 

yielding a modified Diophantine equation of the same structure as (E.43) but with changed con-

stants a', b' where 
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 (E.50) 

These relations are analogous to the reduction step (E.36) of Euclid’s algorithm for finding the 

greatest common divisor of a and b, which suggests to apply the same iterative procedure to finding 

solutions of equation (E.43). 

Thus, in analogy to transformations (E.47), (E.48) we consider an iterative sequence of trans-

formations starting with 

(k = 0)     ak  =  a ,        bk  =  b ,        xk  =  x ,        yk  =  y (E.51) 

and given by 
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This transforms equation 

ak xk + bk yk  =  1 (E.53) 

into 

ak+1 xk+1 + bk+1 yk+1  =  1 (E.54) 

where the coefficients ak and bk transform to ak+1 and bk+1 according to 
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 (E.55) 

This transformation can be continued iteratively, where coefficients ak and bk become successively 

smaller as a result of reduction (E.55), i.e. 

0    ak+1    ak     and      0    bk+1    bk (E.56a) 

while according to Euclid’s algorithm 

gcd(ak+1, bk+1)  =  gcd(ak, bk)  =  1 (E.56b) 

The iteration finishes when one of the coefficients ak+1 or bk+1 becomes zero which happens after a 

finite number of steps since the iteration deals with integers. Assuming that for k+1 = N coefficient 

ak+1 vanishes we obtain from (E.53) together with (E.45) 

aN xN + bN yN  =  bN yN  =  gcd(a, b) yN  =  yN  =  1 (E.57) 

Setting xN = yN = 1 we can iterate backwards using relation  
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to find the solution of the initial equation (E.43) according to 
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If for k+1 = N coefficient bk+1 vanishes we can apply the same reasoning as before and obtain the 

same iterative solution (E.59). Altogether, the iteration defined by (E.55), (E.57), (E.58) with start-

ing values (E.51) allows the iterative calculation of a particular solution of the linear  

Diophantine equation (E.43), where the iteration requires only a finite number of steps. 

Solutions of linear Diophantine equations with n > 2 variables 

a1 x1  +  a2 x2  +  …  +  an xn  =  1 (E.60) 

can be formally reduced to the n = 2 problem by rewriting (E.60) as 

a1 x1  +  a2 x2  =  1  -  a3 x3  -  …  -  an xn  =  C (E.61) 

where setting x3, … xn equal to an appropriate combination of integers defines an auxiliary constant 

C. Then the above described procedure yields a particular solution x1, x2 of (E.61) which, together 

with the predefined values x3, … xn, results in a particular solution of (E.60). Analogous to the con-

straint (E.45), integer solutions of equation (E.60) impose a constraint on the greatest common divi-

sor of all coefficients a1, a2, … an, where 

gcd(a1, a2, … an)  =  1 (E.62) 

 

E.4 Quadratic Diophantine Equations 

There is an extensive literature on quadratic Diophantine equations [204], [205] which will not 

be reviewed in this appendix. Here we focus only on solutions of specific equations which arise in 

connection with neighbor shells in crystals with high symmetry and overlayer reconstruction at 

single crystal surfaces. 

 

(a) Diophantine equations of the type 

n1
2
 + n2

2
 + n3

2
 = N  ,     ni, N  integer ,    N  0 (E.63) 

appear in connection with neighbor shells discussed in Sec. 2.6. These equations do not have solu-

tions for every value of parameter N, which can be proven using an octal representation of integers. 

Here a positive integer a is written as 

a  =  (8 p + r)      p, r integer with  0  r < 8 (E.64) 
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and, hence, the square of an integer can be represented as 

a
2
  =  8 (8 p

2
 + 2 p r) + r

2
 (E.65) 

Thus, using the definition of the modulo function a | b of Appendix E.1, this yields 

a
2
 | 8  =  r

2
 | 8 (E.66) 

where the following table lists all possible values of  r
2
 | 8. 

r  =  (a | 8) (r
2
 | 8) 

0 0 

1 1 

2 4 

3 1 

4 0 

5 1 

6 4 

7 1 

 (E.67) 

As a result, (r
2
 | 8) allows only three values, 0, 1, and 4. Further, the sum of three squares can be 

written in octal representation (ni = 8 pi + ri) as 

n1
2
 + n2

2
 + n3

2
  =  64 (p1

2
 + p2

2
 + p3

2
) + 16 (p1 r1 + p2 r2 + p3 r3) + (r1

2
 + r2

2
 + r3

2
) 

and hence  

(n1
2
 + n2

2
 + n3

2
) | 8  =  (r1

2
 + r2

2
 + r3

2
) | 8 (E.68) 

with possible values according to (E.67) in canonical order 

ri
2
, rj

2
, rk

2
 (r1

2
 + r2

2
 + r3

2
) | 8 

0, 0, 0 0 

0, 0, 1 1 

0, 0, 4 4 

0, 1, 1 2 

0, 1, 4 5 

0, 4, 4 0 

1, 1, 1 3 

1, 1, 4 6 

1, 4, 4 1 

4, 4, 4 4 
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 (E.69) 

This shows that 

(n1
2
 + n2

2
 + n3

2
) | 8    7     or       n1

2
 + n2

2
 + n3

2
    8 q + 7 ,     q integer (E.70) 

Next we note that if all numbers ni in (E.63) are even numbers, then their squares are multiples 

of 4 and, as a consequence, N in (E.63) must be a multiple of 4.Thus, we can write 

n1
2
 + n2

2
 + n3

2
  =  (2 m1)

2
 +(2 m2)

2
 +(2 m3)

2
  =  N  =  4 M (E.71) 

which can be reduced to 

m1
2
 + m2

2
 + m3

2
  =  M (E.72) 

Therefore, if equation (E.72) has no solutions for M = (8 q + 7) then (E.71) has no solutions equal  

to 4 (8 q + 7). This can be continued to yield the final result that equation (E.63) does not have solu-

tions for 

N = 4
p
 (8q+7)  ,     p, q  integer (E.73) 

For N values different from those given by (E.73) solutions of equation (E.63) can be deter-

mined by trial-and-error since values ni , i = 1, 2, 3, are restricted to a finite number of integers  

| ni |    [N].  For any given solution (n1, n2, n3) the sets of triplets (n1, n2, n3) and  

(n1', n2', n3') with ni' denoting permutations of ni offer other solutions counted by the symmetry 

degeneracy msym where msym = 6, 8, 12, 24, 48 depending on the actual values of ni. Thus, equation 

(E.63) has always multiple solutions for N > 1. In addition, this equation can have solutions  

(n1, n2, n3) and (n1', n2', n3') where the absolute values of the numbers ni and ni' differ beyond simple 

permutations. An example are (1,3,4) and (1,0, 5) yielding N = 26. These solutions are counted by 

the accidental degeneracy macc. While msym for each solution (n1, n2, n3) is limited to a maximum of 

msym = 48 values of macc have no upper bound. As an illustration, equation (E.63) for N = 972221 

yields macc = 521 where for 520 different solutions msym = 48 and for one solution msym = 12 

amounting, altogether, to 24972 different solutions. 

It may be mentioned in passing that Diophantine equations of the type 

n1
2
 + n2

2
 + n3

2
 + n4

2
 = N  ,     ni, N  integer (E.74) 

have (multiple) solutions for any value of N  0 which is known as Langange’s theorem [206]. 
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(b) Diophantine equations of the type 

n1
2
 + n2

2
 = N

2
  ,     n1, n2, N integer (E.75) 

appear in connection with rotationally reconstructed overlayers at single crystal surfaces with 

square geometry discussed in detail in Sec. 5.2. Equation (E.75) is the integer version of the well 

known Pythagorean equation defining so-called Pythagorean triplets (N, n1, n2). These numbers 

can be constructed by the generalized Euclid formula. Setting 

n1 = k (2 m n) , n2 = k (m
2
 - n

2
) ,     k, m, n  integer     with      m > n (E.76) 

and letting m, n, k assume all possible values yields 

N  =  (n1
2
 + n2

2
)  =  k (m

2
 + n

2
) (E.77) 

It can be shown that (E.76) generates all possible Pythagorean triplets. Setting k = 1 in (E.76) yields 

so-called primitive triplets, which are defined by gcd(m, n) = 1 with either odd m and even n or 

vice versa. In this case the representation of (n1, n2, N) by m, n is unique, i.e. there are no other val-

ues m, n which yield the same triplet (n1, n2, N). Further, (E.76) shows that there are infinitely many 

Pythagorean triplets. In addition, the numbers n1, n2 must always be different (if the trivial cases  

n1 = 0 and/or n2 = 0 are excluded), since no square number can be represented by (2N
2
).  

The following table lists the 10 smallest primitive Pythagorean triplets (N, n1, n2) with n1 > n2 > 0. 

