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Abstract

In a combinatorial auction with item bidding, agents participate in multiple single-item
second-price auctions at once. As some items might be substitutes, agents need to strategize in
order to maximize their utilities. A number of results indicate that high welfare can be achieved
this way, giving bounds on the welfare at equilibrium. Recently, however, criticism has been
raised that equilibria are hard to compute and therefore unlikely to be attained.

In this paper, we take a different perspective. We study simple best-response dynamics.
That is, agents are activated one after the other and each activated agent updates his strategy
myopically to a best response against the other agents’ current strategies. Often these dynamics
may take exponentially long before they converge or they may not converge at all. However, as
we show, convergence is not even necessary for good welfare guarantees. Given that agents’ bid
updates are aggressive enough but not too aggressive, the game will remain in states of good
welfare after each agent has updated his bid at least once.

In more detail, we show that if agents have fractionally subadditive valuations, natural
dynamics reach and remain in a state that provides a 1/3 approximation to the optimal welfare
after each agent has updated his bid at least once. For subadditive valuations, we can guarantee
a Ω(1/ logm) approximation in case of m items that applies after each agent has updated his bid
at least once and at any point after that. The latter bound is complemented by a negative result,
showing that no kind of best-response dynamics can guarantee more than a o(log logm/ logm)
fraction of the optimal social welfare.

1 Introduction

In a combinatorial auction, n players compete for the assignment of m items. The players have
private preferences over bundles of items as expressed by a valuation function vi : 2

[m] → R≥0.
Our goal in this work is to find a partition of the items into sets S1, . . . , Sn that maximizes social
welfare

∑

i vi(Si), based on reported valuations (bids) bi : 2
[m] → R≥0 with the freedom to impose

payments p1, . . . , pn on the players.
Even if valuations are known, finding an allocation that maximizes social welfare is typically

NP-hard. Furthermore, since valuations are assumed to be private information, some mechanics
is needed to extract this information. The traditional approach is to incentivize players to bid
truthfully. Insisting on truthfulness has the advantage that for the individual players it is easy
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to participate as it is not necessary to act strategically. However, truthfulness requires central
coordination of the entire allocation and payments.

An alternative, more recent approach, is to let players participate in a simpler, non-truthful
mechanism and to accept strategic behavior. One then seeks to prove bounds on the so-called Price
of Anarchy, the worst-case ratio between the optimal social welfare and the welfare at equilibrium.
The most prominent example in the context of combinatorial auctions is item bidding, where the
items are sold through separate single-item auctions.

One can show that for pretty general classes of valuations, such as submodular or the even
more general classes fractionally subadditive and subadditive, all equilibria from a broad range
of equilibrium concepts obtain a decent fraction of the optimal social welfare. More recently,
however, these results have been criticized for ignoring the computational complexity of finding an
equilibrium. In fact, by now, there is quite a selection of impossibility results showing that finding
exact equilibria is often computationally intractable.

Our approach in this paper is different. We consider simple, best-response dynamics, in which
players are activated in a round-robin fashion and players when activated buy their favorite set of
items at the current prices, in a myopic way. Christodoulou et al. [7] showed that one instance
of such dynamics converges if players’ valuation functions are fractionally subadditive. However,
they also showed that it takes exponential time. For subadditive valuations, even convergence
cannot be guaranteed because any fixed point would be a pure Nash equilibrium, and pure Nash
equilibria may not exist (see Appendix A). We show that despite possibly long convergence time
or no convergence at all, the social welfare reaches a good level very fast.

1.1 The Setting

We study combinatorial auctions with n bidders N and m items M . Each bidder i ∈ N has a
valuation function vi : 2

M → R≥0. Our objective is to find a feasible allocation, i.e., a partition
of the items, S1, . . . , Sn, that maximizes social welfare

∑

i∈N vi(Si). We assume that an allocation
of items to bidders is found by distributed strategic behavior of the bidders using item bidding.
That is, each bidder i ∈ N places a bid bi,j on each item j ∈ M . Each item j ∈ M is assigned to
the bidder i ∈ N with the highest bid bi,j at a price of pj = maxi′ 6=i bi′,j. Ties are broken in an
arbitrary, but fixed manner.

We assume that bidders choose their bids strategically so as to maximize their quasi-linear
utilities. Bidder i’s utility ui as a function of the bids b = (bi′)i′∈N is ui(b) = vi(S) −

∑

j∈S pj ,
where S is the set of items won by bidder i.

We say that a bid bi is a best response to the bids b−i if bidder i’s utility is maximized by bi.
That is, ui(bi, b−i) ≥ ui(b

′
i, b−i) for all b

′
i. Note that any best response must give bidder i a set of

items S that maximizes ui(b) = vi(S)−
∑

j∈S pj. We call these sets of items demand sets. A (pure)
Nash equilibrium in this setting is a profile of bids b = (bi′)i′∈N such that for each bidder i ∈ N his
bid bi is a best response against bids b−i.

We study simple game-playing dynamics in which bidders get activated in turn and myopically
choose to play a best response. More formally, starting from an initial bid vector b0, in each time
step t ≥ 1, some bidder i ∈ N is activated and updates his bid bt−1

i from the previous round to a
best response to the other players’ bids bt−i = bt−1

−i which do not change from the previous to the
current round. The fixed points of such best-response dynamics are Nash equilibria. However, Nash
equilibria do not necessarily exist and even if they do best-response dynamics may not converge.

We will evaluate best-response dynamics by the social welfare that they achieve. For bid profile
b and corresponding allocation S1, . . . , Sn we write SW (b) =

∑

i vi(Si) for the social welfare at bid
profile b. We seek to compare this to the optimal social welfare OPT (v).
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1.2 Variants of Best-Response Dynamics

Since payments in combinatorial auctions with item bidding are second price, there are typically
many ways to choose a best response. Clearly, not all best responses will ensure that good states
(in terms of social welfare) will be reached quickly.

Example 1.1 (Gross Underbidding). Consider a single-item auction with n bidders. Suppose
v1 = C and vi = 1 for i ≥ 2, where C ≫ 1. Suppose we start at b = (0, 0.., 0) and the item assigned
to bidder 1. A possible best response sequence has bidders update their bids in round-robin fashion,
each time increasing the winning bid by ǫ.

Example 1.2 (Gross Overbidding). Consider the same setting as in the previous example. If in
the first round of updates the last bidder bids C + ǫ this will terminate the dynamics.

Note that in both these examples the social welfare after each round of best responses (and on
average) is 1, which can be arbitrarily smaller than the optimal social welfare C.

The issue in each of these examples is as follows. Through the bids bi,j, the bidders effectively
declare additive valuations. The allocation maximizes the declared welfare DW (b) =

∑

i

∑

j∈Sj
bi,j,

which usually differs from the actual welfare SW (b). In both examples, the declared utility of
bidder, i.e., uDi (b) =

∑

j∈S bi,j −
∑

j∈S maxk 6=i bk,j, is very different from his actual utility. We
will prove bounds on the welfare achieved by best-response dynamics that are quantified by the
extent to which declared utilities can differ from the actual utilities as captured by the following
definitions.

Definition 1.3. Let α ≥ 0. We call a bid bi by bidder i against bids b−i α-aggressive if uDi (b) ≥
α ·maxb′

i
ui(b

′
i, b−i).

Definition 1.4. Let β ≥ 1. A best response dynamic is β-safe if it ensures that uDi (b) ≤ β · ui(b)
for all players i and reachable bid profiles b.

We will usually apply Definition 1.3 when bi is a best response to b−i. However, it also leaves
the freedom to consider approximate best responses. We will see that one way to achieve Definition
1.4 is to require strong no overbidding, but we will also see an example of safe dynamics that allow
overbidding. Note that in both cases players will have non-negative utilities at all times because
ui(b

t) ≥ 1
β · uDi (bt) ≥ 0 for every bidder i and time step t.

1.3 Our Results

Our first main result is that round-robin best-response dynamics are capable of reaching states
with near-optimal social welfare strikingly fast, despite the fact that convergence to equilibrium
may take exponentially long or they may not converge at all.

In fact, our result applies to any round-robin bidding dynamics, provided that players choose
bids that are aggressive enough but not too aggressive. It, in particular, includes dynamics in which
players choose to play only approximate best responses. Also, their way of making choices does not
need to be consistent in any way.

Main Result 1. In a β-safe round-robin bidding dynamic with α-aggressive bid updates the social
welfare at any time step t ≥ n satisfies

SW (bt) ≥ α

(1 + α+ β)β
· OPT (v).
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In other words, once every player had the chance to update his bid, the social welfare, at any
time step after that, will be within α/(1 + α+ β)β of optimal.

For fractionally subadditive valuations and subadditive valuations there exist round-robin best-
response dynamics with (α, β) = 1 and (α, β) = (1/ lnm, 1). The result for fractionally subadditive
valuations requires access to demand and XOS oracles [11], the result for subadditive valuations
requires access to demand oracles and that the greedy algorithm for set cover problems can be
executed [16, 2].

Our guarantee on the social welfare achieved by best-response dynamics shows that these dy-
namics provide a 1/3 resp. Ω(1/ logm) approximation to the optimal social welfare that applies
after a single round of bid updates, and at any time step after that.

We also prove a bound on the average social welfare of α/2(2 + α)β, which improves upon the
above bound for large β. In particular, for subadditive valuations it is also possible to achieve
(α, β) = (1, lnm). While the pointwise guarantee of this dynamics is only Ω(1/ log2m), its average
social welfare is within Ω(1/ logm) of optimal.

