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Abstract

Deep models are the defacto standard in visual decision
models due to their impressive performance on a wide array
of visual tasks. However, they are frequently seen as opaque
and are unable to explain their decisions. In contrast, hu-
mans can justify their decisions with natural language and
point to the evidence in the visual world which led to their
decisions. We postulate that deep models can do this as well
and propose our Pointing and Justification (PJ-X) model
which can justify its decision with a sentence and point to
the evidence by introspecting its decision and explanation
process using an attention mechanism. Unfortunately there
is no dataset available with reference explanations for vi-
sual decision making. We thus collect two datasets in two
domains where it is interesting and challenging to explain
decisions. First, we extend the visual question answering
task to not only provide an answer but also a natural lan-
guage explanation for the answer. Second, we focus on ex-
plaining human activities which is traditionally more chal-
lenging than object classification. We extensively evaluate
our PJ-X model, both on the justification and pointing tasks,
by comparing it to prior models and ablations using both
automatic and human evaluations.

1. Introduction

Humans are surprisingly good at explaining their deci-
sions, even though their explanations do not necessarily
align with their initial reasoning and they arguably do
not have full conscious access to their decision process.
Still, explaining one’s decisions is an integral part of hu-
man communication, understanding, and learning. There-
fore, we aim to build models that can justify their decisions,
something which comes naturally to humans. Explanations
can take many forms. For example, humans can explain
their decisions using natural language, or by pointing to vi-
sual evidence. Thus, we propose a model which provides
both textual justifications and exposes which image regions

Textual Justification:
The player is holding a bat
<Exp-Att>

Q: What sport is this?

A: Baseball
<VQA-Att>

g i
Textual Justification:

The player is swinging a bat
<Exp-Att>

Q: What sport is this? A: Baseball

<VQA-Att>

3 -

Figure 1: For a given question and corresponding image,
we predict the answer and explain it by generating a natu-
ral language justification and introspect the model with two
attention mechanisms, the first for the answer (vqa_att) and
the second for the explanation (exp-att); e.g. we point to
the evidence for the answer (baseball) and the explanation
(holding versus swinging a bat) specific to the image.

are important for a decision by providing visualizations of
attention.

Generating convincing justifications requires models to
not only recognize objects, activities, and attributes, but dis-
cuss which visual elements are important for a decision. For
example, consider [Figure 1] in which two images of people
playing baseball are shown. In both examples, the ques-
tion “What sport is this?” is asked, and the model correctly
answers “Baseball”. Though both images share common
visual elements (e.g., people and baseball bats), the textual
explanations reflect the differences in the two images: while
one justifies the answer “Baseball” with the fact that one
player is “holding a bat”, the other justifies the answer with
the fact that one player is “swinging a bat”.

In addition to producing textual explanations, we want
to introspect the model and point to the evidence in the im-



age. Specifically, we design our model to use two atten-
tion mechanisms, one for predicting the answer and one for
predicting the explanation, as the evidence for the answer
might not always be the same as for the explanation. When
generating the textual explanation, our model points to dif-
ferent image regions. E.g. for answering the question, it
focuses on a larger area where the action is happening (Fig
middle), while for the explanation it focuses on the
position of the bat right). Furthermore, when our
model answers the question, it points to different regions
and aspects for different images (top: to the closest player,
bottom: on the field and the player’s legs).

Explaining decisions of visual Al systems is gaining in-
creased interest as visual recognition models become more
and more reliable, but at the same time frequently remain
opaque. In this work we focus on both language and vi-
sual explanations that justify a decision by having access to
the hidden state of the model, but do not necessarily have
to align with the system’s reasoning process. Instead we
try to predict the verbal arguments humans give, and eval-
uate if our model points to the same visual evidence as hu-
mans do. Justification models which give textual explana-
tions have been investigated in the context of fine-grained
classification of 200 bird species [19]. However, we want
to generalize it to more diverse categories and tasks. On the
one hand we aim to explain human activities, as recognizing
them is more challenging than objects due to their less clear
class boundaries, low inter-class variability, and high intra-
class variability. On the other hand, we propose to look at
the visual question answering (VQA) task which includes
a diverse set of visual recognition tasks, including person,
object, attribute, activity, and scene recognition, counting,
and understanding object interactions. Here, decisions do
not only depend on the image, but also on the task which is
formulated as a question.

[[19] proposes a model which allows to learn how to gen-
erate explanations from captions. While this might be pos-
sible for birds where the vocabulary and type of explana-
tions are very similar within and across classes, we expect
this will not generalize to other scenarios. Thus, to learn
models which are able to generate explanations, we pro-
pose and collect two complementary explanation datasets
for VQA and activities rather than generic descriptions of
activities [[36] or image captions [9]]. In addition to a tex-
tual justification we aim to point to the visual evidence by
exposing part of the models’ decision process when pre-
dicting the answer and the explanation. While our models
learn this without supervision, we augment our explanation
datasets with visual evidence (in form of image locations)
which humans give both for their answers and explanations
to evaluate how well our predicted attention aligns with hu-
mans pointing.

2. Related Work

Here, we review relevant work on explanations, visual
question answering with attention and activity recognition.

Explanations. Early works on textual explanation are
mostly template based. [39] proposes explanation systems
for medical applications, [24} |40, [10] propose explana-
tions as a feedback to improve simulated training for spe-
cial teaching programs, [28] proposes a model to explain
robot actions, [23]] evaluates methods developed to explain
Bayesian networks and [21] proposes a system that deter-
mines the motivation for a decision by recalling the situ-
ation in which the decision was made, and replaying the
decision under variants of the original situation. Most re-
cently [19] developed a deep network to generate natural
language justifications of a fine-grained object classifier.
However, unlike our model, it does not consider explaining
decisions visually and the model is trained on descriptions
rather than reference explanations.