 

 (N, n1, n2) 

1 (5, 4, 3) 

2 (13, 12, 5) 

3 (17, 15, 8) 

4 (25, 24, 7) 

5 (29, 21, 20) 

6 (37, 35, 12) 

7 (39, 36, 15) 

8 (41, 40, 9) 

9 (51, 45, 24) 

10 (53, 45, 28) 
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(c) Diophantine equations  of the type 

m
2
 + m n + n

2
 = N

2
  ,     m, n, N integer (E.78) 

appear in connection with rotationally reconstructed overlayers at single crystal surfaces with hex-

agonal geometry, see Sec. 6.4. If the hexagonal surface is described (in Cartesian coordinates) by 

lattice vectors in acute representation, i.e. by 

R1  =  a (1, 0) , R2  =  a (1/2, 3/2) (E.79) 

then rotated overlayer lattice vectors R1', R2' must be of equal length compared with those of R1, R2. 

Assuming a coincidence lattice overlayer, see Sec. 5.2, where 
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2221
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mm

mm

N

1

'R

'R
  ,     mij, N  integer (E.80) 

we obtain for the vector lengths with (E.79) 

N
2
 |Ri'|

2
 =  | mi1 R1 + mi2 R2 |

2
  =  a

2
 (mi1

2
 + mi1 mi2 + mi2

2
)   

 =  N
2
 |Ri|

2
  =  a

2
 N

2
 (E.81) 

where setting 

mi1  =   m ,       mi2  =  n (E.82) 

leads to Diophantine equations of the type (E.78). These equations are quadratic and of the elliptic 

type with multiple solutions for all values N. We note that 

 for integer N  0 there are always six trivial solutions, 

(m, n)  =  (N, 0) , =  (0, N) ,  =  (N, -N) (E.83) 

 if mo  0,  no  0 are solutions of equation (E.78) then 

o mo, no must be different in value, since, assuming mo = no, equation (E.78) would 

read  3 no
2
  =  N

2
  which cannot be solved for integers no, N. 

o there are altogether 12 different solutions 

(m, n) =  (mo, no) , =  ( mo, -mo - no) , =  ( mo + no, -mo) 

 =  (no, mo) , =  ( no, -mo - no) , =  ( mo + no, -no) (E.84) 

 equation (E.78) can also be written as 
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22 n
4

3
N

2

n
m          or         

22 m
4

3
N

2

m
n   (E.85) 

This restricts the range of integer solutions (m, n) to 









 N

3

2
n,m0n

4

3
N,0m

4

3
N 2222

 (E.86) 

and offers a trial-and-error method to determine solutions (m, n) for given N > 0. Letting in-

teger n run from -[(2/3) N] to [(2/3) N] and checking the validity of equation (E.85) for 

integers m yields corresponding solutions. 

The following table lists the 10 smallest triplets (N, m, n) with m > n > 0 (gcd(m, n) = 1) 

 (N, m, n) 

1 (7, 5, 3) 

2 (13, 8, 7) 

3 (19, 16, 5) 

4 (31, 24, 11) 

5 (37, 33, 7) 

6 (43, 35, 13) 

7 (49, 39, 16) 

8 (61, 56, 9) 

9 (67, 45, 32) 

10 (73, 63, 17) 

 

 

(d) Diophantine equations  of the type 

m
2
 + 2 n

2
 = N

2
  ,     m, n, N integer (E.87) 

appear in connection with rotationally reconstructed overlayers at single crystal surfaces with rec-

tangular geometry, see Sec. 6.4. If the rectangular surface is described (in Cartesian coordinates) 

by lattice vectors 

R1  =  a (1, 0) , R2  =  a (0, 2) (E.88) 

then each of the two rotated overlayer lattice vectors Ri' must be of equal length compared with that 

of Ri. Assuming a coincidence lattice overlayer, see Sec. 5.2, with lattice vectors defined by (E.80), 
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we obtain for the vector lengths together with (E.88) 

N
2
 |R1'|

2
  =  | m11 R1 + m12 R2 |

2
  =  a

2
 (m11

2
 + 2m12

2
)  =  N

2
 |R1|

2
  =  a

2
 N

2
 (E.89) 

The orthogonality of R1', R2' and the vector ratio R2'/R1' = 2 of the rotated lattice is guaranteed by 

setting m21 = -2 m12 and m22 = m11. Further, setting 

m11  =   m ,       m12  =  n (E.90) 

leads to Diophantine equations of the type (E.87) which are quadratic and of the elliptic type. Equa-

tion (E.87) can also be written as 

22 n2Nm   (E.91) 

which restricts the range of integer solutions (m, n) to 









 N

2

1
n0n2N 22

 (E.92) 

Thus, solutions can be obtained by trial-and-error methods analogous to those, used for hexagonal 

surfaces described above. Letting integer n run from -[(1/2) N] to [(1/2) N] and checking the va-

lidity equation (E.91) for integers m yields corresponding solutions. 

The following table lists solution triplets (N, m, n) for the 10 smallest N values (gcd(m, n) = 1) 

 (N, m, n) 

1 (3, 1, 2) 

2 (9, 7, 4) 

3 (11, 7, 6) 

4 (17, 1, 12) 

5 (19, 17, 6) 

6 (27, 23, 10) 

7 (33, 17, 20) 

8 (33, 31, 8) 

9 (41, 23, 24) 

10 (43, 7, 30) 

 

 

 (e) Diophantine equations  of the type 
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a m
2
 = b n

2
  ,     a, b, m, n integer (E.93) 

appear in connection with symmetry constraints of nanotubes, see Sec. 8.2. This equation can also 

be written as 

m = p n    with  p = (b/a)  ,     a, b, m, n integer (E.94) 

Thus, for (E.94) to have integer solutions parameter p must be a rational number which is only pos-

sible if (b/a) equals the square of a rational number, i.e. if 

b/a = (w/v)
2
 = w

2
/v

2
  ,    w, v integer (E.95) 

Inserting (E.95) into the initial equation (E.93) yields 

v m = w n     with integer solutions    m = q w ,   n = q v ,    q integer (E.96) 

Constraint (E.95) means, in particular, that the Diophantine equation 

3 m
2
 = n

2
  ,     m, n integer (E.97) 

has no solutions. This is the mathematical basis of proving that ideal substrate surfaces with a 

square lattice, like fcc(1 0 0) or bcc(1 0 0), cannot have commensurate overlayers with a hexagonal 

lattice. Likewise, the Diophantine equation 

3 m
2
 = 2 n

2
  ,     m, n integer (E.98) 

has no solutions which is essential for proving that primitive rectangular substrate surfaces de-

scribed by fcc(1 1 0) cannot have commensurate overlayers with a hexagonal lattice. 

 

E.5 Number Theory and 2  2 Matrices 

This appendix discusses a few number theoretical details connected with two-dimensional ma-

trices whose elements are integer or fractional numbers. 

The transposed matrix M
+
 and the inverted matrix M

-1
 of an integer-valued 2  2 matrix M 

are given by 
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12221
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2111
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M,

mm

mm
M  (E.99) 

where 
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  =  det(M)  =  m11 m22 - m12 m21 (E.100) 

is the determinant of matrix M. The determinant  and matrix M
+
 are integer-valued while matrix 

M
-1

 is fractional except for  = 1. However, the product ( M
-1

) is always integer-valued. 

There is an infinite set of integer-valued 2  2 matrices M whose inverse matrix is integer, i.e. 

where 

  =  det(M)  =  m11 m22 - m12 m21  =  1 (E.101) 

This means in particular that mi1 and mi2 as well as m1i and m2i, i = 1, 2 must be coprime to yield a 

solution of (E.101), i.e. 

gcd(mi1, mi2)  =  gcd(m1i, m2i)  = 1 ,   i = 1, 2 (E.102) 

Matrices M can be obtained by selecting one of the four pairs of coprime integer elements (mi1, mi2) 

or (m1i, m2i). Then equation (E.101) can be inderstood as a linear Diophantine equation for the 

complementing matrix elements (mj1, mj2) or (m1j, m2j) for which an infinite set of solution can be 

evaluated following the procedure based on Euclid’s algorithm as discussed in Sec. E.3. As an ex-

ample, the infinite set of matrices with predefined m11 = 1, m12 = 2 is given by 

integerp,
1p2p

21
M 










  (E.103) 

If A is a real-valued 2  2 matrix then its integer approximant {A} is defined by an integer-

valued 2  2 matrix  

 
   

   



















2212

2111

2221

1211

aa

aa
A

aa

aa
A  (E.104) 

where {aij} denotes the integer nearest to aij, see Appendix E.1. As an example, the rotation matrix  

 











 cos,sin|sin,cos

cossin

sincos
A

.def

 (E.105) 

with det(A) = 1 has as integer approximants {A} with their determinants det({A}) for ranges of an-

gles  given in the following table. 

 {A} ,  det( {A} )  {A} ,  det( {A} ) 
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[0, 30) ( 1, 0 | 0, 1 ) ,  1 [210, 240] ( -1, -1 | 1, -1 ) ,  2 

[30, 60] ( 1, 1 | -1, 1 ) ,  2 (240, 300) ( 0, -1 | 1, 0 ) ,  1 

(60, 120) ( 0, 1 | -1, 0 ) ,  1 [300, 330] ( 1, -1 | 1, 1 ) ,  2 

[120, 150] ( -1, 1 | -1, -1 ) ,  2 (330, 360] ( 1, 0 | 0, 1 ) , 1 

(150, 210) ( -1, 0 | 0, -1 ) ,  1   

 (E.106) 

In connection with reducing cell sizes of commensurate lattices of HOC overlayer structures 

discussed in Sec. 6.4 the reduction of two 2  2 integer matrices to yield a coprime pair is of in-

terest.  