We show that the pointwise welfare guarantee of 1/3 for fractionally subadditive valuations is
tight for the respective mechanism. Our second main result is that the Ω(1/ logm) bounds are
almost best possible in a more general sense.

Main Result 2. For subadditive valuations no best-response dynamics in which players do not
overbid on the grand bundle can guarantee a better than o(logm logm/ logm) fraction of the optimal
social welfare at any time step.

For round-robin bidding dynamics, this pointwise impossibility result extends to an impossibility
for the average social welfare that can be achieved.

The assumption that players do not overbid on the grand bundle is quite natural, and is satisfied
by all dynamics that have been proposed in the literature. It obviously applies to strong no-
overbidding dynamics, but it also applies to dynamics in which players use weak no-overbidding
strategies on the items that they win and bid zero on all other items.

Our proof of the lower bound is based on a non-trivial construction exploiting the algebraic
properties of linearly independent vector spaces. It presents an interesting separation from the
Price of Anarchy literature, where no such lower bound can be proved.

Finally, we explore to which extent our positive results depend on round-robin activation. We
show that our positive results extend to the case where at each step a player is chosen uniformly at
random, while the social welfare can be as low as O(1/n) of optimal when the order of activation
is chosen adversarially.

1.4 Related Work

Best-response dynamics are a central topic in Algorithmic Game Theory. Probably, the best-studied
application are congestion games, where best-response dynamics always converge but, except in
special cases, take worst-case exponential time before they do so [23, 21, 1]. On the other hand,
a number of results show that certain types of best-response dynamics reach states of low social
cost quickly [19, 6, 3, 15, 25]. Some of these results extend to weighted congestion games, where
equilibria may not exist and best-response sequences may not converge for this reason.

The study of the Price of Anarchy in combinatorial auctions with item bidding was initiated by
Christodoulou et al. [7], and subsequently refined and improved upon in [2, 20, 26, 14, 18]. Some of
these bounds are based on mechanism smoothness, others are not. They provide welfare guarantees
for a broad range of equilibrium concepts ranging from pure Nash equilibria, over (coarse) correlated
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equilibria, to Bayes-Nash equilibria. For fractionally subadditive valuations there is a smoothness-
based proof that shows that the Price of Anarchy with respect to pure Nash equilibria is at most
2 [7, 26]. For subadditive valuations the Price of Anarchy with respect to pure Nash equilibria is
also at most 2 [2], but the best smoothness-based proof gives a bound of O(logm) [2, 26]. In fact,
as shown by Roughgarden [24], combinatorial auctions with item bidding achieve (near-)optimal
Price of Anarchy among a broad class of “simple” mechanisms.

Also relevant to our analysis in this context is that Christodoulou et al. [7] gave a simple, best-
response dynamics for fractionally subadditive valuations, that they called Potential Procedure.
They showed that this procedure always converges to a pure Nash equilibrium, but also that it may
take exponentially many steps before it converges.

Lately, attempts at proving Price of Anarchy bounds for combinatorial auctions with item
bidding have been criticized for not being constructive, in the sense that the computational com-
plexity of finding an equilibrium remained open. Dobzinski et al. [13], for example, showed that for
subadditive valuations computing a pure Nash equilibrium requires exponential communication.
Regarding fractionally subadditive valuations they concluded that “if there exists an efficient al-
gorithm that finds an equilibrium, it must use techniques that are very different from our current
ones.” Further negative findings were reported by Cai and Papadimitriou [5], who showed that
computing a Bayes-Nash equilibrium is PP-hard.

Most recently, Daskalakis and Syrgkanis [8] considered coarse correlated equilibria. They showed
that even for unit-demand players (a strict subclass of submodular) there are no polynomial-time
no-regret learning algorithms for finding such equilibria, unless RP ⊇ NP, closing the last gap in the
equilibrium landscape. However, they also proposed a novel solution concept to escape the hardness
trap, no-envy learning, and gave a polynomial-time no-envy learning algorithm for XOS valuations
and complemented this with a proof showing that for this class of valuations every no-envy outcome
recovers at least 1/2 of the optimal social welfare.

Further relevant work comes from Devanur et al. [9], who proposed an alternative to simul-
taneous second-price auctions, the so-called single-bid auction. This mechanism also admits a
polynomial-time no-regret learning algorithm and by a result of [4] achieves optimal Price of An-
archy bounds within a broader class of mechanisms.

A final point of reference are truthful mechanisms for combinatorial auctions. While no mecha-
nism can achieve a better than 1/m1/2−ǫ approximation for submodular valuations with valuation
queries alone [12], Dobzinski [10] recently managed to improve a long-standing upper bound of
Ω(1/ logm) for submodular valuations to Ω(1/

√
logm) for fractionally subadditive valuations, re-

quiring access to both value and demand oracles.

2 Achieving Aggressive and Safe Bids

As already discussed, best responses are generally not unique in our settings. Our positive results
require that updates are aggressive and safe. In this section we briefly describe how to guarantee
these properties for fractionally subadditive valuations and subadditive valuations.

A valuation function is fractionally subadditive, or XOS, if there are values vℓi,j ≥ 0 such that

vi(S) = maxℓ
∑

j∈S vℓi,j. It is subadditive if for all S, T ⊆ M , vi(S ∪ T ) ≤ vi(S) + vi(T ).
The dynamics that we consider approach players in round-robin fashion. When player i is

activated he picks a demand set D at the current prices and updates his bid as described below.
Note that here we assume eager updating. This assumption leads to cleaner proofs, but is not
necessary as we outline in Appendix J.
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2.1 Bid Updates for XOS Valuations

For XOS valuations we can update bids as described by [7]. If D is the demand set chosen by player
i, let (vℓi,j)j∈M be the supporting valuation on this demand set for which

∑

j∈D vℓi,j = vi(D), and

set bti,j = vℓi,j for j ∈ D and bti,j = 0 otherwise. Note that these update steps can be performed in
polynomial time using demand and XOS oracles.

Proposition 2.1. Starting from an initial bid vector b0 satisfying strong no-overbidding, the bid
updates described above lead to a sequence of bids b0, b1, b2, . . . that is 1-safe and in which each
update is a 1-aggressive best response.

2.2 Bid Updates for Subadditive Valuations

For subadditive functions, it is generally not possible to guarantee α = 1 and β = 1 at the same
time. We describe two different, reasonable ways of bid updates.

2.2.1 No-Overbidding Updates

Given a bid vector b−i, let ũi(S, b−i) = vi(S) −
∑

j∈S maxk 6=i bk,j. That is, ũi(S, b−i) is the utility
bidder i can derive from buying the set S. Observe that ũ is subadditive. Let D be an inclusion-
wise minimal demand set of bidder i given b−i. We can show that ũi(S, b

t
−i) > 0 for all S ⊆ D

unless D = ∅. Therefore, by [2] there exists an additive approximation ai such that (a)
∑

j∈D ai,j ≥
1/ lnm · ũi(D, bt−i) and (b)

∑

j∈S ai,j ≤ ũi(S, b
t
−i) for all S ⊆ D with the property that ai,j > 0 for

all j ∈ D. We set bids bti,j = ai,j+maxk 6=i b
t
k,j for j ∈ D and bti,j = 0 otherwise. These update steps

can be performed in polynomial time with a demand oracle if it is possible to compute the additive
approximation, which corresponds to executing the greedy set-cover algorithm on ũi( · , bt−i).

Proposition 2.2. Starting from an initial bid vector b0 that satisfies strong no-overbidding, the
bid updates described above lead to a sequence of bids b0, b1, b2, . . . that is 1-safe and in which each
update is a 1/ lnm-aggressive best response.

2.2.2 Aggressive Updates

The basic construction is the same as above except that instead of considering ai we consider ãi such
that ãi,j = γ · ai,j for all items j ∈ D, where 0 < γ ≤ lnm is such that

∑

j∈D ai,j = 1/γ · ũi(D, bt−i).

Note that these bids satisfy: (a)
∑

j∈D ãi,j = ũi(D, bt−i) and (b)
∑

j∈S ãi,j ≤ γ · ũi(S, bt−i) for all
S ⊆ D.

Proposition 2.3. Starting from an initial bid vector b0 that satisfies strong no-overbidding, the
bid updates described above lead to a sequence of bids that is lnm-safe and in which each update is
a 1-aggressive best response.

3 Welfare Guarantees

In this section we prove our first main result (Theorem 3.1). The theorem provides a pointwise
social welfare guarantee, parametrized in α and β, for round-robin bidding dynamics. It shows that
the social welfare is high already after a single round of updates, and remains high at every single
step after that.

Theorem 3.1. In a β-safe round-robin bidding dynamic with α-aggressive bid updates the social
welfare at any time step t ≥ n satisfies SW (bt) ≥ α

(1+α+β)β · OPT (v).
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As we have argued in Proposition 2.1 and Proposition 2.2 there exist round-robin best-response
dynamics with (α, β) = (1, 1) for fractionally subadditive valuations and (α, β) = (1/ lnm, 1) for
subadditive valuations. So two corollaries of our theorem are pointwise welfare guarantees of 1/3
and Ω(1/ logm) for the respective mechanisms.

