
ar
X

iv
:1

60
7.

08
80

5v
1

 [
cs

.D
S]

 2
9

Ju
l 2

01
6

Submodular Secretary Problems:

Cardinality, Matching, and Linear Constraints

Thomas Kesselheim∗ Andreas Tönnis†

August 1, 2016

Abstract

We study various generalizations of the secretary problem with submodular objective func-
tions. Generally, a set of requests is revealed step-by-step to an algorithm in random order. For
each request, one option has to be selected so as to maximize a monotone submodular function
while ensuring feasibility. For our results, we assume that we are given an offline algorithm com-
puting an α-approximation for the respective problem. This way, we separate computational
limitations from the ones due to the online nature. When only focusing on the online aspect,
we can assume α = 1.

In the submodular secretary problem, feasibility constraints are cardinality constraints, or
equivalently, sets are feasible if and only if they are independent sets of a k-uniform matroid.
That is, out of a randomly ordered stream of entities, one has to select a subset size k. For
this problem, we present a 0.31α-competitive algorithm for all k, which asymptotically reaches
competitive ratio α/e for large k. In submodular secretary matching, one side of a bipartite graph
is revealed online. Upon arrival, each node has to be matched permanently to an offline node
or discarded irrevocably. We give an α

4
-competitive algorithm. This also covers the problem,

in which sets of entities are feasible if and only if they are independent with respect to a
transversal matroid. In both cases, we improve over previously best known competitive ratios,
using a generalization of the algorithm for the classic secretary problem.

Furthermore, we give an O(αd−

2

B−1)-competitive algorithm for submodular function maxi-
mization subject to linear packing constraints. Here, d is the column sparsity, that is the maximal
number of none-zero entries in a column of the constraint matrix, and B is the minimal capacity
of the constraints. Notably, this bound is independent of the total number of constraints. We

improve the algorithm to be O(αd−

1

B−1)-competitive if both d and B are known to the algorithm
beforehand.

∗Max-Planck-Institut für Informatik and Saarland University, Saarbrücken, Germany.
thomas.kesselheim@mpi-inf.mpg.de. Supported in part by the DFG through Cluster of Excellence MMCI.

†Department of Computer Science, RWTH Aachen University, Germany. toennis@cs.rwth-aachen.de. Sup-
ported by the DFG GRK/1298 “AlgoSyn”.

http://arxiv.org/abs/1607.08805v1

1 Introduction

In the classic secretary problem, one is presented a sequence of items with different scores online in
random order. Upon arrival of an item, one has to decide immediately and irrevocably whether to
accept or to reject the current item. The objective is to accept the best of these items. Recently,
combinatorial generalizations of this problem have attracted attention. In these settings, feasibility
of solutions are stated in terms of matroid or linear constraints. In most cases, these combinatorial
generalizations consider linear objective functions. This way, the profit gained by the decision in
one step is independent of the other steps.

In this paper, we consider general monotone submodular functions1. For example, the submod-
ular secretary problem, independently introduced by Bateni et al. [4] and Gupta et al. [13], is an
online variant of monotone submodular maximization subject to cardinality constraints. In this
problem, we are allowed to select up to k items from a set of n items. The value of a set is repre-
sented by a monotone, submodular function. Now, stated as an online problem, items arrive one
after the other and every item can only be selected right at the moment when it arrives. The values
of the submodular function are only known on subsets of the items that have already arrived. The
objective function is designed by an adversary, but the order of the items is uniformly at random.

We call an algorithm c-competitive if for any objective function v chosen by the adversary, the
set of selected items ALG satisfies E [v(ALG)] ≥ (c − o(1)) · v(OPT), where OPT is a feasible
(offline) solution that maximizes v and the o(1)-term is asymptotical with respect to the length of
the sequence n. Note that any algorithm can pretend n to be larger by adding dummy elements at
random positions. Therefore, it is safe to assume that n is large compared to k.

Previous algorithms for submodular secretary problems were designed by modifying offline ap-
proximation algorithms for submodular objectives so that they could be used in the online en-
vironment [4, 9, 23]. In this paper, we take a different approach. Our algorithms are inspired
by algorithms for linear objective functions [14, 15]. We repeatedly solve the respective offline
optimization problem and use this outcome as a guide to make decisions in the current round.
Generally, it is enough to only compute approximate solutions to these offline problems. Our re-
sults nicely separate the loss due to the online nature and due to limited computational power.
Using polynomial-time computations and existing offline algorithms, we significantly outperform
existing online algorithms. Certain submodular functions or kinds of constraints allow better ap-
proximations, which immediately transfer to even better competitive ratios. This is, for example,
true for submodular maximization subject to a cardinality constraint if the number of allowed items
is constant. Also, if computational complexity is no concern like in classical competitive analysis,
our competitive ratios become even better.

1.1 Our Contribution

Given an α-approximate algorithm for monotone submodular maximization subject to a cardinality

constraint, we present an α
e

(

1 −
√
k−1

(k+1)
√

2π

)

-competitive algorithm for the submodular secretary

problem. That is, we achieve a competitive ratio of at least 0.31α for any k ≥ 2. Asymptotically
for large k, we reach α/e.

Our algorithm follows the following natural paradigm. We reject the first n/e items. Afterwards,
for each arriving item, we solve the offline optimization problem of the instance that we have seen
so far. If the current item is included in this solution and we have not yet accepted too many items,
we accept it. Otherwise, we reject it. For the analysis, we bound the expected value obtained

1A function f : 2U → R for given ground set U is called submodular if for all S ⊆ T ⊆ U and every x ∈ U\T holds
f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T).

1

by the algorithm recursively. It then remains to solve the recursion and to bound the resulting
term. Generally, the recursive approach can be used for any secretary problems with cardinality
constraints. It could be of independent interest, especially because it allows to obtain very good
bounds also for rather small values of k.

One option for the black-box offline algorithm is the standard greedy algorithm by Nemhauser
and Wolsey [25]. It always picks the item of maximum marginal increase until it has picked k items.
Generally, this algorithm is 1 − 1

e -approximate. However, it is known that if one compares to the

best solution with only k′ ≤ k items the approximation factor improves to 1 − exp
(− k

k′

)

. We
exploit this fact to give a better analysis of our online algorithm when using the greedy algorithm
in each step. We show that the algorithm is 0.238-competitive for any k and asymptotically for
large k it is 0.275-competitive.

Additionally, we consider the submodular secretary matching problem. In this problem, one side
of a bipartite graphs arrives online in random order. Upon arrival, vertices are either matched to
a free vertex on the offline side or rejected. The objective is a submodular function on the set of
matched pairs or edges. It is easy to see that the submodular secretary problem is a special case
of this more general problem. Fortunately, similar algorithmic ideas work here as well. Again, we
combine a sampling phase with a black box for the offline problem and get an α/4-competitive algo-
rithm. Notably, the analysis turns out to be much simpler compared to the submodular secretary
algorithm.

Finally, we show how our new analysis technique can be used to generalize previous results
on linear packing programs towards submodular maximization with packing constraints. Here,
we use a typical continuous extension towards the expectation on the submodular objective. We
parameterize our results in d, the column sparsity of the constraint matrix, and B, the minimal

capacity of the constraints. We achieve a competitive ratio of Ω(αd− 2
B−1) if both parameters are

not known to the algorithm. If d and B are known beforehand we give different algorithm that is

Ω(αd− 1
B−1)-competitive.

1.2 Related Work

Although the secretary itself dates back to the 1960s, combinatorial generalizations only gained
considerable interest within the last 10 years. One of the earliest combinatorial generalizations and
probably the most famous one is the matroid secretary problem, introduced by Babaioff et al. [3].
Here, one has to pick a set of items from a randomly ordered sequence that is an independent set of
a matroid. The objective is to maximize the sum of weights of all items picked. It is still believed
that there is an Ω(1)-competitive algorithm for this problem; the currently best known algorithms
achieve a competitive ratio of Ω(1/log log(ρ)) for matroids of rank ρ [11, 21]. Additionally, there
are constant competitive algorithms known for many special cases, e.g., for transversal matroids
there is an 1/e-competitive algorithm [14] and for k-uniform matroids there is an 1 − O(1/

√
k)-

competitive algorithm [16]. Both are known to be optimal. Other examples include graphical
matroids, for which there is a 1/2e-competitive algorithm [18], and laminar matroids, for which
a 1/9.6-competitive algorithm is known [23]. Further well-studied generalizations feature linear
constraints. This includes online packing LPs [7, 24, 2, 15] and online edge-weighted matching [14,
18], for which optimal algorithms are known. Also the online variant of the generalized assignment
problem [15] has been studied.