In addition to providing textual explanations, [12, 6]
have attempted to explain model decisions by finding dis-
criminative visual patches that are related to the prediction.
Other models [47, 14, 48] aim to understand which inter-
mediate features are important for a classification decision,
e.g. what does a certain neuron represent. Recently [17]
proposed to tackle the problem of indicating the evidence
of a prediction through guided backpropagation and occlu-
sion. Our model provides visual justification of a prediction
through an integrated attention mechanism.

[7] proposed breaking explanation models into two
classes: introspection and justification systems. While in-
trospection systems aim to convey exact details of a deci-
sion process, justification systems aim to provide evidence
that a decision is sound. This division is also seen in hu-
man cognition. [43] points out that human reasoning pro-
cess does not necessarily align with the explanations they
give. In other words, the internal mechanism behind a de-
cision may not be perfectly captured by the textual justifi-
cation. However, the justification is still useful as it pro-
vides evidence for why a particular decision is made. Espe-
cially, it can be significantly valuable when deploying sys-
tems in real world scenarios where users may not have do-
main knowledge in deep networks or machine learning. In
this paper, we propose a model that attempts to provide both
justifications and introspection via natural language and at-
tention respectively, thereby providing more comprehensive
explanations for a classification decision.

The justifications and introspection that our model pro-
vides are multimodal explanations in the form of text and
attention map—which many of the previous methods do not
provide in combination—and this is an intuitive way to con-
vey knowledge about what is important to the network with-
out requiring domain knowledge.



Dataset | C D (#w) E (#w)
CUB [42,135]] 11K 200 58K (17) 0
MSCOCO [26],VQA [3] 123K > 3000 616K (10.6) 0
VQA-X (ours) 20K 3000 0 30K (8.1)
MHP [2 134} 136] 25K 410 75K (15) 0
ACT-X (ours) 17K 367 0 20K (13)

Table 1: Statistics for CUB [42, 35], MHP [2, 136] and
VQA [3] datasets: I = number of images, C = number of
classes, D (#w) = Descriptions (average number of words)
and E (#w) = Explanations (average number of words).

Visual Question Answering and Attention. Initial ap-
proaches to VQA used full-frame representations [29], but
most recent approaches use some form of spatial atten-
tion [46} 145,149, 18.,144,138.,15]. We base our method on [15],
i.e. winner of VQA 2016 challenge, and predict a latent
weighting (attention) of spatially localized image features
based on the question. The weighted image representation
rather than the full frame representation is then used as a ba-
sis for answering the question. [[11] shows that human gaze
attention and attention in VQA systems are different. Con-
currently to this work, [22] have explored the element-wise
product for VQA just as we do in our method, however our
model uses L2 normalization after the bilinear feature while
[22] does not.

Activity Recognition. Recent work that tackles activity
recognition in still images relies on a variety of cues, such
as pose and global context, to achieve good results [34} 30].
However, although cues like pose may influence model per-
formance, activity recognition models are not capable of in-
dicating which factors influence a decision process. In con-
trast, explanations aim to reveal which parts of an image are
important for a classification. For example, it might be clear
that someone is doing yoga based purely on pose, whereas
an activity like mountain biking might require context, such
as outdoor scenery, to properly classify. Our explanations
attempt to bridge this gap and justify which parts of an im-
age, whether it be pose or context, are most important for a
classification decision.

3. Visual Explanation Datasets

We start by introducing our two explanation datasets: Vi-
sual Question Answering Explanation (VQA-X) and MPI
Human Pose Activity Explanation (ACT-X). A summary of

dataset statistics is presented in[Table 1]

VQA Explanation Dataset (VQA-X). The Visual Ques-
tion Answering (VQA) dataset [3] contains open-ended
questions about images which require understanding vision,

MSCOCO Description

A man on a snowboard is on
aramp.

A man riding a snowboard
down the side of a ramp.

A gang of biker police riding
their bikes in formation down
a street.

VQA Explanation

Q: What is the person doing?
A: Snowboarding

Because... they are on a
snowboard in snowboarding
outfit.

Q: Is the person swimming?
A: No

Because... the guy is
nowhere near water.

Q: Can these people arrest
someone?
A: Yes

Because... they are
Vancouver police.

Many guys ride motorcycles Q: What kind of vehicles are

in a line together these?
A: Motorcycles

Because... they have two
wheels and headlights and
have one rider each.

Figure 2: Our VQA-X dataset contains MSCOCO images
and explanations for the corresponding question and answer
pairs. While MSCOCO descriptions are generic, our expla-
nations are specific to the question, answer, and image.

natural language, and commonsense knowledge to answer.
The dataset consists of approximately 200K MSCOCO im-
ages [27], with 3 questions per image and 10 answers per
question. A question may be associated with multiple im-
ages and an answer may correspond to multiple questions.
We select 20K question/answer (QA) pairs from the VQA
training set and 2K QA pairs from the VQA validation set,
which are later divided into 1K QA pairs each for valida-
tion and testing. Since there are multiple answers per ques-
tion, we only consider questions where at least 8 of the
answers agree and pick the most common answer as the
ground truth. The QA pairs were selected based on few
simple heuristics that would remove pairs that require trivial
explanations, such as Q: “What is the color of the banana?”
etc. We collected 1 explanation per data point for the train-
ing set and 5 explanations per data point for the validation
and test sets. The annotators were asked to provide a proper
sentence or clause that would come after the proposition
“because” as explanations to the provided image, question,
and answer triplet. Some examples for both descriptions,
i.e. from MSCOCO dataset, and our explanations are pre-
sented in In comparison to the descriptions, our
explanations focuses on the visual evidence that pertains to
the question and answer instead of generally describing ob-
jects in the scene.

Action Explanation Dataset (ACT-X). The MPI Human
Pose (MHP) dataset [2] contains 25K images extracted from
videos downloaded from Youtube. From the MHP dataset,
we selected all images that pertain to 367 activities, result-
ing in 17,019 images total. For the training set of 15, 786
images, we collected a single explanation for the activity
whereas for the remaining images, i.e. validation set, test



Explanation:
I can tell this person is juggling

Description

Because he holds two balls in one
hand, while another ball is aloft just
above the other hand.