We also show a welfare guarantee for the average social welfare, Theorem 3.2 below, that
improves upon the pointwise guarantee for large β. Note that the term (1 − n

T ) is 1 − o(1) for
T ∈ ω(n) and at least 1/2 for T ≥ 2n.

Theorem 3.2. In a β-safe round-robin bidding dynamic with α-aggressive bid updates the average
social welfare in the first T steps satisfies 1

T

∑T
t=1 SW (bt) ≥ α

(2α+1)β ·
(

1− n
T

)

·OPT (v).

This theorem shows that the best-response dynamics described in Proposition 2.3 with (α, β) =
(1, lnm), whose pointwise welfare guarantee is only Ω(1/ log2 m) by Theorem 3.1, guarantees an
average social welfare of Ω(1/ logm).

In Appendix F we show that the pointwise welfare guarantee of 1/3 for fractionally subadditive
valuations is tight for the respective mechanism. In Section 4 we show that the Ω(1/ logm) bounds
are essentially best possible in a more general sense.

3.1 Proof of Theorem 3.1

The core of our proof of the pointwise welfare guarantee are two lemmata. The first (Lemma
3.4) shows that the declared social welfare after a single round of updates is high when the initial
declared welfare is low and the second (Lemma 3.5) shows that the declared welfare after a single
round of updates is high when the initial declared welfare is high. To prove these lemmata we need
the following auxiliary lemma.

Lemma 3.3. Consider a sequence b0, . . . , bn in which bidder i updates his bid in step i. Denote
bidder i’s declared utility in step i by uDi (b

i). Then,
∑n

i=1 u
D
i (b

i) ≤ DW (bn).

Proof. Consider an arbitrary bidder i. Bidder i updates his bid in step i. Denote the corresponding
bid profiles before and after the update by bi−1 and bi. Suppose bidder i’s update buys him the set
of items S′. Then

uDi (b
i) =

∑

j∈S′

(

bii,j −max
k 6=i

bik,j

)

.

For i > 0, let zij = maxk≤i b
i
k,j for all j. That is, z

i
j is the maximum bid on item j that is placed

by one of the bidders 1, . . . , i, z0j = 0 for all j.

The crucial observation is that
∑

j∈S′(bii,j − maxk 6=i b
i
k,j) ≤ ∑

j∈M(zij − zi−1
j ) . The reason is

as follows. For j 6∈ S′, we have zij ≥ zi−1
j by definition. For j ∈ S′, bii,j = zij and maxk 6=i b

i
k,j ≥

maxk<i b
i
k,j = maxk<i b

i−1
k,j = zi−1

j .
Summing over all players i we obtain

∑

i∈N

uDi (b
i) ≤

∑

i∈N

∑

j∈M

(zij − zi−1
j ).

The double sum is telescoping and znj = maxk b
n
k,j and z0j = 0 by definition. So,

∑

i∈N

uDi (b
i) ≤

∑

j∈M

(znj − z0j ) =
∑

j∈M

max
k

bnk,j = DW (bn) .

7



With the help of this lemma we can now prove our key lemmata.

Lemma 3.4. Let S∗
1 , . . . , S

∗
n be any feasible allocation, in which player i receives items S∗

i . Consider
a sequence b0, . . . , bn in which each player updates his bid exactly once using an α-aggressive bid.
We have (α+ 1) ·DW (bn) + α ·DW (b0) ≥ α ·∑i∈N vi(S

∗
i ).

Proof. Without loss of generality, player i gets to change his bid from bi−1 to bi. Otherwise, re-
index the players. Consider player i’s action in time step i. Instead of choosing bid bii, he could
have bought the set of items S∗

i . As b
i
i is α-aggressive, we get

uDi (b
i) ≥ α ·



vi(S
∗
i )−

∑

j∈S∗
i

max
k 6=i

bik,j



 .

Define ptj = maxi b
t
i,j for all items j. That is, ptj is the maximum bid that is placed on item j in

bid profile bt. We claim that for every j ∈ S∗
i , maxk 6=i b

i
k,j ≤ pnj + p0j . This is correct because if b

i
k,j

attains its maximum for k < i then maxk 6=i b
i
k,j ≤ pnj as k’s bid on item j will not change anymore.

In the other case, if k > i, then maxk 6=i b
i
k,j ≤ p0j because k has not yet changed the bid on item j.

Using that both p0j and pnj are never negative, the bound follows.
We thus have

uDi (b
i) + α ·

∑

j∈S∗
i

(pnj + p0j) ≥ α · vi(S∗
i ) .

Summing this inequality over all bidders i ∈ N yields

n
∑

i=1

uDi (b
i) + α ·

n
∑

i=1

∑

j∈S∗
i

(pnj + p0j ) ≥ α ·
n
∑

i=1

vi(S
∗
i ) .

We can upper bound the first sum by DW (bn) using Lemma 3.3. The double sum adds up
every j ∈ M exactly once and we have

∑

j∈M pnj = DW (bn) and
∑

j∈M p0j = DW (b0). We obtain

(α+ 1) ·DW (bn) + α ·DW (b0) ≥ α ·
n
∑

i=1

vi(S
∗
i ) .

Lemma 3.5. Consider a β-safe bid sequence b0, . . . , bn in which player i changes his bid from bi−1

to bi using an α-aggressive bid. Then, DW (bn) ≥ α
β ·DW (b0).

Proof. Consider an arbitrary bidder i and his update from bi−1 to bi. Denote the set of items that
bidder i won under bids bi−1 by Si−1

i , and the set of items that he wins under bids bi by Si
i . So

uDi (b
i−1) =

∑

j∈Si−1

i

bi−1
i,j −

∑

j∈Si−1

i

max
k 6=i

bi−1
k,j and uDi (b

i) =
∑

j∈Si
i

bii,j −
∑

j∈Si
i

max
k 6=i

bik,j .

Using that for all k 6= i and all j we have bi−1
k,j = bik,j we obtain that the difference in declared

welfare over all bidders between steps i − 1 and i is equal to the difference in bidder i’s declared
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utility at these time steps. Formally,

DW (bi) =
∑

j∈M\Si
i

max
k 6=i

bi−1
k,j +

∑

j∈Si
i

bii,j =
∑

j∈M

max
k 6=i

bi−1
k,j +

∑

j∈Si
i

bii,j −
∑

j∈Si
i

max
k 6=i

bik,j

=
∑

j∈M

max
k 6=i

bi−1
k,j + uDi (bi) =

∑

j∈M\Si−1

i

max
k 6=i

bi−1
k,j +

∑

j∈Si−1

i

max
k 6=i

bi−1
k,j + uDi (bi)

=
∑

j∈M\Si−1

i

max
k 6=i

bi−1
k,j +

∑

j∈Si−1

i

bi−1
i,j + uDi (bi)−

∑

j∈Si−1

i

bi−1
i,j +

∑

j∈Si−1

i

max
k 6=i

bi−1
k,j

= DW (bi−1) + uDi (bi)− uDi (b
i−1) .

We now extend this identity to a lower bound on DW (bi). Since bii is α-aggressive, we have
uDi (b

i) ≥ α · ui(bi−1). Since the bidding sequence is β-safe, uDi (b
t) ≤ β · ui(bt) for all t. So,

DW (bi) = DW (bi−1) + uDi (b
i)− uDi (b

i−1)

≥ DW (bi−1) + uDi (b
i)− β · ui(bi−1)

≥ DW (bi−1) + uDi (b
i)− β

α
· uDi (bi)

= DW (bi−1)−
(

β

α
− 1

)

· uDi (bi) .

Summing this inequality over all bidders i ∈ N and using the telescoping sum
∑

i∈N (DW (bi)−
DW (bi−1) = DW (bn)−DW (b0) we obtain

DW (bn) ≥ DW (b0)−
(

β

α
− 1

)

∑

i∈N

uDi (b
i) .

Since α ≤ 1 and β ≥ 1 the factor (β/α− 1) ≥ 0. We can therefore use Lemma 3.3 to conclude that

DW (bn) ≥ DW (b0)−
(

β

α
− 1

)

DW (bn) .

This implies the claim.

We will use our key lemmata to show a lower bound on the declared welfare. To relate the
declared welfare to the social welfare we will use the following lemma.

Lemma 3.6. In a β-safe sequence of bid profiles b0, b1, . . . for every t ≥ 0, DW (bt) ≤ β · SW (bt).

Proof. Consider an arbitrary time step t. Since the bid profile bt is β-safe we know that for the
allocation T1, . . . , Tn that corresponds to bt,

∑

i

uDi (b
t) =

∑

i





∑

j∈Ti

(

bti,j −max
k 6=i

btk,j

)



 ≤ β ·
∑

i

ui(b) = β ·
∑

i



vi(Ti)−
∑

j∈Ti

max
k 6=i

btk,j



 .

Rearranging this and using that β ≥ 1 we obtain

DW (bt) =
∑

i

∑

j∈Ti

bti,j ≤ β · SW (bt)− (β − 1)
∑

i

∑

j∈Ti

max
k 6=i

btk,j ≤ β · SW (bt),

and the claim follows.
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We are now ready to prove the theorem.

Proof of Theorem 3.1. To prove the guarantee for time step t ≥ n consider the bid sequence of
length n+1 from bt−n to bt. At time steps t−n to t each bidder updates his bid exactly once. By
the virtue of being a subsequence of a β-safe bidding sequence the sequence bt−n, . . . , bt is β-safe.
Moreover each bid update is α-aggressive.