All these secretary problems have in common that the objective function is linear. Compared
to other objective functions this has the clear advantage that the gain due to a choice in one round
is independent of choices in other rounds. Interdependencies between the rounds only arise due to
the constraints. Bateni et al. [4] and Gupta et al. [13] independently started work on submodular

2

objective functions in the secretary setting. To this point, the best known results are a e−1
e2+e

≈ 0.170-

competitive algorithm for k-uniform matroids [9] and a 1
95 -competitive algorithm for submodular

secretary matching [23]. In case there are m linear packing constraints, the best known algorithm
is O(m)-competitive [4]. For matroid constraints, Feldman and Zenklusen [12] give a reduction,
turning a c-competitive algorithm for linear objective functions to an Ω(c2)-competitive one for
linear objective functions. Furthermore, they give the first Ω(1/log log ρ)-competitive algorithm for
the submodular matroid secretary problem. Feldman and Izsak [8] consider more general objective
functions, which are not necessarily submodular. They give competitive algorithms for cardinality
constraint secretary problems that are parameterized in the supermodular degree of the objective
function.

Agrawal and Devanur [1] study concave constraints and concave objective functions. These
results, however, do not generalize submodular objectives because they require the dimension of
the vector space to be low. Representing an arbitrary submodular function would require the
dimension to be as large as n. Another related problem is submodular welfare maximization. In
this case, even the greedy algorithm is known to be 1/2-competitive in adversarial order but at least
0.505-competitive in random order [17].

In the offline setting, submodular function maximization is computationally hard if the function
is given through a value oracle. There are efficient algorithms that approximate a monotone,
submodular function over a matroid or under a knapsack-constraint with a factor of (1−1/e) [6, 27].
As a special case the generalized assignment problem can also be efficiently approximated up to a
factor of (1 − 1/e) [6]. For a constant number of linear constraints, there is also a (1 − ǫ)(1 − 1/e)-
approximation algorithm [20]. In the non-monotone domain, there is an algorithm for cardinality
constraint submodular maximization with an approximation factor in the range [1/e + 0.004, 1/2]
depending on the cardinality [5].

2 Submodular Secretary Problem

Let us first turn to the submodular secretary problem. Here, a set of items from a universe U ,
|U | = n, is presented to the algorithm in random order. For each arriving j ∈ U , the algorithm
has to decide whether to accept or to reject it, being allowed to accept up to k items in total. The
objective is to maximize a monotone submodular function v : 2U → R≥0. This function is defined by
an adversary and known to the algorithm only restricted to the subsets of items that have already
arrived. This problem extends the secretary problem for k-uniform matroids with linear objective
functions, which was solved by Kleinberg [16]. The previously best known competitive factor is
e−1
e2+e ≈ 0.170 [9].

Depending on the kind of the submodular function and its representation, the corresponding
offline optimization problem (monotone submodular maximization with cardinality constraint) can
be computationally hard. In order to be able to focus on the online nature of the problem, we
assume that we are given an offline algorithm A that for any L ⊆ U returns an α-approximation
of the best solution within L. Formally, v(A(L)) ≥ αmaxT⊆L,|T |≤k v(T). Note that A is allowed
to exploit any additional structure of the function v. For different L and L′, A(L) and A(L′) do
not have to be consistent, but the output A(L) must be identical, irrespective of the arrival order
on L.

Our online algorithm, Algorithm 1, uses algorithm A as a subroutine as follows. It starts by
rejecting the first pn items. For every following item j, it runs A(L), where L is the set of items
that have arrived up to this point. If j ∈ A(L) we call j tentatively selected. Furthermore if the
set of accepted items S contains less than k items and j is tentatively selected, then the algorithm

3

adds j to S. Otherwise, it rejects j.

Algorithm 1: Submodular k-secretary

Drop the first ⌈pn⌉ − 1 items;
for item j arriving in round ℓ ≥ ⌈pn⌉ do // online steps ℓ = ⌈pn⌉ to n

Set U≤ℓ := U≤ℓ−1 ∪ {j};

Let S(ℓ) = A(U≤ℓ); // black box α-approximation

if j ∈ S(ℓ) then // tentative allocation

if |Accepted| < k then // feasibility test

Add j to Accepted; // online allocation

Theorem 1. Algorithm 1 for the submodular secretary problem is α
e

(

1 −
√
k−1

(k+1)
√

2π

)

-competitive

with sample size pn = n
e .

2.1 Analysis Technique

Before proving Theorem 1, let us shed some light on the way we lower-bound the value of the
submodular objective function. To this end, we consider the expected value of the set of all
tentatively selected items T . In other words, we pretend all selections our algorithm tries to make
are actually feasible. It seems natural to bound the expected value of T by adding up the marginal
gains round-by-round given the tentative selections in earlier rounds. Unfortunately, this introduces
complicated dependencies on the order of arrival of previous items. Therefore, we take a different
approach and bound the respective marginal gains with respect of tentative selections in future
rounds. The important insight is that this keeps the dependencies manageable.

Proposition 2. The set of all items T that are tentatively selected by Algorithm 1 has an expected
value of E [v(T)] ≥ (α

e − α
n

) · v(OPT) if the algorithm is run with sample size pn = n
e .

Proof. Let T≥ℓ denote the set of tentatively selected items that arrive in or after round ℓ. Formally,
we have T≥ℓ = {j} ∪ T≥ℓ+1 if j ∈ A(U≤ℓ) and T≥ℓ = T≥ℓ+1 otherwise.

We consider a different random process to define the T≥ℓ random variables, which results in
the same distribution. First, we draw one item from U uniformly to come last. This determines
the value of T≥n. Then we continue by drawing on item out of the remaining ones to come second
to last, determining T≥n−1. Generally, this means that conditioning on U≤ℓ and the values of
T≥ℓ′

, for ℓ′ > ℓ, the item j is drawn uniformly at random from U≤ℓ and the respective outcome
determines T≥ℓ.

We bound the expected tentative value collected in rounds ℓ to n conditioned on the items that
arrived before round ℓ and conditioned on all items that are tentatively selected afterwards

E
[

v(T≥ℓ)
∣

∣

∣ U≤ℓ, T≥ℓ′

for all ℓ′ > ℓ
]

=
1

ℓ
v
(

A(U≤ℓ)
∣

∣

∣ T≥ℓ+1
)

+ v(T≥ℓ+1)

≥ 1

ℓ
v
(

A(U≤ℓ) ∪ T≥ℓ+1
)

− 1

ℓ
v(T≥ℓ+1) + v(T≥ℓ+1) ≥ 1

ℓ
v
(

A(U≤ℓ)
)

+

(

1 − 1

ℓ

)

v(T≥ℓ+1) .

We take the expectation over the remaining randomization and get a simple recursion

E
[

v(T≥ℓ)
]

≥ 1

ℓ
E
[

v
(

A(U≤ℓ)
)]

+

(

1 − 1

ℓ

)

E
[

v(T≥ℓ+1)
]

.

4

Observe that OPT ∩ U≤ℓ is fully contained in U≤ℓ and has size at most k. Therefore, the ap-
proximation guarantee of A yields that v(A(U≤ℓ)) ≥ αv(OPT∩U≤ℓ). Furthermore, submodularity

gives us E
[

v(OPT ∩ U≤ℓ)
]

≥ ℓ
nv(OPT) because each item is included in U≤ℓ with probability ℓ

n .

In combination, this gives us

E
[

v(A(U≤ℓ))
]

≥ αE
[

v(OPT ∩ U≤ℓ)
]

≥ α
ℓ

n
v(OPT) . (1)

Now we solve the recursion

E
[

v(T≥ℓ)
]

≥ α

n
v(OPT) +

(

1 − 1

ℓ

)

E
[

v(T≥ℓ+1)
]

=
n
∑

j=ℓ

j
∏

i=ℓ

(

1 − 1

i

)

α

n
v(OPT) .

We have
∏j−1
i=ℓ

(

1 − 1
i

)

= ℓ−1
j−1 and

∑n
j=ℓ

1
j−1 ≥ ln(nℓ) for all ℓ ≥ 2. This yields

E
[

v(T≥ℓ)
]

≥
n
∑

j=ℓ

j
∏

i=ℓ

(

1 − 1

i

)

α

n
v(OPT) =

α

n
v(OPT)

n
∑

j=ℓ

ℓ− 1

j − 1
≥ ℓ− 1

n
ln

(

n

ℓ

)

αv(OPT) .

With ℓ = pn and sample size pn = n
e , we get

E
[

v(T≥pn)
]

≥ pn− 1

n
ln

(

1

p

)

αv(OPT) =

(

1

e
− 1

n

)

αv(OPT) .

The probability of a tentative selection in round ℓ is k
ℓ . This means, in expectation, we make

∑n
ℓ=n

e

k
ℓ ≈ k tentative selections. Therefore, for large values of k, it is likely that most tentative

selections are feasible. This way, we could already derive guarantee for large k. However, for
small k, the derived bound would be far to pessimistic. This is due to the fact that we bound the
marginal gain of an item based on all tentative future ones. If some of them are indeed not feasible,
we underestimate the contribution of earlier items. Therefore, Theorem 1 requires a more involved
recursion that is based on the idea from this section, but also incorporates the probability that an
item is feasible directly.