A man in a black shirt and blue
jeans is holding a glowing ball.

A man standing wearing a pink shirt Because he has two balls in his
and grey pants near a ball. hands while two are in the air.

| A man in black shirt is holding ared  Because he is holding a ball in one
B ball in one hand and balancing hand and balancing the other on his
another red ball on his shoulder. shoulder.

a person wearing gray shirt is Because he is holding a ball in
carrying some kind of orb in both of  each hand and looking up at the
his hands other ball.

Figure 3:
MHP [2] dataset and our activity explanations. For MHP,
[36]] collected one-sentence descriptions. Our explanations
are task specific whereas descriptions are more generic.

Our ACT-X dataset contains images from

set, we collected 4 explanations. During data annotation,
we asked the annotators to complete the sentence “I can tell
the person is doing (action) because..” where the action is
the ground truth activity label. We also asked them to use at
least 10 words and avoid mentioning the activity class in the
sentence. MHP dataset also comes with single sentence de-
scriptions provided by [36]. Some examples of descriptions
and explanations can be seen in Please note that
descriptions describe only the person in the scene, and the
tools the person interacts with, not the background, e.g. he
is holding a glowing ball. Our explanations are significantly
different from descriptions, e.g. he is juggling because he is
holding a glowing ball and two other glowing balls are in
the air.

4. Pointing and Justification Model (PJ-X)

The goal of our work is to justify with natural language
why a decision was made, and point to the evidence for
both the decision and the textual justification provided by
the model. We deliberately design our Pointing and Justi-
fication Model (PJ-X) to allow training these two tasks as
well as the decision process jointly. Specifically we want
to rely on natural language justifications and the classifica-
tion labels as the only supervision. We design the model to
learn how to point in a latent way. For the pointing we rely
on an attention mechanism [4] which allows the model to
focus on a spatial subset of the visual representation. As the
model ignores all spatial visual features it does not (or in-
significantly) attend to, this pointing also allows at the same
time to introspect the model. Our model uses two different
attentions, one to make predictions and another to generate
explanations.

An overview of our double attention model is presented

in Below we detail our explanation model for
visual question answering and then highlight the difference

when predicting activities.

4.1. PJ-X for Visual Question Answering

We first detail how we predict the answer given image
and question. Then, given additionally the answer, we gen-
erate the textual justification. In both cases we include a la-
tent attention mechanism which allows to introspect where
the model looks at or points to.

Learning to answer. In visual question answering the
goal is to predict an answer given a question and an im-
age. To be able to introspect the answering process we want
the model to select the area of the image which gives the
evidence for the answer. This can be achieved using an at-
tention model. Here we follow the state-of-the-art MCB
attention model [[15], but replace the MCB with an element-
wise multiplication. Adding a fully-connected layer for em-
bedding the visual feature before element-wise multiplica-
tion and applying L2 normalization after that lead to similar
performance, but much faster training. Comparison on the
VQA dataset [3] between our model and the state-of-the-art
model can be found in

We extract spatial image features f!(I,n,m) from the
last convolutional layer of ResNet-152 followed by 1 x 1
convolutions (f7) giving a 2048 x N x M spatial im-
age feature. We encode the question () with a 2-layer
LSTM f?(Q). We combine this and the spatial image fea-
ture using element-wise multiplication followed by L2 nor-
malization and Dropout, and two more layers of 1x1 convo-
lutions with ReLU in between, which operate on the spatial
feature map locationn € N and m € N:

F1eI,n,m, Q) =(Wif (I,n,m) +b1) © f2(Q) (1)

F19(I1,Q) =L2(f'°(1,Q)) )
apointA — ppointA(T n om, Q) 3)

=Wip(Waf'9(1,Q) + bs) + b5 (4)

with ReLU p(x) = max(z,0). This process gives us a
N x M attention map &, ,,,. We apply softmax to produce
a normalized soft attention map, which aims to point at the
evidence of the answer (pointA):

pointA __ exp(ag?%wA) (5)
n,m - N M _pointA
Zi:1 Z_j:l exp(osz}m )

The attention map is than used to take the weighted sum
over the image features and this representation is once again
combined with the LSTM feature to predict the answer ¢ as
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Figure 4: Our Pointing and Justification (PJ-X) architecture for attentive explanations.
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Learning to justify. We argue that to generate a textual
justification for VQA, we should condition it on the ques-
tion, the answer, and the image. For instance, to be able to
explain “Because they are Vancouver police” in
the model needs to see the question, i.e. “Can these people
arrest someone?”, the answer, i.e. “Yes” and the image, i.e.
the “Vancouver police” banner on the motorcycles.

We model this by first using a second attention mech-
anism and then using the localized feature as input to a
LSTM which generates the explanations. In this way we
hope to uncover which parts of the image contain the evi-
dence for the justification.

More specifically, the answer predictions are embedded
in a d-dimensional space followed by tanh non-linearity
and a fully connected layer:

FrEmed(g) =We(tanh(Wsg +b5)) +bs - (10)

To allow the model to learn how to attend to relevant
spatial location based on the answer, image, and question,
we combine this answer feature with Question-Image em-
bedding f1%(I,Q). After applying 1 x 1 convolutions,
element-wise multiplication followed by L2 normalization

and Dropout, the resulting multimodal feature is flattened to
a 14 x 14 attention map similarly as the previous attention
step.

FOYI n,m,Q,9) =(Wr f19(I,Q,n,m) +b7)  (11)

© frEmted() (12)

FIeAI,Q.9) =L2(f9NI,Q,5)) (13)
bt =frem X (I, m, Q.4) (14)

=Wop(Ws f194(1,Q, ) + bs) + by

(15)

with Relu p(x) = max(x,0). This process gives us a N X

M attention map &, ,,. We apply softmax to produce a
normalized soft attention map, which aims to point at the
evidence of the generated explanation (pointX):

tX
ponix ____ ep(aint) 6

> X
n,m El 12] leXp( pomt )

Using this second attention map, we compute the at-
tended visual representation, and merge it with the LSTM
feature that encodes the question and the embedding feature
that encodes the answer:

FA1.Q.9) Wlozz bt X f1(1,n,m) + bi)
rz=1y=1
(17)
© (WllfQ(Q) +b11) (18)
® nymbed(g) (19)



This combined feature is then fed into an LSTM de-
coder to generate explanations that are conditioned on im-
age, question, and answer.

