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Abstract

We show that the two main reduction notions in arithmetic circuit complexity, p-projections and
c-reductions, differ in power. We do so by showing unconditionally that there are polynomials that
are VNP-complete under c-reductions but not under p-projections. We also show that the question
of which polynomials are VNP-complete under which type of reductions depends on the underlying
field.
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1 Introduction

While there is a plethora of different reduction notions that have been studied in computational com-
plexity (see e.g. [HO02|] for an overview), it has often been observed that in nearly all NP-completeness
proofs in the literature logarithmic space many-one reductions suffice. In contrast to NP-completeness,
many #P-hardness results in counting complexity are not shown with many-one reductions but with the
more permissive Turing-reductions and the #P-hardness under many-one reductions remains an open
problem. It is natural to ask if there is a fundamental difference between both #P-hardness notions.
Note that the question of the relative power of reduction notions for NP-completeness has been studied
and there are known separations under different complexity assumptions, see e.g. the survey [Pav(3].

In this short note, we answer an analogous question for arithmetic circuit complexity, the algebraic
sibling of counting complexity. In arithmetic circuit complexity the most usual reduction notion are
so-called p-projections. Despite being very restricted, p-projections have been used to show nearly all
of the completeness results in the area since the ground-breaking work of Valiant [Val79]. It was only
more recently that c-reductions, a more permissive notion more similar to Turing- or oracle-reductions,
have been defined in [Bli00] and used for some results (see e.g. [BK09, [dRAT2l IDMM™14]). Again the
question comes up if there is a fundamental difference between these two notions of reductions. In fact,
it was exactly this uncertainty about the relative power of p-projections and c-reductions that motivated
the recent work Mahajan and Saurabh [MS16]: For the first time they prove a natural problem complete
for the arithmetic circuit class VP under p-projections, where before there existed only such result under
c-reductions.

In this paper we answer the question of the relative strength of of p-projections and c-reductions:
We show unconditionally that over every field F there are explicit families of polynomials that are VNP-
complete over F under c-reductions that are not VNP-complete over F under p-projections. We also show
that the question which polynomials are complete under which reductions depends on the underlying
field in a rather subtle way. It is a well known phenomenon that the permanent family, which is VNP-
complete under p-projections over fields of characteristic different from 2, is contained in VP over fields
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of characteristic 2 and thus likely not VNP-hard there. We present a more subtle situation: We give an
explicit family of polynomials that is VNP-complete under c-reductions over all fields with more than
2 elements and that is even VNP-complete under p-projections over a large class of fields including the
complex numbers, but over the real numbers it is only VNP-complete under c-reductions and not under
p-projections.

Acknowledgements. The authors would like to thank Dennis Amelunxen for helful discussions. Some
of the research leading to this article was performed while the authors were at the Department of
Mathematics at the University of Paderborn and at Texas A&M University.

2 Preliminaries

We only give some very minimal notions of arithmetic circuit complexity. For more details we refer the
reader to the very accessible recent survey [Mahl14].

The basic objects to be computed in arithmetic circuit complexity are polynomials. More precisely,
one considers so called p-families of polynomials, which are sequences (fy,) of multivariate polynomials
such that the number of variables in f,, and the degree of f,, are both bounded by a polynomial in n.
We assume that each p-family computes polynomials over a field F which will vary in this paper but is
fixed for each p-family.

A polynomial f in the variables Xi,..., X, is a projection of a polynomial g, in symbols f < g,
if f(X1,...,Xn) = g(a1,...,an) where the a; are taken from {Xi,...,X,} UF. The first reduction
notion we consider in this paper are so-called p-projections: A p-family (f,,) is a p-projection of another
p-family (g, ), symbol (fn) <p (gn) if there is a polynomially bounded function ¢ such that

HnOVn Z no: fn S gt(n)-

Intuitively, p-projections appear to be a very weak notion of reductions although surprisingly the bulk
of completeness results in arithmetic circuit complexity can be shown with them. For some p-families,
though, showing hardness with p-projections appears to be hard, and consequently, a more permissive
reduction notion called c-reductions has also been used.

The oracle complexity LI(f) of a polynomial f with oracle g is the minimum number of arithmetic
operations 4+, —, X, and evaluations of g at previously computed values that are sufficient to compute f
from the variables X1, X, ... and constants in F.

Let (f) and (g,,) be p-families of polynomials. We call (f,,) a c-reduction of (g,), symbol (f,) <c (gn),
if and only if there is a polynomially bounded function ¢ : N — N such that the map n — L9 (f,) is
polynomially bounded.

Intuitively, if (fn) <c (gn), then we can compute the polynomial in (f,) with a polynomial number
of arithmetic operations and oracle calls to gy(y), where ¢(n) is polynomially bounded.

