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GEOMETRIC COMPLEXITY THEORY AND MATRIX POWERING

FULVIO GESMUNDO1, CHRISTIAN IKENMEYER2, GRETA PANOVA3

Abstract. Valiant’s famous determinant versus permanent problem is the flagship problem in
algebraic complexity theory. Mulmuley and Sohoni (Siam J Comput 2001, 2008) introduced geo-
metric complexity theory, an approach to study this and related problems via algebraic geometry
and representation theory. Their approach works by multiplying the permanent polynomial with
a high power of a linear form (a process called padding) and then comparing the orbit closures of
the determinant and the padded permanent. This padding was recently used heavily to show no-go
results for the method of shifted partial derivatives (Efremenko, Landsberg, Schenck, Weyman,
2016) and for geometric complexity theory (Ikenmeyer Panova, FOCS 2016 and Bürgisser, Iken-
meyer Panova, FOCS 2016). Following a classical homogenization result of Nisan (STOC 1991) we
replace the determinant in geometric complexity theory with the trace of a variable matrix power.
This gives an equivalent but much cleaner homogeneous formulation of geometric complexity theory
in which the padding is removed. This radically changes the representation theoretic questions in-
volved to prove complexity lower bounds. We prove that in this homogeneous formulation there are
no orbit occurrence obstructions that prove even superlinear lower bounds on the complexity of the
permanent. This is the first no-go result in geometric complexity theory that rules out superlinear
lower bounds in some model.

Interestingly—in contrast to the determinant—the trace of a variable matrix power is not
uniquely determined by its stabilizer.

1. Statement of the result

Let perm :=
∑

σ∈Sm

∏m
i=1Xi,σ(i) denote the m × m permanent polynomial and let Powmn :=

tr(Xm) denote the trace of themth power of an n×nmatrixX = (Xi,j) of variables. The coordinate

rings of the orbits and orbit closures C[GLn2Powmn ] and C[GLn2perm] are GLn2 representations.
Let λ be an isomorphy type of an irreducible GLn2 representation. In this paper we prove that if
n ≥ m+2 ≥ 12 and λ occurs in C[GLn2perm], then λ also occurs in C[GLn2Powmn ], see Theorem 2.12
below.

2. Introduction

Valiant’s famous determinant versus permanent problem is a major open problem in computa-
tional complexity theory. It can be stated as follows, see Conjecture 2.1: For a polynomial p in any
number of variables let the determinantal complexity dc(p) denote the smallest n ∈ N such that p
can be written as the determinant p = det(A) of an n× n matrix A whose entries are affine linear
forms in the variables.

Throughout the paper we fix our ground field to be the complex numbers C. Let perm :=
∑

σ∈Sm

∏m
i=1Xi,σ(i) denote the permanent polynomial, where Sm denotes the symmetric group

on m symbols and the m2 variables Xi,j are double indexed. The permanent is of interest in
combinatorics and theoretical physics, but our main interest stems from the fact that it is complete
for the complexity class VNP (although the arguments in this paper remain valid if the permanent
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is replaced by any other VNP-complete function, mutatis mutandis). Valiant famously posed the
following conjecture.

2.1. Conjecture. The sequence dc(perm) grows superpolynomially.

Valiant [Val79] proved that Conj. 2.1 implies the separation VPe ( VNP of algebraic complexity
classes, which was later refined in [Tod92], see also [MP08]: Conj. 2.1 is equivalent to the separation
VPs ( VNP. Many polynomially equivalent formulations for the determinantal complexity exist.
For example dc(p) is polynomially equivalent to the smallest size of a skew circuit computing p, or
the smallest size of a weakly skew circuit computing p, or the smallest size of an algebraic branching
program computing p.

2.A. Preliminaries and the padded setting. Geometric complexity theory was introduced by
Mulmuley and Sohoni [MS01,MS08] to resolve Conj. 2.1 and related conjectures as follows. For
n > m define the padded permanent pernm := (Xn,n)

n−mperm, which is homogeneous of degree n in
m2 + 1 variables. Let An denote the vector space of homogeneous degree n polynomials in the n2

variables Xi,j . Clearly pernm ∈ An. Moreover, detn ∈ An, where detn :=
∑

σ∈Sn
sgn(σ)

∏n
i=1Xi,σ(i)

is the determinant polynomial. The group GLn2 of invertible n2 × n2 matrices acts canonically on
An by replacing variables with homogeneous linear forms. Let GLn2detn := {g ·detn | g ∈ GLn2} be
the orbit of the determinant and analogously let GLn2pernm be the orbit of the padded permanent.
Let GLn2detn ⊆ An and GLn2pernm ⊆ An denote the closures of the respective orbits in An. Here
Euclidean closure and Zariski closure coincide [Kra85, II.2.2 c & AI.7.2 Folgerung], i.e., both orbit
closures are affine subvarieties of An. Mulmuley and Sohoni proposed the following way to find
lower bounds on dc(perm).

2.2. Proposition. If GLn2pernm 6⊆ GLn2detn, then dc(perm) > n.

We call Prop. 2.2 the padded setting. To prove lower bounds on dc(perm) Mulmuley and Sohoni
[MS01,MS08] suggested to study the representation theory of the coordinate rings of the orbits and
orbit closures and use so-called occurrence obstructions. To define occurrence obstructions we now
discuss the representation theory of the coordinate rings.

Recall that An is a complex vector space of dimension
(

n2+n−1
n

)

. Let C[An] denote its coordinate

ring, i.e., the ring of polynomials in
(

n2+n−1
n

)

variables. The group GLn2 acts linearly in a canonical

way on each homogeneous degree d component C[An]d by the canonical pullback (gf)(p) := f(g−1p),
for all f ∈ C[An]d, g ∈ GLn2 , p ∈ An. Since the group GLn2 is reductive, the finite dimensional
GLn2 representation C[An]d splits into a direct sum representations: C[An]d =

⊕

i Vi, where each
Vi is an irreducible GLn2 representation, i.e., a vector space with no nontrivial linear subspaces
that are invariant under the group action. Two irreducible GLn2 representations Vi and Vj are

called isomorphic if there exists a GLn2-equivariant vector space isomorphism ϕ : Vi
∼→ Vj, i.e.

gϕ(v) = ϕ(gv) for all g ∈ GLn2 and v ∈ Vi. Grouping together isomorphic copies we write

C[An]d =
⊕

λ V
⊕aλ(d[n])
λ , where the natural numbers aλ(d[n]) are the so-called plethysm coefficients

and the sum ranges over all isomorphy types λ of irreducible GLn2 representations. It is a major open
problem in algebraic combinatorics to find a combinatorial description for aλ(d[n]), see Problem 9
in [Sta00].

A partition is a finite sequence of nonincreasing nonnegative integers. Partitions are often de-
picted by their Young diagrams, which are top-left justified arrays of boxes, where there are λi
boxes in row i. For example, the Young diagram of the partition (5, 4) is . We often

identify partitions with their Young diagrams. We write |λ| := λ1 + λ2 + · · · for the number of
boxes in λ. Moreover, we write λ ✤

N
D to denote a partition λ of D into at most N parts. We

omit N if there is no restriction on the number of parts. We denote by ℓ(λ) the length of λ, which
is its number of nonzero parts. The isomorphy types or irreducible GLn2 representations that can
possibly appear in C[An]d are indexed by partitions λ ✤

n2 nd.
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For an affine subvariety Z ⊆ An (e.g., Z = GLn2detn or Z = GLn2pernm) the coordinate
ring C[Z] is defined by restricting the functions in C[An] to Z. Since in our case Z will al-
ways be a cone (i.e., closed under vector space rescaling) it follows that C[Z] inherits the grad-

ing from C[An]. In each degree d both coordinate rings split: C[GLn2detn]d =
⊕

λ V
⊕a′

λ
(d[n])

λ

and C[GLn2pernm]d =
⊕

λ V
⊕a′′

λ,m
(d[n])

λ , where the a′λ(d[n]) and a′′λ(d[n]) are nonnegative integers.

Clearly if GLn2pernm ⊆ GLn2detn, then there exists the surjective GLn2-equivariant homomorphism
C[GLn2detn]d ։ C[GLn2pernm]d that is just the restriction of functions. Schur’s lemma implies that
in this case we have a′′λ,m(d[n]) ≤ a′λ(d[n]). Using Prop. 2.2 we can draw the following conclusion.

2.3. Proposition. If there exists a partition λ such that a′λ(d[n]) < a′′λ,m(d[n]), then dc(perm) > n.

These λ are called representation theoretic obstructions. Mulmuley and Sohoni conjectured that
Prop. 2.3 can be used to resolve Conj. 2.1. This conjecture is still wide open. A key insight about
the shape of possible λ is presented in [KL12]:

2.4. Proposition. If a′′λ,m(d[n]) > 0, then λ1 ≥ (n −m)d.

This poses a crucial restriction to the possible obstructions λ: If we search for obstructions that
prove Conj. 2.1, then we can assume that the first part of λ is much larger than its other parts.