It predicts one word w; at each time step ¢ conditioned
on the previous word and the hidden state of the LSTM:

he = fESTM(FX(T, Q. 9), wemr, hu—1)  (20)
Wy = f”T'ed(ht) = Softmax(Wyreaht + bprea)  (21)

4.2. PJ-X for Activity Recognition

Although activities may also have a question associated
with them, e.g. “what is this person doing?”, the question is
always going to be the same for all the images, and thus the
PJ-X for Activity Recognition omits the question encoding
part from the PJ-X for VQA. As a result, the first step, de-
fined in through which is used to
predict an answer, is no longer conditioned on the question.

Just as in PJ-X for VQA, the PJ-X for Activity Recog-
nition can be divided into two parts: activity classification
and activity explanation. For activity classification, we de-
ploy a similar pipeline used in the answering part of PJ-X
for VQA. We extract image features from the last convolu-
tional layer of ResNet-152, followed by 1 x 1 convolutions
with ReLU, and one more layer of 1 x 1 convolutions which
givesus a N x M attention map. We apply softmax to pro-
duce a normalized soft attention map, which is used to take
the weighted sum over the ResNet features to create an at-
tention feature. The attention feature is followed by a fully
connected layer that gives us the activity predictions.

For activity explanation, we embed the predictions into
300-dim space followed by tanh non-linearity and a fully
connected layer that produces a vector of 2048-dim, which
we tile to 2048 x N x M. In order to generate a second
attention map that is conditioned on the answer, we create a
multimodal feature similarly as before. To allow the model
to learn how to attend to relevant spatial location based on
the activity, we need to combine the answer embedding with
the NV x M spatial visual feature (feature after applying 1 x 1
convolutions to the ResNet feature) by element-wise multi-
plication followed by L2 normalization and Dropout. This
multimodal feature is flattened to an attention map through
two 1 X 1 convolutions with ReLLU in between. As a result,
we finally get the second 2048-dim attention feature, which
is again combined with the answer embedding. This com-
bined feature is then fed into an LSTM decoder to generate
explanations that are conditioned on image and answer.

S. Experiments

In this section, we evaluate both textual justification and
visual pointing tasks. For textual justification, we com-
pare to ablations and related approaches on our VQA-X and
ACT-X datasets based using automatic and human evalua-

tion for the generated explanations (Section 5.3)). For vi-

sual pointing, we compare our attention maps to several
baselines and report quantitative results with corresponding

analysis (Section 5.4). Finally, we show qualitative results

for both tasks (Section 5.5]).
We begin with detailing our experimental setup

and evaluate our VQA model on the VQA task [3]]
which is the basis for our explanation models (Section 5.2)).

5.1. Experimental Setup

Dataset Splits. There are 3 data splits for the VQA-X
dataset: training set (20K QA pairs with 1 explanation per
pair, 18,357 images), validation set (1K QA pairs with 5
explanations per pair, 991 images), and test set (1K QA
pairs with 5 explanations per pair, 1000 images). The ACT-
X dataset also consists of 3 splits with training set having
15,786 images with 1 explanation per image, the validation
set having 580 images with 4 explanations per image, and fi-
nally the test set having 653 images with 4 explanations per
image. We train all our models in the experiments on the
training set, finetune hyperparameter settings on the valida-
tion set, and report results on the test set.

Model Training and Hyperparameters. For VQA our
model is pre-trained on the VQA training set [3] to achieve
state-of-the-art performance on predicting answers, but we
fix the weights for fine-tuning on explanations as the dataset
is significantly smaller. The spatial feature size of our
model is N = M = 14, and for VQA we classify with
the 3000 most frequently occurring answers on the training
set (i.e. |[Y| = 3000). For activity recognition, |Y| = 367.
We set the answer embedding size as d = 300.

Ablations for Textual Justification. For our ablation
studies, we re-implemented the state-of-the-art captioning
model [[13]] with an integrated attention mechanism which
we refer to as “Captioning Model”. This model only uses
images and does not use class labels, i.e. the answer in
VQA-X and the activity label in ACT-X. It first takes in the
2048 x 14 x 14-dim ResNet feature and applies two con-
volutions with ReLU in between to create an attention map.
The attention map is used to generate the attention feature
over the ResNet features. The resulting attention feature
is embedded once using a fully connected layer and this is
passed to the LSTM to generate explanations. Comparisons
with [19] were also made. [19] generates explanatory sen-
tences by using ResNet features extracted from the entire
image. Generated sentences are conditioned on both the
image and class predictions. The explanations are trained
with a discriminative loss which enforces the generated sen-
tence to contain class-specific information. In the exper-
iment, [19] is trained on descriptions. “Ours on Descrip-
tions” is also trained on descriptions, but has an integrated
attention mechanism that is used to generate textual expla-



nations as well as to point to the evidence of the explanation.
”Ours w/o Exp-Attention” is similar to [19] in the sense
that there is no attention mechanism for generating expla-
nations, however, it does not use the discriminative loss and
is trained on explanations instead of descriptions.

Baselines for Visual Pointing. In order to evaluate if the
attention of our model corresponds to where humans think
the evidence for the answer and justification is, we collect
attention maps from humans for both VQA-X and ACT-X
datasets. Human-annotated attention maps are collected via
Amazon Mechanical Turk in two different ways. First, an-
notators are provided with an image, divided into 14 x 14
grid, and an answer (question and answer pair for VQA-
X, class label for ACT-X). They are asked to select up to
4 locations in the grid that most prominently show the vi-
sual evidence for the answer. For the second round, an-
notators are again given the image with the same grid and
the answer, but they are also provided with the ground-truth
explanation. This time, they are asked to select up to 4 loca-
tions that most prominently show the visual evidence for the
explanation. For each image, we collect 3 attention maps
of each type, totaling 6 attention maps per image. We call
these two types of annotated attention maps answer-based
ground truth (Ans-based GT) and explanation-based ground
truth (Exp-based GT), respectively.