Let (), denote the group of cyclic cyclic permutations on n symbols and define the nth Hamiltonian
cycle polynomial HC,, as HC,, := 3 . TTiLy Xir(o)-

To keep these preliminaries lightweight, we omit the usual definition of VNP and instead define VNP
to consist of all p-families (g,) with (g,) <p (HCy).

A p-family (g,) that satisfies (f,) <p (gn) for all f, € VNP is called VNP-hard under p-projections
or VNP-p-hard for short. Analogously, a p-family (g,) that satisfies (f,) <. (gn) for all f,, € VNP is
called VNP-hard under c-reductions or VNP-c-hard for short. If (g,) is VNP-p-hard and contained in
VNP, then (g,) is call VNP-p-complete. Analogously for VNP-c-completeness. Clearly if a family is
VNP-p-complete, then it is also VNP-c-complete.

Note that a p-family (g, ) is VNP-p-hard (resp. VNP-c-hard) iff (HC,,) <;, (gx) (resp. (HCy) <c (gn))-

3 c-reductions are strictly stronger than p-projections

In this section, we show that there are polynomials that are VNP-c-complete but not VNP-p-complete.
Let X denote a new variable, unused by HC,, for any n. Define

P, := X -HC, + (HC,)?.



Note that P, is defined for every field. We remark that (P,) can easily be shown to be contained in
VNP, because HC,, € VNP and the class VNP is closed under multiplication and addition [Val82] (see
also [Bi00, Theorem 2.19]).

3.1 Lemma. (P,) is VNP-c-complete over every field.

Proof. Fix a field F. For field elements @ € F let P, (X « «) denote P, with variable X set to a. We
observe that
Po(X < 1) — Po(X « 0) = HC,,

and thus P, is VNP-c-complete. [l
3.2 Lemma. (P,) is not VNP-p-complete over any field.

Proof. Let f be any univariate polynomial in some variable Y and let f be of odd degree at least 3.
We show that f is not a projection of P, for any n, which finishes the proof because then the constant
p-family (f) is not a p-projection of (P,).

For a multivariate polynomial h let degy (h) denote the Y-degree of h, which is the degree of h
interpreted as a univariate polynomial in Y over the polynomial ring with additional variables. Let A
be an n X n matrix whose entries are variables and constants. We denote by P, (A) the linear projection
of P, given by A. We now analyze degy (P,,(A)). Clearly degy (X (A)) < 1. If degy- (HC,,(4)) < 1, then
degy (Pn(A4)) < 2 < 3 < degy(f) and thus P,(A) # f. If degy (HC,(A)) > 2, then degy (P,(A)) =
degy ((HC,(4))?) = 2degy (HC,(A)). But degy (f) is an odd number, so in this case we also have
Pu(A) # f. O

As a corollary we get that c-reductions yield strictly more complete problems that p-projections.

3.3 Theorem. For every field F, (P,) is VNP-c-complete over F, but not VNP-p-complete over F.

4 The dependence on the field

In this section we construct a family (@) of polynomials that is is VNP-c-complete over all fields with
more than two elements, but over the real numbers (Q,) is not VNP-p-complete. This shows that the
relative power of different reductions notions depends on the field and is thus likely quite complicated to
characterize in general.

We consider the polynomials @, defined on the matrix (X;;); je[n defined by

apINIRETEDY HX

mECy i€[n] 7ECy i€[n]

Note that @, is similar to the polynomial P,, considered before. But unlike P, the homogeneous part of
degree n? of Q,, is not (HC,,)? but only contains a subset of the monomials.
Using Valiant’s criterion, it is easy to see that (@) € VNP, see for example [B1i00][Proposition 2.20].
Although from its algebraic properties @,, might look very different from P,, the following Lemma
can be proved exactly as Lemma [B.11

4.1 Lemma. (Q,) is VNP-c-complete over every field with more than 2 elements.

Proof. Fix a field F with more than 2 elements. The proof is a simple interpolation argument. Choose
a € F with a ¢ {0,1}. For a variable matrix

X1 Xi2 - Xin

Xo1 Xoo o Xog
X = . . .

Xn 1 Xn,2 o Xn n

) )



let X denote X with the first row scaled by a:

aX11 aXip - aXyi,
_ Xo1 Xoo 0 Xog
X = ) } . )

Xn,l Xn,? e Xn,n

Clearly HC,,(X) = aHC,,(X). Moreover,

Qu(X) = aHC,(X) +a® 3 [ X2-

me€Cr i€[n]

Therefore
(a’ - a’2)HCn(X) = Qn(X) - GQQn(X)'
But a —a? = a(1 — a) # 0 because a ¢ {0,1}. We conclude
1 _ 2
Qu(X) = ——Qu(X).

a— a? a—

HC,(X) =

It follows that @, is even VNP-c-complete under linear p-projections, a restricted form of c-reductions
(see [Bii00, p. 54]). O

We now show that over the real numbers Lemma [£]] cannot be improved from c-reductions to p-
projections.