Combining Lemma 3.4 with Lemma 3.5 to the allocation S∗
1 , . . . , S

∗
n that maximizes social

welfare we obtain

(1 + α+ β) ·DW (bt) = (α+ 1) ·DW (bt) + α · β
α
DW (bt)

≥ (α+ 1) ·DW (bt) + α ·DW (bt−n−1) ≥ α ·OPT (v).

Now, by Lemma 3.6, DW (bt) ≤ β ·SW (bt). Combining this with the previous inequality yields

(1 + α+ β) · β · SW (bt) ≥ α ·OPT (v).

3.2 Proof of Theorem 3.2

With the proof of the pointwise welfare guarantee at hand we have already done the bulk of the
work for proving our guarantee regarding the average welfare. The basic idea is to sum the lower
bound on the declared welfare at any given time step as provided by Lemma 3.4 over all time steps
to obtain a lower bound on the average declare welfare, and to turn this into a lower bound on the
actual social welfare using Lemma 3.6.

Proof of Theorem 3.2. We first use Lemma 3.4 to relate the declared welfare at time steps t and
t− n to the optimal social welfare. Namely, for all t ≥ n,

(α+ 1) ·DW (bt) + α ·DW (bt−n) ≥ α · OPT (v) .

Next we take the sum over all time steps t and use that DW (bt) ≥ 0 to obtain the following
lower bound on the average declared welfare

1

T
·

T
∑

t=1

DW (bt) ≥ 1

T
·

T
∑

t=n+1

DW (bt)

≥ α

α+ 1
· 1
T

·
T
∑

t=n+1

(

OPT (v)−DW (bt−n)
)

≥ α

α+ 1
· T − n

T
· OPT (v)− α

α+ 1
· 1
T

·
T
∑

t=1

DW (bt) .

Solving this inequality for 1
T ·∑T

t=1 DW (bt) and using Lemma 3.6 to lower bound SW (bt) by
1/β ·DW (bt) we obtain

1

T
·

T
∑

t=1

SW (bt) ≥ 1

β
· 1
T

·
T
∑

t=1

DW (bt) ≥ α

(2α + 1)β
· T − n

T
·OPT (v) .
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4 Lower Bound for Subadditive CAs

Next we show our second main result (Theorem 4.1), which shows that no best-response dynamics
in which bidders do not overbid on the grand bundle can achieve a pointwise welfare guarantee
that is significantly better than 1/ logm. The assumption that bidders do not overbid on the grand
bundle seems quite natural, and does allow overbidding on subsets of items. It is satisfied by all
dynamics that we have described in Section 2 and more generally by all dynamics that have been
proposed in the literature.

Theorem 4.1. For every positive integer k ∈ N>0 there exists an instance with n = 2 players,
m = 2k−1 items, and subadditive valuations v = (v1, v2) such that in every best-response dynamics
in which players do not overbid on the grand bundle there exist infinitely many time steps t at which

SW (bt) ≤ 1

Ω
(

logm
log logm

) · OPT (v).

To prove this theorem we show that whenever the second player has updated is bid social
welfare will be low. This does not imply that the average welfare will be low as well. However,
if we restrict attention to round-robin dynamics, then we can extend the construction by adding
additional players after the second player that play a low-stakes game on separate items forcing the
average welfare to be low as well.

4.1 Proof of Theorem 4.1

Our proof of the lower bound is built around the following family of hard instances, with n = 2
players and m = 2k − 1 items. The valuations of the first player are based on an example that
demonstrates the worst-case integrality gap for set cover linear programs (see, e.g, [27, Example
13.4]), which has been used in the context of CAs with item bidding before [2]. The crux of our
construction is in the design of the second player’s valuation function, and its interplay with the
valuation function of the first player.

Definition 4.2. For every positive integer k ∈ N>0 the hard instance Ik consists of n = 2 bidders
and m = 2k − 1 items and the following subadditive valuations:

1. First bidder: Number the items from 1 to m and let i be a k-bit binary vector representing
the integer i. Interpret i as a k-dimensional vector over F2. Write i · j as the dot product of
the two vectors. Let Si = {j | j · i = 1}. Note that each such set contains (m + 1)/2 items,
and each item is contained in (m+ 1)/2 such sets. For each set of items T ⊆ M let v1(T ) be
the minimum number of sets Si required to cover the items in T .

2. Second bidder: Set ρ = 4 k
m and d = k − log k. Let D denote the set of all d-dimensional

subspaces of Fk
2 excluding the zero vector. Then for any set of items T let

v2(T ) = ρ ·max
D∈D

wD(T ) , where wD(T ) =











|T ∩D| for |T ∩D| < |D|
2

|D|
2 for |D|

2 < |T ∩D| < |D|
|D| else

.

Note that, in the instances just described, the first player has a valuation of v1(M) ≥ k =
log2(m+1) for the grand bundle, while the second player has a maximum valuation of maxT v2(T ) =
ρ · |D| = ρ · (2d − 1) ≤ ρ · 2d = 4 for any set of items.

11



To prove the theorem we first use linear algebra to derive a symmetry property of D. This
enables us to show that weak no-overbidding of player 1 on the grand bundle implies the existence
of a subset of items D ∈ D with low prices (Lemma 4.3). Intuitively, this is because the sets of items
that player 2 is interested in are rather small (of size about m/ logm), and there are sufficiently
many of these sets. We then show that player 2’s demand set under these prices is exactly this set
of items D (Lemma 4.4). In the final step (Lemma 4.5) we show that if player 2 buys these items
D, then player 1’s valuation for the remaining items M \D and hence the overall social welfare is
at most O(log logm).

Lemma 4.3. Let k ∈ N>0. Consider the hard instance Ik. For every vector of bids b such that
the first player does not overbid on the grand bundle there is a d-dimensional subspace D ∈ D such
that

∑

j∈D b1,j < ρ · |D|
2 .

Proof. Since the first player does not overbid on the grand bundle we have
∑

j∈M b1,j ≤ v1(M) = k,

so the average bids are bounded by 1
m

∑

j∈M b1,j ≤ k
m .

Observe that the number of d-dimensional subspaces of Fk
2 that contain a vector 0 6= x ∈ F

k
2 is

given as
(

k−1
d−1

)

2
, where

(

·
·

)

q
refers to the q-binomial coefficient (see, e.g., [22]). So, in particular,

this number is independent of x. Therefore, instead of taking the average over all items M , we can
take the average over all sets D ∈ D and take the average within such a set, i.e., 1

m

∑

j∈M b1,j =
1
|D|

∑

D∈D
1
|D|

∑

j∈D b1,j .

In combination, there has to be a D such that 1
|D|

∑

j∈D b1,j ≤ 1
m

∑

j∈M b1,j ≤ k
m . Since

k
m < ρ

2 = 2 k
m the claim follows.

Lemma 4.4. Let k ∈ N>0. Consider the hard instance Ik. Consider any D ∈ D. For a given price
vector p such that

∑

j∈D pj < ρ · |D|
2 the demand set of bidder 2 under ρ · wD is D.

Proof. The demand set S under ρ · wD must be a subset of D and it either has size ℓ ≤ |D|/2
or ℓ = |D|. By our assumption on the sum of the prices of the items in D, u(D) = ρ · wD(D) −
∑

j∈D pj > ρ · |D|
2 , while for any set T with |T ∩D| ≤ D

2 , we have u(T ) ≤ ρ ·wD(T ∩D)−∑j∈T pj ≤
ρ · wD(T ∩D) ≤ ρ · |D|

2 .

Lemma 4.5. Let k ∈ N>0. Consider the hard instance Ik. Then for D ∈ D we have v1(M \D) ≤
k − d.

Proof. To show the bound on v1, we use that D∪{0} is a subspace of Fk
2 of dimension d. That is, any

basis x1, . . . , xd of D ∪ {0} can be extended by xd+1, . . . , xk to a basis of Fk
2. Let X = (x1, . . . , xk).

This way, X−1 is the matrix that expresses j ∈ F
k
2 as a linear combination of x1, . . . , xk. As

x1, . . . , xd is a basis of D ∪ {0}, we know that for every j 6∈ D ∪ {0} the vector X−1j cannot be
zero in all components d+ 1, . . . , k. This implies that the set M \D can be covered by sets Si for
i being the rows d+ 1, . . . , k of X−1. Therefore v1(M \D) ≤ k − d.

Proof of Theorem 4.1. Any best-response dynamics has to ask every bidder infinitely often. We
claim that the social welfare is O(log logm) right after each update of bidder 2. Since the optimal
social welfare is Ω(logm) this shows the claim.

Let bt be a bid vector after bidder 2 has made a move. Using Lemma 4.3, we know that
there is a set D ∈ D with

∑

j∈D bt−1
1,j < ρ · |D|

2 . By Lemma 4.4, bidder 2 buys exactly this set.
Therefore, right after bidder 2 has updated his bid bidder 1 is allocated items M \D and bidder
2 receives items D. Lemma 4.5 implies that the social welfare for this allocation is no higher than
k − d+ ρ2d = O(log logm).
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5 Beyond Round-Robin Activation

Our positive results make use of the fact that bidders are activated to update their bid in a round-
robin way. That is, between two activations of a bidder, each other bidder is activated exactly
once. In this section, we investigate alternative activation protocols. We show that our positive
results extend to the case where at each step a random player gets to update his bid. This does not
hold for arbitrary activation. If there is an adversary choosing the order, the dynamics can cycle
through states of bad welfare or it can take very long to reach a good state.