2.2 Proof of Theorem 1

To prove the theorem, we will derive a lower bound on the value collected by the algorithm starting
from an arbitrary round ℓ ∈ [n] with an arbitrary remaining capacity r ∈ {0, 1, . . . , k}. The
random variables ALG≥ℓ

r ⊆ U represent the set of first r items that a hypothetical run of the
algorithm would collect if it started the for loop of Algorithm 1 in round ℓ. Formally, we define
them recursively as follows. We set ALG≥ℓ

0 = ∅ for all ℓ and ALG≥n+1
r = ∅ for all r. For ℓ ∈ [n],

r > 0, let j be the item arriving in round ℓ, and U≤ℓ be the set of items arriving until and including
round ℓ. We define ALG≥ℓ

r = {j} ∪ ALG≥ℓ+1
r−1 if j ∈ A(U≤ℓ) and ALG≥ℓ

r = ALG≥ℓ+1
r otherwise.

Note that by this definition ALG = ALG≥pn
k . Furthermore, for every possible arrival order, ALG≥ℓ

r

is pointwise a superset of ALG≥ℓ
r−1 for r > 0.

In Lemma 3, we show a recursive lower bound on the value of these sets. In this part, the precise
definition of ALG≥ℓ

r will be crucial to avoid complex dependencies. Afterwards, in Lemma 4, we
solve this recursion. Given this solution, we can finally prove Theorem 1.

Lemma 3. For all ℓ ∈ [n] and r ∈ {0, 1, . . . , k}, we have

E
[

v(ALG≥ℓ
r)
]

≥ 1

ℓ

(

E
[

v(A(U≤ℓ))
]

+ (k − 1)E
[

v(ALG≥ℓ+1
r−1)

]

+ (ℓ− k)E
[

v(ALG≥ℓ+1
r)

])

.

5

Proof. Like explained in Section 2.1, we first draw one item from U uniformly at random to be the
item that arrives in round n. This defines the values of ALG≥n

r for all r. Then we draw another
item to be the second to last one and so on. In this way, we can condition on U≤ℓ and the values
of ALG≥ℓ′

r , for ℓ′ > ℓ and all r. In round ℓ, the item j is drawn uniformly at random from U≤ℓ and
the respective outcome determines ALG≥ℓ

r for all r. This allows us to write for r > 0

E
[

v(ALG≥ℓ
r)

∣

∣

∣ U≤ℓ,ALG≥ℓ′

r′ for all ℓ′ > ℓ and all r′
]

=
1

ℓ

∑

j∈A(U≤ℓ)

v({j} ∪ ALG≥ℓ+1
r−1) + |U≤ℓ \ A(U≤ℓ)|v(ALG≥ℓ+1

r)

 .

By submodularity, we have

∑

j∈A(U≤ℓ)

(

v({j} ∪ ALG≥ℓ+1
r−1) − v(ALG≥ℓ+1

r−1)
)

≥ v(A(U≤ℓ) ∪ ALG≥ℓ+1
r−1) − v(ALG≥ℓ+1

r−1) ,

and hence
∑

j∈A(U≤ℓ)

v({j} ∪ ALG≥ℓ+1
r−1) ≥ v(A(U≤ℓ) ∪ ALG≥ℓ+1

r−1) + (|A(U≤ℓ)| − 1)v(ALG≥ℓ+1
r−1) .

This gives us

E
[

v(ALG≥ℓ
r)

∣

∣

∣ U≤ℓ,ALG≥ℓ′

r′ for all ℓ′ > ℓ and all r′
]

≥ 1

ℓ

(

v(A(U≤ℓ) ∪ ALG≥ℓ+1
r−1) + (|A(U≤ℓ)| − 1)v(ALG≥ℓ+1

r−1) + |U≤ℓ \ A(U≤ℓ)|v(ALG≥ℓ+1
r)

)

.

Furthermore, by applying the monotonicity of v and the facts that |A(U≤ℓ)| ≤ k and ALG≥ℓ+1
r−1 ⊆

ALG≥ℓ+1
r , we get

E
[

v(ALG≥ℓ
r)

∣

∣

∣ U≤ℓ,ALG≥ℓ′

r′ for all ℓ′ > ℓ and all r′
]

≥ 1

ℓ

(

v(A(U≤ℓ)) + (k − 1)v(ALG≥ℓ+1
r−1) + (ℓ− k)v(ALG≥ℓ+1

r)
)

.

Taking the expectation over all remaining randomization yields

E
[

v(ALG≥ℓ
r)
]

≥ 1

ℓ

(

E
[

v(A(U≤ℓ))
]

+ (k − 1)E
[

v(ALG≥ℓ+1
r−1)

]

+ (ℓ− k)E
[

v(ALG≥ℓ+1
r)

])

.

The next step is to solve the recursion.

Lemma 4. For all ℓ ∈ [n], ℓ ≥ k2 + k, and r ∈ {0, 1, . . . , k}, we have

E
[

v(ALG≥ℓ
r)
]

≥

rℓ

(k − 1)n
− 1

k − 1

(

ℓ

n

)k r−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

ℓ

)

− 3k2r

(k − 1)n

αv(OPT) . (2)

Proof. As a first step, we eliminate the recursive reference from ALG≥ℓ
r to ALG≥ℓ+1

r . To this end,
we count the rounds until the next item is accepted. Repeatedly inserting the bound for ALG≥ℓ+1

r

into the one for ALG≥ℓ
r gives us

E
[

v(ALG≥ℓ
r)
]

≥
n
∑

j=ℓ

j−1
∏

i=ℓ

(

1 − k

i

)(

k − 1

j
E
[

v(ALG≥j+1
r−1)

]

+
1

j
E
[

v(A(U≤j))
]

)

 .

6

With Equation (1) in Section 2.1 we have E
[

v(A(U≤j))
] ≥ j

nαv(OPT).

We use
∏j−1
i=ℓ

(

1 − k
i

)

= (ℓ−1)!
(ℓ−k−1)!

(j−k−1)!
(j−1)! ≥

(

ℓ−k
j−k

)k
and get

E
[

v(ALG≥ℓ
r)
]

≥
n
∑

j=ℓ

(

(

ℓ− k

j − k

)k (k − 1

j + 1
E
[

v(ALG≥j+1
r−1)

]

+
α

n
v(OPT)

)

)

. (3)

To shown that (2) provides a lower bound on the functions defined by this recursion, we perform
an induction on r. Note that Equation (2) trivially holds for r = 0. In order to prove it holds for a
given r > 0, we assume that it is fulfilled for r − 1 for all ℓ ∈ [n]. From this, we will conclude that
Equation (2) also holds for r for all ℓ ∈ [n]. To show that (3) is solved by (2), we use the induction

hypothesis and plug in the bound for E
[

v(ALG≥j+1
r−1)

]

. This gives us

E
[

v(ALG≥ℓ
r)
]

αv(OPT)
≥

n
∑

j=ℓ

(

ℓ− k

j − k

)k k − 1

j + 1

(

(r − 1)(j + 1)

(k − 1)n
− 3k2(r − 1)

(k − 1)n
+

1

n

− 1

k − 1

(

j + 1

n

)k r−2
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

j + 1

))

=
n
∑

j=ℓ

(

ℓ− k

j − k

)k r

n
−

n
∑

j=ℓ

(

ℓ− k

j − k

)k 1

j + 1

(

j + 1

n

)k r−2
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

j + 1

)

−
n
∑

j=ℓ

(

ℓ− k

j − k

)k 3k2(r − 1)

(j + 1)n
.

In the negative terms, we bound ℓ−k
j−k ≤ ℓ

j and use
(

j+1
j

)k
≤ e

k
j ≤ e

k
ℓ ≤ 1 + 2kℓ . Finally in the last

sum, we bound 1
j+1 ≤ 1

ℓ once

E
[

v(ALG≥ℓ
r)
]

αv(OPT)
≥

n
∑

j=ℓ

(

ℓ− k

j − k

)k r

n
−
(

ℓ

n

)k n
∑

j=ℓ

(

1 + 2kℓ

)

j + 1

r−2
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

j + 1

)

−
n
∑

j=ℓ

(

ℓ

j

)k 3k2(r − 1)

ℓn
.

We approximate both sums over j through integrals by using

n
∑

j=ℓ

1

(j − k)k
≥
∫ n

ℓ

1

(j − k)k
dj =

1

k − 1

(

1

(ℓ− k)k−1
− 1

(n− k)k−1

)

and
n
∑

j=ℓ

lni(n/(j+1))

j + 1
≤
∫ n−1

ℓ−1

lni(n/(j+1))

j + 1
dj =

[

− lni+1(n/(j+1))

i+ 1

]n−1

ℓ−1

=
lni+1(n/ℓ)

i+ 1
.