4.2 Lemma. (@) is not VNP-p-complete over R.

Proof. We show that the polynomial X is not a projection of @,, for any n. Assume this were not the

case. Then there is an (n X n)-matrix A = (a;;) whose entries are variables or constants such that

P,(A) = X. W.lo.g. we assume that no other variables than X appear in 4, so a;; € {X} UR. Let

o € C, be an n-cycle such that []}_, @is(;y has maximal degree. Obviously this degree is at least 1.
2

Then the monomial [T}, Ui (i) has at least degree 2 and it cannot cancel out in @, because

e it cannot cancel with any H?:l a;,(;) for an n-cycle u, because those all have smaller degrees, and

i (3
e it cannot cancel out with any [];" ; afu(i), because those all have positive coefficients in @,,(A).
Thus @, (A) has degree at least 2, which implies that @, (4) # X. O
Interestingly, Lemma does not generalize to arbitrary fields.

4.3 Lemma. Let F be a field such that there are elements ay,...,as with Y ;_,a; #0 and y_;_, a? = 0.
Then (@) is VNP-p-complete over F.

Proof. For an (n x n)-matrix A let HC(A) be the Hamiltonian cycle polynomial evaluated at A and set
HC(A®) == > . TIimy az, - With this notation clearly Q,(A) = HC(A) + HC(A®). ;From an
(s x s)-matrix A and a (¢ x t)-matrix B we construct the (s +t+2) x (s+t+2) Hamiltonian connection
matriz con(A, B) as follows. Let G 4 be the labeled digraph with adjacency matrix A and let G be the
labeled digraph with adjacency matrix B. The vertex corresponding to the first row and column in A is
called v 4, analogously for vg. The labeled digraph G’, is defined by replacing v4 in G4 by two vertices
vl and ¥4 such that the edges going into v4 now go into v} and the edges coming out of v4 now come
out of v9". This operation increases the total number of vertices by one: |[V(Ga)|+ 1 = [V(G)|.

We create a labeled digraph Geon(a,p) as the union of G’y and G’z with two additional edges, one
going from v} to v%'* and the other from vi% to v, both labelled with 1. Let con(A, B) denote the
(s +t+2) x (s 4t + 2) adjacency matrix of Geon(a,B)-

By construction we have a bijection between the set of Hamiltonian cycles in Geon(a,py and the set
of pairs (ca,cp) of Hamiltonian cycles c4 in G4 and cp in Gp. Thus HC(con(A, B)) = HC(A)HC(B)
and HC(con(A, B)?)) = HC(A®)HC(B®). Therefore

Qst12(con(4, B)) = HC(A)HC(B) + HC(A®)HC(B®@). (4.4)



Let a:= Y., ;a; and

0 a! a7t a~t a7t
ai 0 0 0 1
as 1 0 0 0
A=1a; 0 1 0 0
Qs 0 0o ... 1 0

It is easy to verify that HC(A) = Y7 | a;a™' =1 and HC(A?) = Y7 a(a1)? = (X7 a?) a2 =0.
Thus we get with (£4)

Qsrt42(con(A, B)) = HC(A)HC(B) + HC(A®)HC(B®) = HC(B)

for every (¢t X t)-matrix B.
Thus the Hamiltonian cycle family (HC,,) is a p-projection of (@Q),) and the claim follows. O

4.5 Corollary. a) (Q,) is VNP-p-complete over C.
b) (Qn) is VNP-p-complete over any field of characteristic greater than 2.

Proof. a) Set s:=2 and a; =1 and ay =¢. We have a; + a2 =1+ ¢ # 0 and a% + a% = 0 and thus the
claim follows by Lemma (4.3l
b) Let p > 2 be the characteristic of the field and set s := p. We have

i”i(*l):*lﬂ
=1 i=1

and
p—1 pt1l
S 1P+ (1) =p-1=0.
i=1 i=1
With Lemma the claim follows. O

5 Conclusion

We have shown that for all fields c-reductions and p-projections differ in power. Note that one could show
versions of Theorem for essentially all other complexity classes from arithmetic circuit complexity,
as long as they contain complete families of homogeneous polynomials and the polynomial X. Since the
proofs are essentially identical, we have not shown these results here.

We have also shown that the question which families are complete under which reductions also
depends on the field. This indicates that understanding the exact power of different reduction notions
is probably very complicated.

Another question is with respect to the naturalness of our separating examples. They have been
specifically designed for our results and apart from that we do not consider them very interesting. Can
one show that the more natural polynomials in [BK09, [dRAT2, [DMM™14] which were shown to be
complete under c-reductions are not complete under p-projections?
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