The starting point are two integer matrices A and B where B is diagonal, i. e. 

,
b0

0b
B,

aa

aa
A

2

1

2221

1211


















      aij, bi  integer (E.107) 

These matrices form a coprime pair if their determinants are coprime, i.e. if 

g  =  gcd( |det(A)|, |det(B)| )  =  1 (E.108) 

For g > 1 we consider a pair of reduced integer matrices A' and B' resulting from a joint integer-

valued reduction matrix T with 

BT'B,AT'A
11 

  (E.109) 

This yields for the determinants 

det(A)  =  det(T) det(A')   , det(B)  =  det(T) det(B') (E.110) 

Thus, the integer det(T) must be a common divisor of both integers det(A) and det(B) with an upper 

limit given by 

|det(T)|    g (E.111) 

For det(T) = g we obtain 

|det(A) |  =  g |det(A')|   , |det(B) |  =  g |det(B')| (E.112) 

and hence with (E.108) 

gcd( |det(A')|, |det(B')| )  =  1/g gcd( |det(A)|, |det(B)| )  =  1 (E.113) 
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Thus, the reduced matrices A' and B' form a coprime pair which can be evaluated by a simple trial-

and-error procedure. From 

AB'BAT'A
11 

  (E.114) 

together with (E.107) we obtain for the matrix elements 
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 (E.115) 

which yields four Diophantine equations 

'b
b

a
'b

b

a
'a 2i

2

j2

1i

1

j1

ij     ,   i, j = 1, 2 (E.116) 

transforming between integers aij' and bij' with integers bi and aij being determined by the initial ma-

trices A and B. The search for solutions of (E.116), and, thus for matrices A' and B', can be restrict-

ed to element values 

0    bij'  < bj   ,     j = 1, 2 (E.117) 

since for larger or smaller values bij''  =  bij'  +  nj bj equations (E.116) read 

j22j112i

2

j2

1i

1

j1

2i

2

j2

1i

1

j1

ij anan'b
b

a
'b

b

a
''b

b

a
''b

b

a
''a   

j22j11ij anan'a   (E.118) 

such that according to (E.118) the complete set of solutions, yielding matrix elements of A', can be 

determined from those inside the region (E.117) by additive corrections involving only elements aij 

of the initial matrix A. Thus, the search procedure can be performed by inserting the b1b2 different 

integers combinations (bi1' , bi2') into (E.116) and checking for integer-valued aij'. The resulting ma-

trices A' and B' can then be tested for  

gcd( |det(A')|, |det(B')| )  =  1 (E.119) 

where the validity yields a coprime pair of reduced matrices A' and B'. 
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As an example, we consider the transformation (6.17) discussed in Sec. 6.4 where 
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which leads to Diophantine equations according to (E.116) 
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with solutions  
























32

23
'B,

41

14
'A  

and  

gcd( |det(A')|, |det(B')| )  =  gcd(17, 13)  =  1 
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F Details of Vector Calculus and Linear Algebra 

This appendix discusses a few mathematical details connected with vector calculus, which are 

needed in several places of the book. 

In three dimensions, a vector R is defined by its Cartesian components xi along the x-, y-, and 

z-axis as 

  R  =  (x1, x2, x3)    with its length R  =  |R|  =  (x1
2
 + x2

2
 + x3

2
) (F.1) 

The scalar product between two vectors R, R' is a real number given by 

    R R'  =  x1 x1' + x2 x2' + x3 x3'  =  R' R  =  R R' cos() (F.2)  

with  defining the angle between the two vectors. 

The vector product, R  R' is a vector given in Cartesian coordinates by 

    R  R'  =  (x2 x3' - x3 x2',  x3 x1' - x1 x3',  x1 x2' - x2 x1')  =  - ( R'  R )  (F.3) 

with its length  

    |R  R'|  =   { (x2 x3' - x3 x2')
2
 + (x3 x1' - x1 x3')

2
 + (x1 x2' - x2 x1')

2
 }  = 

                  =  R R' sin()  (F.4) 

where  defines the angle between the two vectors. 

The volume product (R  R') R'' is a real number given by 
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               =  (x2 x3' - x3 x2') x1'' + (x3 x1' - x1 x3') x2'' + (x1 x2' - x2 x1') x3'' (F.5)   

Consider a linear transformation between lattice vectors  R1, R2, R3 and R1', R2', R3', where 
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 (F.6) 

Then products of transformed vectors Ri', Rj' can be expressed by those of the initial vectors Ri, Rj 

where 
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 Scalar products, Ri' Rj', yield 

Ri' Rj' =  (ti1 R1 + ti2 R2 + ti3 R3) (tj1 R1 + tj2 R2 + tj3 R3) 

 =  ti1 tj1 |R1|
2
 + ti2 tj2 |R2|

2
 + ti3 tj3 |R3|

2
 + (ti1 tj2 + ti2 tj1) R1R2 + 

   + (ti1 tj3 + ti3 tj1) R1R3 + (ti2 tj3 + ti3 tj2) R2R3 (F.7) 

 Vector products, Ri'Rj', yield 

Ri'Rj' =  (ti1 R1 + ti2 R2 + ti3 R3)  (tj1 R1 + tj2 R2 + tj3 R3) 

 =  + (ti1 tj2 - ti2 tj1) (R1R2) + (ti1 tj3 - ti3 tj1) (R1R3) + 

  + (ti2 tj3 - ti3 tj2) (R2R3) (F.8) 

 Volume products (R1'R2') R3' yield 

(R1'R2') R3'  = 

 =  [ (t11 R1 + t12 R2 + t13 R3)  (t21 R1 + t22 R2 + t23 R3) ] R3' 

 =  (t11 t22 - t12 t21) (R1R2) R3' + (t11 t23 - t13 t21) (R1R3) R3'+ 

  + (t12 t23 - t13 t22) (R2R3) R3' 

 =  t33 (t11 t22 - t12 t21) (R1R2) R3 +  t32 (t11 t23 - t13 t21) (R1R3) R2+ 

     + t31 (t12 t23 - t13 t22) (R2R3) R1 

 =  det(T) (R1R2) R3  (F.9) 

Consider reciprocal lattice vectors, defined in Sec. 2.5 and given by 

G1  =   (R2  R3) ,     G2  =    (R3  R1) ,     G3  =   (R1  R2) 

  =  2/[(R1  R2) R3] (F.10) 

and reciprocal of the reciprocal lattice vectors given by 

H1  =   (G2  G3) ,     H2  =    (G3  G1) ,     H3  =   (G1  G2) 

  =  2/[(G1  G2) G3] (F.11) 

Then, using relation  

(a  b)  c  = (a c) b - (b c) a (F.12) 

from basic vector calculus, we obtain 

H1  =   (G2  G3)  =   
2
 [ (R3  R1)  (R1  R2) ]  =   

2
 (2/) R1  =  R1 (F.13) 

since according to (2.99) 
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2    =  (2)
3
 / [ (G1  G2) G3  (R1  R2) R3) ]  =  1 (F.14) 

Likewise, we obtain 

H2  =   (G3  G1)  =   
2
 [ (R1  R2)  (R2  R3) ]  =   

2
 (2/) R2  =  R2 (F.15) 

H3  =   (G1  G2)  =   
2
 [ (R2  R3)  (R3  R1) ]  =   

2
 (2/) R3  =  R3 (F.16) 

As a result, the reciprocal of the reciprocal lattice agrees with the initial lattice. 

Further, the vector relation 
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'cb'bb'ab

'ca'ba'aa

det'c'b'acba  (F.17) 

together with the orthogonality relation (2.96) for lattice and reciprocal lattice vectors, i.e. 

Gi Rj  =  2 ij ;     i, j =1, 2, 3 (F.18) 

yields 
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 (F.19) 

This gives another proof of relation (2.98). 