This yields

E
[

v(ALG≥ℓ
r)
]

αv(OPT)
≥ r(ℓ− k)

(k − 1)n

(

1 −
(

ℓ− k

n− k

)k−1
)

−
(

ℓ

n

)k (

1 + 2
k

ℓ

) r−2
∑

r′=0

r′
∑

i=0

(k − 1)i

i!

lni+1 (n
ℓ

)

i+ 1

7

− 3k2(r − 1)

(k − 1)n

(

1 −
(

ℓ

n

)k−1
)

.

We perform an index shift in the inner sum and propagate the shift to the outer sum

r−2
∑

r′=0

r′
∑

i=0

(k − 1)i

i!

ln(n/ℓ)i+1

i+ 1
=

1

k − 1

r−2
∑

r′=0

r′+1
∑

i=1

(k − 1)i

i!
lni
(

n

ℓ

)

=
1

k − 1

r−1
∑

r′=1

r′
∑

i=1

(k − 1)i

i!
lni
(

n

ℓ

)

=
1

k − 1

r−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

ℓ

)

− r

k − 1
.

Now we solve the brackets and use the term split off in the index shift to simplify the expression.
We get

E
[

v(ALG≥ℓ
r)
]

αv(OPT)
≥ r(ℓ− k)

(k − 1)n
− r(ℓ− k)

(k − 1)n

(

ℓ− k

n− k

)k−1

+

(

ℓ

n

)k
(

1 + 2kℓ

)

k − 1
r

−
(

ℓ

n

)k
(

1 + 2kℓ

)

k − 1

r−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

ℓ

)

− 3k2(r − 1)

(k − 1)n

≥ rℓ

(k − 1)n
− rk

(k − 1)n
−
(

ℓ

n

)k
(

1 + 2kℓ

)

k − 1

r−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

ℓ

)

− 3k2(r − 1)

(k − 1)n
.

At this point, we only have to show that the following inequality holds

rk

(k − 1)n
+

(

ℓ

n

)k 2kℓ
k − 1

r−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

ℓ

)

+
3k2(r − 1)

(k − 1)n
≤ 3k2r

(k − 1)n
.

We bound the inner sum with the corresponding exponential function

r′
∑

i=0

(k − 1)i

i!
lni
(

n

ℓ

)

≤
∞
∑

i=0

(k − 1)i

i!
lni
(

n

ℓ

)

= exp

(

(k − 1) ln

(

n

ℓ

))

=

(

n

ℓ

)k−1

.

This term is independent of r′. We eliminate the sum over r′ and get

rk

(k − 1)n
+
ℓ

n

r2kℓ
k − 1

=
3kr

(k − 1)n
≤ 3k2

(k − 1)n
.

Proof of Theorem 1. To complete the proof of the theorem, we apply Lemma 4 for ℓ = pn and

r = k. This gives us E [v(ALG)] = E
[

v(ALG≥pn
k)

]

and thus

E [v(ALG)] ≥

pk

k − 1
− 1

k − 1
pk

k−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

1

p

)

− 6k2

n

 · αv(OPT) .

8

For p = 1
e , we have ln

(

1
p

)

= 1. This allows us to reorder the occurring double sum as follows

k−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
=

k−1
∑

i=0

(k − i)
(k − 1)i

i!

= k
k−1
∑

i=0

(k − 1)i

i!
− (k − 1)

k−1
∑

i=1

(k − 1)i−1

(i− 1)!

=
k−1
∑

i=0

(k − 1)i

i!
+

(k − 1)k

(k − 1)!
.

By definition of the exponential function ex =
∑∞
i=0

xi

i! . For x > 0, all terms of the infinite sum are

positive. This yields ex ≥ ∑k−1
i=0

xi

i! + xk

k! + xk+1

(k+1)! and thus by setting x = k − 1 we get

k−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
≤ ek−1 − (k − 1)k

k!
− (k − 1)k+1

(k + 1)!
+

(k − 1)k

(k − 1)!
.

This implies

E [v(ALG)]

αv(OPT)
≥ k

e(k − 1)
− 1

ek(k − 1)

(

ek−1 − (k − 1)k

k!
− (k − 1)k+1

(k + 1)!
+

(k − 1)k

(k − 1)!

)

− 6k2

n

=
1

e
+

1

ek
(k − 1)k−1

k!
+

1

ek
(k − 1)k

(k + 1)!
− 1

ek
(k − 1)k−1

(k − 1)!
− 6k2

n

=
1

e
− 1

ek
k − 1

k + 1

(k − 1)k−1

(k − 1)!
− 6k2

n
.

It only remains to apply the Stirling approximation (k − 1)! ≥
√

2π(k − 1)
(

k−1
e

)k−1
to get

E [v(ALG)]

αv(OPT)
≥ 1

e

(

1 −
√
k − 1

(k + 1)
√

2π

)

− 6k2

n
.

2.3 Improved Analysis for the Greedy Algorithm

One possible choice for the algorithm A is the greedy algorithm by Nemhauser and Wolsey [25].
It repeatedly picks the item with the highest marginal increase compared to the items chosen so
far until k items have been picked. As pointed out in [19], the approximation guarantee would
improve further when picking more items according to the greedy rule. In other words, if we let
our algorithm pick k elements but compare the outcome to the optimal solution of only k′ items,
the approximation factor improves to 1 − exp (−k/k′).

We can exploit this fact in the analysis of the online algorithm that uses the greedy algorithm as
A in Algorithm 1. The reason is that in early rounds only some items of the optimal solution have
arrived. Our algorithm, however, always chooses a set of size k for S(ℓ) = A(U≤ℓ). In the generic

analysis, we show that E
[

v(A(U≤ℓ))
]

≥ α ℓ
nv(OPT). In case of A being the greedy algorithm, we

can improve this bound as follows.

Lemma 5. E
[

v(A(U≤ℓ))
]

≥ αℓ
ℓ
nv(OPT) for αℓ = 1 − ℓ

en − 1
ek .

9

Proof. Consider the offline optimum OPT and OPT ∩ U≤ℓ, its restriction to the items that arrive
by round ℓ. Let Z = |OPT ∩ U≤ℓ| be the number of OPT items that arrive by round ℓ.

Condition on any value of Z. Observe that by symmetry the probability of every OPT item to

have arrived by round ℓ is Z
k . Therefore, submodularity implies E

[

v(OPT ∩ U≤ℓ)
∣

∣

∣ Z
]

≥ Z
k v(OPT).

Letting the greedy algorithm pick k elements, it achieves value at least
(

1 − exp
(

− k
Z

))

v(OPT ∩
U≤ℓ). In combination, this gives us

E
[

v(A(U≤ℓ))
∣

∣

∣ Z
]

≥
(

1 − exp

(

− k

Z

))

Z

k
v(OPT) .

We now use the fact that exp
(

k
Z

)

≥ e kZ because Z ≤ k. Therefore exp
(

− k
Z

)

≤ Z
ek and

E
[

v(A(U≤ℓ))
∣

∣

∣ Z
]

≥
(

1 − Z

ek

)

Z

k
v(OPT) .

It remains to take the expectation over Z. We have E [Z] = ℓ
nk and E

[

Z2
] ≤ ℓ

nk +
(

ℓ
nk
)2

.

This implies

E
[

v(A(U≤ℓ))
]

≥
(

E [Z]

k
− E

[

Z2
]

ek2

)

v(OPT) ≥
(

ℓ

n
− ℓ2

en2
− ℓ

ekn

)

v(OPT) .

Given this lemma, we can follow similar steps as in the proof of Theorem 1 to show an improved
guarantee of this particular algorithm. In more detail, we get competitive ratios of at least 0.177
for any k ≥ 2. Asymptotically for large k we reach 0.275.

Theorem 6. Algorithm 1 using the greedy algorithm for A is
1+ 1

2e3 − 3
2e

− e−1

e2k
e−1

(

1 −
√
k−1

(k+1)
√

2π

)

-competitive

with sample size pn = n
e .

To prove Theorem 6, we combine Lemmas 3 and 5, which give us a recursive formula for ALG≥ℓ
r .

This time, the recursion is more complex. Therefore, our proof strategy is to first write v(ALG≥ℓ
r)

as the following kind of linear combination (Claim 7)

E
[

v(ALG≥ℓ
r)
]

≥
n
∑

j=ℓ

tℓ,j
αjv(OPT)

n
.

Then we show that the occurring coefficients tℓ,j are non-increasing (Claim 8) for fixed ℓ. As both
tℓ,j ≥ tℓ,j+1 and αj ≥ αj+1, this then allows to apply Chebyshev’s sum inequality to get

E
[

v(ALG≥ℓ
r)
]

≥

1

n− ℓ+ 1

n
∑

j=ℓ

αj

n
∑

j=ℓ

tℓ,j
v(OPT)

n

 .