5.1 Randomized Activation

Our first result provides a pointwise welfare guarantee if the player that gets to choose his bid
is chosen uniformly at random (with replacement) from the set of all players. It shows that the
expected social welfare at any time step T ≥ n is at least a Ω(α/β) fraction of the optimal social
welfare.

Theorem 5.1. Consider a β-safe sequence of bids that is generated by choosing at each time step
a player uniformly at random and letting this player update his bid to an α-aggressive bid. Then
for any time step T ≥ n, E

[

SW (bT )
]

≥ α
2(1+4α)β · OPT (v) .

5.2 Adversarial Activation

For our positive results, it is enough that bidders only make approximate best responses. Also,
their way of making choices does not need to be consistent in any way. Generally, the sequences do
not converge and this is not necessary for the welfare guarantees. However, we show it is indeed
important in which order players update their bids.

To this end, we consider the following activation order. In every odd step, bidder 1 makes a
move; in even steps bidders i > 1 are activated in a round-robin way. That is, the activation works
repeatedly as 1, 2, 1, 3, 1, 4, . . . , 1, n − 1, 1, n for n players.

Our first negative result shows that even for unit-demand valuations, there are cyclic sequences
of low welfare. In the sequence we devise, players sometimes update their bid to a different best
response although they are currently already playing a best response. This makes it different from
the Potential Procedure due to Christodoulou et al., where players only update their bid if this
strictly increases their utility.

Proposition 5.2. For every ǫ > 0, there are fractionally subadditive valuation functions and a
cyclic sequence b0, b1, . . . , b2n−1 = b0 such that each player when activated moves to a best response
(with no improvement in utility) but the social welfare is always at most an 1+ǫ

n−1 fraction of the
optimal welfare at every point. The result holds even for unit-demand valuations with α = 1
aggressive bids, in a β = 1-safe sequence.

Proof. There are n − 1 items, each bidder is unit-demand. That is, player i’s valuation for a set
S ⊆ M is given as vi(S) = maxj∈S vi,j. For bidder 1, we let v1,1 = . . . , v1,n−1 = 1 + ǫ. For bidder
i > 1, define vi,i−1 = 1 and vi,j = 0 for j 6= i − 1. The social optimum assigns item j to bidder
j + 1 and has welfare n− 1.

In the following cyclic best-response sequence, the social welfare never exceeds 1 + ǫ. The bids
for all bidders i > 1 remain 0 for the entire sequence. This makes bidder 1 indifferent between all
items. We now assume that tie-breaking is to our disadvantage as follows. The t-th time that bidder
1 is activated, he buys item t, bidding 1+ ǫ. In the following step bidder t+1 is activated. Buying
any item would result in negative utility. Therefore, setting all bids to zero is a best response.
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Our second negative result is that we can extend the above construction so that best responses
are unique and the sequence converges, but it takes exponential time until we reach a state of good
welfare for the first time.

Theorem 5.3. For all n and k, there is an instance of n agents and (n − 1) · (k + 1) items and
an activation sequence, such that until each agent has been activated Ω(2k) times the welfare has
never exceeded a 1

n−1 fraction of the optimum.

6 Concluding Remarks and Outlook

In our analysis we focused on fractionally subadditive and subadditive valuations, which do not
exhibit complements. A natural question is whether similar results can be obtained for classes
of valuations that exhibit complements. In Appendix I we discuss an example with MPH − k
valuations that highlights the difficulties that arise.

Another interesting follow-up question is whether there is a general result that translates a
Price of Anarchy guarantee for a given mechanism that is provable via smoothness into a result
that shows that best-response sequences reach states of good social welfare quickly. The example
with MPH − k valuations in Appendix I already limits the potential scope of such a result. It
would still be interesting to identify natural sufficient conditions. One such condition could be that
the mechanism admits some kind of potential function (as the procedure for XOS valuations), but
our results already show that this condition is certainly not necessary.
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[26] V. Syrgkanis and É. Tardos. Composable and efficient mechanisms. In Proceedings of the 45th
ACM Symposium on Theory of Computing Conference, STOC’13, pages 211–220, 2013.

[27] V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York, NY,
USA, 2001. ISBN 3-540-65367-8.

16



A Non-Existence of Weak No-Overbidding Pure Nash Equilibria

We can also leverage our novel insights regarding hard instances (Definition 4.2) for subadditive
combinatorial auctions with item bidding to show that there is no pure Nash equilibrium in which
players use weakly no-overbidding strategies.

Theorem A.1. Let k ∈ N>0. Consider the hard instance Ik with n = 2 players and m = 2k − 1
items. There is no pure Nash equilibrium in weakly no-overbidding strategies if k ≥ 8. This remains
true if we define a bid profile to be at equilibrium if no player has a beneficial deviation to a weakly
no-overbidding strategy.

Proof. Assume that b is a weakly no-overbidding pure Nash equilibrium. Suppose Player 2 wins
the set of items W ⊆ M in b, then Player 1 wins the set of items M \W . By weak no-overbidding,
we have

∑

j∈M\W

b1,j ≤ v1(M \W ) and
∑

j∈W

b2,j ≤ v2(W ) .

Player 1 does not win the items in W , which means that b1,j ≤ b2,j for all items j ∈ W .
Consequently, we have

∑

j∈M

b1,j ≤ v1(M \W ) + v2(W ) ≤ v1(M) + v2(M) = k + ρ · 2d = k + 4 · k

m
· 2k−log k = k + 4 .

By the same argument as in Lemma 4.3, each item j ∈ M is included in the same number of
sets D ∈ D. Therefore,

1

|D|
∑

D∈D

1

|D|
∑

j∈D

b1,j =
1

m

∑

j∈M

b1,j ≤
k + 4

m
.

This implies that there is a set D ∈ D such that

1

|D|
∑

j∈D

b1,j ≤
k + 4

m
.

Since k ≥ 8 by assumption, m > 2k + 8, and therefore

∑

j∈D

b1,j ≤
k + 4

m
· |D| < |D|

2
.

By Lemma 4.4 and because Player 2 plays a best response, we have W ⊇ D.
In the remainder, we will show that this implies that Player 1 has a beneficial weakly no-

overbidding deviation b′1.
Let b′1,j = b2,j +

1
m for j ∈ W and b′1,j = b1,j for j ∈ M \W . Observe that in (b′1, b2), bidder 1

wills all items M . This bid fulfills the weak no-overbidding property because

∑

j∈M

b′1,j =
∑

j∈W

(

b2,j +
1

m

)

+
∑

j∈M\W

b1,j

≤ v2(W ) + 1 + v1(M \W )

≤ v2(D) + 1 + v1(M \D) ≤ ρ2d + 1 + k − d = 4 + 1 + log k ≤ k = v1(M) ,

17



where the first inequality uses that b is weakly no-overbidding, the second inequality exploits the
definition of v2, the third inequality holds by Lemma 4.5, and the final inequality holds because we
have assumed k ≥ 8.

The deviation by Player 1 is beneficial because

u1(b
′
1, b2) = v1(M)−

∑

j∈M

b2,j = k − d−
∑

j∈M\W

b2,j + d−
∑

j∈W

b2,j ≥ u1(b) + d− v2(W )

≥ u1(b) + d− 4 > u1(b) ,

where the first inequality uses Lemma 4.5, the second inequality uses that v2(W ) ≤ v2(D) = 4, and
the final inequality follows from the definition of d = k − log k and the assumption that k ≥ 8 and
so d > 4.

B Sufficiency of Strong No-Overbidding

We show that in order to have a 1-safe dynamic it suffices that initial bids and the subsequent
updates fulfill no-overbidding in the strong sense. A bid vector b is strongly no-overbidding if
∑

j∈S bi,j ≤ vi(S) for every bidder i and every set of items S. A best response bi by bidder i against
bids b−i is strongly no overbidding if

∑

j∈S bi,j ≤ vi(S).

Lemma B.1. If the initial bid vector b0 is strongly no overbidding and at each time step t ≥ 1
some bidder i gets to update his bid to a best response, which is strongly no overbidding, then the
resulting best-response dynamic is 1-safe.

Proof. Since the initial bid vector and each update satisfy strong no-overbidding we have
∑

j∈S b
t
i,j ≤ vi(S) for all bidders i, time steps t ≥ 0, and sets of items S. Subtracting

∑

j∈S maxk 6=i b
t
k,j from both sides shows the claim.

C Proof of Proposition 2.1

Consider an arbitrary bidder i and his update to bid bti. The bid bti satisfies strong no-overbidding
by definition. Hence Lemma B.1 shows that the bid sequence is 1-safe. It remains to show that bti
is a 1-aggressive best response.