The vector relation 

(a m) ((b  c) m)  +  (b m) ((c  a) m)  +  (c m) ((a  b) m)  =  m
2
 ((a  b) c) (F.20) 

can be used in connection with mirror symmetry operations. If the lattice vectors R1, R2, R3 are sub-

ject to a mirror plane operation  

Ri          Ri'  =  Ri - 2 (Ri m) m ,     i = 1, 2, 3 ,     m
2
 = 1 (F.21) 

then 
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(R1'  R2') R3'  =  ([R1 - 2(R1 m) m]  [R2 - 2(R2 m) m]) [R3 - 2(R3 m) m]  = 

 =  ((R1  R2) - 2 (R1 m) (m  R2) - 2 (R2 m) (R1  m)) [R3 - 2 (R3 m) m]  = 

 =  (R1  R2) R3 - 2(R3 m) (R1  R2) m - 

  - 2 (R1 m) (m  R2) R3 - 2 (R2 m) (R1  m) R3  = 

 =  (R1  R2) R3 - 2 [ (R1 m) (R2  R3) m +  

   + (R2 m) (R3  R1) m + (R3 m) (R1  R2) m ] (F.22) 

and applying (F.20) to the expression in square brackets yields 

(R1'  R2') R3'  =  (R1  R2) R3 - 2 m
2
 [(R1  R2) R3]  =  -(R1  R2) R3 (F.23) 

The changed sign in (F.23) shows that mirror operations change the handedness of the coordinate 

system. However, the corresponding cell volume remains unchanged since 

Vel'  =  | (R1'  R2') R3' |  =  | -(R1  R2) R3 |  =  Vel (F.24) 

  



440 

 

G Details of Fourier Theory 

Fourier theory plays major role in the approximation of functions in many fields of science and 

engineering. As a result, there is a vast amount of literature available at all mathematical levels, see 

for example Refs. [207], [208]. In this appendix we will discuss only a few simple issues dealing 

with spatially periodic functions which are relevant for topics treated in this book. For further de-

tails we refer to the existing literature. 

In the following we consider continuos functions f(r) where r is a three-dimensional coordinate 

in real space. In the harmonic analysis (Fourier analysis) functions f(r) are approximated by 

weighted superpositions of harmonic functions hG(r). These harmonic functions are of given peri-

odicity defined by a wave vector G in three-dimensional reciprocal space (whose dimensions are 

[length
-1

]) and can be written as 

hG
c
(r) = cos(G r)   and   hG

s
(r) = sin(G r) (G.1) 

where the direction of periodicity is given by that of wave vector G and and the periodicity  

length L is determined by 

L  =  2 / |G| (G.2) 

The combined set of sine and cosine functions in (G.1) can be written more elegantly using 

complex variables and the definition of a complex valued exponential exp(i x) where according to 

Euler’s Formula complex harmonic functions are given by 

hG(r)  =  hG
c
(r) + i hG

s
(r)  =  cos(G r) + i sin(G r)  =  exp(i G r) (G.3) 

(i being the imaginary unit number) which will be used in the following. 

The approximation of a continuos function f(r) by a weighted superposition of harmonic func-

tions hG(r) must include in general an infinite set of superposition functions for all wave vectors G 

where the approximation function fapp(r) is written as an integral  

  GdrGexpc)r(f 3

Gapp  i  (G.4) 

with the integration extending over the full three-dimensional reciprocal space. It can be shown 

mathematically that the approximation function fapp(r) reproduces the exact function f(r) if the ex-

pansion coefficients cG are chosen as 

  rdrGexp)r(fc 3

G   i  (G.5) 

Thus, expansion (G.4) together with (G.5) can be used to represent the continuos function f(r). 
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If the continuos function f(r) is periodic in three different directions described by a three-

dimensional lattice with lattice vectors Ro1, Ro2, Ro3, i.e. 

f(r + R)  =  f(r)       with          R  =  n1 Ro1 + n2 Ro2 + n3 Ro3 ,  ni integer (G.6) 

then the Fourier expansion given by integrals (G.4), (G.5) reduces to a discrete sum of harmonic 

functions where the converged expansion is 

 
,321 k,k,k

G rGexpc)r(f i      with    G  =  k1 Go1 + k2 Go2 + k3 Go3 ,  ki integer (G.7) 

Here the (infinite) summation extends over all vectors G of the reciprocal lattice Go1, Go2, Go3 de-

fined in Sec. 2.5. The expansion coefficients cG of the exact function f(r) are then given by 

  rdrGexp)r(f
V

1
c 3

Vel

G

el

  i  (G.8) 

where the three-dimensional integration is carried out over the elementary cell Vel spanned by 

 Ro1, Ro2, Ro3 of the real space lattice. Relation (G.8) can be derived from (G.7) by integration  

     el'G

3

k,k,k V

G

3

V

Vcrdr'GGexpcrdr'Gexp)r(f
,321 elel

   ii  (G.9) 

where 

   el

3

V

Vrdr'GGexp

el

 i     if   G'  =  G  ,  and   =  0   if   G'    G  (G.10) 

has been applied. 

According to the orthogonality theorem (2.96) of real and reciprocal space lattice vectors we 

obtain 

G R  =  (k1 Go1 + k2 Go2 + k3 Go3) (n1 Ro1 + n2 Ro2 + n3 Ro3)  =   

 =  2 ( k1n1 + k2n2 + k3n3 )  =  2 N  ,     N integer (G.11) 

and thus 

exp(i G r)  =  exp(i 2 N)  =  1 (G.12) 

which guarantees the periodicity of the expansion since  

       )r(fRGexprGexpcRrGexpc)Rr(f
G

G

G

G   iii  (G.13) 

Next we consider the case where function f(r) in three-dimensional space is periodic in two dif-

ferent directions, described by a two-dimensional lattice with lattice vectors Ro1 and Ro2, and de-
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pends on a third coordinate r3 perpendicular to Ro1 and Ro2 in a non-periodic fashion. Here we write 

the three-dimensional coordinate vector r as a sum of a projected vector r12 parallel to Ro1 and Ro2 

and the third vector r3 i.e. r = r12 + r3 . Then the periodicity constraint reads 

f(r12 + R + r3)  =  f(r12 + r3)       with          R  =  n1 Ro1 + n2 Ro2  ,  ni integer (G.14) 

and the Fourier expansion given by integrals (G.4), (G.5) reduces to a discrete sum of harmonic 

functions where the converged expansion is 

   
21 k,k

123G rGexprc)r(f i      with    integerk,GkGkG i2o21o1       . (G.15) 

Here the (infinite) summation extends over all vectors G of the two-dimensional reciprocal lattice 

defined by vectors Go1 and Go2 where the latter can be derived from the orthogonality theorem 

Goi Roj  =  2  if  i = j  ,   and   =  0  if  i  j  ,     i, j = 1, 2 (G.16) 

yielding 
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  (G.17b) 

The dependence of f(r) on the third coordinate r3 in expansion (G.15) is expressed by all ex-

pansion coefficients cG being functions of r3 rather than scalar constants where  

    12

2

A

12312

el

3G rdrGexp)r,r(f
A

1
rc

el

  i  (G.18) 

and the two-dimensional integration is carried out over the area Ael of the elementary cell spanned 

by the lattice vectors Ro1 and Ro2 of the real space lattice such that the integration does not affect the 

third coordinate r3. 
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H List of Surface Web Sites 

This appendix lists a few web sites which are relevant for surface crystallography.  

 Surface Structure Information, different program codes 
http://www.icts.hkbu.edu.hk/surfstructinfo/ 

 The ICSOS Web Site 

http://www3.lut.fi/projectsites/icsos/ 

 The Nanotube Site 
http://www.pa.msu.edu/cmp/csc/nanotube.html 

 NIST SSD, Surface Structure Database V. 5 (Windows XP/7+) 

NIST has discontinued the distribution of SSD, see oSSD (database, V. 5) 

http://www.fhi-berlin.mpg.de/KHsoftware/ssdin5/index.html (SSD structure input, 

  SURVIS visualizer, V. 5) 

 open SSD (oSSD) , based on NIST SSD V. 5 (Windows XP/7+) 

http://www.fhi-berlin.mpg.de/KHsoftware/oSSD/index.html 

oSSD is identical in its content and handling to NIST SSD V. 5 and available as open source  

database. 

 SURFACE EXPLORER, surface visualization (WWW) 

http://surfexp.fhi-berlin.mpg.de 

 LEEDpat4, LEED symmetry pattern simulator (Windows XP/7+) 

http://www.fhi-berlin.mpg.de/KHsoftware/LEEDpat/index.html 

 SARCH, LATUSE, PLOT3D, surface visualization and analysis (DOS, outdated) 

http://www.fhi-berlin.mpg.de/KHsoftware/SLP/index.html 

 BALSAC, surface visualization, and analysis (Windows XP/7+, Linux) 

http://www.fhi-berlin.mpg.de/KHsoftware/Balsac/balpam.html (pamphlet) 

http://www.fhi-berlin.mpg.de/KHsoftware/Balsac/index.html (program download) 

http://www.fhi-berlin.mpg.de/KHsoftware/Balsac/Balsac4.pdf (Balsac manual, V. 4.00) 

http://www.fhi-berlin.mpg.de/KHsoftware/Balsac/pictures.html (Balsac picture gallery) 

 

The Linux version of Balsac (latest version 2.16) is obsolete and will not be developed further. 

 ANA-ROD, analysis by surface X-Ray diffraction 
http://www.esrf.eu/computing/scientific/joint_projects/ANA-ROD/index.html 

http://www.icts.hkbu.edu.hk/surfstructinfo/
http://www.fhi-berlin.mpg.de/KHsoftware/oSSD/index.html
http://www.esrf.eu/computing/scientific/joint_projects/ANA-ROD/index.html
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I List of Surface Structures 

This appendix lists all examples of measured clean and adsorbate covered surfaces used to il-

lustrate structural details in this book. Each example, given in Wood notation, is quoted by its figure 

number, by its literature reference, and by its SSD database reference ‘n.m’. Here n.m refers to the 

entry number of the corresponding surface structure in the Surface Structure Database (NIST Ver-

sion 5 or oSSD), see Sec. 7.2. For more extended structure compilations consult the references in 

Sec. 7.2. 