We compare our model against the following baselines:
One Point Random: randomly attends to a single point in
the grid. Uniform Map: generates attention map that is uni-
formly distributed over the 14 x 14 grid. Saliency Map [20]:
attends to the most salient parts of the image.

Evaluation Metrics. For textual justification, we use
BLEU-4 [32], METEOR [5], ROUGE [25]], CIDEr [41] and
SPICE [[1]] metrics to determine the degree of similarity be-
tween generated and ground truth sentences. Among these
metrics, BLEU-4 counts the number of matches among the
n-grams in generated and reference sentences. METEOR
is computed by matching words, but unlike BLEU, it uses
WordNet [31] to also match the synonyms. CIDEr counts
common n-grams which are TF-IDF weighted which re-
wards sentences for mentioning phrases which are uncom-
mon in the dataset. ROUGE measures the n-gram recall be-
tween the generated and reference sentence, whereas BLEU
is a precision-based measure. SPICE metric maps reference
and candidate captions in a dependency parse tree encoding
the objects, attributes, and relations between them.

The metrics that we use for visual pointing are Weighted
Overlap and Earth Mover’s Distance (EMD)[37]. Weighted
Overlap computes the weighted sum of two attention maps,
i.e. the more the generated attention map agrees with the an-
notated map, the higher the score. However, since Weighted
Overlap is a point-by-point comparison, it may not capture
the spatial similarity of two attention maps. To address this

‘ Training data

Method Train  Train+Val
MCB [15] 62.5 64.2
Our VQA model 63.0 64.8

Table 2: OpenEnded results on VQA dataset [3], test-dev.
The columns indicate the accuracy of the model after being
trained on training set and train+val set, respectively. Our
model achieves slightly higher accuracy and the previous
VQA challenge winner MCB [[15].

issue, we use the Earth Mover’s Distance (EMD) which
measures the distance between two probability distributions
over a region. It reflects the minimum amount of work that
must be performed to transform one distribution into the
other by moving “distribution mass.” EMD matches spatial
similarity better than Weighted Overlap in that it captures
the notion of distance between two sets or distributions in-
stead of two single points. We use the code from [33] to
compute EMD.

5.2. Visual Question Answering Model

The VQA model that we use throughout the experiments
is based on the state-of-the-art MCB model [15]], but trains
and evaluates faster (reduction by about 30%). The main
difference between the two models is how they combine two
different representations and create multimodal features.

Our VQA model encodes the image with ResNet and the
question with an LSTM, just as in the MCB model. How-
ever, instead of doing Compact Bilinear Pooling [16] be-
tween the two representations, our model simply embeds
the encoded image feature using 1 x 1 convolutions and ap-
plies element-wise multiplication between the embedding
and the LSTM feature. Whereas the MCB model tries to
create a rich multimodal feature by approximating the outer
product of two representations, our model tries to learn
the proper alignment of the representations so that when
merged with element-wise multiplication, it creates a fea-
ture that is as powerful as the MCB feature. Similar to [[15],
the merged representation is normalized by applying signed
square root and L2-normalization. This improved model
leads to an increase of 0.5% when training on the training
set, and 0.8% when training on train-val.

5.3. Textual Justification

We first discuss automatic evaluation and then human
evaluation of our approach.
5.3.1 Automatic Evaluation

We present results of our ablation study on our VQA-X
dataset in[Table 3] Our general observation is that both at-



Attention for Automatic evaluation Human
Approach Training Data  Explanation =~ QA Conditioned B M R C S eval
Ours on Descriptions Descriptions Yes Yes 0.081 0.143 0.283 0.343 0.112 34.0
Captioning Model Explanations  Yes No 0.171 0.160 0.404 0436 0.073 24.8
Ours w/o Exp-Attention  Explanations ~ No Yes 0.251 0.205 0487 0.742 0.116 432
Ours Explanations  Yes Yes 0.253 0209 0498 0.721 0.121 41.6

Table 3: VQA Explanations (VQA-X). Evaluated automatic metrics: BLEU-4 (B), METEOR (M), ROUGE (R), CIDEr (C)
and SPICE (S). Reference sentence for human and automatic evaluation is always an explanation.

Attention for Automatic evaluation Human
Approach Training Data  Explanation  Act. Conditioned B M R C S eval
[19] Descriptions ~ No Yes 0.101 0.151 0311 0.323 0.083 22.5
Ours on Descriptions Descriptions Yes Yes 0.099 0.154 0316 0.383 0.093 40.4
Captioning Model Explanations  Yes No 0.274 0.214 0496 0.614 0.129 24.4
Ours w/o Exp-Attention ~ Explanations ~ No Yes 0238 0.198 0.462 0.636 0.139 14.4
Ours Explanations  Yes Yes 0.339 0.255 0.538 0.994 0.186 33.6

Table 4: Activity Explanations (ACT-X). Evaluated automatic metrics: BLEU-4 (B), METEOR (M), ROUGE (R), CIDEr
(C) and SPICE (S). Reference sentence for human and automatic evaluation is always an explanation.

tention and our explanations help to improve the results.
The details are as follows. Our explanations help as all
the model variants that use explanations (i.e. “Captioning
Model”, “Ours w/o Exp-Attention” and “Ours”) outperform
the model trained on descriptions ( i.e. “Ours on Descrip-
tions”). This is expected as MSCOCO sentences describe
the entire scene and are generic, therefore they do not nec-
essarily talk about the interesting aspects of the scene where
the attention is focused on. On the other hand, the integrated
attention mechanism helps improve the captioning accura-
cies in most metrics as “Ours” model outperforms “Ours
w/o Exp-Attention”. We conclude from this result that at-
tention is indeed an important cue when the task is to gen-
erate natural language justifications of an answer.