This means that we get the same kind of bound as in Section 2.2 but α is effectively replaced by
the average of the involved αj, rather than their minimum.

Claim 7. Lemma 3 implies

E
[

v(ALG≥ℓ
r)
]

≥
n
∑

j=ℓ

aℓ,j−1

j
E
[

v(A(U≤ℓ))
]

r−1
∑

r′=0

∑

M⊆{ℓ,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

with aℓ,j−1 =
∏j−1
i=ℓ

(

1 − k
i

)

.

10

Proof. We perform an induction on ℓ. Assume that the claim has been shown for all r for ℓ + 1.
In Lemma 3, we have shown

E
[

v(ALG≥ℓ
r)
]

≥ 1

ℓ

(

E
[

v(A(U≤ℓ))
]

+ (k − 1)E
[

v(ALG≥ℓ+1
r−1)

]

+ (ℓ− k)E
[

v(ALG≥ℓ+1
r)

])

,

Now we use the induction hypothesis

E
[

v(ALG≥ℓ
r)
]

≥ 1

ℓ
E
[

v(A(U≤ℓ))
]

+
k − 1

ℓ

n
∑

j=ℓ+1

aℓ+1,j−1

j
E
[

v(A(U≤ℓ))
]

r−2
∑

r′=0

∑

M⊆{ℓ+1,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

+
ℓ− k

ℓ

n
∑

j=ℓ+1

aℓ+1,j−1

j
E
[

v(A(U≤ℓ))
]

r−1
∑

r′=0

∑

M⊆{ℓ+1,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

.

We perform an index shift, use ℓ−k
ℓ aℓ+1,j−1 = aℓ,j−1 and get

E
[

v(ALG≥ℓ
r)
]

=
aℓ,ℓ−1

ℓ
E
[

v(A(U≤ℓ))
]

+
n
∑

j=ℓ+1

aℓ+1,j−1

j
E
[

v(A(U≤ℓ))
]

r−1
∑

r′=1

k − 1

ℓ

∑

M⊆{ℓ+1,...,j−1}
|M |=r′−1

(

∏

i∈M

k − 1

i

)

+
n
∑

j=ℓ+1

aℓ,j−1

j
E
[

v(A(U≤ℓ))
]

r−1
∑

r′=0

∑

M⊆{ℓ+1,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

.

We have k−1
ℓ ≥ k−1

i for all i ≥ ℓ and therefore we can merge the factor for the current round into

the product. In a sense, the k−1
ℓ factor stands for choosing an item in the current round, and it

gets worse if we chose one in a future round instead. Additionally we use aℓ+1,j−1 ≥ aℓ,j−1 and
omit the second large sum entirely.

For the final equality, we use the fact that
∑r−1
r′=0

∑

M⊆∅,|M |=r′

(

∏

i∈M
k−1
i

)

= 1 because the

inner sum is empty for all r′ > 0

E
[

v(ALG≥ℓ
r)
]

≥ aℓ,ℓ−1

ℓ
E
[

v(A(U≤ℓ))
]

+
n
∑

j=ℓ+1

aℓ,j−1

j
E
[

v(A(U≤ℓ))
]

r−1
∑

r′=0

∑

M⊆{ℓ,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

=
n
∑

j=ℓ

aℓ,j−1

j
E
[

v(A(U≤ℓ))
]

r−1
∑

r′=0

∑

M⊆{ℓ,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

.

Claim 8. Let

tℓ,j = aℓ,j−1

r−1
∑

r′=0

∑

M⊆{ℓ,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

, where aℓ,j−1 =
j−1
∏

i=ℓ

(

1 − k

i

)

For fixed ℓ, the sequence tℓ,j is non-increasing in j.

11

Proof. We will show that tℓ,j+1 ≤ βjtℓ,j for some βj ≤ 1. To this end, we consider the definition
of tℓ,j+1 and split of a double sum that contains all terms where j ∈ M . In those terms, we know
that j is selected and therefore the factor k−1

j always exists in the product. We get

tℓ,j+1 = aℓ,j

r−1
∑

r′=0

∑

M⊆{ℓ,...,j}
|M |=r′

(

∏

i∈M

k − 1

i

)

= aℓ,j

r−1
∑

r′=0

∑

M⊆{ℓ,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

+
k − 1

j

r−1
∑

r′=0

∑

M⊆{ℓ,...,j−1}
|M |=r′−1

(

∏

i∈M

k − 1

i

)

.

Both double sums are nearly identical. We fill up the missing terms in the smaller one and bound
by the following expression. Finally, we replace the remaining double sum with the definition of
tℓ,j

tℓ,j+1 ≤ aℓ,j

(

1 +
k − 1

j

) r−1
∑

r′=0

∑

M⊆{ℓ,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

=
aℓ,j
aℓ,j−1

(

1 +
k − 1

j

)

tℓ,j .

As we have
aℓ,j
aℓ,j−1

(

1 + k−1
j

)

=
(

1 + k−1
j

) (

1 − k
j

)

= 1− k
j + k−1

j − k(k−1)
j2 ≤ 1, the claim follows.

Proof of Theorem 6. Now we can proceed to the proof of Theorem 6. So far, we have shown that

E
[

v(ALG≥ℓ
r)
]

≥
n
∑

j=ℓ

tℓ,j
j

E
[

v(A(U≤ℓ))
]

for tℓ,j = aℓ,j−1

r−1
∑

r′=0

∑

M⊆{ℓ,...,j−1}
|M |=r′

(

∏

i∈M

k − 1

i

)

with aℓ,j−1 =
∏j−1
i=ℓ

(

1 − k
i

)

. Furthermore, Lemma 5 shows that
E[v(A(U≤ℓ))]

j ≥ αjv(OPT)
n for αℓ =

1 − ℓ
en − 1

ek .
As both tℓ,j and αj are non-increasing in j, we can use Chebyshev’s sum inequality to get

E
[

v(ALG≥ℓ
r)
]

≥
n
∑

j=ℓ

tℓ,j
αjv(OPT)

n
≥

n
∑

j=ℓ

tℓ,j
v(OPT)

n

1

n− ℓ

n
∑

j=ℓ

αj

It now remains to bound these two terms.
First we show that the sum

∑n
j=ℓ tℓ,j

c
n with c = v(OPT) is lower-bounded by a recursion of the

form of Equation (3). Calculations like in Lemma 4 will then give us the respective bound. Similar

the previous proof, we use aℓ,j−1 =
∏j−1
i=ℓ

(

1 − k
i

)

≥
(

ℓ−k
j−k

)k
and get

n
∑

j=ℓ

tℓ,j
v(OPT)

n
=

n
∑

j=ℓ

aℓ,j−1

r−1
∑

r′=0

∑

M⊆{ℓ,...,j}
|M |=r′

(

∏

i∈M

k − 1

i

)

c

n

≥
n
∑

j=ℓ

(

ℓ− k

j − k

)k r−1
∑

r′=0

∑

M⊆{ℓ,...,j}
|M |=r′

(

∏

i∈M

k − 1

i+ 1

)

c

n
.

12

Let now

bℓ,r′ =
n
∑

j=ℓ

(

ℓ− k

j − k

)k r−1
∑

r′=0

∑

M⊆{ℓ,...,j}
|M |=r′

(

∏

i∈M

k − 1

i+ 1

)

c

n

We combine the two inner sums and then pull out the earliest element m ∈ M ⊆ {ℓ, . . . , j}
recursively. We move the corresponding factor out of the product and get

bℓ,r′ =
n
∑

j=ℓ

(

ℓ− k

j − k

)k
∑

M⊆{ℓ,...,j}
|M |≤r′

(

∏

i∈M

k − 1

i+ 1

)

c

n

=
n
∑

j=ℓ

(

ℓ− k

j − k

)k

c

n
+

j−1
∑

m=ℓ

k − 1

m+ 1

∑

M⊆{m+1,...,j}
|M |≤r′−1

(

∏

i∈M

k − 1

i+ 1

)

c

n

.

At this point, we change the order of summation such that we sum over m first. We can keep the

constant part in place, since both sums
∑n
j=ℓ

(

ℓ−k
j−k

)k
=
∑n
m=ℓ

(

ℓ−k
m−k

)k
amount the same. Now the

inner part matches the recursion given above

bℓ,r′ =
n
∑

m=ℓ

(

ℓ− k

m− k

)k

c

n
+
k − 1

m+ 1

n
∑

j=m+1

(

m− k

j − k

)k
∑

M⊆{m+1,...,j}
|M |≤r′−1

(

∏

i∈M

k − 1

i

)

c

n

=
n
∑

m=ℓ

(

ℓ− k

m− k

)k (c

n
+
k − 1

m+ 1
bm+1,r′−1

)

.

From this point on, we follow the proof of Lemma 4 and get the following lemma.