------------------------------------------------------------------------------------------------------------- 

Wood notation Figure Ref. SSD entry 

------------------------------------------------------------------------------------------------------------- 

Ag(1 1 0) + (2  1) - O 6.45 [172] - 

Ag(1 1 0) + (2  1) - O 6.13 [140] 47.8.4 

Ag(1 1 1) + Xe(incomm.) 6.6 [128] 47.54.1 

Al(1 1 1) + (1  1) - O 6.39 [168] 13.8.19 

Au(1 0 0) - hex 5.8 [112] 79.80 

Au(1 1 1) - (3  22)rect 5.6 [111]  

Cu(1 0 0) + c(2  2) - Cl 6.19 [131] 29.17.7 

Cu(1 1 0) + c(2  2) - Mn 6.17 [146] 29.25.8 

Cu(1 1 0) + (2  3) - 4N 6.18 [148] 29.7.10 

Cu(1 1 1) + (4  4) - C60 6.3 [126] - 

Cu(1 1 1) + (3  3)R30 - In 5.13 [121] - 

Cu(1 1 1) + (disordered) - C2H2 6.11 [138] 29.6.1.6 

Cu(1 1 1) + (disordered) - NH3 6.1, 6.46 [124] 29.7.1.3 

Ni(1 0 0) + c(2  2) - CO 6.8 [130] 28.6.8.8 

Ni(1 1 0) + c(2  2) - CN 6.42 [170] 28.6.7.2 

Ni(1 1 0) + p2mg(2  1) - 2CO 6.2 [125] 28.6.8.45 

Ni(1 1 1) + c(4  2) - 2NO 6.21 [137] 28.7.8.8 

Ni(1 1 1) + (1.155  1.155)R2.2 - Ag 6.26 [154] - 

Pb(1 1 1) + (403/7  403/7)R22.8 - C60 6.25 [151] - 

Pd(1 1 1) + (3  3)R30 - CO 6.20 [136] 46.6.8.13 
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Pt(1 1 0) - (1  2) 5.2 [106] 78.77 

Pt(1 1 0) + c(2  2) - Br 6.14 [106] 78.35.1 

Pt(1 1 1) + c(4  2) - 2CO 6.40 [144] 78.6.8.4 

Rh(1 1 0) + (1  3) - H 6.44 [171] 45.1.5 

Rh(1 1 0) + p2mg(2  1) - 2O 6.37 [167] 45.8.7 

Ru(0 0 0 1) + (0.92  0.92) - Gra(phene) 6.5 [127] - 

Si(1 0 0) - (2  1) 5.4 [107] 14.203 

Si(1 0 0) - c(4  2) 5.4 [108] 14.182b 

Si(1 1 1) - (7  7) 5.5 [110] 14.132 

W(1 0 0) - c(2  2) 5.3 [22] 74.14 

W(1 1 0) + (2  1) - O 6.16 [143] 74.8.1 

------------------------------------------------------------------------------------------------------------- 
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GLOSSARY AND ABBREVIATIONS 

In this section different keywords and abbreviations which are commonly used in the book are 

briefly explained. The keywords are arranged in three groups 

 - Bulk crystals and three-dimensional 

 - Monolayers, Surfaces and two-dimensional 

 - Miscellaneous 

Within each group the order is alphabetic. Bold faced words in the explanatory text are usually also 

keywords of the glossary. 

 

Bulk crystals and three-dimensional 

4-index notation  ................  See Miller-Bravais indices. 

achiral  ................................  A three-dimensional object is achiral if it can be superimposed 

onto its mirror image by simple rotation and shifting. Otherwise, 

it is chiral. 

acute representation  .........  Lattice vectors R1, R2, R3 which form mutual angles  

, ,   90. 

Bain path  ...........................  Geometry variation of a continuous phase transition between 

face- and body-centered cubic crystals. The intermediate lattice 

type is described as centered tetragonal (ct). 

basis  ....................................  Collection of atom positions inside the three-dimensional (mor-

phological) unit cell of a crystal or monolayer. 

bcc  .......................................  Body-centered cubic, also called cubic-I, a lattice type of cubic 

crystals. 

Bravais lattice  ....................  Lattice type defined by specific translational and point sym-

metry, given by lattice vectors R1, R2, R3. Overall, there are 14 

three-dimensional Bravais lattices. Additional (point) symmetry 

properties are described by the corresponding 230 three-

dimensional space groups. 

Brillouin zone  ....................  Compact polyhedral unit cell of the reciprocal lattice corre-

sponding to the Wigner-Seitz cell of the real space lattice. 

Buerger cell  ........................  Primitive morphological unit cell spanned by lattice vectors  

R1, R2, R3 of a three-dimensional lattice where Ri are smallest in 

length and |R1|  |R2|  |R3|. 
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BZ  .......................................  See Brillouin zone. 

centering  ............................  Augmenting a lattice by additional lattice points (in the centers  

of morphological unit cells or at their faces). This may lead to a 

different Bravais lattice type, e.g. centered tetragonal vs. primi-

tive tetragonal. 

chirality  ..............................  Also referred to as handedness. Symmetry property of a three-

dimensional object. An object is called chiral if it cannot be su-

perimposed onto its mirror image by simple rotation and shift-

ing. Otherwise, it is achiral. Crystals are chiral if their symmetry 

does not include a mirror plane.   

coordination number  ........  Number of nearest neighbor atoms (including all atoms of the 

coordination shell) with respect to a given atom center in a 

crystal. 

coordination shell  ..............  Set of atoms of (about) the smallest distance from a center (usu-

ally an atom position, nearest neighbor shell) in a crystal. 

crystal  .................................  Strictly defined (IUCr) as a material with a discrete sharp dif-

fraction pattern. This includes three-dimensionally periodic ar-

rangements of atoms. Their periodicity is defined by a lattice, 

corresponding symmetry properties by a three-dimensional 

space group, and atom positions inside the morphological unit 

cell are given by the basis. The two-dimensional analog is a 

monolayer. 

crystal system  ....................  three-dimensional lattice classification resulting in the 14 primi-

tive and centered Bravais lattices. 

ct  .........................................  Centered tetragonal, also called tetragonal-I, a three-

dimensional lattice type of crystals. 

cubic Miller Indices  ..........  See Miller Indices and sc notation. 

fcc   ......................................  Face-centered cubic, also called cubic-F, a three-dimensional 

lattice type of cubic crystals. 

general lattice vector   ........  Integer-valued linear combination of the three lattice vectors  

R1, R2, R3 of a bulk lattice. 

generic Miller Indices  .......  See Miller Indices. 

Gibbs-Wulff theorem  ........  Basis of a quasi-continuum model to determine the shape of 

polyhedral crystalline particles confined by planar sections  

(facets) of (h k l) oriented monolayers. 

Gra  .....................................  Short-hand writing for graphene, a (0 0 0 1) oriented monolay-

er of graphite exhibiting a honeycomb structure. 
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graphene  ............................  Monolayer of graphite with (0 0 0 1) orientation exhibiting a 

honeycomb structure. Graphene sheets also exist in nature as 

flakes or as adsorbed films. This carbon structure is sometimes 

abbreviated as Gra. 

handedness  .........................  See chirality. 

hcp  ......................................  Hexagonal close-packed, a three-dimensional crystal structure 

with hexagonal lattice, a lattice constant ratio c/a = (8/3), and 

two atoms in the morphological unit cell. In practice, lattices of 

hexagonal crystals with ratios c/a near (8/3) are also called hcp 

type. 

Hermann-Mauguin  ...........  Notation used to define symmetry operations and symmetry 

groups describing crystals and monolayers. This notation is pre-

ferred by crystallographers, see also Schönflies. 

hex (hcp)  ............................  A hexagonal lattice with a lattice constant ratio c/a of  

(8/3) = 1.63299. Lattice of the hcp crystal structure. 

incommensurate composite crystal 

 One of three classes of aperiodic bulk systems with specific 

long-range order and local symmetry. The other types are modu-

lated structures and quasicrystals. 

ITC  .....................................  International Tables for Crystallography, general reference for 

two- and three-dimensional space groups. 

lattice  ..................................  Definition of periodicity (translational symmetry) in three di-

mensions by lattice vectors R1, R2, R3. Additional point sym-

metry is given by a corresponding three-dimensional space 

group. The two-dimensional equivalent of a lattice is a net-

plane, of a space group it is a plane group. The term lattice is 

also used sometimes to define periodicity in one and two dimen-

sions. 

lattice basis vectors  ...........  Position vectors r1, r2, … rp of all p atoms in the primitive unit 

cell of a crystal. 

lattice constants  .................  Scaling parameters a, b, c of the three lattice vectors R1, R2, R3 

of a crystal where  a = |R1|, b = |R2|, c = |R3|. 

lattice vectors  .....................  Periodicity vectors R1, R2, R3 of a lattice. 