We first show that the bid bti is a best response to bt−i. Let Si denote the set of items that
bidder i wins with bid bti against bids b

t
−i and let D be the demand set on the basis of which bti is

defined. Then,

ui(b
t) = vi(Si)−

∑

j∈Si

max
k 6=i

btk,j ≥
∑

j∈Si

(bti,j −max
k 6=i

btk,j)

≥
∑

j∈D

(bti,j −max
k 6=i

btk,j) = vi(D)−
∑

j∈D

max
k 6=i

btk,j ≥ max
S



vi(S)−
∑

j∈S

max
k 6=i

btk,j



 ,

where the first inequality uses that vi is XOS, the second uses that maxk 6=i b
t
k,j = bti,j for j ∈ D \Si

and maxk 6=i b
t
k,j ≤ bti,j for j ∈ Si \ D, the following equality exploits the definition of bti, and the

final inequality uses that D is a demand set.
To show that bti is 1-aggressive it suffices to show that bidder i’s declared and actual utility

at time step t coincide. Since the right-hand side in the preceding chain of inequalities is at least
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vi(Si) −
∑

j∈Si
maxk 6=i b

t
k,j all inequalities in the chain of inequalities must be equalities. This

implies that

ui(b
t) = vi(Si)−

∑

j∈Si

max
k 6=i

btk,j =
∑

j∈Si

(bti,j −max
k 6=i

btk,j) = uDi (b
t) ,

as claimed.

D Proof of Proposition 2.2

Consider an arbitrary bidder i and his update to bid bti. We first argue that bti is a best response.
We claim that ũi(S, b

t
−i) > 0 for all S ⊆ D unless D = ∅. To see this assume by contradiction that

there exist a S ⊆ D such that ũi(T, b
t
−i) ≤ 0. Then, by subadditivity of vi,

ũi(D, b−i) ≤



vi(D \ T )−
∑

j∈D\T

max
k 6=i

bk,j



+



vi(T )−
∑

j∈S

max
k 6=i

bk,j



 ≤ ũi(D \ T, bt−i),

which contradicts the definition of D. Because of this the additive approximation ai has ai,j > 0
for all j ∈ D. It follows that bti,j > maxk 6=i b

t
k,j for all j ∈ D, and so bidder i wins all items j ∈ D,

and for the items j 6∈ D that he wins maxk 6=i b
t
k,j = 0.

To see that bti is 1/ lnm-aggressive observe the following. Let Si denote the set of items that
bidder i wins with bid bti. Then, considering the bid bti defined on the basis of demand set D, we
have

uDi (b
t) =

∑

j∈Si

(

bti,j −max
k 6=i

btk,j

)

≥
∑

j∈D

(

bti,j −max
k 6=i

btk,j

)

=
∑

j∈D

ai,j ≥
1

lnm
· ũi(D, bt−i),

where the first inequality uses that bti,j = maxk 6=i b
t
k,j for j ∈ D \ Si and bti,j ≥ maxk 6=i b

t
k,j for

j ∈ Si \D, and the second inequality uses property (a) of bid bti.
That the bid sequence is 1-safe follows from the starting condition and Lemma B.1 by observing

that bidder i’s update satisfies strong no-overbidding. Namely, for every S ⊆ D,

∑

j∈S

bti,j =
∑

j∈S

(ai,j +max
k 6=i

btk,j) ≤ ũi(S, b
t
−i) +

∑

j∈S

max
k 6=i

btk,j = vi(S),

where the inequality follows from property (b) of bid bti.

E Proof of Proposition 2.3

The argument that the bid bti chosen by bidder i is a best response and 1-aggressive is identical to
the respective argument in the proof of Proposition 2.2, except that this time we collect a factor
of 1 instead of 1/ lnm when we apply property (a) of bid bti.

To see that the bid sequence is lnm-safe, consider a point in time t′ ≥ t after bidder i’s update.
In the vector bt′ , bidder i gets a set S ⊆ M that is possibly different from D. Note that for
j ∈ S \D, bt

′

i,j = 0 by our definition. Furthermore, for j ∈ S ∩D, maxk 6=i b
t′

k,j ≤ maxk 6=i b
t
k,j because

bid updates are only non-zero if an item changes its owner. Therefore, because bidder i wins item
j, all new bids have to be zero.
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In combination, we have

uDi (b
t′) =

∑

j∈S∩D

(

ãi,j +max
k 6=i

btk,j −max
k 6=i

bt
′

k,j

)

≤ lnm ·



ũi(S ∩D, bt−i) +
∑

j∈S∩D

(

max
k 6=i

btk,j −max
k 6=i

bt
′

k,j

)



 = lnm · ui(bt
′

),

because the sum of ãi,j terms is bounded by lnm · ũi(S ∩D, bt−i) by definition and the sum of the
remaining terms is non-negative.

F Tightness of Pointwise Guarantee for XOS Valuations

The following proposition shows that the pointwise welfare guarantee of 1/3 for the round-robin
best-response dynamics for fractionally subadditive valuations described in Section 2 is tight, even
if the valuations are unit demand.

Proposition F.1. Consider the dynamics described in Section 2.1 There is an input with n = 3
players, m = 3 items, and unit-demand valuations and an initial bid vector such that when started
from this bid vector the social welfare obtained by the dynamics after a single round of bid updates
is 1/3 · OPT (v).

Proof. The valuations of all three bidders are unit demand, i.e., for all players i and sets of items
S, vi(S) = maxj∈S vi,j. The item valuations vi,j for 1 ≤ i, j ≤ 3 are given by the following table:

item 1 item 2 item 3

player 1 1 0 0
player 2 1 + ǫ 1 + 2ǫ 1 + 3ǫ
player 3 0 0 1

Suppose that the XOS representation of these valuations is that each player has an additive
valuation ai,0 that is all zero and then one for each item j, ai,j, such that ai,j(k) = vi,j for k = j
and ai,j(k) = 0 otherwise.

Let b0 be the bid profile in which Player 2 bids 1 + ǫ on item 1, all other bids are 0. That is,
b0 = (a1,0, a2,1, a3,0). Suppose that the order of updates is first Player 1 gets to update his bid,
then Player 2, and then Player 3.

Player 1 is already playing a best response to b0−1, so b1 = b0. Now, to get b2, Player 2 updates
his bids to a best-response to b1−2, which is a2,3. That is, he bids zero on the first two items and
1 + 3ǫ on the third. So b2 = (a1,0, a2,3, a3,0). With these bids, however, bidding 0 on all items is a
best-response of Player 3, therefore b3 = b2.

Observe that SW (b3) = DW (b3) = 1 + 3ǫ, whereas the optimal social welfare is 3 + 2ǫ. The
claim follows by letting ǫ tend to zero.

G Proof of Theorem 5.1

The proof of this theorem is a generalization of the the proof of Theorem 3.1. The first lemma
(Lemma G.1) is a relatively straightforward variant of Lemma 3.3 that upper bounds the declared
utilities of only those players that got to update their bid. Lemma 3.4, on the other hand, no longer
applies. The reason is that with randomized activation it is not possible to bound the payments
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a player would face by the sum of the bids in the beginning and at the end. We instead bound
the payments by the expected maximum bid in the entire sequence of bids (Lemma G.2). The key
technical lemma (Lemma G.3) is then a probabilistic argument that relates the sum of the expected
maximum bids in the entire sequence to the declared welfare at the end.

Lemma G.1. Consider a sequence b0, . . . , bT in which bidders from N ′ update their bid at least
once. For i ∈ N ′, let ti denote the time of the last update for bidder i. Then,

∑

i∈N ′ uDi (b
ti) ≤

DW (bT ).

Proof. Without loss of generality, let N ′ = {1, . . . , n′} and t1 < t2 < . . . < tn′ . Consider any i ∈ N ′

and let bidder i’s update buy him the set of items S′. Then

uDi (b
ti) =

∑

j∈S′

(

btii,j −max
k 6=i

btik,j

)

.

For i ∈ N ′, let zij = maxk<i b
ti
k,j for all j, z

0
j = 0. That is, zij is the highest “final” bid on item j.

We observe that
∑

j∈S′

(btii,j −max
k 6=i

btik,j) ≤
∑

j∈M

(zij − zi−1
j ) .

This is for the following fact. For j 6∈ S′, we have zij ≥ zi−1
j by definition. For j ∈ S′, btii,j = zij and

maxk 6=i b
ti
k,j ≥ maxk<i b

ti
k,j = maxk<i b

ti−1

k,j = zi−1
j .

By summing over all bidders i ∈ N ′, we obtain

∑

i∈N ′

uDi (b
ti) ≤

∑

i∈N ′

∑

j∈M

(zij − zi−1
j ).

The double sum is telescoping and zTj = z
tn′

j = maxk≤n′ bTk,j ≤ maxk b
T
k,j and z0j = 0 by

definition. So,
∑

i∈N ′

uDi (b
ti) ≤

∑

j∈M

(zTj − z0j ) =
∑

j∈M

max
k

bTk,j = DW (bT ) .

Lemma G.2. Let S∗
1 , . . . , S

∗
n be any feasible allocation, in which player i receives items S∗

i . Con-
sider a sequence b0, . . . , bT in which each player from N ′ updates his bid at least once using an
α-aggressive bid. We have (α+ 1) ·DW (bT ) + α ·∑j∈M maxt≤T maxi b

t
i,j ≥ α ·∑i∈N ′ vi(S

∗
i ).

Proof. For i ∈ N ′, let ti denote the last time player i updates his bid. Instead of choosing bid btii ,
he could have bought the set of items S∗

i . As b
ti
i is α-aggressive, we get

uDi (b
ti) ≥ α ·



vi(S
∗
i )−

∑

j∈S∗
i

max
k 6=i

btik,j



 .

Let yj = maxtmaxk b
t
k,j.

We thus have
uDi (b

ti) + α ·
∑

j∈S∗
i

yj ≥ α · vi(S∗
i ) .