Mulmuley and Sohoni proposed to search for λ that satisfy not only a′λ(d[n]) < a′′λ,m(d[n])
but even a′λ(d[n]) = 0 < a′′λ,m(d[n]). Such λ are called occurrence obstructions. It was recently

shown that no lower bounds better than dc(perm) > m25 can be proved with occurrence obstruc-
tions [BIP16]. Mulmuley and Sohoni proposed even further to use the following upper bound
for a′λ(d[n]) coming from the coordinate ring of the determinant orbit : The algebraic group GLn2

is an affine variety and acts on itself by left and right multiplication. Hence GLn2 × GLn2 acts
on the coordinate ring C[GLn2 ]. The algebraic Peter-Weyl theorem (see e.g. [Kra85, II.3.1 Satz
3], [Pro07, Ch. 7, 3.1 Thm.], or [GW09, Thm. 4.2.7]) tells use how its coordinate ring splits as a
GLn2 × GLn2 representation: C[GLn2 ] ≃

⊕

λ Vλ ⊗ Vλ∗ , where the sum is over all isomorphy types of
GLn2 and λ∗ is the type dual to λ. If p ∈ An has a closed stabilizer S ⊆ GLn2 that is reductive, then
the orbit GLn2p is an affine variety whose coordinate ring C[GLn2p] is the ring of right S-invariants:
C[GLn2p] = C[GLn2 ]S , see [BIP16, Sec. 4.1 & 4.2]. For the determinant the stabilizer was already
calculated by Frobenius [Fro97]. Functions on the orbit closure restrict to the orbit and since the
orbit is dense in its closure this gives an embedding C[GLn2p] ⊆ C[GLn2p] and in each degree d we
have that

(2.5) C[GLn2p]d ⊆ C[GLn2p]d

is a GLn2 subrepresentation; see also [BI15] for a study of the relationship between the two coor-
dinate rings. The multiplicities that arise in C[GLn2detn]d are much more accessible than those in

C[GLn2detn]d. Indeed, C[GLn2detn]d =
⊕

λ V
⊕sk(λ,n×d)
λ . Here the nonnegative integer sk(λ, n × d)

is the so-called rectangular symmetric Kronecker coefficient, a quantity that can be described com-
pletely in terms of the symmetric group as follows. The irreducible representations of the symmetric
group SD are indexed by partitions λ of D into arbitrarily many parts and denoted by [λ]. For
partitions λ ✤ D and µ ✤ D the group SD×SD acts irreducibly on the tensor product [λ]⊗ [µ], but
the embedding SD →֒ SD×SD, g 7→ (g, g) makes [λ]⊗ [µ] an SD representation that decomposes:

[λ] ⊗ [µ] ≃ ⊕

ν [ν]
⊕g(λ,µ,ν), where the sum is over all partitions of D and the nonnegative integers

g(λ, µ, ν) are called the Kronecker coefficients. Finding a combinatorial expression for g(λ, µ, ν)
is a famous open problem in algebraic combinatorics (see Problem 10 in [Sta00]). If we replace
the tensor product [λ] ⊗ [λ] by the symmetric square S2[λ] (which is the space of Z2 invariants
in [λ] ⊗ [λ], where Z2 switches the tensor factors), we get the symmetric Kronecker coefficients:

S2[λ] ≃ ⊕

µ[µ]
⊕sk(µ,λ), where the sum is over all partitions of D and the nonnegative integers

sk(µ, λ) are called the symmetric Kronecker coefficients. We denote by n × d := (d, d, . . . , d) the
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partition of nd = D in which each of the n parts equals d and call it the rectangular partition
because its Young diagram is a rectangle. Using this notation sk(λ, n× d) is the multiplicity of [λ]
in S2[n × d].

From (2.5) it follows that a′λ(d[n]) ≤ sk(λ, n×d). Indeed, a partition λ that satisfies sk(λ, n×d) =
0 < a′′λ,m(d[n]) is called an orbit occurrence obstruction. Its existence implies dc(perm) > n.
Mulmuley and Sohoni conjectured that orbit occurrence obstructions which prove Conj. 2.1 exist,
recently disproved in [BIP16]. A natural upper bound for sk(λ, n × d) is the Kronecker coefficient
g(λ, n× d, n× d). Mulmuley and Sohoni conjectured that the vanishing of g(λ, n× d, n× d) suffices
to find sufficiently good orbit occurrence obstructions that prove Conj. 2.1, but recently [IP16]
proved that no lower bounds better than 3m4 can be proved in this way. Note that even the small
polynomial 3m4 would be a highly nontrivial lower bound: The best lower bound on dc(perm) is
m2

2 by Mignon and Ressayre [MR04]. The paper [IP16] does not rule out that this lower bound
could be improved using orbit occurrence obstructions and their proof is tightly optimized to yield
an exponent as small as possible. Notably [IP16] does not make a statement about symmetric
Kronecker coefficients because they are more challenging than Kronecker coefficients. We will see
in Section 6 how trivial statements about Kronecker coefficients can become interesting if one
studies symmetric Kronecker coefficients.

What all these different coefficients have in common are the semigroup properties, which are
all proved in the same way by multiplying two highest weight vectors. Let λ = (λ1, λ2, . . .) and
µ = (µ1, µ2, . . .) be partitions, then λ + µ is defined as (λ1 + µ1, λ2 + µ2, . . .). The semigroup
property states that a′λ+µ((d + d′)[n]) ≥ max{a′λ(d[n]), a′µ(d′[n])} and g(λ + α, µ + β, ν + γ) ≥
max{g(λ, µ, ν), g(α, β, γ)}. Analogous properties hold for many other coefficients, e.g., for aλ(d[n]),
a′′λ,m(d[n]), and sk(λ, n× d).

The results in [IP16] (g(λ, n × d, n × d) > 0) and [BIP16] (a′λ(d[n]) > 0) are proved using the
semigroup property in the following way: They decompose λ into a sum of smaller partitions, then
they show positivity for the smaller partitions, and then they use the semigroup property. In both
papers Prop. 2.4 is heavily used because it enables us to assume that the smaller partitions have
an almost arbitrarily chosen first part. This simplifies the construction of these positive building
blocks considerably. Prop. 2.4 crucially uses that the permanent is padded with a high power of a
linear form.

Moreover, also crucially using this padding, [ELSW16] showed that the method of shifted partial
derivatives applied to Prop. 2.2 cannot be used to prove Conj. 2.1.

In the light of these no-go results we remove the necessity of the padding in the next section.

2.B. The homogeneous setting. Using a result by Nisan [Nis91] Prop. 2.2 and the whole geo-
metric complexity theory approach can be reformulated without padding the permanent : Let Amn
denote the space of homogeneous degree m polynomials in n2 variables. Let Powmn := tr(Xm) ∈
Amn , where X = (Xi,j) is the n× n variable matrix. Let pc(perm) denote the smallest n such that
perm can be written as p = tr(Am), where A is an n × n matrix whose entries are homogeneous
linear forms.

It is well known ( [Nis91, Lem. 1], see also [Sap, Exe. 5.1] or [IL16, Rem. 4.5]) that pc(perm) and
dc(perm) are polynomially equivalent and hence Conj. 2.1 is equivalent to

(2.6) the sequence pc(perm) grows superpolynomially.

Interestingly, the proof of the best known upper bound dc(perm) ≤ 2m − 1 by Grenet [Gre11] also
works for this measure: pc(perm) ≤ 2m − 1. Completely analogously to Prop. 2.2 one can show

2.7. Proposition. If GLn2perm 6⊆ GLn2Powmn , then pc(perm) > n.

We call Prop. 2.7 the homogeneous setting. To study representation theoretic obstructions in the
homogeneous setting we consider the splitting of the coordinate rings in the same way as in the



GEOMETRIC COMPLEXITY THEORY AND MATRIX POWERING 5

padded setting: C[GLn2perm]d =
⊕

λ V
⊕qλ(d[m])
λ and C[GLn2Powmn ]d =

⊕

λ V
⊕tλ,n(d[m])
λ . It follows

from [BLMW11, Thm. 6.1.5] that qλ(d[m]) does not depend on n for n ≥ m, so the notation is
justified. As in the padded setting Schur’s lemma implies:

2.8. Corollary. If qλ(d[m]) > tλ,n(d[m]), then pc(perm) > n.

In Section 4 we calculate how the coordinate ring of the orbit GLn2Powmn splits. This is based
on knowing the stabilizer of Powmn :

2.9. Theorem. Let X = (Xi,j) be an n × n variable matrix. Then tr(Xm) = tr((Xt)m) and
tr(Xm) = tr((gXg−1)m), where g ∈ GLn, and tr(Xm) = tr((ωX)m), where ω is an m-th root of
unity. Moreover, if n,m ≥ 3, the whole stabilizer S of Powmn is generated by these symmetries.

Theorem 2.9 is proved in Section 5.

2.10. Theorem. For n,m ≥ 3 we have C[GLn2Powmn ]d = C[GLn2 ]Sd =
⊕

λ V
⊕sm(λ,n)
λ , where the sum

is over all λ ✤ md and sm(λ, n) :=
∑

µ
✤

n dm sk(λ, µ) is a sum of symmetric Kronecker coefficients.

Note that sm(λ, n) does not depend on d and m independently, but only on their product
dm = |λ|, therefore the notation sm(λ, n) is justified.

Analogously to the padded setting we have the inclusion C[GLn2Powm
n ]d ⊆ C[GLn2Powm

n ]d of GL
2
n

representations, therefore tλ,n(d[m]) ≤ sm(λ, n).

2.11. Corollary. If λ ✤ dm and sm(λ, n) = 0 < qλ(d[m]), then pc(perm) > n.

We call these λ orbit occurrence obstructions. We prove that no superlinear lower bounds can
be proved with orbit occurrence obstructions:

2.12. Theorem (Main Result). Let m ≥ 10 and n ≥ m + 2. For every λ ✤ dm that satisfies
qλ(d[m]) > 0 we have sm(λ, n) > 0.

This is the first time that the possibility of superlinear lower bounds is ruled out in geometric
complexity theory.

Note that in contrast to [IP16] we work directly with the multiplicities in the coordinate ring of
the orbit and not with any upper bound.

The methods used to prove this result differ greatly from [IP16], in particular [BIP16] lifts the
result in [IP16] to the closure, which appears to be challenging in the homogeneous setting because
of the absence of the padding.