Miller-Bravais indices  ......  Referring to the 4-index notation. Integer quadruplets (l m n q) 

characterizing orientations of netplanes in hexagonal lattices. 

The definition is based on the reciprocal (hexagonal) lattice with 

symmetry considerations. The 4-index notation is equivalent to 

the common 3-index notation (h k l) of generic Miller indices. 
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Miller indices  .....................  Integer triplets h, k, l, such as in (h k l) and [h k l] characterizing 

orientations of netplanes and directions in a lattice, also called 

generic Miller indices. The definition is based on lattice vectors 

of the reciprocal lattice. For centered cubic lattices (fcc, bcc) 

Miller indices of the simple cubic lattice, also called simple cu-

bic (sc) Miller indices, are often used. For hexagonal lattices an 

alternative 4-index notation (l m n q), also called Miller-

Bravais indices, is often used. 

modulated structure  .........  One of three classes of aperiodic bulk systems with specific 

long-range order and local symmetry. The other types are in-

commensurate composite crystals and quasicrystals. 

monoatomic crystal  ...........  Crystal with one atom in its primitive morphological unit cell. 

morphological unit cell  .....  Also called unit cell. Six-faced polyhedron (parallelepiped) 

spanned by lattice vectors R1, R2, R3 of a three-dimensional lat-

tice. The cell is primitive if it is of smallest volume. 

motif  ...................................  A cluster of atoms recurring in a crystal. 

multiplicity  .........................  Number of atom members in neighbor shells. 

nanotube  ............................  Hollow cylindrical cluster of atoms or molecules. A nanotube 

may be constructed as a rolled up strip of a planar sheet of atom-

ic or molecular components in a periodic arrangement. 

neighbor shell  ....................  Set of atoms of (about) the same distance from a center (usually 

an atom position) in a crystal. 

netplane-adapted lattice  ...  Lattice description by lattice vectors R1, R2, R3 where R1, R2 

point parallel to a given netplane of the lattice and R3 connects 

adjacent netplanes. 

n-fold rotation  ...................  Rotation by an angle  = 360/n about an axis. For lattices with 

translational symmetry only values n = 1, 2, 3, 4, 6 are allowed. 

non-symmorphic space group 
 Space group whose generating symmetry elements also include 

those combining point and translational symmetry, such as glide 

reflection or rototranslation. 

Niggli cell  ...........................  Primitive morphological unit cell spanned by lattice vectors  

R1, R2, R3 of a three-dimensional lattice where Ri are smallest in 

length and |R1|  |R2|  |R3|. Additional constraints are applied to 

make the lattice definition unique. 

obtuse representation  .......  Lattice vectors R1, R2, R3 which form mutual angles  

, ,   90 with at least one angle > 90. 
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point symmetry group  ......  Collection of three-dimensional point symmetry operations, 

such as inversion, rotation, mirroring, forming a mathematical 

group. Crystals are invariant with respect to all operations of a 

correponding point symmetry group. 

polyatomic crystal  .............  Crystal with several atoms in its primitive morphological unit 

cell defined by lattice vectors R1, R2, R3. The atoms may be of 

different element type and/or are placed at different positions r 

inside the cell with r = x1 R1 + x2 R2 + x3 R3 and 0  xi < 1. 

primitive lattice  .................  Crystal lattice with lattice vectors R1, R2, R3 forming the primi-

tive morphological unit cell containing the smallest number of 

non-equivalent atoms. 

quasicrystal  ........................  One of three classes of aperiodic bulk systems with specific 

long-range order and local symmetry. The latter may not be 

compatible with allowed symmetries appearing in crystals. The 

other types are modulated structures and incommensurate 

composite crystals. 

reciprocal lattice  ................  Lattice defined by lattice vectors G1, G2, G3 of dimension [in-

verse length], which are connected with vectors R1, R2, R3 of the 

real space lattice by orthogonality relations (Gi Rj)  =  2 ij. 

relative coordinates  ...........  Representation of lattice basis vectors by linear combinations of 

lattice vectors rather than by absolute Cartesian coordinates. 

sc  .........................................  Simple cubic, also called primitive cubic or cubic-P, the basic 

lattice type of cubic crystals. 

sc notation  ..........................  See simple cubic notation. 

Schönflies  ...........................  Notation used to define symmetry operations and symmetry 

groups describing crystals and monolayers. This notation is pre-

ferred by physicists, see also Hermann-Mauguin. 

shell multiplicity  ................  Number of atoms in neighbor shells. 

simple cubic notation  ........  Notation of Miller indices for face- and body-centered cubic lat-

tices referring to the simple cubic lattice. 

single crystal  ......................  Perfect crystal with exact three-dimensional periodicity and 

symmetry. 

space group  ........................  Collection of all symmetry properties (translational and point 

symmetry elements) available for a given crystal with its perio-

dicity described by a Bravais lattice. There are 230 different 

space groups for (three-dimensional) crystals. The two-

dimensional equivalent of a space group is a plane group. 
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superlattice  ........................  Description of a crystal lattice by lattice vectors R1, R2, R3 (and 

corresponding unit cells) which are larger than (often integer 

multiples of) those suggested by the basic periodicity of the crys-

tal. 

symmorphic (space) group  
 Space group whose generating symmetry elements include only 

true point symmetry operations and true translations, i.e. no 

combinations, such as glide planes or screw axes. 

unit cell  ...............................  See morphological unit cell. 

Voronoi cell  ........................  See WSC, Wigner-Seitz cell. 

Wigner-Seitz cell  ...............  Compact polyhedral unit cell of a real lattice, sometimes called 

Voronoi cell. 

WSC  ...................................  See Wigner-Seitz cell. 

Wulff construction  ............  See Gibbs-Wulff theorem. 

 

Monolayers, Surfaces and two-dimensional 

2  2 matrix notation  ........  Notation of the periodicity and orientation of reconstructed sur-

faces or adsorbate systems. 

achiral surface  ...................  Single crystal surface which is symmetric with respect to at least 

one mirror plane perpendicular to it. Otherwise, the surface is 

called chiral. 

acute representation  .........  Lattice vectors R1 and R2 which form an angle   90  

(= 60 for hexagonal lattices). 

additivity theorem  .............  Mathematical theorem connecting Miller indices of a stepped 

or kinked surface with those of its terrasses, steps, and kinks. 

basis  ....................................  Collection of atom positions inside the two-dimensional (mor-

phological) unit cell. 

Bravais lattice  ....................  Lattice type defined by specific translational and point sym-

metry, given by lattice vectors R1 and R2. Overall, there are  

5 two-dimensional Bravais lattices. Additional (point) symmetry 

properties are described by the corresponding 17 two-

dimensional space groups. 

centering  ............................  Augmenting a netplane by additional lattice points (in the center 

of the unit cell). This leads to a different Bravais netplane type 

only for rectangular netplanes. 
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chiral surface  .....................  Single crystal surface which does not possess symmetry with re-

spect to a mirror plane perpendicular to it. Otherwise, the surface 

is called achiral. 

coincidence (super)lattice 

 Commensurate reconstruction type where a two-dimensional pe-

riodicity cell of the overlayer is shared with the substrate layers. 

However, this cell is larger than the smallest possible unit cell of 

each of the two separate subsystems. The reconstruction type is 

also referred to as high-order commensurate (HOC) or scaled 

commensurate reconstruction. 

commensurate reconstruction 
 Surface reconstruction where netplanes of the topmost mono-

layers are commensurate with those of the substrate layers. Cor-

responding netplane transformations are described by integer-

valued 2  2 matrices. 

c-rectangular  .....................  Centered rectangular, a netplane type of rectangular monolay-

ers. 

crystallographic plane  ......  See netplane, monolayer. 

crystal system  ....................  Netplane classification resulting in the 5 primitive and centered 

Bravais lattices. 

cut-and-project  ..................  A method to create aperiodic linear atom arrangements (Fibo-

nacci chains) by projecting a two-dimensional square lattice. 

DAS model  .........................  Dimer-adatom-stacking-fault model of the reconstructed   

Si(1 1 1) - (7  7) surface. 

domain formation  .............  A substrate surface with symmetry may allow differently orient-

ed overlayers which are energetically equivalent. This can lead 

to large but finite patches of overlayers - so-called domains - 

corresponding to the different orientations. 

facet  ....................................  Finite flat region at a single crystal surface described by Miller 

indices (hf kf lf). The facet orientation does not need to coincide 

with that of the long-range surface characterized by (h k l). 

Fibonacci chain  .................  Aperiodic linear atom arrangement of alternating short and long 

interatomic distances characterized by self-similarity. Used to 

simulate 1-dimensional quasicrystals. 

FM growth mode  ...............  See Frank-Van-der-Merwe. 

Frank-Van-der-Merwe  .....  Growth mode at surfaces referring to layer-by-layer growth. 
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general lattice vector  .........  Integer-valued linear combination of the two lattice vectors  

R1 and R2 of a netplane. 

high-Miller-index surface  .  See vicinal surface. 

high-order commensurate 
 See coincidence (super)lattice. 