Lemma 9. Given a recursion of the form

bℓ,r =
n
∑

j=ℓ

(

(

ℓ− k

j − k

)k (k − 1

j + 1
bj+1,r−1 +

c

n

)

)

with bn+1,r = 0 and bℓ,0 = 0. Then

bℓ,r ≥

r(ℓ− k)

(k − 1)n
− 1

k − 1

(

ℓ− k

n− k

)k r−1
∑

r′=0

r′
∑

i=0

(k − 1)i

i!
lni
(

n

ℓ

)

− 3k2r

(k − 1)n

 c .

Consequently, following the calculations in the proof of Theorem 1

E [v(ALG)] = E
[

v(ALG
≥n/e
k

]

≥ 1

e

(

1 −
√
k − 1

(k + 1)
√

2π
− 6ek2

n

)

1

n− n/e

n
∑

j=n/e

αj

 v(OPT)

For αj = 1 − j
en − 1

ek , we can bound the last term by

1

n− n/e

n
∑

j=n/e

(

1 − j

en
− 1

ek

)

≥ 1

n− n/e

∫ n

n/e

(

1 − j

en
− 1

ek

)

dj

13

=
1

n− n/e

∫ 1

1/e

(

1 − x

e
− 1

ek

)

ndx

=
1

1 − 1/e

∫ 1

1/e

(

1 − x

e
− 1

ek

)

dx

=
1

1 − 1/e

(

1 +
1

2e3
− 3

2e
− e− 1

e2k

)

.

For large k, we have an asymptotic competitive ratio of 1
e

(

1 + 1
2e3 − 3

2e

)

≈ 0.275.

3 Submodular Matching

Next, we consider the online submodular bipartite matching problem. In the offline version, we
are given a bipartite graph G = (L∪R,E) and a monotone, submodular, non-decreasing objective
function v : 2E → R≥0. The objective is to find a matching M ⊆ E that maximizes v(M). In the
online version, the set L arrives online. Once a vertex in L arrives, we get to know its incident
edges. At any point in time, we know the values of the objective function only restricted to subsets
of the edges incident to the vertices that have already arrived. This problem also generalizes the
submodular matroid secretary problem with transversal matroids.

We present an α
4 -competitive algorithm, where α could be 1

3 for a simple greedy algorithm [26].
The best known approximation algorithms are local search algorithms that give a 1

2+ǫ -approximation
on bipartite matchings [22, 10]. The previously best known online algorithm is the simulated greedy
algorithm with a competitive ratio of 1/95 [23].

Algorithm 2 first samples a 1/2-fraction of the input sequence. Then, whenever a new candidate
arrives, it α-approximates the optimal matching on the known part of the graph with respect to
the submodular objective function. If the current online vertex is matched in this matching and if
its matching partner is still available, then we add the pair to the output allocation. This design
paradigm has been successfully applied to linear objective functions before [14]. However, in the
submodular case, the individual contribution on an edge to the eventual objective function value
depends on what other edges are selected. Using an approach similar to the one in the previous
section, we keep dependencies manageable.

Theorem 10. Algorithm 2 is an α
4 -competitive online algorithm for the submodular secretary

matching problem that uses n
2 calls to an offline α-approximation algorithm for submodular match-

ing.

Algorithm 2: Submodular Bipartite Online Matching

Drop the first ⌈n2 ⌉ − 1 vertices;
for vertex u ∈ L in round ℓ ≥ ⌈n2 ⌉ do // online steps ℓ = ⌈pn⌉ to n

Set L≤ℓ := L≤ℓ−1 ∪ {u};

Let M (ℓ) = A(L≤ℓ ∪R); // black box α-approximation

Let e(ℓ) := (u, r) be the edge assigned to u in M (ℓ); // tentative edge

if Accepted ∪ e(ℓ) is a matching then // feasibility test

Add e(ℓ) to Accepted; // online allocation

We denote the set of matching edges allocated by the algorithm in rounds ℓ to n with ALG≥ℓ and
the set of tentative edges over the same period with T≥ℓ. Furthermore let ê(ℓ) be a set containing

14

the tentative edge of round ℓ if this edge was actually assigned and empty otherwise. That is,
ê(ℓ) = {e(ℓ)} if e(ℓ) is allocated and ê(ℓ) = ∅ otherwise. Please note that e(ℓ) might be empty. For
S, S′ ⊆ E, we denote the contribution of the subset S to S′ by v(S | S′) = v(S ∪ S′) − v(S′).

The proof follows the natural approach described in Section 2.1. First we bound the tentative
value collected in every round against the future rounds, then we bound the probability that a
tentative allocation is feasible.

Lemma 11. In every round ℓ fix the tentative edges that will be selected in the future rounds
ℓ+1, . . . , n. Then the marginal contribution of the tentative edge e(ℓ) selected by the online algorithm

in round ℓ is E
[

v
(

{e(ℓ)}
∣

∣

∣ ALG≥ℓ+1
) ∣

∣

∣ L≤ℓ, T≥ℓ+1
]

≥ 1
ℓ

(

v(A(L≤ℓ)) − v(T≥ℓ+1)
)

.

This lemma is shown in a way similar to Proposition 2. To avoid complex dependencies,

we will use that v
(

e(ℓ)
∣

∣

∣ ALG≥ℓ+1
)

≥ v
(

e(ℓ)
∣

∣

∣ T≥ℓ+1
)

because of submodularity of v and since

ALG≥ℓ+1 ⊆ T≥ℓ+1.

Proof. With L≤ℓ fixed, the algorithm’s output A(L≤ℓ) is determined as well. The online vertex in
round ℓ is as drawn uniformly at random from all vertices in L≤ℓ. This gives us

E
[

v
(

{e(ℓ)}
∣

∣

∣ T≥ℓ+1
) ∣

∣

∣ L≤ℓ, T≥ℓ+1
]

≥ 1

ℓ
v
(

A(L≤ℓ)
∣

∣

∣ T≥ℓ+1
)

≥ 1

ℓ

(

v(A(L≤ℓ)) − v(T≥ℓ+1)
)

.

Lemma 12. The probability that a tentative edge e(ℓ) is feasible given all vertices that arrived earlier

L≤ℓ and all future tentative edges T≥ℓ+1 is Pr
[

Accepted ∪ e(ℓ) is a matching
∣

∣

∣ L≤ℓ, T≥ℓ+1
]

≥
n
2

−1

ℓ−1 .

This was already shown in [14]. For completeness, we provide a proof here.

Proof. First, we consider the probability, that a tentatively selected edge e(ℓ) makes it to the final
matching. The probability that a tentative edge e(ℓ) is feasible is at least

∏ℓ−1
j=pn(1 − 1

j) = pn−1
ℓ−1 .

Since in the previous local matchings M (j) for pn ≤ j < ℓ at most one vertex i is matched to
the partner of ℓ in Mℓ. Vertices arrive in random order, we interpret this as drawing one vertex
uniformly at random from all vertices that arrived. Therefore i is drawn uniformly at random from
L≤j, thus the probability that i is the current online vertex is 1

j .
Formally, we have

Pr
[

ê(ℓ) 6= ∅
∣

∣

∣ e(ℓ), L≤ℓ, T≥ℓ+1
]

≥ pn− 1

ℓ− 1
.

Proof of Theorem 10. Combining Lemmas 11 and 12, we get that in every round ℓ for a fixed set
L≤ℓ and T≥ℓ+1 we have

E
[

v
(

ê(ℓ)
∣

∣

∣ ALG≥ℓ+1
) ∣

∣

∣ L≤ℓ, T≥ℓ+1
]

≥ 1

ℓ

pn− 1

ℓ− 1

(

v(A(L≤ℓ ∪R)) − v(T≥ℓ+1)
)

and therefore

E
[

v
(

ê(ℓ)
∣

∣

∣ ALG≥ℓ+1
)]

≥ 1

ℓ

pn− 1

ℓ− 1

(

E
[

v(A(L≤ℓ ∪R))
]

− E
[

v(T≥ℓ+1)
])

.

Using Lemma 12 another time, we also have E
[

v(ALG≥ℓ+1)
]

≥ pn−1
ℓ−1 E

[

v(T≥ℓ+1)
]

. Furthermore,

to bound E
[

v(A(L≤ℓ ∪R))
]

, we use that the optimal solution on the subgraph induced by L≤ℓ∪R
is at least as good as the optimal solution restricted to the edges in this subgraph. As every

15

edge appears with probability ℓ
n , submodularity gives us E

[

v(A(L≤ℓ ∪R))
]

≥ α ℓ
nv(OPT). In

combination, this yields

E
[

v
(

ê(ℓ))
∣

∣

∣ ALG≥ℓ+1
)]

≥ α

n

pn− 1

ℓ− 1
v(OPT) − 1

ℓ
E
[

v(ALG≥ℓ+1)
]

.