Summing this inequality over all bidders i ∈ N ′ yields

∑

i∈N ′

uDi (b
ti) + α ·

∑

i∈N ′

∑

j∈S∗
i

yj ≥ α ·
∑

i∈N ′

vi(S
∗
i ) .
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The first sum is at most DW (bT ) by Lemma G.1. The double sum covers each j ∈ M at most
once, therefore it is bounded by

∑

j∈M yj . Consequently

DW (bT ) + α ·
∑

j∈M

yj ≥ α ·
∑

i∈N ′

vi(S
∗
i ) .

Lemma G.3. Consider a sequence of bids that is generated by choosing at each time step a player
uniformly at random and letting this player update his bid. Then, for all items j ∈ M and all

lengths of the sequence T ≥ 0, we have E
[

maxt≤T maxi b
t
i,j

]

≤
(

1− 1
n

)−T
E
[

maxi b
T
i,j

]

.

Proof. For a fixed T , let yj = maxt≤T maxi b
t
i,j and ptj = maxi b

t
i,j for t ≤ T . We first show that for

all x > 0

Pr [yj ≥ x] ≤
(

1− 1

n

)−T

Pr
[

pTj ≥ x
]

(1)

To show (1), we use that yj is defined to be maxt′≤T pt
′

j . That is, if yj ≥ x, there has to be

a t′ ∈ {0, 1, . . . , T} for which p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x. Note that for different t′ these are
disjoint events, so

Pr [yj ≥ x] =

T
∑

t′=0

Pr
[

p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x
]

.

Let us fix t′ and consider the event that p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x. If t′ > 0, in step t′ a player

i has been selected that whose bid has set pt
′

j ≥ x; if t′ = 0, the initial bid of some player i on item

j is at least x. We have have pTj < x only if this player i is selected to update his bid in steps

t′ + 1, . . . , T . This happens with probability 1−
(

1− 1
n

)T−t′ ≤ 1−
(

1− 1
n

)T
. Formally, we have

Pr
[

pTj < x
∣

∣

∣
p1j < x, . . . , pt

′−1
j < x, pt

′

j ≥ x
]

≤ 1−
(

1− 1

n

)T

.

This implies

Pr
[

pTj ≥ x, p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x
]

≥
(

1− 1

n

)T

Pr
[

p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x
]

.

We thus obtain

Pr [yj ≥ x] =
T
∑

t′=0

Pr
[

p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x
]

≤
(

1− 1

n

)−T T
∑

t′=0

Pr
[

pTj ≥ x, p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x
]

=

(

1− 1

n

)−T

Pr
[

pTj ≥ x
]

.

This concludes the proof of (1).
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To show the lemma, let ǫ > 0. We use that the expectation of a non-negative random variable
X can be approximated by

∑∞
k=0 ǫ ·Pr [X ≥ k · ǫ] ≤ E [X] ≤∑∞

k=1 ǫ ·Pr [X ≥ k · ǫ]. Applying this
approximation and using (1), we get

E
[

pTj
]

≥
∞
∑

k=1

ǫPr
[

pTj ≥ kǫ
]

≥
∞
∑

k=0

(

1− 1

n

)T

ǫPr [yj ≥ kǫ]− ǫ ≥
(

1− 1

n

)T

E [yj]− ǫ .

As this holds for all ǫ > 0, we also have

E
[

pTj
]

≥
(

1− 1

n

)T

E [yj] .

We are now ready to prove the theorem.

Proof of Theorem 5.1. Since all of our arguments apply starting from any vector of bids, we can
without loss of generality assume that T is the final of a sequence of n bid updates, and so T = n.
Let N ′ be the set of players that are selected to bid at least once during this sequence of bid
updates. Denote by S∗

1 , . . . , S
∗
n the allocation that maximizes social welfare. By Lemma G.2, we

have
DW (bT ) + α

∑

j∈M

max
t≤T

max
i

bti,j ≥ α
∑

i∈N ′

vi(S
∗
i ) .

Note that DW (bT ), maxt≤T maxi b
t
i,j, and N ′ are now random variables. Taking expectations of

both sides, we get

E



DW (bT ) + α
∑

j∈M

max
t≤T

max
i

bti,j



 ≥ E

[

α
∑

i∈N ′

vi(S
∗
i )

]

.

By linearity of expectation, this implies

E
[

DW (bT )
]

+ α
∑

j∈M

E

[

max
t≤T

max
i

bti,j

]

≥ α
∑

i∈N

Pr
[

i ∈ N ′
]

vi(S
∗
i ) .

The probability of each player to be selected at least once is 1−
(

1− 1
n

)T
. Therefore

∑

i∈N

Pr
[

i ∈ N ′
]

vi(S
∗
i ) ≥

(

1−
(

1− 1

n

)T
)

·
∑

i∈N

vi(S
∗
i ) .

Lemma G.3 shows that E
[

∑

j∈M maxt≤T maxi b
t
i,j

]

≤
(

1− 1
n

)−T
E
[

DW (bT )
]

.

We obtain
(

1 + α

(

1− 1

n

)−T
)

E
[

DW (bT )
]

≥ α

(

1−
(

1− 1

n

)T
)

·
∑

i∈N

vi(S
∗
i ) ,

and therefore

E
[

DW (bT )
]

≥ α · 1−
(

1− 1
n

)T

1 + α
(

1− 1
n

)−T
·
∑

i∈N

vi(S
∗
i ) .

Finally, we use Lemma 3.6 to relate the declared social welfare to the actual social welfare and
the fact that T = n ≥ 2 to lower bound 1 − (1 − 1/n)n ≥ 1/2 and upper bound (1 − 1/n)−n ≤ 4.
This yields,

E
[

SW (bT )
]

≥ α

2(1 + 4α)β
·OPT (v) .
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H Proof of Theorem 5.3

Christodoulou et al. [7] give a lower bound on the convergence time of their Potential Procedure. In
their Theorem 3.4, they show that for two players for every number of items k, there are fractionally
subadditive valuations such that convergence takes at least Ω(2k) steps. We combine these valuation
functions with the ones used in the proof of Proposition 5.2 to get a sequence in which all steps are
strictly improving.

The general idea is as follows. We use m = (n− 1) · (k + 1) items. Items 1, . . . , n − 1 are used
to mimic the sequence of Proposition 5.2. The remaining items are grouped into n− 1 sets of size
k, and on each of these sets bidder 1 follows the steps of the exponential-length sequence with one
of the other bidders. So, items Ci := {n − 1 + (i − 2)k + 1, . . . , n − 1 + (i − 1)k} are used for the
exponential-length sequence between player 1 and bidder i.

For i ∈ {1, 2}, ℓ = 2, . . . , n, t ∈ N, let ṽti,ℓ be the additive valuation function defined by
Christodoulou et al. that are used by player i after his t-th update, using the items Cℓ.

For our sequence, we now define valuation functions as follows. Given some ǫ > 0, let the
valuation function of player i > 1 be defined as

vi(S) = max{1i−1∈S , ǫ ·max
t

ṽt2,i(S)} .

That is, bidder i has a high value to buy item i − 1. He also has a very small value for items Ci

according to the exponential lower-bound construction, being player 2 in the i-th copy.
For player 1, we define the valuation function by setting v1(S) = maxt v

t
1(S), where vt1 is the

additive valuation function that is used when player 1 updates his bid for the t-th time. It is
designed in such a way that the t-th update is a best response in the game on Ci with player
i = (t− 1) mod (n− 1) + 1, who has just updated his bid, and makes the bid of 1 move from item
i− 1 to i, which bidder i+ 1 is interested in, who will be activated next.

To define vt1 formally, observe that when player 1 makes his t-th update, some of the other
players have performed ⌈ t

n−1⌉ updates so far, the others only ⌊ t
n−1⌋. Let the respective sets of

players be denoted by N ′(t) and N ′′(t). Based on this, define

vt1(S) = (1 + ǫ) · 1(t−1) mod (n−1)+1∈S + ǫ ·
∑

i∈N ′(t)

ṽ
⌈ t
n−1

⌉

2,i (S) + ǫ ·
∑

i∈N ′′(t)

ṽ
⌊ t
n−1

⌋

2,i (S) .

By these definitions, the bids on items 1, . . . , n − 1 change exactly the way as in the proof
of Proposition 5.2 as long as there are still changes on items Cℓ. Christodoulou et al. show that
it takes at least Ω(2k) updates until such a set Cℓ reaches a stable state (a Nash equilibrium
in their case). Therefore, our constructed best-response sequence has low welfare at least until
every bidder 2, . . . , n has updated his bid at least Ω(2k) times. Note that by the construction of
Christodoulou et al., every update is the unique best response.

I Negative Result for MPH-k Valuations

Feige et al. [17] introduced the hierarchy of valuation functions MPH-k that allow complements
of the items to some degree, parameterized in k. A valuation function vi belongs to class MPH-k
if there are values vℓi,T ≥ 0 such that vi(S) = maxℓ

∑

T⊆S,|T |≤k v
ℓ
i,T . So fractionally subadditive

valuations are precisely the case k = 1, while with k = m it is possible to capture any (monotone)
valuation function.

Observe that for a usual valuation function even in MPH-2, the only bids that fulfill strong
no-overbidding are 0 on every item. Therefore, it is not possible that bidders bid α-aggressively for
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α > 0 and satisfy no-overbidding in the strong sense at the same time. However, as our dynamics in
Section 2.2.2 demonstrates, strong no-overbidding is not a necessary requirement for good welfare
guarantees. Unfortunately, the case is different for MPH-k. Below we show a negative result for
the valuation class MPH-3. It relies on ties regarding identical bids and multiple best responses
being broken to the disadvantage of the dynamics.