HOC reconstruction  .........  See coincidence (super)lattice. 

incommensurate reconstruction 
 Surface reconstruction where netplanes of the topmost mono-

layers are not commensurate with those of the corresponding 

substrate layers. Corresponding netplane transformations are de-

scribed by 2  2 matrices containing irrational elements. 

interference lattice  ............  Lattice structure at adsorbate covered surfaces with quasi-

periodic long-range order expressed by one- and two-

dimensional moiré patterns. 

kinked surface  ...................  Crystal surface composed of terrasses separated by steps analo-

gous to a stepped surface. However, the step lines are broken in 

a periodic or non-periodic fashion (‘stepped steps’or ‘kinked 

steps’). If the kink and step distribution is regular, i.e. periodic at 

the surface, the kinked surface can be described in its orientation 

by large Miller indices, see also vicinal surface. 

lattice basis vectors  ...........  Position vectors r1, r2, … rp of all p atoms in the primitive unit 

cell of a monolayer.  

lattice gas  ...........................  Amorphous monolayer of atoms derived from an ideal (period-

ic) monolayer by occupying lattice sites in a random fashion. 

lattice vectors  .....................  Periodicity vectors R1 and R2 of a netplane. 

microfacet notation  ...........  Formal notation of the structure and orientation of stepped and 

kinked surfaces. 

microfacetted surface  .......  A surface structure built of different facets that are finite, usual-

ly small, in one or two dimensions, and combine to form the 

global surface. 

Minkowski reduction  ........  Iterative method to determine symmetrically appropriate lattice 

vectors Ro1 and Ro2 of a netplane from an initial set R1, R2. 

Moiré pattern  ....................  Spatial interference pattern originating from superimposing  

two-dimensionally periodic objects whose periodicity differs on-

ly slightly. Simple examples are identical parallel monolayers 

which are scaled or rotated by a small angle with respect to each 

other. 
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monolayer  ..........................  two-dimensionally periodic arrangement of atoms. Its periodic-

ity is defined by a netplane, corresponding symmetry properties 

by a two-dimensional plane group, and atom positions inside 

the unit cell are given by the basis. The three-dimensional ana-

log is a crystal. The present definition of a monolayer deviates 

from definitions used elsewhere and referring to adsorbate over-

layers of a given atom density, one adsorbate per substrate atom 

or unit cell. 

morphological unit cell  .....  Also called unit cell. 4-sided polygon (parallelogram) spanned 

by lattice vectors R1 and R2 of a two-dimensional netplane. The 

cell is primitive if it is the unit cell of smallest area. 

motif  ...................................  A cluster of atoms recurring in a monolayer. 

netplane  ..............................  Definition of periodicity (translational symmetry) in two dimen-

sions by vectors R1 and R2. Additional point symmetry is given 

by a corresponding two-dimensional plane group. The three-

dimensional equivalent of a netplane is a lattice, of a plane 

group it is a three-dimensional space group. The present defini-

tion of a netplane is stricter than definitions used elsewhere and 

referring sometimes to both periodicity and atom basis which de-

fines a monolayer in this book.  

n-fold rotation  ...................  Rotation by an angle  = 360/n about an axis perpendicular  to 

the netplane. For netplanes with translational symmetry only 

values n = 1, 2, 3, 4, 6 are allowed. 

obtuse representation  .......  Lattice vectors R1 and R2 which form an angle  > 90  

(= 120 for hexagonal lattices). 

Penrose tiling  .....................  Procedure of covering a plane completely without holes or over-

laps using tiles of a finite set of different polygons, e.g. rhombi, 

where the tiling yields an aperiodic pattern.  

plane group  ........................  Also referred to as two-dimensional space group. Collection of 

all symmetry properties (translational and point symmetry ele-

ments) available for a given monolayer with it periodicity de-

scribed by a Bravais lattice. There are 17 different space groups 

for (two-dimensional) monolayers. The three-dimensional 

equivalent of a plane group it is a three- dimensional space 

group. 

point symmetry group  ......  Collection of two-dimensional point symmetry operations, such 

as inversion, rotation and mirroring, forming a mathematical 

group. Netplanes are invariant with respect to all operations of 

the corresponding point symmetry group. 
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rolling vector  .....................  General lattice vector inside an (h k l) monolayer used to define 

a nanotube by rolling a monolayer strip along the vector. 

p-rectangular  .....................  Primitive rectangular, also called rectangular, rect. A two-

dimensional lattice type of rectangular monolayers. 

scaled commensurate  ........  See coincidence (super)lattice. 

SK growth mode  ...............  See Stranski-Krastanov. 

space group  ........................  See plane group. 

step notation  ......................  Formal notation of the structure and orientation of stepped sur-

faces. 

stepped surface  ..................  Crystal surface composed of terrasses of monolayers (with ori-

entations defined by Miller indices (ht kt lt)), separated by steps 

(with orientations of step sides defined by Miller indices  

(hs ks ls)). If the step distribution is regular, i.e. periodic at the 

surface, the stepped surface can be described in its orientation by 

large Miller indices, see also vicinal surface. 

Stranski-Krastanov  ...........  Growth mode at surfaces referring to mixed layer-by-layer and 

three-dimensional cluster growth. 

superlattice  ........................  Description of a netplane by lattice vectors R1 and R2 (and cor-

responding unit cells) which are larger than (integer multiples of) 

those suggested by the basic periodicity of the netplane. At sur-

faces, superlattices apply to netplanes of surface-adapted lattice 

vectors R1 and R2 (and corresponding unit cells). 

surface reconstruction  ......  Structural modification of a singly crystal surface where mono-

layers near the surface are structurally changed. This can yield 

changed two-dimensional periodicity compared with that of the 

bulk termination and/or different atom composition and place-

ment. 

surface relaxation  ..............  Structural modification of a single crystal surface where whole 

monolayers near the surface are shifted. Shifts can occur perpen-

dicular and parallel to the surface.  

surface termination  ...........  Structure of the topmost atom layers of the surface of a single 

crystal. In particular, for polyatomic crystals, this specifies 

which atom(s) terminate(s) the bulk structure at the surface. 

unit cell  ...............................  See morphological unit cell. 

vicinal surface  ....................  Surface of a single crystal finishing with monolayers whose ori-

entation in the crystal is close to but not identical with those of 

densest monolayers. Vicinal surfaces are often stepped or 
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kinked. Their orientations are usually described by large values 

of Miller indices (h k l). Thus, vicinal surfaces are often called 

High-Miller-index surfaces. 

Volmer-Weber  ...................  Growth mode at surfaces referring to three-dimensional clus-

ter growth. 

Voronoi cell  ........................  See Wigner-Seitz cell. 

VW growth mode  ..............  See Volmer-Weber. 

Wigner-Seitz cell  ...............  Compact polygonal (distorted hexagonal, rectangular, or square) 

unit cell of a netplane, sometimes called Voronoi cell. 

Wood notation  ...................  Formal notation of the structure and orientation of reconstructed 

surfaces or adsorbate systems. 

WSC  ...................................  See Wigner-Seitz cell. 

 

Miscellaneous 

CIF  .....................................  Crystallographic Information Framework. 

CSD  ....................................  Cambridge Structural Database. 

DFT  ....................................  Density-functional theory, a quantum mechanical method to ex-

amine properties of many-electron systems, such as atoms, mol-

ecules, and solids with/without surfaces. 

Diophantine equations  ......  Equations using only integers for constants and variables. 

enantiomer  .........................  A chiral molecule and its mirror image are enantiomers (enanti-

omer pairs). 

enantiopure  ........................  Gas or liquid of chiral molecules which contain only one type, 

left- or right-handed.  

Euclid’s algorithm  ............  Algorithm to determine the greatest common divisor gcd(a, b) 

of two integers a, b. 

Fibonacci numbers  ............  Infinite series of integers 0, 1, 1, 2, 3, 5, 8, 13 … defined 

by element ak being the sum of the two previous elements,  

ak-1, ak-2 with a0 = 0, a1 = 1. 

gcd  ......................................  Greatest common divisor of two or more integers. 

golden mean  .......................  See golden ratio. 
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golden ratio  ........................  Also referred to as golden mean. Mathematical constant  

 = (1 +5) / 2 = 1.618034, appearing in quasicrystal structures. 

ICSD  ...................................  Inorganic Crystal Structure Database. 

lcm  ......................................  Least common multiple of two or more integers. 

LEED  .................................  Low-energy electron diffraction, an experimental method for 

surface structure determination. 

magic numbers  ..................  Total number of atoms in a compact atom cluster with closed 

polygonal shells. 

moiré  ..................................  French for ‘of wavy watery appearance’. 

NAD  ....................................  Nucleic Acid Database. 

number theoretical methods 
 Mathematical methods dealing with integer numbers. 

oSSD  ...................................  Open access version of SSD, see Surface Structure Database. 

PDB  ....................................  Protein Data Bank. 

racemic mixture  ................  Gas or liquid of chiral molecules which contains both types, 

left- and right-handed, in equal amounts. 

SSD  .....................................  See Surface Structure Database. 

