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Abstract

Over the last years, huge resources of biological and medical data have become
available for research. This data offers great chances for machine learning applica-
tions in health care, e.g. for precision medicine, but is also challenging to analyze.
Typical challenges include a large number of possibly correlated features and het-
erogeneity in the data. One flourishing field of biological research in which this is
relevant is epigenetics. Here, especially large amounts ofDNA methylation data
have emerged. This epigenetic mark has been used to predict adonor’s “epige-
netic age” and increased epigenetic aging has been linked tolifestyle and disease
history. In this paper we propose an adaptive model which performs feature selec-
tion for each test sample individually based on the distribution of the input data.
The method can be seen as partially blind domain adaptation.We apply the model
to the problem of age prediction based on DNA methylation data from a variety of
tissues, and compare it to a standard model, which does not take heterogeneity into
account. The standard approach has particularly bad performance on one tissue
type on which we show substantial improvement with our new adaptive approach
even though no samples of that tissue were part of the training data.

1 Introduction

Epigenetics, the heritable modification of phenotypes thatis not encoded by DNA, has become
an important field in biological research. The best-studiedepigenetic mark is DNA methylation,
which was detected to play a role in long-term repression of genes through promoter methylation,
X-chromosomal inactivation and genomic imprinting [1]. Itrefers to the covalent addition of methyl
groups to the C5 position of cytosines, predominately foundin CpG dinucleotides. Due to the
growing number of datasets in this field, a connection between the methylation pattern of genomic
DNA and its donor’s chronological age was reported [2, 3, 4].On this basis, several studies created
models to predict chronological age from DNA methylation data [5, 6, 7]. They defined the outcome
of the prediction as the “epigenetic age” of the person and linked increased epigenetic aging to
lifestyle factors and disease history. As a concept of biological age, the epigenetic age is more
informative about the individual’s health status than chronological age and can be useful to optimize
disease treatment.
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Due to the large number of sometimes strongly correlated features, DNA methylation data at the
CpG level is challenging to model. Ordinary least squares regression leads to predictors with large
variance because a large positive coefficient of one variable can be compensated by a large negative
coefficient of a correlated variable. One way to prevent thisis to use feature selection, e.g., by penal-
izing theL1 norm of the coefficient vector in the loss function (LASSO). This type of regularization
will set many coefficients to zero, leading to sparse and morerobust models. An alternative approach
is ridge regression, which penalizes theL2 norm instead. Ridge regression forces coefficients to be
small, but does not strictly set them to zero. In the presenceof correlated features, ridge regression
averages the coefficients while LASSO tends to pick one of thecorrelated variables. The elastic net
penalizes a linear combination of theL1 andL2 norm of the coefficients and has been proposed to
combine the advantages of LASSO and ridge regression [8]. Itstill performs feature selection, but
tends to average the coefficients of included correlated features in a similar way as ridge regression.

Another difficulty, which is present in many biological and medical datasets, is the heterogeneity of
the data. Small differences in data acquisition and processing (e.g., different protocols in laboratories
or standards in clinics) may lead to biases and make it hard tocompare data from different sources.
Domain adaptation attempts to correct for mismatches between distributions in scenarios where
large amounts of data from a source domain and small amounts of data from a target domain are
available [9]. An even harder problem is blind domain adaptation, where data from the target domain
is not available at training time [10].

In this paper, we present an approach which performs featureselection for each test sample individu-
ally to reduce effects of data heterogeneity. We build on ideas from [11] to find features that behave
similarly in training and test data, but do not use a predefined set of weak learners. Instead, we train
a full model for each test sample. Since the models are still trained only on the training data, but
information from the test samples is used to select appropriate features, our setting can be seen as
partially blind domain adaptation. We apply the method to the problem of age prediction based on
a large DNA methylation dataset. The main source of heterogeneity in this data comes from the use
of different tissues, some of which are not present in our training data. We show that our approach
leads to improved test errors for samples from the cerebellum of the human brain, which is the tissue
in our data that leads to the largest errors with standard models that do not account for the bias.

2 Methods

The core idea of our approach is to train test sample-specificmodels, considering only features in
which we have high confidence for the test sample at hand. In a large heterogeneous dataset, it is
possible that only some features cause the heterogeneity while others behave similarly in training
and test data. Obviously, features that behave very differently should not be used in a predictive
model. Excluding them and relying only on similarly behaving features can thus lead to a more
robust model.