Similarly, the results of our ablation study performed on
our ACT-X dataset in[Table 4|clearly show that “Ours” leads
to the highest results in all evaluation metrics. The effect of
attention can be validated by noticing that both “Ours” and
“Captioning Model” which are trained with attention out-
perform “Ours w/o Exp-Attention” in every metric. “Ours”
performs better than “Captioning Model” suggesting that
conditioning sentence generation on the predicted activity is
important. Similar to our observations on VQA-X dataset,
our results on ACT-X dataset indicate that ground truth ex-
planations are more discriminative of the action label com-
pared to descriptions, as “Ours” performs significantly bet-
ter than “Ours on Descriptions”. This is expected as the
descriptions on this dataset focuses on the clothing and the
tools the person might be carrying, which are not necessar-

ily the important cues for recognizing activities. We also
observe from Table 4|that our method outperforms [19].

5.3.2 Human Evaluation

As automatic evaluation of sentences are highly dependent
on the reference descriptions and have shown to not al-
ways correspond well to human judgments, we also com-
pare generated explanations through human evaluation. We
randomly choose 250 images from the test sets of the VQA-
X and ACT-X datasets, respectively. We then ask 3 humans
for each image to judge whether a generated explanation
is better than, worse than, or equivalent to a ground truth
explanation (we note that human judges do not know what
explanation is ground truth and the order is randomized).
We report the percentage of generated explanations which
are equivalent to or better than ground truth human expla-
nations, when at least 2 out of 3 human judges agree.

On the VQA-X dataset (Table [3), the “Captioning
Model,” which is the only model that is not conditioned on
the question and answer pair, performs considerably worse
than all other methods. Also, training with description data
leads to worse performance (compare “Ours on Descrip-
tions” to “Ours”). This is to be expected on the VQA-
X dataset since the descriptions frequently discuss content
which is not relevant to questions. However, even though
it is trained on a different type of sentence data, our model
trained on descriptions ("Ours on Descriptions™) still per-
forms better than the “Captioning Model” suggesting that



VQA Explanations (VQA-X) Activity Explanations (ACT-X)
Approach Ans-based GT  Exp-based GT ‘ Ans-based GT  Exp-based GT
One Point Random 1.70 1.80 1.53 1.38
Uniform Map 2.04 2.05 2.11 2.17
Saliency Map [18} 120] 3.75 3.76 4.07 4.24
Ours (ans-att) 8.22 [8.02] 20.74 [17.14]
Ours (exp-att) [5.72] 5.73 [4.30] 4.50

Table 5: Evaluation of pointing, with Weighted Overlap metric (in %, higher is better). Ans-based GT is an attention map
generated by humans based on the answer/class labels. Exp-based GT is an attention map generated by humans based on the
explanation labels. Ans-att denotes the attention map used to predict the answer whereas exp-att denotes the attention map

used to generate explanations.

VQA Explanations (VQA-X) Activity Explanations (ACT-X)
Approach Ans-based GT  Exp-based GT ‘ Ans-based GT  Exp-based GT
One Point Random 6.29 6.30 6.21 6.10
Uniform Map 5.06 5.07 4.75 4.60
Saliency Map [18 20] 4.29 4.28 3.96 3.86
Ours (ans-att) 3.75 [3.77] 3.89 [4.16]
Ours (exp-att) [3.97] 3.96 [3.89] 3.78

Table 6: Evaluation of pointing, with Earth Mover’s Distance (EMD) metric (lower is better). Ans-based GT is an attention
map generated by humans based on the answer/class labels. Exp-based GT is an attention map generated by humans based
on the explanation labels. Ans-att denotes the attention map used to predict the answer whereas exp-att denotes the attention

map used to generate explanations.

conditioning explanation generation on questions and an-
swers is very important for good performance on the VQA-
X dataset.

On the ACT-X dataset (Table ), we find that attention
is important for good performance, with models which ex-
clude attention ([19] and “Ours w/o Exp-Attention”) per-
forming worse than other models trained with similar data.
Similar to experiments on the VQA-X dataset, comparing
the “Captioning Model” to our final model demonstrates
that conditioning on the predicted activity is important for
good performance. In contrast to the VQA-X dataset, "Ours
on Descriptions” performs extremely well on human evalu-
ation for a number of reasons. When collecting the ACT-X
dataset, we instruct workers to avoid mentioning an activ-
ity class in the explanation. However, the descriptions for
the same images frequently mention the activity being per-
formed. Hence, as illustrated in Figure[5] sentences gener-
ated with models trained on description frequently mention
an activity class. We believe that mentioning the activity
class leads to low scores using automatic metrics (as col-
lected reference explanations do not mention the activity
class), but leads to higher human evaluation scores, espe-
cially since humans are asked to compare a generated result
which includes the activity class in the explanation, to col-
lected explanations which never include the activity class.

Additionally, there are 3x more descriptions than explana-
tions which may lead to better grammar and sentence cohe-
siveness for models trained on description data.

5.4. Visual Pointing

We present the results on the visual pointing task on our
VQA-X and ACT-X datasets in [Table 3| and [Table 6] We
observe that our model outperforms all other methods in
VQA-X for both metrics. For ACT-X, our attention map for
predicting answer (ans-att) performs slightly worse than the
Saliency Map against the explanation-based GT on EMD,
but our model in general outperforms all other methods for
both metrics.

It is important to note that our model generates two dif-
ferent attention maps for generating answers and expla-
nations, and the highlighted numbers show that each at-
tention map performs best in correspondence to what the
ground-truth is conditioned on. Brackets around the num-
bers indicate the results of our model when comparing non-
corresponding attention maps, that we add for complete-
ness. When taking such correspondence in consideration,
the weak performance of ans-att discussed above is not sig-
nificant since it performs the best against the Ans-based GT.

The relatively high number on Weighted Overlap for
Ours (ans-att) on ACT-X can be attributed to the fact that




ans-att is highly focused and peaky, resulting in higher
scores when aligned correctly with the human-annotated
maps.