2.13. Remark. We remark that even though the homogeneous setting is equivalent to the padded
setting in terms of algebraic complexity theory in a very natural way, Powmn is not characterized
by its stabilizer (see Prop. 5.9), unlike the determinant. Obtaining a homogeneous setting in which
the computational model is characterized by its stabilizer is also possible: one has to study the
orbit closure of the m-factor iterated n× n matrix multiplication, a polynomial in mn2 variables,
which seems to be even more challenging. Its stabilizer has been identified in [Ges16].

Proof of Theorem 2.12. We start with some simple observations on qλ(d[m]).

2.14. Lemma. qλ(d[m]) ≤ aλ(d[m]). Moreover, if qλ(d[m]) > 0, then ℓ(λ) ≤ m2 and |λ| = md.

Proof. The coordinate ring C[Amn ] splits according to the plethysm coefficients C[Amn ]d =
⊕

λ
✤

n2 md V
⊕aλ(d[m])
λ . Therefore qλ(d[m]) ≤ aλ(d[m]), because the orbit closure GLn2perm is an

affine subvariety of Amn . See e.g. [Ike12, Lem. 4.3.3] for the classical |λ| = md. Lastly, ℓ(λ) ≤ m2 is
ensured by [BLMW11], just because the perm has only m2 variables. �

In order to prove Theorem 2.12 we assume that qλ(d[m]) > 0 for some partition λ. By Lemma 2.14
this implies |λ| = dm, ℓ(λ) ≤ m2, and aλ(d[m]) > 0. The following Prop. 2.15 ensures that λ1 ≥ m.
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2.15. Proposition. If λ1 < m, then aλ(d[m]) = 0.

We prove Prop. 2.15 in Section 7. Since Lemma 2.14 implies ℓ(λ) ≤ m2, we can conclude the
proof of Thm. 2.12 with the following positivity proposition.

2.16. Proposition. Let m ≥ 10, d ≥ 1. Further let λ ✤ md, λ1 ≥ 3, ℓ(λ) ≤ m2. If n ≥ m+2, then
sm(λ, n) > 0.

We prove a slightly more general result in Section 3 (Proposition 3.7, where L = m2). �
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3. Occurrence in the coordinate ring of the orbit

Here we prove that the relevant multiplicities sm(λ, n) are positive in all cases of interest, and
in particular we prove Proposition 2.16. We list the necessary facts, their proofs appear in the
corresponding sections.

Analogously to sk(λ, µ) = dim([λ] ⊗ S2[µ])SD let ak(λ, µ) = dim([λ] ⊗ Λ2[µ])SD denote the
multiplicity of [λ] in Λ2[µ]. Since S2[µ]⊕ Λ2[µ] = [µ]⊗ [µ], we trivially have

g(λ, µ, µ) = sk(λ, µ) + ak(λ, µ).(3.1)

Moreover, for any positive integer a and any partition λ we set

sm(λ, a) :=
∑

µ:ℓ(µ)≤a
sk(λ, µ) and am(λ, a) :=

∑

µ:ℓ(µ)≤a
ak(λ, µ).

We start with a crucial property to prove positivity is the semigroup property. Informally it
follows from multiplying highest weight vectors in invariant spaces.

3.2. Proposition (Semigroup). For any two partitions α and β and any n we have the following
semigroup properties: If sm(α, n), sm(β, n) > 0 then sm(α + β, n) > 0. If am(α, n), am(β, n) > 0
then sm(α+ β, n) > 0. If am(α, n), sm(β, n) > 0 then am(α+ β, n) > 0.

This statement is proved in Section 4.
Next, in order to prove the positivity of sm we need some positivity results for particular sym-

metric and skew-symmetric Kronecker coefficients.
Let λt denote the partition corresponding to the Young diagram of λ reflected on the main

diagonal. For example, (5, 4, 4)t = (3, 3, 3, 3, 1). Partitions that satisfy λ = λt are called self-
conjugate. Using character theory it is easy to show that g(π, λ, λt) = 1 for π = |λ| × 1. Using
eq. (3.1) we know that only one of two cases can occur: Either sk(π, λ) = 1 and ak(π, λ) = 0 or
sk(π, λ) = 0 and ak(π, λ) = 1. Theorem 3.3 below tells us in which case we are.

For a self-conjugate partition λ we consider the number of boxes that are not on the main diagonal
of its Young diagram. Since λ is self-conjugate, this number is even. Half of them are above the
main diagonal and half of them below. For a self-conjugate partition define its sign sgn(λ) to be 1
if the number of boxes above the main diagonal is even, −1 otherwise.

3.3. Theorem. Let π = (D×1) and let λ ✤ D be self conjugate. Then sk(π, λ) = 1 and ak(π, λ) = 0
if sgn(λ) = 1, and sk(π, λ) = 0 and ak(π, λ) = 1 if sgn(λ) = −1.

This is proved in Section 6 using the tableaux basis for the irreducible representations of the
symmetric group SD.

We now consider the classical Kronecker coefficients, as they will be needed later to derive sm
positivity in some exceptional situations.
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3.4. Proposition. We have that at least one of the two quantities is positive: sm((2, 2, 1a), ℓ) > 0
and/or am((2, 2, 1a), ℓ) > 0, where ℓ = max{7, ⌈

√
a+ 2⌉}

Proof. Let λ = (2, 2, 1a). Using equation (3.1) for the Kronecker coefficients we have that
∑

µ:ℓ(µ)≤ℓ
g(λ, µ, µ) = sm(λ, ℓ) + am(λ, ℓ)

Let µ be a self-conjugate partition of a + 4 and length at most ℓ, as constructed for example in
the proof of Proposition 3.5. Then Corollary 8.2 applies and g(λ, µ, µ) is strictly positive, implying
that at least one of sm and am above must also be positive. �

We now consider the positivity of sm and show that it is positive for almost all cases. First, we
prove it when λ is a single column. When λ has more columns we apply the semigroup property
to the sum of its columns to derive positivity.

Set Xs := {2, 3, 4, 7, 8, 12} and Xa := {1, 2, 5, 6, 10, 14}, as the next statement shows these are
exactly the sets of exceptional column lengths, for which sm, respectively am, is 0.

3.5. Proposition. Let ℓ := max{⌊√a⌋ + 2, 12}. We have that sm(1a, ℓ) > 0 if and only if a 6∈ Xs

and am(1a, ℓ) > 0 if and only if a 6∈ Xa.

Proof. Here we apply Theorem 3.3. For each a we will find self-conjugate partitions µ, ν ⊢ a, such
that ℓ(µ), ℓ(ν) ≤ ℓ and sgn(µ) = 1, sgn(ν) = −1. Then 1 = sk(1a, µ) ≤ sm(1a, ℓ(µ)) ≤ sm(1a, ℓ),
and 1 = ak(1a, ν) ≤ ak(1a, ℓ(ν) ≤ ak(1a, ℓ).

For a ≤ 14, a 6∈ Xs the corresponding µ partitions are (1), (3, 1, 1), (3, 2, 1), (5, 14), (5, 2, 13),
(4, 3, 3, 1), (7, 16), (7, 2, 15) and for ν we have (2, 1), (2, 2), (4, 13), (4, 2, 12), (3, 3, 3), (6, 15), (6, 2, 14),
(5, 3, 3, 1, 1).

When a ∈ [15, 99] we treat the cases separately later by constructing partitions of lengths at
most 12 via adjustments to the general approach below.

Let a ≥ 100 and set b := ⌊√a⌋, which is the maximal possible diagonal length in a self-conjugate
partition of a (and only if 2|a − b). Note that b ≥ 10. Let r := a− b2, we have that r = 2r1 + c1,
where c1 = 0, 1 is the residue of r modulo 2. If c1 = 0, since (b+1)2 > a, we have that r1 ≤ b, and
if c1 = 1 we have (b+ 1)2 > 2r1 + 1 + b2, so b > r1.

Let first c1 = 0, and consider the partitions α := (bb + 1r1 , r1) ⊢ a with ℓ(α) = b + 1, and β :=
(bb−2+1r1+12, b−2, b−2, r1, 2) for r1 ≤ b−2 or β := ((b+1)b−2+1r1−b+4, b−2, b−2, b−2, r1−b+4)
for r1 > b − 2 (note that r1 ≤ b, so r1 − (b − 2) ∈ {1, 2}). We have that β ⊢ a, ℓ(β) ≤ b + 2 and
both α = αt and β = βt. We also have that α has 1

2(a − b) boxes above the diagonal, and β has
1
2(a− (b− 2)) = 1

2(a− b) + 1 boxes, so exactly one of α and β is odd, and one even, and these are
our ν and µ, respectively.

Let now c1 = 1, and set d := b− 1. Let γ := ((d+ 1)d + 1r1 + 1, d, r1, 1), which is self-conjugate
since r1 ≤ b − 1 = d, and γ ⊢ a, ℓ(γ) ≤ d + 3 = b + 2. Let δ := ((d + 1)d−2 + 1r1 + 15, d − 2, d −
2, d − 2, r1, 5) (sorting the last 2 parts 5, r1 in decreasing order if r1 ≤ 4 ) if r1 ≤ d − 2, and set
δ := ((d + 2)d−2 + 1r1−d+7, d − 2, d − 2, d − 2, d − 2, r1 − d + 7) if r1 > d − 2 (note again that
r1 − d + 7 ≤ b − 1 − d + 7 = 7 ≤ d − 2 since b ≥ 10). We have that δ ⊢ a, ℓ(δ) ≤ d + 4 = b + 3,
and δ = δt. Moreover the number of boxes above the diagonal of these partitions is 1

2(a − d) and
1
2(a − d + 2) = 1

2 (a − d) + 1, so again one is even and one odd, and we set them to µ and ν
respectively.