This can be expressed more formally in the framework of domain adaptation. Assume that
the training and test samples are drawn independently from two joint probability distributions
PS(X,Y ) = PS(Y | X) · PS(X) andPT (X,Y ) = PT (Y | X) · PT (X), respectively. HereS
stands for source domain andT for target domain. A classical assumption in domain adaptation is
that the conditional distributions,PS(Y | X) = PT (Y | X), are the same in source and target do-
main while the distributions of input features may be different, i.e.,PS(X) 6= PT (X). This setting
is called the covariate shift case. We weaken the covariate shift assumption by requiring equal condi-
tional distributions only for part of the available features. More precisely, we assume that there is a
subsetM ⊂ {1, . . . ,m} of all features on which the same model can accurately predict the outcome
from training and test inputs. This means thatPS(Y | XM ) = PT (Y | XM ), whereXM denotes
the subvector of the random vectorX containing only features in the reduced feature setM . The
distribution of input features as well as the relationship betweenY and the remaining features may
be different in source and target domain, i.e.,PS(X) 6= PT (X) andPS(Y | XN) 6= PT (Y | XN)
for N = {1, . . . ,m} \ M . In addition, we allow thatM , the set of features that behave similarly
in predictingY , may be different for different test samples. Thus, a good choice ofM has to be
determined for each test sample separately.

For this purpose, we propose a model-based approach to estimate a confidence of each feature for a
given test sample. We then train a full model for each test sample, learning from the training data
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and using only high-confidence features. Since we do not knowthe response variableY for the test
samples, we explore the dependency structure withinX to determine confidences. The underlying
assumption is that if there is a subset of features,M , whose dependency structure is very similar
in training and test data, then the relationship betweenY and these features will also be similar in
training and test data. More formally, writingXf for the value of featuref andX

−f for the values
of all other features, we assume that ifPS(Xf |X−f ) ≈ PT (Xf |X−f) holds for all featuresf ∈ M ,
thenPS(Y |XM ) ≈ PT (Y |XM ).

Model types We apply two main model types in this paper: elastic net and Gaussian process
models. The elastic net is a form of regularized linear regression, which penalizes a combination of
theL1 andL2 norm of the coefficient vector [8]. More precisely, it finds

β̂ = argmin
β

(

1

2n
‖y −Xβ‖2

2
+ λ

(

α‖β‖1 +
1− α

2
‖β‖2

2

))

,

whereX, y is the training data andn is the number of samples that it contains. Whileα ∈ [0, 1]
determines the mixing ratio ofL1 andL2 penalty and is often set to a fixed value,λ ≥ 0 controls
the strength of regularization and is usually determined using cross-validation. Gaussian process
models are a type of non-parametric Bayesian regression, where the prior distribution over regres-
sion functions is a Gaussian process with mean zero and a covariance function which is typically
specified in the form of a kernel [12]. Bayesian models have the advantage that they provide not
only a predicted value, but a distribution of possible output values for any new input. In the setting
applied in this paper this distribution is Gaussian and known explicitly.

Datasets We collected 26 datasets from the Gene Expression Omnibus (GEO,
ncbi.nlm.nih.gov/geo) and the Cancer Genome Atlas (TCGA, cancergenome.nih.gov), which
analyzed DNA methylation by the Illumina Infinium HumanMethylation450 BeadChip. Then, we
combined these datasets using RnBeads [13] and split it intoa training and test set consisting of
1866 and 1007 samples, respectively. All samples included were obtained only from healthy tissues.
The training set contains 16 and the test set 6 different tissues, with a focus on blood samples for
both sets. For the training set, samples from donors with chronological ages between 0 and 103
years were used. The age range for the test set is 0-70 years, accordingly. SNP-removal, removal of
gonosomal CpGs and data normalization with the BMIQ method [14] were performed by RnBeads.
We reduced the initial number of features from 466,094 to 12,980 features using an elastic net
model with strong regularization (λ = 1.1 · 10−4). This is necessary for computational reasons
since we train a very large number of models.

Reference model We used a similar type of model as baseline as presented in [5], namely, an
elastic net model withα = 0.8, followed by least squares linear regression based on the selected
features. This model has been trained on our training dataset and the regularization parameterλ has
been selected via 10-fold cross-validation.

Adaptive model To estimate confidences of the features of test samples, we first trained a Gaus-
sian process model for each feature, based on all other features. We chose a linear kernel and addi-
tive Gaussian noise, and determined the kernel parameter and noise variance of each model using
marginal likelihood maximization. For a given test sample,Xi, these models can be used to predict
a posterior distribution ofXi,f (the value ofXi for some featuref ), given the values of all other
features, which we denote byXi,−f . In our setting, we obtain a Gaussian posterior distribution,
N(µgf (Xi,−f ), σ

2

gf
(Xi,−f )). By comparing the observed value,Xi,f , to the predicted distribution,

we can quantify how wellXi,f fits to what is expected according to the training data. We quantify
the confidence of featuref for Xi as proposed in [11] by

cf (Xi) = 2 · Φ

(

−

∣

∣

∣

∣

Xi,f − µgf (Xi,−f )

σgf (Xi,−f )

∣

∣

∣

∣

)

, (1)

whereΦ denotes the cumulative distribution function of the standard normal distribution. This can be
interpreted as the probability that a value likeXi,f or more extreme occurs according to its predicted
distribution. After estimating confidences for all test samples and features, we use this information
to train an age predictor for each test sample individually,based on only its high-confidence features.
Here we used the same model type as for the reference model described in the previous paragraph,
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Table 1: Mean and median absolute test errors of the reference model for the full test dataset and for
cerebellum (CRBM) samples.