Proposition I.1. There are valuation functions for n bidders on O(n) items that belong to MPH-
3 such that best-response dynamics only reach states that achieve a O( 1n)-fraction of the optimal
social welfare.

Proof. For a given k, we define an instance of k+4 items as follows. Bidder i ∈ [k−1] has valuation
of 3 for the bundles {i, k+1, k+2} and {i, k+3, k+4}, with no value for the subsets. Bidder k has
valuation of 3 for the bundles {k, k + 1, k + 3} and {k, k + 2, k + 4}, with no value for the subsets.
Furthermore, there are k + 4 bidders k + 1, . . . , 2k + 4, each of which has value 1 for a different of
these items. Note that due to bidders k + 1, . . . , 2k + 4, the optimal social welfare is k + 4. Our
best-response sequence will never reach a state of welfare more than 3.

We assume that ties are broken as follows. Bidders k + 1, . . . , 2k + 4 never get an item if there
is an equal bid from [k]. Among the bidders in [k], on items k + 1 and k + 3, bidder k is preferred
to k − 1, k − 1 to k − 2 and so on. On items k + 2 and k + 4, bidder k − 1 is preferred to k − 2,
k − 2 to k − 1 and so on but all of these are preferred to bidder k.

Now, we get the following best-response sequence. Bidders k + 1, . . . , 2k + 4 bid truthfully on
their items throughout the process. This sets the minimum bid to win an item to 1. The sequence
now proceeds as follows. Bidders i = 1, . . . , k − 1 buy items {i, k + 1, k + 2}, bidding 1 on each
of them. Afterwards, bidder k buys items {k, k + 1, k + 3}, again bidding 1 on each of them.
Consequently, bidders i = 1, . . . , k − 1 buy items {i, k + 3, k + 4}, bidding 1 each, making bidder k
buying items {k, k + 2, k + 4}. Now, the sequence starts from the beginning.

Note that at every point in this sequence, only the bidder that has just updated his bid gets a
bundle of items of any positive value. This value is 3.

J Lazy Updates

So far, we considered the case that each bidder always updates his bids in an α-aggressive way when
it is his turn. In this section, we show that our results also transfer to the case in which updates
are lazy. That is, a bidder may also choose not to update the bids when he is already playing a
best response given the current other bids. It is now important to assume that bid updates are 0
for items that are not won and that no item is ever won with bid 0. We will consider the points in
time when each bidder has performed at least one α-aggressive update.

Theorem J.1. In a β-safe round-robin bidding dynamic with lazy α-aggressive bid updates the
social welfare at any time step t after which each bidder has performed at least one α-aggressive
update satisfies SW (bt) ≥ α

(1+2α+β)β · OPT (v).

Lemma J.2. Let S∗
1 , . . . , S

∗
n be any feasible allocation, in which player i receives items S∗

i . Consider
a round-robin sequence b0, . . . , bT in which each player updates his bid at least once using an α-
aggressive bid and may be lazy afterwards. We have (2α + 1) · DW (bT ) + α · DW (bT−n) ≥ α ·
∑

i∈N ′ vi(S
∗
i ).

Proof. Let ti denote the last time player i updates his bid and t′i denote the last time he is offered
to update the bid. Let the set bought at time ti be Si, the set that is still won at time t′i be S

′
i ⊆ Si.
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Instead of choosing bid btii , he could have bought the set of items S′. As btii is α-aggressive, we get

uDi (b
ti) ≥ α ·



vi(S
′
i)−

∑

j∈S′
i

max
k 6=i

btik,j



 .

The declared welfare at time t′i is given by

uDi (b
t′
i) =

∑

j∈S′
i

(

btii,j −max
k 6=i

b
t′i
k,j

)

.

In combination, we get

uDi (b
ti) + αuDi (b

t′i) ≥ α ·



vi(S
′
i)−

∑

j∈S′
i

max
k 6=i

btik,j +
∑

j∈S′
i

btii,j −
∑

j∈S′
i

max
k 6=i

b
t′i
k,j





= αui(b
t′
i) + α ·





∑

j∈S′
i

btii,j −
∑

j∈S′
i

max
k 6=i

btik,j



 ≥ αui(b
t′
i) ,

where in the last step we use that for every j ∈ S′
i ⊆ Si the update sets btii,j ≥ maxk 6=i b

ti
k,j.

At t′i, he could buy the set S∗
i instead. Therefore

ui(b
t′
i) ≥ vi(S

∗
i )−

∑

j∈S∗
i

max
k 6=i

b
t′
i

k,j .

We thus have
uDi (b

ti) + αuDi (b
t′
i) + α ·

∑

j∈S∗
i

(pTj + pT−n
j ) ≥ α · vi(S∗

i ) .

Summing this inequality over all bidders i ∈ N yields

∑

i∈N

(uDi (b
ti) + αuDi (b

t′i)) + α ·
∑

i∈N

∑

j∈S∗
i

(pTj + pT−n
j ) ≥ α ·

∑

i∈N

vi(S
∗
i ) .

The first sum is at most (1 + α)DW (bT ) by Lemma G.1. The double sum covers each j ∈ M
at most once, therefore it is bounded by DW (bT−n) +DW (bT ). Consequently

(1 + α)DW (bn) + α · (DW (bT−n) +DW (bT )) ≥ α ·
∑

i∈N

vi(S
∗
i ) .

Lemma J.3. Consider a β-safe bid sequence b0, . . . , bn in which player i changes his bid from bi−1

to bi using an α-aggressive bid. Then, DW (bn) ≥ α
β ·DW (b0).

Proof. Consider an arbitrary bidder i and his update from bi−1 to bi. We claim that

DW (bi) ≥ DW (bi−1)−
(

β

α
− 1

)

· uDi (bi) . (2)

Observe that if bidder i keeps his bid unchanged, DW (bi) = DW (bi−1) and therefore (2) holds
trivially. So, let us consider the case that bidder i updates the bid α-aggressively. Denote the set
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of items that bidder i won under bids bi−1 by Si−1
i , and the set of items that he wins under bids bi

by Si
i . So

uDi (b
i−1) =

∑

j∈Si−1

i

bi−1
i,j −

∑

j∈Si−1

i

max
k 6=i

bi−1
k,j and uDi (b

i) =
∑

j∈Si
i

bii,j −
∑

j∈Si
i

max
k 6=i

bik,j .

Using that for all k 6= i and all j we have bi−1
k,j = bik,j we obtain that the difference in declared

welfare over all bidders between steps i − 1 and i is equal to the difference in bidder i’s declared
utility at these time steps. Formally,

DW (bi) =
∑

j∈M\Si
i

max
k 6=i

bi−1
k,j +

∑

j∈Si
i

bii,j =
∑

j∈M

max
k 6=i

bi−1
k,j +

∑

j∈Si
i

bii,j −
∑

j∈Si
i

max
k 6=i

bik,j

=
∑

j∈M

max
k 6=i

bi−1
k,j + uDi (bi) =

∑

j∈M\Si−1

i

max
k 6=i

bi−1
k,j +

∑

j∈Si−1

i

max
k 6=i

bi−1
k,j + uDi (bi)

=
∑

j∈M\Si−1

i

max
k 6=i

bi−1
k,j +

∑

j∈Si−1

i

bi−1
i,j + uDi (bi)−

∑

j∈Si−1

i

bi−1
i,j +

∑

j∈Si−1

i

max
k 6=i

bi−1
k,j

= DW (bi−1) + uDi (bi)− uDi (b
i−1) .

Since bii is α-aggressive, we have uDi (b
i) ≥ α · ui(bi−1). Since the bidding sequence is β-safe,

uDi (b
t) ≤ β · ui(bt) for all t. So,

DW (bi) = DW (bi−1) + uDi (b
i)− uDi (b

i−1)

≥ DW (bi−1) + uDi (b
i)− β · ui(bi−1)

≥ DW (bi−1) + uDi (b
i)− β

α
· uDi (bi)

= DW (bi−1)−
(

β

α
− 1

)

· uDi (bi) .

This implies that (2) also holds in this case.
Summing (2) over all bidders i ∈ N and using the telescoping sum

∑

i∈N (DW (bi)−DW (bi−1) =
DW (bn)−DW (b0) we obtain

DW (bn) ≥ DW (b0)−
(

β

α
− 1

)

∑

i∈N

uDi (b
i) .

Since α ≤ 1 and β ≥ 1 the factor (β/α− 1) ≥ 0. We can therefore use Lemma 3.3 to conclude that

DW (bn) ≥ DW (b0)−
(

β

α
− 1

)

DW (bn) .

This implies the claim.

Proof of Theorem J.1. Combining Lemma J.2 with Lemma J.3 to the allocation S∗
1 , . . . , S

∗
n that

maximizes social welfare we obtain

(1 + 2α + β) ·DW (bt) = (2α+ 1) ·DW (bt) + α · β
α
DW (bt)

≥ (2α+ 1) ·DW (bt) + α ·DW (bt−n−1) ≥ α ·OPT (v).

Now, by Lemma 3.6, DW (bt) ≤ β ·SW (bt). Combining this with the previous inequality yields

(1 + 2α+ β) · β · SW (bt) ≥ α ·OPT (v).
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