Finally, when a ≤ 99, so b ≤ 9, we treat the cases as above, noting that the problematic places
arise when c1 = 1 and some of the inequalities r1 − d+ 7 ≤ d− 2 or 5 > d− 2 fails. In these cases
we replace the problematic 1r1−d+7 or 15 by thicker partitions with at most 12 − (d+ 2) = 11 − b
parts. �

3.6. Proposition. Let λ be a partition of length ℓ ≤ 14 and λ 6∈ {(1r) : r ∈ Xs} ∪
{(2, 1, 1), (3, 1, 1), (2, 17)}. Then sm(λ, 7) > 0.
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Proof. We use a program written by Harm Derksen and adjusted by Jesko Hüttenhain that was
already used to generate the computational data in [Ike12]. A direct computation for partitions λ
with ℓ(λ) ≤ 12 and λ1 ≤ 3 shows that sm(λ, 7) > 0 except for the cases listed above. We also verify
that sm(λ, 7) > 0 for the partitions with ℓ(λ) = 13, 14 and λ2 = 1, 2 or λ1 = 4 and ℓ(λ) ≤ 4. If
ℓ(λ) = 13, 14 and λ1 = 3, then the cases when the second 2 columns of λ form one of the exceptional
partitions listed above, we have |λ| ≤ 23 and we check by direct computation. Otherwise the second
2 columns have positive sm and adding them to the first column by the semigroup property we
have sm(λ, 7) > 0.

Let λ1 ≥ 4 and set c := λ1 − λ2 (the number of singleton boxes). Let first c 6= λ1 − 1, i.e.
λ2 6= 1. If λ2 = 0, then since sm((1), 1) = sk((1), (1)) = 1 the semigroup applied c times gives
sm((c), 1) > 0. (One can also observe that since (c) is the trivial representation of Sc, we have
S2[(c)] = [(c)] and so sk((c), (c)) = 1.) If λ2 6= 0, so λ2 ≥ 2, we can write λ2 = 2j or λ2 = 2j + 3.
Then we can write λ = (c) +

∑

i α
i, where αi are partitions with all columns longer than 1 and

at least two columns each: let αi consist of the 2i + 1, 2i + 2 columns of λ and αj+1 is the last
3 nonsingleton columns if λ2 = 2j + 3. Since the calculation showed that all partitions of 2 or 3
columns, each of lengths ∈ [2, 14] have positive sm, we have sm(αi, 7) > 0. Since sm((c), 7) > 0,
the semigroup property for sm gives sm(λ, 7) > 0.

In the case when c = λ1 − 1 we must have λ = 1k + (c). The calculation showed that sm(1k +
(3), k) > 0 and since c = λ1 − 1 ≥ 3, by the semigroup property for 1k + (3) and (c − 3) we have
sm(λ, 7) > 0. �

3.7. Proposition. Let λ be partition of length at most L and λ 6∈
{(12), (13), (14), (17), (18), (112), (2, 12), (3, 12), (2, 17)} and also λ 6= (2, 2, 1k) for any k. Let

ℓ := max{⌈
√
L⌉+ 2, 12}. Then sm(λ, ℓ) > 0.

Proof. Let X := (2a2 , 3a3 , 4a4 , 7a7 , 8a8 , 12a12) be the multiset of columns in λ which are of the
exceptional lengths Xs, and let β be the partition formed by them. Let x := a2 + a3 + a4 + a7 +
a8 + a12, and let α be the partition formed by the nonexceptional columns of λ, so λ = α+ β. By
Proposition 3.5 we have that each column 1k in α, sm(1k, ℓ) > 0 and so by the semigroup property
adding these columns we get sm(α, ℓ) > 0.

Suppose that x ≥ 2 or x = 0. By Proposition 3.6 we have that sm(β, 7) > 0. Thus, by the
semigroup property we have that sm(λ, ℓ) = sm(α+ β, ℓ) > 0.

Suppose for the rest of the proof that x = 1, so there is exactly one column of length r ∈ Xs.
Since λ is not one of the exceptional partitions, it must have at least one more column k and since
x = 1, we must have k 6∈ Xs.

Let first r 6= 2, then r 6∈ Xa. Suppose that k 6∈ Xa as well. By Proposition 3.5 we have
am(1k, ℓ) > 0 and by the am semigroup property we have sm(1k + 1r, ℓ) > 0. The remaining
columns of λ are 6∈ Xs, so also have positive sm, and we can add them all to obtain sm(λ, ℓ) > 0
by the sm-semigroup. If k ∈ Xa, then k ≤ 14 and so sm(1k + 1r, ℓ) > 0 by Proposition 3.6.

Let now r = 2. Since λ 6= (2, 2, 1, 1, . . .), there must be at least 2 other columns, say of lengths
k1, k2 6∈ Xs. If ki ≤ 14 for some i, then sm(1ki + 1r, ℓ) > 0 by Proposition 3.6 and adding this
partition to the remaining nonexceptional columns we get sm(λ, ℓ) > 0 by the semigroup. If ki > 14,
then by Proposition 3.4 at least one of the following holds:

• sm(1r + 1k1 , ℓ) > 0: then adding the remaining nonexceptional columns of λ by the semi-
group property we get sm(λ, ℓ) > 0.

• am(1r + 1k1 , ℓ) > 0: then since k2 6∈ Xa, we also have am(1k2 , ℓ) > 0, so by the semigroup
property we get sm(1r + 1k1 + 1k2 , ℓ) > 0. Adding the remaining nonexceptional columns
of λ we have sm(λ, ℓ) > 0.

This exhausts all cases and completes the proof. �

We can now derive the proof of Proposition 2.16.
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Proof of Proposition 2.16. This follows directly from Proposition 3.7: since λ1 ≥ 3, we have that
λ is not a partition of 1 or 2 columns, and since λ ⊢ dm ≥ 10, we have that λ is not any of the
exceptional partitions. We have that ℓ(λ) ≤ m2 = L, and thus ℓ = max{m + 2, 12} = m+ 2 ≤ n.
So sm(λ, n) ≥ sm(λ, ℓ) > 0 by Proposition 3.7. �

4. Stabilizer-invariants in the Schur modules

This section serves two purposes. First, we prove Thm. 2.10. As a second result we obtain a
proof of the semigroup property Prop. 3.2.

We introduce the notation that we will need in this section. Let E be a vector space of dimension
n, let E∗ be its dual space. Define V = E∗ ⊗ E = End(E). We have that Powmn ∈ SmV is defined
by Powmn (X) = tr(Xm) for any X ∈ V ∗. For any two vector spaces W,W ′ and any invertible linear
map f :W →W ′, f−T :W ∗ → W ′∗ denotes its transpose inverse.

We are interested in the stabilizer of Powmn in GL(V ), that is S := {g ∈ GL(V ) | g · Powm
n =

Powmn }. It is characterized by the following theorem.

4.1. Theorem. If n,m ≥ 3, The stabilizer of Powmn in GL(V ) is

S = (PGL(E)× 〈ωm · IdV 〉)⋊ 〈τ〉
where PGL(E) = ad(GL(E)) is the image of the adjoint representation ad : GL(E) → GL(V ), ωm is
a primitive m-th root of 1 and τ : V → V is defined via τ : E∗⊗E → E∗⊗E, η⊗e 7→ δ−1(e)⊗δ(η),
where δ : E∗ ∼−→ E is a vector space isomorphism identifying a basis of E with its dual basis.

The proof of Theorem 4.1 is given in Section 5. Denote S0 = PGL(E) ⊆ S.
Let π be a partition, π ✤ d with length ℓ(π) ≤ n2. The space of S-invariants in the Schur module

SπV will be determined in two steps. First, we will determine the space of S0×〈ωmIdV 〉 invariants
in SπV : this space is 0 if d is not a multiple of m and it is the space of S0-invariants, [SπV ]S0 , if d

is a multiple of m. Afterwards, we determine the space of 〈τ〉-invariants
[

[SπV ]S0
]〈τ〉

.
It is immediate that, if d is not a multiple of m, then SπV does not contain non-zero invariants,

because ωmIdV acts on SπV by multiplication by ωdm, that is 1 if and only if d is a multiple of m.
Moreover, the following is a direct consequence of Littlewood-Richardson rule (see e.g. [FH91, Ch.

I.5]

4.2. Observation. Let µ, ν ✤ d be two partitions of the same integer d with ℓ(µ), ℓ(ν) ≤ n. The

space of GL(E)-invariants in SµE
∗⊗SνE is 0 if µ 6= ν. If µ = ν then [SµE

∗⊗SµE]GL(E) = C · IdSµE
is one-dimensional.

This observation is the key to determine the space of S0-invariants.

4.3. Proposition. Let π ✤

n2 d. Then [SπV ]S0 =
∑

µ
✤

d
ℓ(µ)≤n

g(π, µ, µ).

Proof. S0 is the image of GL(E) in GL(V ) via the adjoint representation, so the S0-invariant sub-
space in SπV coincides with the GL(E)-invariant subspace. We have the following decomposition
under the action of GL(E) (see e.g. [Ike12, Sec. 4.4]):

(4.4) SπV = Sπ(E
∗ ⊗ E) =

⊕

µ,ν
✤

d

Kµ,ν
π ⊗ SµE

∗ ⊗ SνE,

where Kµ,ν
π is a multiplicity space whose dimension is the Kronecker coefficient g(π, µ, ν). In

particular, the action of GL(E) on Kµ,ν
π is trivial. Moreover, if ℓ(µ) > n or ℓ(ν) > n, then

SµE
∗ ⊗ SνE = 0.

From Observation 4.2, we deduce

(4.5) [SπV ]S0 = [SπV ]GL(E) =
⊕

µ,ν
✤

d
ℓ(µ),ℓ(ν)≤n

Kµ,ν
π ⊗ [SµE

∗ ⊗ SνE]GL(E) =
⊕

µ
✤

d
ℓ(µ)≤n

Kµ,µ
π ⊗ IdSµE .
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The dimension of this space is
∑

µ
✤

d
ℓ(µ)≤n

g(π, µ, µ). �

In order to determine the space of 〈τ〉-invariants in [SπV ]S0 , we will study the action of τ on the
right-hand side of (4.4). We follow the discussion of [BLMW11, Sec. 5.2].