As ALG≥ℓ = ê(ℓ) ∪ ALG≥ℓ+1, we get the following recursion

E
[

v((ALG≥ℓ)
]

≥ α

n

pn− 1

ℓ− 1
v(OPT) +

(

1 − 1

ℓ

)

E
[

v(ALG≥ℓ+1)
]

.

Now we solve the tail recursion

E
[

v(ALG≥ℓ)
]

≥
n
∑

j=ℓ

j−1
∏

i=ℓ

(

1 − 1

i

)

1

j − 1

(

p− 1

n

)

αv(OPT) .

We have
∏j−1
i=ℓ

(

1 − 1
i

)

= ℓ−1
j−1 and

∑n
j=ℓ

1
(j−1)2 ≥ 1

ℓ − 1
n thus we get

E
[

v(ALG≥ℓ)
]

≥
n
∑

j=ℓ

j−1
∏

i=ℓ

(

1 − 1

i

)

1

j − 1

(

p− 1

n

)

αv(OPT)

≥
n
∑

j=ℓ

ℓ− 1

(j − 1)2

(

p− 1

n

)

αOPT

≥
(

1

ℓ
− 1

n

)

(ℓ− 1)

(

p− 1

n

)

αv(OPT) .

The expected value of the online algorithm E
[

v(ALG≥pn)
]

is maximized for p = 1/2

E
[

v(ALG≥pn)
]

αv(OPT)
≥
(

p− 1

n

)(

1 − 1

pn
− p+

1

n

)

=

(

p− p2 −O

(

1

n

))

=

(

1

4
−O

(

1

n

))

.

4 Submodular Function subject to Linear Packing Constraints

We now generalize the setting to feature arbitrary linear packing constraints. That is, each item j
is associated a variable yj and there are m constraints of the form

∑

j∈U ai,jyj ≤ bi with ai,j ≥ 0.
The coefficients ai,j are chosen by an adversary and are revealed to the online algorithm once
the respective item arrives. Immediately and irrevocably, we have to either accept or reject the
item, which corresponds to setting yj to 0 or 1. The best previous result is a constant competitive
algorithm for a single constraint and Ω(1/m)-competitive for multiple constraints, where m is the
number of constraints [4].

Our algorithms extend the ones presented in [15] from linear to submodular objective functions.
Again, they rely on a suitable algorithm solving the offline optimization problem. In this case,
we need a fractional allocation x ∈ [0, 1]U , which we evaluate in terms of the multilinear exten-
sion F (x) =

∑

R⊆U (
∏

i∈R f(R)xi
∏

i/∈R(1 − xi)). In more detail, we assume that for any packing
polytope P ⊆ [0, 1]U , F (AF (P)) ≥ α supx∈P F (x). For example, the continuous greedy process by
Calinescu et al. [6] provides a (1 − 1/e)-approximation in polynomial time. As the set P , we use

16

P(ℓn , S), which is defined to be the set of vectors x ≥ 0, for which Ax ≤ ℓ
nb and xi = 0 if i 6∈ S. This

is the polytope of the solution space with scaled down constraints and restricted on the variables
that arrived so far.

Our bounds are parameterized in the capacity ratio B and the column sparsity d. The capacity
ratio B is defined by B = mini∈[m]

bi
maxj∈[n] ai,j

. The column sparsity d is the maximal number of

none-zero entries in a column of the constraint matrix A. We consider two variants of this problem,
where either the B and d are known to the algorithm or not.

Theorem 13. There is an Ω
(

αd− 2
B−1

)

-competitive online algorithm for submodular maximization

subject to linear constraints with unknown capacity ratio B ≥ 2 and unknown column sparsity d.

If the minimal capacity B and the column sparsity d are known, we can fine-tune Algorithm 3
and add a sampling phase that is dependent on those two parameters.

Theorem 14. There is an Ω
(

αd− 1
B−1

)

-competitive online algorithm for submodular maximization

subject to linear constraints with known capacity ratio B ≥ 2 and known column sparsity d.

Note that, although the algorithm A returns fractional solutions, the output of our online
algorithms is integral. The competitive ratio is between the integral solution of the online algorithm
and the optimal fractional allocation with respect to the multilinear extension.

Algorithm 3: Submodular Function Maximization subject to Linear Constraints

Let x := 0 and S := ∅ be the index set of known requests;
for each arriving request j do // steps ℓ = 1 to n

Set S := S ∪ {j} and ℓ := |S|;
Let x̃(ℓ) := AF (P(ℓn , S)); // fractional α-approximation on scaled polytope

Set x̂
(ℓ)
j = 1 with probability x̃

(ℓ)
j ; // tentative allocation after rand. rounding

if A(x+ x̂(ℓ)) ≤ b then // feasibility test

Set x(ℓ) := x̂(ℓ), x := x+ x̂(ℓ); // online allocation

We start with the proof of Theorem 13. The proof for Theorem 14 is very similar and we mainly
point out the differences.

Again we denote with f(x | x̂) = f(x ∪ x̂) − f(x̂) the contribution of x to x̂. Here, (x ∪ x̂)j =
max{xj , x′

j} is the component-wise maximum of x and x̂. Now, let x≥ℓ be the allocation by the
online algorithm in rounds ℓ to n. Analogously, we denote the tentative allocation over the same
period by x̂≥ℓ.

In contrast to the Section 3, we need a Chernoff bound to lower bound the probability that the
tentative allocation is feasible. This was also shown in [15].

Lemma 15. For all ℓ ≤ n
4eψ with ψ = d

1
B−1 the probability that x̂ℓ is included in the final allocation

is Pr
[

∑

ℓ′<ℓAx̂
(ℓ′) ≤ bi − 1

∣

∣

∣ x̂(ℓ), . . . , x̂(n)
]

≥ 1
2 .

Proof. Let E be any outcome for x̂(ℓ+1), . . . , x̂(n). We have for all i ∈ [m]

E

∑

ℓ′<ℓ

Ax̂(ℓ′)

i

∣

∣

∣

∣

∣

∣

E

 ≤
ℓ
∑

ℓ′=1

1

ℓ′
ℓ′

n
bi =

ℓ− 1

n
bi ≤ bi

4eψ
.

17

For δ = 4eψ
(

1 − 1
bi

)

− 1, we have (1 + δ) 1
4eψ bi = bi − 1. At this point, we apply a Chernoff-bound

and get

Pr

∑

ℓ′<ℓ

Ax̂(ℓ′)

i

≥ bi − 1

∣

∣

∣

∣

∣

∣

E

 = Pr

∑

ℓ′<ℓ

Ax̂(ℓ′)

i

≥ (1 + δ)
bi

4eψ

∣

∣

∣

∣

∣

∣

E

≤
(

eδ

(1 + δ)1+δ

)

bi
4eψ

≤
(

e

1 + δ

)(1+δ)
bi

4eψ

.

Please note here that the x̂(ℓ) are not independent. As discussed in [15], we can still apply the
bound since the randomization up to round ℓ is unbiased even conditioned on the outcomes of
previous rounds. With bi ≥ 2, we have 1 + δ ≥ 2eψ and therefore

(

e

1 + δ

)(1+δ)
bi

4eψ ≤
(

1

2ψ

)bi−1

≤ 1

2d
.

Since d is the column sparsity, a union bound gives that the tentative assignment x̂ℓ′ is carried out
with probability at least 1

2 .

To prove Theorem 13, we apply the technique from Lemma 11 and bound the expected value
E [f (xℓ | x≥ℓ) | S, x̂≥ℓ] gained in round ℓ conditioned on the columns that arrived earlier S and the
future tentative allocations x̂≥ℓ. Next, we analyze the value collected by the algorithm recursively
similar to Lemma 3. It is important to note here, that our analysis only respects the value collected
in rounds n

8eψ ≤ ℓ ≤ n
4eψ . This is due to the fact that Lemma 15 does not hold during the first and

last rounds.
For Theorem 14, we change Algorithm 3 slightly and introduce a sampling phase. The modified

algorithm samples a p = 1 − 1
2e

(

1
2d

)
1

B−1 -fraction of the input sequence and then behaves like

Algorithm 3. The proof requires a similar probability bound like Lemma 15 for rounds pn ≤ ℓ ≤ n.
Then it is analogous to the proof of Theorem 13.

Proof (of Theorem 13). Let us define

x≥ℓ =

n
4eψ
∑

ℓ′=ℓ

x(ℓ′) and x̂≥ℓ =

n
4eψ
∑

ℓ′=ℓ

x̂(ℓ′) .

We use the technique from Lemma 11 and bound

E
[

F
(

x(ℓ)
∣

∣

∣ x≥ℓ+1
) ∣

∣

∣ S, x̂(ℓ), x̂≥ℓ
]

≥ E
[

F
(

x(ℓ)
∣

∣

∣ x̂≥ℓ+1
) ∣

∣

∣ S, x̂(ℓ), x̂≥ℓ+1
]

= E
[

F
(

x̂(ℓ)
∣

∣

∣ x̂≥ℓ+1
) ∣

∣

∣ S, x̂(ℓ), x̂≥ℓ+1
]

Pr

∑

ℓ′<ℓ

Ax̂(ℓ′) ≤ bi − 1

≥ 1

2ℓ
F
(

x̃(ℓ)
∣

∣

∣ x̂≥ℓ+1
)

≥ 1

2ℓ

(

F (x̃(ℓ)) − F (x̂≥ℓ)
)

.