Type of test error Test error

Full test dataset mean 4.82
median 3.45

CRBM samples mean 16.95
median 16.57

Table 2: Mean and median absolute test errors of the adaptivemodel for the full test dataset and for
cerebellum (CRBM) samples.

Percentage of high-confidence features

Type of test error Top 10% Top 20% Top 30% Top 40%

Full test dataset mean 7.96 6.61 6.16 5.78
median 6.82 5.69 4.87 4.30

CRBM samples mean 12.78 12.96 13.36 14.11
median 10.19 12.63 13.78 14.94

but only 3-fold cross-validation. We tried multiple thresholds for defining high-confidence features,
choosing the top 10%, 20%, 30% or 40% for each test sample. Note that the confidence estimation
(and feature selection) is specific to the test sample, but each model is trained on the same training
data. Moreover, no information on the output of test samplesis used.

The adaptive model is computationally expensive since it involves fitting a large number of models.
If m is the number of features andk is the number of test samples, thenm+ k models are fitted in
total. However, each of the main steps (i.e., fittingm models for confidence estimation and fittingk
final models) can easily be parallelized to speed up computations.

3 Results and discussion

Reference model We trained the reference model on the training dataset with 12,980 features. The
optimal regularization parameter determined by cross-validation isλ = 0.01, which corresponds to
436 features with nonzero coefficients. Table 1 shows the mean and median absolute test errors for
the full test dataset and for cerebellum samples separately. We obtained a mean absolute error of
4.82 on the full test dataset. Given the wide range of ages andtissues considered, an error of this size
seems reasonable. For cerebellum samples, however, we obtained a mean absolute error of 16.95,
which is more than three times larger. This is not surprisingas cerebellum samples are not present
in our training data, but much larger than desirable. Both for the full test dataset and for cerebellum
samples, the median absolute error is slightly lower than the mean.

Adaptive model In addition, we trained the adaptive model described in Section 2 for different
thresholds defining high-confidence features. The resulting mean and median absolute test errors are
presented in Table 2. For cerebellum samples, each of the adaptive models gave lower errors than the
reference model. The performance on cerebellum samples is best when only features with the top
10% of confidences are used, leading to a mean absolute error of 12.78 and an even lower median
of 10.19. When increasing the threshold, the errors on cerebellum samples slowly become larger,
but still stay well below the corresponding errors of the reference model. These results demonstrate
that restricting the model to high-confidence features can reduce the error on samples for which a
distribution mismatch with the training data is present. A stronger restriction, which corresponds to
a stronger focus on high confidences, leads to a larger improvement. At the same time, the errors on
the full test dataset are larger for the adaptive models thanfor the reference model. Here we observe
the opposite development. Errors decrease continuously with increasing threshold, from 7.96 for
a threshold of 10% to 5.78 for a threshold of 40% in the case of mean absolute error. This can be
explained by the fact that if all features behave the same wayfor training and test data, selecting only
the “best” of them will not lead to an improvement. Thus, if nodistribution mismatch is present,
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restricting the model to far less features than the reference model is expected to lead to increased
errors. Despite this, all errors on the full test dataset arestill below the errors on cerebellum samples.

4 Conclusions and outlook

Heterogeneous data is ubiquitous in applications of machine learning in biology and medicine. In
this paper we analyzed a large dataset of DNA methylation, which is heterogeneous because it was
derived from multiple tissues. We proposed an adaptive model for predicting the donor’s chrono-
logical age from this data. For each test sample the model selects features according to which the
test sample behaves in a similar way as the training data. Then, it uses only these reliable features
for prediction. Our model performs better than a non-adaptive reference model on samples from the
cerebellum of the human brain. This tissue was not represented in the training data and lead to the
largest errors in the reference model. Thus, we demonstrated that our approach to partially blind
domain adaptation can be a powerful way to reduce test errorson samples that are different from the
training data. This improvement has a price when applying the model to test samples with the same
or a very similar distribution as the training data. The mainreason is that strictly excluding features
restricts the model, which is not beneficial if no distribution mismatch is present. Of course, these
findings need to be verified on additional datasets.

One possibility for improvement of the proposed model mightbe to weight features according to
their confidences instead of including or excluding them strictly. This might improve the perfor-
mance on samples without a distribution mismatch and will besubject of future work.
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