If W is a vector space of dimension n and λ is a partition λ ✤ d, ℓ(λ) ≤ n, then, by Schur-Weyl
duality SλW = HomSd

([λ], V ⊗d), where [λ] is the Specht module associated to λ.
Given partitions π, µ, ν ✤ d, by definition of the Kronecker coefficient Kµ,ν

π = HomSd
([π], [µ]⊗[ν]).

For every π, µ, ν, the following GL(E)-equivariant map realizes a summand on the right-hand
side of (4.4) as submodule of Sπ(E

∗ ⊗ E):

(4.6)
Kµ,ν
π ⊗ SµE

∗ ⊗ SνE → Sπ(E
∗ ⊗ E)

φ⊗ α⊗ β 7→ (α⊗ β) ◦ φ
where we use the reordering (E∗⊗E)⊗d ≃ E∗⊗d⊗E⊗d (maintaining the relative order of the copies
of E and of the copies of E∗).

Notice that the isomorphism δ : E∗ ∼−→ E induces a vector space isomorphism E∗⊗d ∼−→ E⊗d and
that restricts to SλE

∗ ∼−→ SλE for every λ ✤ d. Similarly, the map τ ∈ GL(V ) acts on (E∗⊗E)⊗d: its
action commutes with the action of Sd, so it passes to the components Sπ(E

∗⊗E). More precisely,
if ψ ∈ Sπ(E

∗ ⊗ E) = HomSd
([π], (E∗ ⊗ E)⊗d) then τ(ψ) = τ⊗d ◦ ψ that is the composition

(4.7)
[π]

ψ−−→ (E∗ ⊗ E)⊗d
τ⊗d

−−→ (E∗ ⊗ E)⊗d

⊗j(β
j ⊗ uj) 7−→ ⊗j(δ

−1(uj)⊗ δ(βj)),

for βj ∈ E∗, uj ∈ E.
For every π, µ, ν, there is an isomorphism σπµ,ν : Kµ,ν

π → Kν,µ
π obtained via the composition of

an element ψ with the canonical isomorphism [µ]⊗ [ν] ≃ [ν]⊗ [µ]; in particular σπµ,ν is the inverse

of σπν,µ and σπλ,λ is an element of order 2 acting on Kλ,λ
π .

Consider the diagram

Kµ,ν
π ⊗ SµE

∗ ⊗ SνE
//

��

Sπ(E
∗ ⊗ E)oo

��

Kν,µ
π ⊗ SνE

∗ ⊗ SµE
// Sπ(E

∗ ⊗ E)oo

where the horizontal arrows from left to right are the GL(E∗)× GL(E)-equivariant embeddings as
in (4.6), the horizontal arrows from right to left are the corresponding projections, the vertical
arrow on the right is the τ⊗d as in (4.7) and the vertical arrow on the left is the map sending
φ⊗α⊗β ∈ Kµ,ν

π ⊗SµE
∗⊗SνE to σµ,νπ (φ)⊗ ((δ−1)⊗d ◦β)⊗ (δ⊗d ◦α). A straightforward calculation

shows that the diagram commutes.
In particular, the action of τ restricts to the summands of (4.4) where µ = ν as

(4.8)
Kµ,µ
π ⊗ SµE

∗ ⊗ SµE → Kµ,µ
π ⊗ SµE

∗ ⊗ SµE

(α⊗ β) ◦ φ 7→ ((δ−1 ◦ β)⊗ (δ ◦ α)) ◦ σµ,µπ (φ)

4.9. Lemma. The action of τ restricts to the GL(E)-invariant subspace in Kµ,µ
π ⊗ SµE

∗ ⊗ SµE.

Proof. From Observation 4.2, the GL(E)-invariant subspace is Kµ,µ
π ⊗ IdSµE . In particular, we need

to show that τ⊗d(IdSµE) = IdSµE (up to scale). But this is clear as τ , by definition, preserves
IdE . �

Now, we can conclude

4.10. Theorem. If π ✤ d, and d is a multiple of m, then the space of S-invariants in SπV is

[SπV ]S =
⊕

λ
✤

d
ℓ(λ)≤n

sKλ,λ
π ⊗ IdSλE
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where sKλ,λ
π = HomSd

([π], S2[λ]). In particular, its dimension is sm(π, n) =
∑

µ⊢d,ℓ(µ)≤n sk(π, µ).

Proof. The entire SπV is invariant under the cyclic group 〈ωm〉 ⊆ S, therefore the space of S-
invariants in SπV coincides with the subspace of 〈τ〉-invariants in [SπV ]S0 .

Restricting to the space of GL(E)-invariants, from Lemma 4.9, τ acts on each summand Kπ
λ,λ ⊗

IdSµE as in 4.8.

We deduce [SπV ]S =
⊕

[

Kλ,λ
π

]〈τ〉
⊗ IdSλE , where the direct sum ranges over λ ✤ d with ℓ(λ) ≤ n.

The space of 〈τ〉-invariants in Kλ,λ
π is the space of Sd-equivariant maps [π] → [λ] ⊗ [λ] that

are fixed by the permutation of the two factors [λ]. The module [λ] ⊗ [λ] splits under the action
of τ as [λ] ⊗ [λ] = S2[λ] ⊕ Λ2[λ]. Hence Kπ

λ,λ = HomSd
([π], [λ] ⊗ [λ]) = HomSd

([π], S2[λ]) ⊕
HomSd

([π],Λ2[λ]). The space sKλ,λ
π = HomSd

([π], S2[λ]) is the invariant subspace under the action
of τ and by definition its dimension is sk(π, µ). �

Finally, we can prove Proposition 3.2.

Proof of Proposition 3.2. Suppose α ✤ a. If sm(α, n) ≥ 0 then there exist fα ∈ [SαV ]S0 that is

invariant under the action of τ . Similarly am(α, n) > 0 implies that there exists gα ∈ [SαV ]S0 that
is skew-invariant under the action of τ .

If sm(α, n), sm(β, n) > 0, let fα, fβ be as above and let hα ∈ SπV
∗ be a highest weight vector of

weight −α for the action of GL(V ), and similarly hβ . Then, by Peter-Weyl’s Theorem, fα⊗hα and
fβ ⊗ hβ are functions on GL(V ). Let F be their product (fα ⊗ hα) · (fβ ⊗ hβ) in C[GL(V )]: F is a
highest weight element of weight −α− β for the action of GL(V ); moreover it is in the τ -invariant
subspace of [Sα+βV ]S0 ⊗ Sα+βV

∗. This shows sm(α+ β, n) > 0.
The proof for the other two cases is analogous: the product of a τ -invariant function and a

τ -skew-invariant function is τ -skew-invariant and the product of two τ -skew-invariant functions is
τ -invariant. �

5. Proof of the stabilizer Theorem 4.1

In this section m,n ≥ 3. Fix a basis e1, . . . , en of E and its dual basis η1, . . . , ηn. Write
xij = ηi ⊗ ej ∈ E∗ ⊗ E = V . The expression of Powmn in coordinates is

Powmn =
∑

i1,...,im

xi1i2x
i2
i3
· · · ximi1 ∈ SmV.

Write ξji for the dual basis of xij : we can identify ξji with the differential operator ∂
∂xij

.

If G is a group and H is a subgroup, we denote by NG(H) = {g ∈ G : gHg−1 = H} and
CG(H) = {g ∈ G : ∀h ∈ H ghg−1 = h}, respectively, the normalizer and the centralizer of H in
G. For a group G, let Aut(G) denote the group of automorphisms of G. There is a natural group
homomorphism G→ Aut(G), given by h 7→ (φh : g 7→ hgh−1); the kernel of this homomorphism is
Z(G), the center of G; the image of this homomorphism is denoted by Inn(G), the group of inner
automorphisms of G. Inn(G) is a normal subgroup of Aut(G): let Out(G) = Aut(G)/ Inn(G) be
the quotient group, called the group of outer automorphisms of G.

The stabilizer S of Powmn inherits the Zariski topology of the space End(V ); let S0 denote the
connected component of the identity in S.

In this section we prove Thm. 4.1. First, we state the following standard fact:

5.1. Lemma (e.g. [Ges16], Lemma 2.1). Let f ∈ SdW be a polynomial and let G be a connected
Lie group acting on W . Let Gf be the stabilizer of f in G and let G0

f be the connected component

of the identity in Gf . Then Gf ⊆ NG(G
0
f ).
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Applying Lemma 5.1 to f = Powmn (in the setting of the lemma we have G = GL(V ), W = V ,
Gf = S and G0

f = S0), we deduce

(5.2) S0 ⊆ S ⊆ NGL(V )(S0).

The outline of the proof is as follows: first we will determine the connected subgroup S0 of S; the
second step is determining NGL(V )(S0) that will be obtained by studying the action of NGL(V )(S0)
on S0 via conjugation; finally we will determine S exploiting its action on S0 via conjugation.

The following observation is important to determine the connected subgroup S0.

5.3. Observation. Let f ∈ SdW be a polynomial and let G be a connected Lie group acting on
W . Let g be the Lie algebra of G and let anng(f) = {L ∈ g : L · f = 0} be the annihilator of f in
g. Then anng(f) is the Lie algebra of a subgroup H ⊆ G and H is the connected component of the
stabilizer of f in G.

Proof. Let H = expG(anng(f)), where expG : g → G is the exponential map of G. If h ∈ H, then

h = idG + L+ L2

2 + · · · for some L ∈ anng(f), then h · f = idG · f + L · f + L2

2 · f + · · · = f as all
the terms but the first one are in anng(f). See [Pro07, Sec. 1.2] for details. �

The subgroup S0 will be given by the image of the adjoint representation of GL(E) that is the
homomorphism ad : GL(E) → GL(E∗ ⊗ E), defined by

ad(g) : E∗ ⊗ E → E∗ ⊗ E

η ⊗ e 7→ g−T (η) ⊗ g(e).