(4)
Now we express the expected value collected by the algorithm recursively

E
[

F (x≥ℓ)
]

≥ E
[

F (x(ℓ) | x≥ℓ+1) + F (x≥ℓ+1)
]

≥ 1

2ℓ
E
[

F (x̃(ℓ))
]

− 1

2ℓ
E
[

F (x̂≥ℓ+1)
]

+ E
[

F (x≥ℓ+1)
]

.
(5)

18

Using Lemma 15 once again, we have E
[

F (x≥ℓ+1)
]

≥ 1
2E
[

F (x̂≥ℓ+1)
]

. Furthermore, we have

E
[

F (x̃(ℓ))
]

≥ α ℓ2

n2F (OPT) because the optimal solution in P(ℓn , S) has expected value at least

ℓ2

n2F (OPT). This is due to the fact that every variable from OPT is included with probability
ℓ
n and constraints are scaled by another factor ℓ

n . The vector x̃(ℓ) is an α-approximation of this
solution. In combination, we get

E
[

F (x≥ℓ)
]

≥ αℓ

2n2
F (OPT) +

(

1 − 1

ℓ

)

E
[

F (x≥ℓ+1)
]

.

Solving the recursion yields the desired result

E [F (x)]

αF (OPT)
≥

E
[

F (x≥ n
8eψ)

]

αF (OPT)
≥

n
4eψ
∑

j= n
8eψ

j−1
∏

i= n
8eψ

(

1 − 1

i

)

αj

2n2
=

n
4eψ
∑

j= n
8eψ

n
8eψ

j − 1

αj

2n2

≥
(

n

4eψ
− n

8eψ

)

1

8eψ

α

2n
∈ Ω

(

αd− 2
B−1

)

.

Proof (of Theorem 14). This time we define

x≥ℓ =
n
∑

ℓ′=ℓ

x(ℓ′) and x̂≥ℓ =
n
∑

ℓ′=ℓ

x̂(ℓ′) .

Analogous to Lemma 15, we bound the probability that the tentative allocation is feasible with
a Chernoff bound. For (1 + δ)(1 − p)bi = bi − 1 we have

Pr

∑

ℓ′<ℓ

Ax̂(ℓ′) ≤ bi − 1

 ≥ 1

2

because

Pr

∑

ℓ′<ℓ

Ax(ℓ′)

i

≥ bi − 1

 = Pr

∑

ℓ′<ℓ

Ax(ℓ′)

i

≥ (1 + δ)(1 − p)bi

 ≤
(

eδ

(1 + δ)1+δ

)(1−p)bi

≤
(

e

1 + δ

)bi−1

=

(

e(1 − p)

1 − 1
bi

)bi−1

≤ (2e(1 − p))bi−1 =
1

2d
.

Here we use the column sparsity in a union bound and get the desired success probability.
Just like in the previous proof for Theorem 13, we use Equation (4)

E
[

F
(

x(ℓ)
∣

∣

∣ x≥ℓ
) ∣

∣

∣ S, x̂≥ℓ
]

≥ 1

2ℓ

(

F (x̃(ℓ)) − F (x̂≥ℓ)
)

and get the same recursion like in Equation (5)

E
[

F (x≥ℓ)
]

≥ E
[

F (x(ℓ) | x≥ℓ+1) + F (x≥ℓ+1)
]

.

We get the same recursion E
[

F (x≥ℓ)
]

≥ E
[

1
2ℓ

(

F (x̃(ℓ)) − F (x̂≥ℓ+1)
)

+ F (x≥ℓ+1)
]

, but this time

we sum over a different set of ℓ. With E
[

F (x̃(ℓ))
]

≥ α ℓ2

n2F (OPT), we have for pn ≤ ℓ ≤ n

19

E
[

F (x≥ℓ)
]

≥ αℓ

2n2
F (OPT) +

(

1 − 1

ℓ

)

E
[

F (x≥ℓ+1)
]

.

The recursion yields

E
[

F (x≥ℓ)
]

F (OPT)
≥

n
∑

j=pn+1

j−1
∏

i=pn+1

(

1 − 1

i

)

αj

2n2
=

n
∑

j=pn+1

pn

j − 1

αj

2n2

≥ α (n− pn)
p

2n
= α(1 − p)

p

2
∈ Ω

(

αd− 1
B−1

)

.

References

[1] Shipra Agrawal and Nikhil R. Devanur. Fast algorithms for online stochastic convex program-
ming. In Proc. 26th Symp. Discr. Algorithms (SODA), pages 1405–1424, 2015.

[2] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A dynamic near-optimal algorithm for online
linear programming. Operations Research, 62(4):876–890, 2014.

[3] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In Proc. 18th Symp. Discr. Algorithms (SODA), pages 434–443, 2007.

[4] MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Morteza Zadimoghaddam.
Submodular secretary problem and extensions. ACM Trans. Algorithms, 9(4):32, 2013.

[5] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proc. 25th Symp. Discr. Algorithms (SODA), pages 1433–1452,
2014.

[6] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

[7] Nikhil R. Devenur and Thomas P. Hayes. The adwords problem: online keyword matching
with budgeted bidders under random permutations. In Proc. 10th Conf. Econom. Comput.
(EC), pages 71–78, 2009.

[8] Moran Feldman and Rani Izsak. Building a good team: Secretary problems and the super-
modular degree. CoRR, abs/1507.06199, 2015.

[9] Moran Feldman, Joseph Naor, and Roy Schwartz. Improved competitive ratios for submodular
secretary problems (extended abstract). In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques - 14th International Workshop, APPROX 2011, and
15th International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011.
Proceedings, pages 218–229, 2011.

[10] Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approximations for
k-exchange systems - (extended abstract). In Proc. 19th European Symp. Algorithms (ESA),
pages 784–798, 2011.

[11] Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. In Proc. 26th Symp. Discr. Algorithms (SODA),
pages 1189–1201, 2015.

20

[12] Moran Feldman and Rico Zenklusen. The submodular secretary problem goes linear. In Proc.
56th Symp. Foundations of Computer Science (FOCS), pages 486–505, 2015.

[13] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: Offline and secretary algorithms. In Proc. 6th Intl.
Conf. Web and Internet Economics (WINE), pages 246–257, 2010.

[14] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal online
algorithm for weighted bipartite matching and extensions to combinatorial auctions. In Proc.
21st European Symp. Algorithms (ESA), pages 589–600, 2013.

[15] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal beats dual
on online packing lps in the random-order model. In Proc. 46th Symp. Theory of Computing
(STOC), pages 303–312, 2014.

[16] Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online auc-
tions. In Proc. 16th Symp. Discr. Algorithms (SODA), pages 630–631, 2005.

[17] Nitish Korula, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online submodular welfare
maximization: Greedy beats 1/2 in random order. In Proc. 47th Symp. Theory of Computing
(STOC), pages 889–898, 2015.

[18] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hypergraphs.
In Proc. 36th Intl. Coll. Autom. Lang. Program. (ICALP), pages 508–520, 2009.

[19] Andreas Krause and Daniel Gloving. Submodular function maximization. In Tractability:
Practical Approaches to Hard Problems, chapter 3. Cambridge University Press, 2014.

[20] Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and nonmono-
tone submodular maximization with knapsack constraints. Math. Oper. Res., 38(4):729–739,
2013.

[21] Oded Lachish. O(log log rank) competitive ratio for the matroid secretary problem. In Proc.
55th Symp. Foundations of Computer Science (FOCS), pages 326–335, 2014.

[22] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple ma-
troids via generalized exchange properties. Math. Oper. Res., 35(4):795–806, 2010.

[23] Tengyu Ma, Bo Tang, and Yajun Wang. The simulated greedy algorithm for several submod-
ular matroid secretary problems. Theoret. Comput. Sci., 58(4):681–706, 2016.

[24] Marco Molinaro and R. Ravi. The geometry of online packing linear programs. Math. Oper.
Res., 39(1):46–59, 2014.

[25] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Math. Oper. Res., 3(3):177–188, 1978.

[26] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approxi-
mations for maximizing submodular set functions - II. Math. Prog., 14(1):265–294, 1978.

[27] Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett., 32(1):41–43, 2004.

21

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Submodular Secretary Problem
	2.1 Analysis Technique
	2.2 Proof of Theorem 1
	2.3 Improved Analysis for the Greedy Algorithm

	3 Submodular Matching
	4 Submodular Function subject to Linear Packing Constraints