Activity Class: sanding floors with a power sander

|| Generated Descriptions:
A woman in a black shirt and jeans is sanding a floor.

Generated Explanations:
She is standing in a hallway holding a floor polisher in her hands.

Activity Class: skiing, water or wakeboarding

Generated Descriptions:
A man in a black shirt is water skiing in a lake.

Generated Explanations:
He is standing on a wake board and being pulled by a cable.

§ Activity Class: fishing from river bank

B Generated Descriptions:
A man in a plaid plaid shirt and rubber pants is fishing by a river.

Generated Explanations:
He is standing on the edge of a river with a fishing pole in his hands.

Figure 5: Sentences generated by ”Ours with Description”
and ”Ours” As discussed in the model
trained on descriptions mentions the activity class (noted
in red) explicitly in the sentences.

5.5. Qualitative Results

In this section we present our qualitative results on VQA-
X and ACT-X datasets demonstrating that our model gener-
ates high quality sentences and the attention maps point to
relevant locations in the image.

VQA-X. Figure [6] shows qualitative results on our VQA-X
dataset. Our textual explanations are able to both capture
common sense and discuss specific image parts important
for answering a question. For example, when asked if a
room looks clean, the explanation model is able to discuss
what it means for something to be clean, i.e. “there is not
clutter and it is spotlesss”. When determining the kind of
vehicle which requires discussing specific image parts, the
textual explanation discusses the wheels and the fact that
the vehicle has a motor.

Visually, we notice that our attention model is able to
point to important visual evidence. For example, for the
question “what is the bird doing?” the visual explanation
focuses on the bird. For questions like “What game is this?”
the model focuses on particular sports equipment which are
important for the final answer. Moreover, supporting our
initial claims, the attention map that leads to the correct
answer and the attention map that leads to a relevant ex-
planation look different, e.g. “monitor has a picture on it”
requires looking at the image with a wider angle. Our fi-
nal observation is that for the pointing task, our generated
attention map agrees with the points that human observers
deem important, e.g. “playing soccer”.

ACT-X. shows results on our ACT-X dataset. Tex-
tual explanations point to a variety of visual cues impor-
tant for correctly classifying activities such as pose, e.g.
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“crossed legs” for yoga, global context, e.g. “in a gym”
for exercise class, and person-object interaction, e.g. “sit-
ting in a kayak” for canoeing/kayaking. These explanations
require determining which of many multiple cures are ap-
propriate to justify a particular action.

Our model points to visual evidence important for un-
derstanding each human activity. For example to classify
“jogging on a mini-trampoline” the model focuses both on
the person, who is in a jogging pose, as well as the mini
trampoline. Similarly, “boat rowing, stationary” or “biking,
stationary” attends to the pose of the person as well as the
instrument he is interacting with. Our attentive explanations
also agree with human judgment, e.g. for “skipping rope”,
the position of the hands are highlighted by both humans
and our attention module.

Figure 8] shows that explanations on the ACT-X dataset
discuss small details important for differentiating between
similar classes. For example, when explaining kayaking
and windsurfing, it is important to mention the correct sport-
ing equipment instead of image context.

Correct versus incorrect predicted answer/action. Fig-
ures [9] and [T0] compare explanations when the answer or
action label are correctly and incorrectly predicted. In ad-
dition to providing an intuition about why predictions are
correct, our explanations frequently justify why the model
makes incorrect predictions. For example, when incorrectly
predicting whether one should stop or go (Figure [0} sec-
ond row, right), the model outputs “Because the light is
green” suggesting that the model has mistaken a red light
for a green light, and furthermore, that green lights mean
“go”. When asked “What is the person doing?” (Figure 9]
bottom row, right), the model incorrectly predicts “playing
tennis”. Though this prediction is incorrect, the explanation
“Because he is holding a tennis racket” suggests what vi-
sual elements could have confused the VQA model. Figure
[I0]shows similar trends on the ACT-X dataset. For example,
when incorrectly predicting the activity bicycling for an im-
age depicting motor scooter, the explanation “Because he is
riding a bicycle down a road with other riders behind him”
suggests that the motor scooter may have been misclassified
as a bicycle. We reiterate that our model justifies predictions
and does not fully explain the inner-workings of deep ar-
chitectures. However, these justifications demonstrate that
our model can output intuitive explanations which could
help those unfamiliar with deep architectures make sense
of model predictions.

Same question/answer pair or image. Figures and
[12] demonstrate that both images and the question/answer
pair are needed for good explanations. Figure [TT] shows
explanations for different images, but with the same ques-
tion/answer pair. Importantly, explanation text and visual-
izations change to reflect image content. Figure [T2] shows



What is the bird doing?
Flying.
Because it is up in the sky.

What game is this?
Tennis

What type of vehicle is this person driving?
Motorcycle
Because it has two wheels and is motorized

What kind of food is this?
Pizza
Because it is round and it has toppings.

Does this appear to be a sporting event?
Yes
Because there are people playing tennis

Because the man is holding a tennis racket.

Is the laptop turned on?
Yes
Because there is a picture on the screen.

Does this room look clean?
Yes.
Because there is no clutter and it is spotless.

What game are they playing?
Soccer.
Because they are kicking a soccer ball.

Should the car be stopped at the light?
Yes,
Because the light is red.

What is the baby elephant doing?

Walking.

Because the legs are moving forward on the
ground.

Figure 6: VQA-X qualitative results: For the given question (top), we report the predicted answer (middle) and the generated
justification explanation (bottom). Among visualizations, original image (left), attention map used to predict the answer
followed by the attention map used to generate the explanation (middle) and pointing of human annotators for the answer
and for the explanation (right). Figure best viewed with zoom.

oo

Callisthenics
Because he is holding a handstand
between each hand on the pole

Health club exercise classes
Because she is in a gym lined on a
trampoline in front of a group of people

Jugging, on a mini tramp
Because she is standing on a mini
trampoline in a jogging pose

Rope skipping
Because he is jumping up and down
while swinging a rope over his head

Rowing, stationary

Because he is sitting on a rowing
machine and leaning back on the
handles.