The kernel of ad is the center of GL(E) and its image is denote by PGL(E) ⊆ GL(E∗ ⊗ E).

5.4. Proposition. The subgroup PGL(E) ⊆ GL(V ) coincides with S0.

Proof. Let Ad : End(E) → End(V ) be the differential of ad.
We will prove that annEnd(V )(Pow

m
n ) = Im(Ad). Observation 5.3 and the universality of the

exponential map (see e.g. [Hal15, Prop. 3.28]) will allow us to conclude that S0 = ad(GL(E)) =
PGL(E).

If L ∈ End(E), via Leibniz rule, we have

Ad(L) = −LT ⊗ IdE + IdE∗ ⊗ L ∈ End(E)⊗ End(E∗) ≃ End(V ).

It is useful to determine this image in terms of the basis xij and its dual basis.

The identification End(V ) ≃ End(E∗)⊗End(E) is made explicit via the reordering isomorphism,
as follows:

End(V ) = V ∗ ⊗ V = (E∗ ⊗ E)∗ ⊗ (E∗ ⊗ E) ≃
≃ E ⊗ E∗ ⊗E∗ ⊗ E ≃

swap E∗
(E ⊗ E∗)⊗ (E∗ ⊗ E) = End(E∗)⊗ End(E).

Therefore, if ηk ⊗ ej ∈ E∗ ⊗ E = End(E), we have

Ad(ηk ⊗ ej) = −ej ⊗ ηk ⊗
(
∑

ηi ⊗ ei
)

+
(
∑

ei ⊗ ηi
)

⊗ ηk ⊗ ej

as an element of End(E∗)⊗ End(E); under the reordering isomorphism we obtain

Ad(ηk ⊗ ej) =
∑

i(ei ⊗ ηk ⊗ ηi ⊗ ej − ej ⊗ ηi ⊗ ηk ⊗ ei) =

=
∑

i(ξ
k
i ⊗ xij − ξij ⊗ xki ).

The image of Powmn under the action of basis element L = ξij ⊗ xkℓ is given by

L · Powm
n = xkℓ ·

∂

∂xji
Powm

n = m xkℓ (Xm−1)ij .
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We will exploit the form of the monomials in this expression: in general, we have

(Xp)ij =
∑

i1,...,ip−1

xii1x
i1
i2
· · · xip−2

ip−1
x
ip−1

j .

We will use the following properties of the monomials occurring in (Xp)ij :

(i) if k /∈ {i, j}, then k appears as upper index the same number of times that it appears as lower
index;

(ii) if k /∈ {i, j} appears as upper index in one variable, then there is at least another variable
(possibly equal) where it appears as lower index (and viceversa);

(iii) if i 6= j, the index i appears as upper index one time more than the number of times it appears
as lower index;

(iv) if i 6= j, the index j appears as lower index one time more than the number of times it appears
as upper index;

(v) if i has only one occurrence as upper index, and j has only one occurrence as lower index,
then the variable xij does not appear in the monomial.

It is easy to show that if L ∈ Im(Ad) then L · Powmn = 0. Now, let L be an element in the
annihilator of Powm

n .
Consider 4 indices (i, j, k, ℓ). We may assume without loss of generality i, j, k, ℓ ∈ {1, 2, 3, 4}. In

all the following cases, we argue that the coefficient of ξij⊗xkℓ in T has to be 0; these short technical

proofs are based on the fact that the monomials that we consider in (ξij ⊗ xkℓ ) · Powmn can only be

generated by the basis element ξij ⊗ xkℓ :

· (i, j, k, ℓ) = (1, 2, 3, 4). Notice that (ξ12 ⊗ x34) · Powmn = x34(X
m−1)12 contains the monomial

x34(x
1
1)
m−2x12. Suppose x34(x

1
1)
m−2x12 occurs in (ξαβ ⊗ xγδ ) · Powmn . The possibilities for the

pair (γ, δ) are (1, 1), (1, 2) or (3, 4). If (γ, δ) = (1, 1) then x34(x
1
1)
m−3x12 = (Xm−1)αβ for some

α, β, but this provides a contradiction with property (i) above, since there are two lower
indices (4 and 2) not having the same occurrences as lower and upper index; if (γ, δ) = (1, 2)
then x34(x

1
1)
m−2 = (Xm−1)αβ , for some (α, β), providing a contradiction with property (v),

since 3 and 4 are the only indices not having matching indices; finally if (γ, δ) = (3, 4)
then (x11)

m−2x12 occurs in (Xm−1)αβ and this is possible only if (α, β) = (1, 2), providing

ξαβ ⊗ xγδ = ξ12 ⊗ x34. The same argument applies to every case where i, j, k, ℓ are distinct.

· (i, j, k, ℓ) = (1, 1, 3, 4). Notice that (ξ11 ⊗ x34) · Powmn = x34(X
m−1)11 contains the monomial

x34(x
1
1)
m−1. Suppose (x11)

m−1x34 occurs in (ξαβ ⊗ xγδ ) · Powmn . The possibilities for the pair

(γ, δ) are (1, 1) or (3, 4). If (γ, δ) = (1, 1), we obtain a contradiction similarly to the second
case in the previous part; if (γ, δ) = (3, 4), we obtain (α, β) = (1, 1) namely ξαβ⊗x

γ
δ = ξ11⊗x34.

The same argument applies to every case where i = j and i, k, ℓ are distinct.
· (i, j, k, ℓ) = (1, 2, 3, 3). Notice that (ξ12 ⊗ x33) · Powmn = x33(X

m−1)12 contains the monomial
x33(x

1
1)
m−2x12. Suppose x

3
3(x

1
1)
m−2x12 occurs in (ξαβ ⊗ xγδ ) · Powmn . The possibilities for (γ, δ)

are (1, 1), (1, 2) and (3, 3). If (γ, δ) = (1, 1) then x33(x
1
1)
m−3x12 = (Xm−1)αβ : since the lower

index 2 does not occur as upper index we have β = 2 and since 1 occurs as upper index
once more than as lower index we have α = 1, but this provides a contradiction with
properties (i) and (ii) above, since the index 3 only occurs in x33. If (γ, δ) = (1, 2) then
x33(x

1
1)
m−3 occurs in (Xm−1)αβ : if (α, β) = (1, 1), we obtain a contradiction with (i) and

(ii) as in the previous part; if (α, β) = (3, 3), we obtain a contradiction with property (v).
Finally, if (γ, δ) = (3, 3), then (x11)

m−2x12 = (Xm−1)αβ and we obtain (α, β) = (1, 2), namely

ξαβ ⊗ xγδ = ξ12 ⊗ x33. The same argument applies to every case where i, j, k are distinct and
k = ℓ.

· (i, j, k, ℓ) = (1, 1, 2, 2). This case can be solved similarly to the previous one.
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· (i, j, k, ℓ) = (1, 2, 1, 3). Notice that (ξ12 ⊗ x13) · Powmn = x13(X
m−1)12 contains the monomial

x13x
1
2(x

2
2)
m−2. Suppose x13x

1
2(x

2
2)
m−2 occurs in (ξαβ⊗x

γ
δ )·Powm

n . The possibilities for (γ, δ) are

(1, 2), (2, 2) and (1, 3). If (γ, δ) = (1, 2) then x13(x
2
2)
m−2 occurs in (Xm−1)αβ , but this easily

provides a contradiction. A similar contradiction is obtained if (γ, δ) = (2, 2). Therefore
(γ, δ) = (1, 3) and (α, β) = (1, 2), namely ξαβ ⊗ xγδ = ξ12 ⊗ x13.

· (i, j, k, ℓ) = (1, 3, 2, 3). This case can be solved similarly to the previous one.
· (i, j, k, ℓ) = (1, 2, 1, 2). This case can be solved similarly to the previous one.
· (i, j, k, ℓ) = (1, 1, 1, 1). Notice that (ξ11 ⊗ x11) · Powmn = x11(X

m−1)11 contains the monomial
(x11)

m. It is clear that this can be obtained only from the element ξ11 ⊗ x11.

After this analysis, we observe that the only basis elements of End(V ) that can have non-zero

coefficient in L are ξij ⊗ xki and ξij ⊗ xjℓ.

Now, suppose ξ12 ⊗ x23 appears in L (and up to rescaling suppose its coefficient is 1). We have
(ξ12 ⊗ x23) · Powmn = x23(X

m−1)12, that contains, for instance, the monomials x23x
1
ℓx
ℓ
1(x

1
1)
m−4x12 if

m ≥ 4 and x23x
1
ℓx
ℓ
2 if m = 3. An argument similar to the ones used above shows that, for every

ℓ, the monomial x23x
1
ℓx
ℓ
1(x

1
1)
m−4x12 can only appear in (ξ12 ⊗ x23) · Powmn and in (ξℓ3 ⊗ x1ℓ ) · Powmn .

Therefore, if the basis element ξ12 ⊗ x23 appears in L with coefficient 1, then, for every ℓ, the basis
element ξℓ3⊗x1ℓ appears in L with coefficient −1. In particular, for ℓ = 2, ξ23 ⊗x12 appears in L with
coefficient −1. But an argument similar to the one we just used shows that if ξ23 ⊗ x12 appears in L
with coefficient −1 then ξ1ℓ ⊗ xℓ3 appears in L with coefficient 1.

We just saw that, if ξ12 ⊗ x23 appears in L, then every term of Ad(η1 ⊗ e3) appears in L: this

shows that, if L is generated by basis elements of the form ξij ⊗ xjk with i 6= k, then L is contained
in the image of Ad.