Surface Structure Database 

 Also referred to as SSD. Database of experimentally known sur-

face structures.The latest version 5 of SSD has been made public 

as open access SSD (oSSD). 
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shifting, 328 
stretching, 326 
warping, 306 
Wood notation, 317 

islands, 275 
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orthorhombic-I, 56, 64 
orthorhombic-P, 56, 64 
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glide reflection, 155 
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crystal systems (2-dim.), 168, 464 

hexagonal, 170 
oblique, 169 
overview, 171 
rectangular, 169 
square, 170 

crystal systems (3-dim.), 52, 459 
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quasi-continuum models, 85 
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CSD, 468 
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cuboctahedral clusters, 81 
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Density-functional theory, 468 
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SEXAFS, 355, 363 
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facet, 85, 464 
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Fourier theory, 64, 249, 440 

harmonic functions, 440 
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gcd, 468 
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Gibbs-Wulff theorem, 86, 459 
glossary 
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miscellaneous, 468 
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glossary, abbreviations, 458 
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Gra, 459 
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hcp, 31, 460 
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symmetry, 79 
ICSD, 469 
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ITC, 51, 176, 460 
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IUPAC, 258 
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kinked surface, 465 

L 
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Langange’s theorem, 426 
lattice, 460 
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basis, 19 
centered, 42 

A-centered, 45 
B-centered, 45 
body centered, 45 

cubic (bcc), 25, 57, 63, 71, 121 
C-centered, 45 
face centered, 45 

cubic (fcc), 27, 57, 63, 73, 119 
F-centered, 45 
I-centered, 45 

classification, 50 
definition, 16, 19 
geometric constraints, 39 
hexagonal, 30, 124 
hexagonal sublattice (trigonal), 33 
linear transformations, 39 
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reciprocal, 62 
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double reciprocal lattice, 437 
lattice vectors, 62 
orthogonality relations, 62, 308 
unit cell volume, 62 

rhombohedral, 32 
simple cubic (sc), 25, 57, 63, 68, 119 
symmetrically appropriate vectors, 117 
symmetry, 50 
trigonal, 32, 124 

lattice basis vectors, 18, 110, 111, 460, 465 
lattice constant, 17, 460 
lattice gas, 465 
lattice points, 16 
lattice vectors, 16, 460, 465 

acute, 23, 119 
general, 110, 266, 459, 465 
netplane-adapted, 115, 368 
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obtuse, 23, 119 
reduced, 23 

lcm, 469 
LEED, 99, 469 
LEEDpat, 334, 443 
linear algebra, 436 

linear transformation, 436 
literature references, 446 

M 

magic numbers, 79, 80, 81, 469 
magnetism, 10, 36 

matrix notation (2  2), 257, 463 
MgO, 12, 111, 198, 236, 264 
microfacet notation, 216, 465 
microfacetted surface, 465 
Miller indices, 109, 461 

4-index notation, 129 
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kinked surface, 212, 214 
stepped surface, 208, 209 
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cubic lattices, 119 
decomposition, 208, 221 
direction, 114 
direction family, 114 
family, 114 
generic, 112 
large values, 206, 208, 212 
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simple cubic notation, 120, 122, 197 
trigonal (hexagonal notation), 126 

Miller-Bravais indices, 126, 129, 460 
Minkowski reduction, 117, 118, 410, 465 

basic condition, 411 
mathematics, 409 

modulated structure, 461 
moiré, 469 

angle, 319 
factor, 311, 318 
lattice vectors, 310, 313 
matrix, 310, 313, 318 
moirons, 307 
pattern, 306, 465 
stripes, 326 

molecular adsorbates, 290 
monoatomic crystal, 461 
monolayer, 109, 110, 466 

atom density, 113 
definition, 110, 111 
distance, 112 
NaCl(1 2 2), 368 

morphological unit cell, 18, 47, 111, 132 
2-dim., 466 
3-dim., 461 

motif, 177 
2-dim., 466 
3-dim., 461 
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NaCl, 75, 198, 236, 264 
NAD, 469 
nanoparticle, 11, 78, 367 
nanotube, 367, 461 

achiral, 376 
basic definition, 367 
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chiral pairs, 373 
complex nanotubes, 377 
coordinate transformation, 369 
crystallography, 367 
rolling indices (m, n), 368 
rolling vector, 368 
symmetry, 372 
translational periodicity, 375 

nanowire, 377 
neighbor shells, 65, 461 

complete set, 68 
Diophantine equations, 424 
evaluation, 76 
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shell center, 67 
shell multiplicity, 66, 67, 461, 462 
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symmetry related, 68, 72, 74 
total, 69, 72, 74 

shell radius, 65, 67 
shell range, 67 
shell thickness, 67 
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definition, 110 
distance, 112 
normal direction, 111, 123 
symmetry, 131 

netplane symmetry 
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classification, 171 
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oblique, 177 
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square, 184 
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lattice, 461 
lattice vectors, 24, 115 
matrix, 111 
transformation, 111 

n-fold rotation, 52, 461, 466 
Niggli cell, 47, 461 
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lattice vectors, 18, 43 
unit cell, 18 

non-symmorphic space group, 461 
number theory, 115, 414, 469 

basic definitions, 414 
composite function p(x), 416 
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greatest common divisor (gcd), 116, 415, 419 
least common multiple (lcm), 417 
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matrices, 431 
coprime pair, 433 
integer approximant, 309, 432 
reduction, 433 

modulo function, 414 
nearest integer function, 414 
truncation function, 414 

O 
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2-dim., 466 
3-dim., 461 
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PDB, 469 
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plane group, 168, 466 
point symmetry group, 166 

2-dim., 466 
3-dim., 462 
assiciativity, 166 
highest, 176 
inverse element, 166 
list of groups, 166 
product, 166 
subgroup, 167 
unit element, 166 

point symmetry operations 
2-dim., 131 
3-dim., 51 
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primitive 

lattice, 18, 462 
lattice vectors, 18 
unit cell, 18 

prototiles, 94 
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equation, 256 
triplets, 427 

Q 

quantitative structure determination, 355 
quasicrystal, 93, 462 
quasiperiodic crystal, 93 

R 

racemic mixture, 345, 469 
reciprocal lattice, 462 
references, 446 
relative coordinates, 18, 462 
repeated slab geometry, 35, 37 
rhombohedral graphite, 101 
rolling vector, 467 

rotation 
2-, 3-, 4-, and 6-fold, 138 
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anti-clockwise, 397 

rutile, 104 
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sc, 25, 462 
notation, 120, 122, 462 

scaled commensurate, 467 
Schönflies notation, 52, 53, 136, 163, 176, 462 
self-similarity, 96 
shell models, 66 
simple cubic notation, 462 
single crystal, 462 
SK growth mode, 467 
sodium chloride, 75, 198 
space group (2-dim.), 176, 467 

non-symmorphic, 168, 176 
overview, 190 
simple, 168 
symmorphic, 168, 176 

space group (3-dim.), 62, 462 
SrTiO3, 220 
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experimental methods, 362 
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statistical analysis, 359 

step notation, 210, 467 
stepped surface, 467 
Stranski-Krastanov, 467 
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structure, 18 
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Crystmet, 357 
CSD, 357 
format, 363 
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CIF, 364 
PDB, 364 
requirements, 365 
SSD, 364 
Survis, 364 
XYZ, 364 

ICSD, 357 
NAD, 357 
PDB, 357 
SCIS, 358 
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superlattice, 35, 463, 467 

methods, 24 
surface 
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bcc crystal, 237 
fcc crystal, 236 
hexagonal crystal, 239 

bulk truncation, 197, 245 
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chiral, 225, 229 
ideal, 197 
kinked, 205 

multiple-atom-height, 218 
microfacet notation, 216 
microfacetted, 268 
moiré pattern, 252, 254 
morphology, 205 
orientation, 197 
polyatomic crystal, 219 
real, 244 
step notation, 210 
stepped, 205 

multiple-atom-height, 206, 211 
partitioning, 418 

step edges, 207 
subterraces, 211 

surface atoms, 202 
symmetry, 331 
termination, 198 
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vicinal, 205, 210, 214, 468 

surface domain, 331, 337 
anti-phase, 341 
glide line, 339 
mirrored, 338 
rotational, 337 
translational, 340 

surface facet 
angle, 267 
edge vector, 266 
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surface free energy, 85 
surface reconstruction, 245, 467 

buckling, 249, 251 
coincidence lattice, 250, 254 
commensurate, 246 
disordered, 245 
displacive, 247 
high-order commensurate, 250 
incommensurate, 253, 257 
matrix, 246, 250, 253 
modulation function, 249 
reconstruction matrix, 246 
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superlattice, 245 

surface relaxation, 244, 467 
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Rh(1 1 0) + (1 x 3) - H, 340 

Rh(1 1 0) + p2mg(2  1) - 2O, 332 
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Si(1 1 1) - (7 x 7) DAS model, 249, 291 

Si(1 1 1) + (1  1) - H, 291 
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symmetry operation (3-dim.) 
glide reflection, 52 
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3-dim., 48, 463 

Wood notation, 247, 258, 291, 468 
centered, 406 
combined transformation, 407 
definition, 294 
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