[} e | ™ °

vaa_att arpatt gt ans att oot
100} 100 1 Sitting, teaching stretching or yoga
o0} ’. 00 " 200 Because she is sitting on a yoga mat
N . . o with her legs crossed.
R ISR

Bicycling, stationary
Because he is sitting on a stationary
bike and pedaling it.

Caribbean dance
. Because she is wearing a caribbean

0 bl 0]
dress and dancing in front of a group
0 0 “n
.
o o o att

10f L B Coaching
ol # % | Because heis standing on a volleyball

. court and showing players how to shoo

| skating, ice dancing
Because she is wering an ice dancing
costime and skating on the ice rink.

Figure 7: ACT-X qualitative results: We report the predicted activity (top) and the generated justification explanation (bot-
tom). Among the visualizations, original image (left), the attention map used to predict the activity followed by the attention
map used to generate the sentence (middle) and pointing of human annotators for the activity and for the explanation (right).

that when different questions are asked about the same im-
ages, explanations provide information which are specific
to the questions.

6. Conclusion

As a step towards explainable Al models, in this work
we introduced a novel attentive explanation model that is
capable of providing natural language justifications of deci-
sions as well as pointing to the evidence. We proposed two
novel explanation datasets collected through crowdsourcing
for visual question answering and activity recognition, i.e.
VQA-X and ACT-X. We quantitatively demonstrated that
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both attention and using reference explanations to train our
model helps achieve high quality explanations. Further-
more, we qualitatively demonstrated that our model is able
to locate the evidence as well as generating sentences that a
human might mistake for real.
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Kayaking. Because he is sitting in a kayak and

paddling across the water.
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Windsurfing. Because he is standing on a windsurfing board and holding onto the sail.
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Bicycling, racing, road. Because he is riding a bicycle down the hill with other riders behind him.
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Cicyling, BMX. Because he is riding a BMX bike toward a flight of stairs with a fishing foot.
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Canoeing, kayaking, rowing, competitive. Because he is sitting in a kayak and rowing with a paddle.
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Unicycling. Because he is riding a unicycle on the street and holding a selfie stick.
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Figure 8: ACT-X results with similar activities. Figure on the left: We show results with fine-grained activities all related
to sailing, canoeing, kayaking and observe that both the fine-grained activities are correctly predicted and the explanations
match the activity and the image. Figure on the right: We show results with fine-grained activities all related to bicycling and
observe that both the fine-grained activities are correctly predicted and the explanations match the activity and the image.

Answer is correctly predicted:

P

What are these boys doing?
GT & P = Reading.

Because they are looking at a book in front of ,

them

Does this fruit contain vitamin C?
GT &P =Yes
Because itis a perfect color of orange.

Is the pizza appropriate for a vegeterian?
GT &P = Yes.
Because it is full of vegetables.

What kind of animal is lying on the ground?
GT &P = Cow.

Because it has four legs and looks like a cow. ..

] Where is this picture taken?

GT & P = Airport.
Because there are planes on the concrete.

Should a person carry an umbrella on this
day?

GT &P =No.

Because the sky is blue.

What game is this?
GT & P = Baseball
Because the player is holding a bat.

Answer is incorrectly predicted:

Should we stop?
GT =Yes. P=No.
Because the light is green.

Is this a woman?

GT =Yes. P =No.
Because she is wearing a suit.

| Whatis the bear doing?

GT = Swimming. P = Eating.
Because he is hungry and likes food.

What type of vegetable is pictured?
GT = Tomato. P = Orange.
Because it is round and orange.

What is the person doing?

GT = Skiing. P = Snowboarding.

Because the is riding a snowboard down a
snowy mountain

What is he doing?
GT = Jumping. P = Playing wii..
Because he is holding the controller up in

the way.

i What is the person doing?

GT = Stretching. P = Playing Tennis.
Because he is holding a tennis racket.

Figure 9: VQA-X results. Figure on the left: We show various qualitative results with correctly predicted answer and observe
that the explanation justifies the answer accordingly. Figure on the right: We show results with incorrectly predicted answer
and observe that although the answer is incorrect, our model can provide visual and textual explanations on why the model

might be failing in those cases.
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Action label is correctly predicted: Action label is incorrectly predicted:
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Figure 10: ACT-X results. Figure on the left: We show various qualitative results with correctly predicted answer and observe
that the explanation justifies the answer accordingly. Figure on the right: We show results with incorrectly predicted answer
and observe that although the answer is incorrect, our model can provide visual and textual explanations on why the model
might be failing in those cases.

What is the man doing? Surfing. What room is this? Kitchen.
Because the man is rivgaipug a wave onexgagurfboard. Because there is a stove and a blender,
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Because he is on a surfboard. Because there is a refrigerator and a sink in the room.
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What game are they playing? Wii. What kind of animal is this? Cow.

Because the man is holding a wii remote. Because it has four legs and looks like a cow.
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Because she is holding a wiimote. Because they are grazing in a field like cows.
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Figure 11: VQA-X results with the same question/answer pair. We select results with the same question and answer pair with
two different images and show that although the QA pairs are the same, for different images our model generates different
explanations. (Answers are correctly predicted)
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What is the bird doing?
Walking.
Because they are on the ground

What is the color of the seats?
Green.

What activity are the people doing?
Skiing.

Because they are on skis and going
down a slope.

Is it summer?
No.

Because they color of the trees and J al :-' ? Because there is snow.

forest indicate.

Does this particular fruit contain
vitamin c?

Yes.

Because it is a perfect color.

Is this person going to get wet?
Yes.

Because he is crushing a wave right
now.

What type of citrus fruit is this?
Orange.

Because it is round and orange and
has a peel.

What is the man doing?

. b m . ‘b Surfing.

- B - = Because he is on a surfboard.

Figure 12: VQA-X results with same image and different questions. We select results with the same image and different Q/A
pairs and show that although the images are the same, our model is able to answer the questions differently and generate a
different explanation accordingly. (Answers are correctly predicted)
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