Finally, suppose ξ12 ⊗ x21 appears in L. In (ξ12 ⊗ x21) · Powmn , we obtain monomials of the form
x21x

1
ℓx
ℓ
1(x

1
1)
m−4x12 (or x21x

1
ℓx
ℓ
2 if m = 3). We observe that the only other basis elements that can

generate this monomial are ξ1ℓ ⊗ xℓ2 and ξℓ1 ⊗ x1ℓ . In the first case, we already saw that L has to
contain a term generated by elements in the image of Ad. In the second case, we can repeat the
argument as we did above, and we observe that L contains all the terms in Ad(η1 ⊗ e1).

This concludes the proof that Im(Ad) = annEnd(V )(Pow
m
n ) and so the proof of the Proposition.

�

Recall from (5.2) that S0 ⊆ S ⊆ NGL(V )(S0). The next step toward the proof of Theorem 4.1 is
to determine NGL(V )(S0).

We will prove that, as an abstract group,

(5.5) NGL(V )(S0) ≃ (PGL(E)× C∗×2)⋊ 〈τ〉,
where, PGL(E) = S0, C

∗×2 is the centralizer CGL(V )(S0) and τ is an element of order 2 acting on

S0 as in the statement of Theorem 4.1 and on C∗×2 via (c1, c2) 7→ (c−1
1 , c−1

2 ).
In order to determine the factors of NGL(V )(S0), the following general observation will be useful.

5.6. Observation. If H ⊆ G is a subgroup, then NG(H) acts on H via conjugation, namely there
is a group homomorphism

NG(H) → Aut(H)

g 7→ (φg : h 7→ ghg−1).

The kernel of this homomorphism is the centralizer CG(H). The product subgroup HCG(H) is
the kernel of the composition

NG(H) → Aut(H) → Out(H)

where the second map is the projection modulo Inn(G). In particular NG(H)/(HCG(H)) is (iso-
morphic to) a subgroup of Out(H).
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This allows us to determine NGL(V )(S0) by determining first its centralizer and then realizing the
outer automorphisms of S0 via conjugation by an element of GL(V ).

The next result characterizes the centralizer CGL(V )(S0):

5.7. Lemma. The centralizer CGL(V )(S0) is isomorphic, as an abstract group, to (C∗)×2.

Proof. Every element s ∈ S0 ⊆ GL(V ) is a linear map V → V . V = E∗ ⊗E ≃ End(E) splits under
the action of S0 as V = CIdE ⊕ sl(E), where sl(E) is the subspace of traceless endomorphisms in
End(E). The fact that g ∈ CGL(V )(S0) is equivalent to the fact that g : V → V is S0-equivariant.
By Schur’s Lemma, g acts by non-zero scalars on the irreducible components of V under the action
of S0: we conclude CGL(V )(S0) = C∗IdCIdE

× C∗Idsl(E). �

Since S0 ≃ PGL(E) has trivial center, we have S0 ∩ CGL(V )(S0) = {idV }, so S0 × CGL(V )(S0) ⊆
NGL(V )(S0).

Moreover, it is known that, if n ≥ 3, then Out(S0) ≃ Z2 and an outer automorphism can be
realized as follows. Consider the automorphism of SL(E) defined as follows:

τ̃0 : SL(E) → SL(E)

g 7→ δ−1 ◦ g−T ◦ δ,
where δ : E∗ ∼−→ E is the isomorphism that identifies ηi 7→ ei. It is easy to observe that τ̃0 is an
isomorphism. If we fix coordinates and we identify SL(E) with the group of n× n matrices whose
determinant is 1, then τ̃0 : A 7→ A−T . In particular, it maps the center of SL(E) to itself and
therefore it descends to the quotient, defining an isomorphism

τ0 : PGL(E) → PGL(E)

It turns out that τ0 is an outer automorphism and that it is unique up to conjugation by an inner
automorphism (corresponding to the choice of the identification δ). See [Die71, Ch. 3] for details.

Now, we can characterize NGL(V )(S0).

5.8. Proposition. The normalizer NGL(V )(S0) is

(S0 × C∗×2)⋊ 〈τ〉.
An element (c1, c2) ∈ C∗×2 acts as c1Id〈IdE〉 × c2IdIdsl(E)

and τ acts via τ : η ⊗ e 7→ δ−1(e)⊗ δ(η).

Proof. It is straightforward to verify that, τ is an element of GL(V ) of order 2 and if s ∈ S0, then
τsτ−1 = τ0(s).

This proves that (S0 ×C∗×2)⋊ 〈τ〉 ⊆ NGL(V )(S0). Passing to the quotient modulo S0×C∗×2, we
obtain 〈τ〉 ⊆ Out(S0) and since they both have order 2 we conclude that they are the same. �

In order to prove Theorem 4.1, it only remains to determine which elements of NGL(V )(S0)
stabilize Powmn .

Proof of Theorem 4.1. Obviously S0 ⊆ S. The map τ ∈ GL(V ) induces the transpose on E∗ ⊗ E
and in particular it stabilizes Powm

n , so τ ∈ S.
Finally, let g = c1 · IdCIdE

+ c2 · Idsl(V ) ∈ CGL(V )(S0). Suppose g stabilizes Powmn . Since Powmn is

not bi-homogeneous in the groups of variables {xii : i = 1, . . . , n} and {xij : i 6= j}, we deduce that
c1 = c2 =: c. This shows that g · Powm

n = cmPowmn and cm = 1 if and only if c is an m-th root of
1. �

The polynomial Powmn is not characterized by its stabilizer S. But we can characterize the
subspace of polynomials that are stabilized by S.
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5.9. Proposition. Let f ∈ SmV . Then f is stabilized by the action of S if and only if it is a
homogeneous symmetric polynomial of degree m in the eigenvalues of the elements of V ∗. The
space of these polynomials has dimension #{γ ⊢ m, ℓ(γ) ≤ n} – the number of partitions of m in

at most n parts. When n ≥ m this is asymptotically ∼ 1
4m

√
3
exp

(

π
√

2m
3

)

.

Proof. After fixing coordinates, V ∗ is identified with the space of n×n matrices, f is a polynomial
in matrix entries and g ∈ PGL(E) ⊆ S acts via conjugation by any element Sg ∈ GL(E) whose
image in PGL(E) is g. We will prove that f coincides with a symmetric function of the eigenvalus
of the elements of V ∗ on the dense subset of diagonalizable matrices. Passing to the closure we
conclude.

Let A be a diagonalizable matrix in V ∗, namely there exists S ∈ GL(E) such that D = S−1AS
is diagonal and its diagonal entries are the eigenvalues of A. In particular f(A) = f(D); the
eigenvalues of D are the same as the eigenvalues of A and f is a polynomial in the entries of D, so
f is a polynomial in the eigenvalues of A (and clearly it is homogeneous of degree m). Moreover,
conjugation by a permutation matrix permutes the diagonal entries of D, therefore f is a symmetric
polynomial.

Conversely, for A ∈ V ∗, denote by ΣA the set of the eigenvalues of A. Let g ∈ S: we have that
ΣgA = ω′

mΣA, where ω
′
m is an m-th root of 1. A symmetric polynomial of degree m has the same

value on ΣA and ΣgA; in particular f(A) = f(gA).
The space of symmetric polynomials of degree m is spanned by the basis {eα|α ⊢ m}, where

eα := eα1eα2 · · · and ek(x1, x2, . . .) =
∑

i1<i2<···<ik xi1xi2 · · · xik are the elementary symmetric poly-

nomials, see e.g. [FH91]. When the number of variables is n we must have αi ≤ n, else eαi
= 0,

and the dimension is given by #{α ⊢ m|α1 ≤ n}, via conjugation γ = αt, this is equivalent to
the number of partitions γ with ℓ(γ) ≤ n. If m ≤ n, then we have α1 ≤ m ≤ n, and there is no
further restriction on these partitions. The asymptotics is then given by the classical formula of
Hardy-Ramanujan for integer partitions. �

5.10. Observation. If t1, . . . , tn are the eigenvalues of A ∈ V ∗, then Powmn (A) = tm1 + · · · +
tmn , that is indeed a symmetric polynomial in t1, . . . , tn. Moreover, the argument used in the
first part of the proof of Prop. 5.9 applies to every degree, showing that f is invariant under
the action of PGL(E) if and only if it is a symmetric function of the eigenvalues. In particular,
the k-th elementary symmetric function of the eigenvalues (namely the coefficients of tn−k in the

characteristic polynomial) is stabilized by S̃ = (S0 × 〈ωk〉) ⋊ 〈τ〉; in fact S̃ is the entire stabilizer
[LP01, Thm. 3.4].

6. Symmetric Kronecker coefficients of columns

In this section we prove Prop. 3.5.
The irreducible SD representation of type λ ✤ D has a concrete description as follows [Ful97,

p. 110], see also [Ike12, Sec. 4.1].
A tableau of shape λ is a filling of the boxes of the Young diagram corresponding to λ with

entries 1, 2, . . . , |λ|. Let T (λ) denote the set of all tableaux of shape λ. Then CT (λ) is a finite
dimensional vector space with an action of SD. We will quotient out a linear subspace K(λ) as
follows:

• Given tableaux T1 and T2 of shape λ. Then T1+T2 ∈ K(λ) if T2 arises from T1 by switching
two entries in a column. This relation is called the Grassmann relation.

• Given a tableau T . Then T +
∑

S S ∈ K(λ), where the sum goes over all tableaux S that
arise from T by exchanging for some j and k the top k elements from the (j +1)th column
with any selection of k elements in the jth column, preserving their vertical order. This
relation is called the Plücker relation. Our argument will only need the Grassmann relation.

6.1. Theorem (e.g. [Ful97]). For λ ✤ D we have [λ] ≃ T (λ)/K(λ) as SD representations.
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In the light of Theorem 6.1 we identify [λ] with T (λ)/K(λ). We will always think of tableaux of
shape λ as being representatives of cosets in T (λ)/K(λ) = [λ]. In particular [λ] is generated as a
vector space by tableaux of shape λ and [π]⊗ [λ]⊗ [λ] is generated by tensors T ′

1 ⊗ T ′
2 ⊗ T ′

3, where
(T ′

1, T
′
2, T

′
3) is a triple of tableaux of shape (π, λ, λ).

The following symmetrization map is the linear projection from [π]⊗ [λ]⊗ [λ] onto its invariant
subspace ([π]⊗ [λ]⊗ [λ])SD :

P (T ) := 1
D!

∑

π∈SD

π(T ).

Moreover, since the action of SD and Z2 (switching the last two tensor factors) commute, P can
be restricted to [π] ⊗ S2[λ] or [π] ⊗ Λ2[λ] and projects onto ([π] ⊗ S2[λ])SD and ([π] ⊗ Λ2[λ])SD ,
respectively.

6.2. Lemma. The set {P (T ′
1 ⊗ T ′

2 ⊗ T ′
3) | T ′

1 of shape π, T ′
2 of shape λ, T ′

3 of shape λ} forms a
generating set of the invariant space ([π]⊗ [λ]⊗ [λ])SD .

Proof. This immediately follows from the fact that {T ′
1 ⊗ T ′

2 ⊗ T ′
3 |

T ′
1 of shape π, T ′

2 of shape λ, T ′
3 of shape λ} is a generating set of [π] ⊗ [λ] ⊗ [λ] and that P

is the linear projection onto the SD invariant subspace. �

For a shape λ there is a unique tableau whose entries increase from top to bottom, left to right,
columnwise. We call it the column standard tableau of shape λ. Analogously, for a shape λ there
is a unique tableau whose entries increase from top to bottom, left to right, rowwise. We call it the
row standard tableau of shape λ. If λ is just a column, then the row standard and column standard
tableau coincide and we call it the standard tableau.

6.3. Lemma. Let π = (D × 1) and let λ be self conjugate. If T1 be standard of shape (D × 1), T2
be row standard of shape λ, and T3 be column standard of shape λ, then P (T1, T2, T3) 6= 0.

Proof. Since λ is self-conjugate we have g(π, λ, λ) = 1. Since the P (T ′
1⊗T ′

2⊗T ′
3) for tableaux T

′
1, T

′
2,

T ′
3 form a generating set of ([π]⊗ [λ]⊗ [λ])SD , it follows that there exists a tableau triple (T ′

1, T
′
2, T

′
3)

with P (T ′
1⊗T ′

2⊗T ′
3) = v 6= 0. Note that there are no two elements a and b which appear in the same

column of T ′
2 and at the same time in the same column of T ′

3. Otherwise, the transposition τ = (a b)
fixes all columns of the three tableaux, and after the Grassmann relations it changes the total sign by
(−1)3, so τT ′

1⊗τT ′
2⊗τT ′

3 = −T ′
1⊗T ′

2⊗T ′
3, and since P (T ′

1, T
′
2, T

′
3) = P (τT ′

1, τT
′
2, τT

′
3) we must have

that they both are 0. Now start with the first column in T ′
3: by the consideration above we know that

its entries use different columns in T ′
2. With a permutation σ we move them inside their columns in

T ′
2 to the top row and using the Grassmann relation we obtain P (T ′

1 ⊗ σT ′
2 ⊗ T ′

3) = ±v 6= 0. We do
the same for the second column in T ′

3 and continue through all columns, so that we end up with a
tableau σ′T ′

2 in which row i contains exactly the entries from column i in T ′
3. Moreover, we still have

P (T ′
1⊗σ′T ′

2⊗T ′
3) = ±v 6= 0. Using a permutation π ∈ SD on all three tableaux simultaneously we

rename the entries in σ′T ′
2 to make it row standard: P (πT ′

1 ⊗ T2 ⊗ πT ′
3) = ±v 6= 0. It follows that

the Grassmann relation suffices to make πT ′
3 column standard: πT ′

1 ⊗ T2 ⊗ πT ′
3 = ±πT ′

1 ⊗ T2 ⊗ T3.
Now using the Grassmann relation on the first tableau gives πT ′

1 ⊗ T2 ⊗ T3 = ±T1 ⊗ T2 ⊗ T3. We
conclude that P (T1 ⊗ T2 ⊗ T3) = ±v 6= 0. �

6.4. Proposition. Let π = (D×1) and let λ be self conjugate. Let T1 be standard of shape (D×1),
T2 be row standard of shape λ, and T3 be column standard of shape λ. Then T1 ⊗ T2 ⊗ T3 =
sgn(λ)T1 ⊗ T3 ⊗ T2.

Proof. There exists a self inverse permutation π ∈ SD with π(T2) = T3 and π(T3) = T2. Clearly
π(T1) = sgn(π)T1, because T1 is a column. This permutation π consists of disjoint transpositions
switching boxes above the main diagonal with the corresponding box at the transpose position.
Therefore sgn(π) = sgn(λ), which concludes the proof. �
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Proof of Theorem 3.3. Let T1 be standard of shape (D × 1), T2 be row standard of shape λ, and
T3 be column standard of shape λ.

Let T := T1 ⊗ T2 ⊗ T3 + T1 ⊗ T3 ⊗ T2. Using Prop. 6.4 we conclude that if sgn(λ) = 1, then
T ∈ [π]⊗S2[λ]. Moreover, T = 2T1⊗T2⊗T3 and therefore with Lemma 6.3 we see that P (T ) 6= 0.
Therefore sk([π], [λ]) > 0.

Let T ′ := T1 ⊗ T2 ⊗ T3 − T1 ⊗ T3 ⊗ T2. Using Prop. 6.4 we conclude that if sgn(λ) = −1, then
T ′ ∈ [π]⊗∧2[λ]. Moreover, T ′ = 2T1⊗T2⊗T3 and therefore with Lemma 6.3 we see that P (T ) 6= 0.
Therefore ak([π], [λ]) > 0. �

7. Vanishing of plethysm coefficients

In this section we prove Prop. 2.15.

Proof of Prop. 2.15. Let λ ✤ md with λ1 < m. We want to show that aλ(d[m]) = 0. An known
upper bound for aλ(d[m]) are the so-called Kostka numbers Kλ,d×m:

(7.1) aλ(d[m]) ≤ Kλ,d×m,

which are quantities for which a classical combinatorial description is known. We will prove
Prop. 2.15 by proving the following stronger statement: If λ1 < m, then Kλ,d×m = 0. The upper
bound follows for example directly from [Gay76], see also the exposition in [Ike12, Thm. 4.3.8].

The Kostka numbers have a combinatorial interpretation as follows. A semistandard Young
tableau of shape λ and content µ is a filling of the boxes of the Young diagram of λ with entries
1, 2, . . . , ℓ(µ) such that every entry i appears exactly i times and such that

• the entries are strictly increasing in each column from top to bottom and
• the entries are nondecreasing in each row from left to right.

For example
1 1 1 2

2 2

3

is a semistandard Young tableau of shape (4, 2, 1) and content (3, 3, 1). The

Kostka number Kλ,µ counts the number of semistandard Young diagram of shape λ and content µ.
Given a partition λ ✤ md with λ1 < m. We claim that Kλ,d×m = 0. Indeed, the pigeonhole

principle says that for every placement of m 1s to the boxes of λ we will end up with at least one
column containing the number 1 at least twice. Therefore if µ1 > λ1 there is no semistandard
Young tableau of shape λ and content µ, so we have Kλ,µ = 0. Setting µ = d ×m and observing
that µ1 = m we conclude that µ1 > λ1. Therefore Kλ,d×m = 0. �

8. Kronecker positivity

Here we consider the positivity of the Kronecker coefficients when one partition is a 2-row or
2-column, which is used to derive some of the positivity results for sm in Section 3.

8.1. Proposition. We have that g((a, b), ν, ν) > 0 for all partitions ν ⊢ a + b, such that d(ν) ≥√
2b+ 1 and d(ν) ≥ 7, where d(ν) is the Durfee size of ν (i.e. the length of main diagonal of ν).

Proof. Let r = d(ν) ≥ 7. We have that r2 ≥ 2b+ 1. By [PP13] we have that g((r2 − b, b), rr, rr) =
pb(r, r) − pb−1(r, r) > 0, where pb(r, r) is the number of partitions of b which fit inside the r × r
rectangle. Let α be the partition consisting of columns r+1, r+2, . . . of ν, and β be the partition
consisting of rows r+1, r+2, . . . of ν, so that ν = (rr+α, β), denote γ = rr+α and τ = (r2− b, b).

By the semigroup property of Kronecker coefficients, we have that

g(τ + (|α|), γ, γ) = g((r2 − b+ |α|, b), rr + α, rr + α) ≥ g((r2 − b, b), rr, rr)

since g((|α|, α, α) = 1 > 0. Since the Kronecker is invariant under transposition of two partitions
we also have

g(τ + |α|+ |β|, γ′ + β′, γ′ + β′) ≥ g(τ + |α|, γ′, γ′) = g(τ + |α|, γ, γ) > 0
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as again g((|β|), β′, β′) = 1 > 0. Finally, we have that γ′ = γ′ + β′, so transposing again gives the
desired positivity. �

8.2. Corollary. We have that g(1a + 1b, ν, ν) > 0 for all ν = ν ′ with d(ν) ≥ 7,
√
2b+ 1.

Proof. Since g is invariant under transposition of two partitions and νt = ν, (1a + 1b)t = (a, b), we
have g(1a + 1b, ν, ν) = g(1a + 1b, νt, ν) = g((a, b), ν, ν) > 0 by Proposition 8.1. �
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