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Abstract

In this paper, we propose and study two approaches to approximate the solution
of the Bethe-Salpeter equation (BSE) by using structured iterative eigenvalue solvers.
Both approaches are based on the reduced basis method and low-rank factorizations
of the generating matrices. We also propose to represent the static screen interaction
part in the BSE matrix by a small active sub-block, with a size balancing the storage
for rank-structured representations of other matrix blocks. We demonstrate by various
numerical tests that the combination of the diagonal plus low-rank plus reduced-block
approximation exhibits higher precision with low numerical cost, providing as well a
distinct two-sided error estimate for the smallest eigenvalues of the Bethe-Salpeter op-
erator. The complexity is reduced to O(N2

b ) in the size of the atomic orbitals basis set,
Nb, instead of the practically intractable O(N6

b ) scaling for the direct diagonalization.
In the second approach, we apply the quantized-TT (QTT) tensor representation to
both, the long eigenvectors and the column vectors in the rank-structured BSE ma-
trix blocks, and combine this with the ALS-type iteration in block QTT format. The
QTT-rank of the matrix entities possesses almost the same magnitude as the number
of occupied orbitals in the molecular systems, No < Nb, hence the overall asymp-
totic complexity for solving the BSE problem by the QTT approximation is estimated
by O(log(No)N

2
o ). We confirm numerically a considerable decrease in computational

time for the presented iterative approaches applied to various compact and chain-type
molecules, while supporting sufficient accuracy.
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1 Introduction

The Bethe-Salpeter equation (BSE) [46], [17] offers one of the commonly used mathematical
models for ab initio computation of the absorption spectra for molecules or surfaces of solids,
see also [51, 43, 37, 47, 29, 3, 42]. The BSE approach leads to the challenging computational
task of the solution of a large eigenvalue problem for a fully populated (dense) matrix, that,
in general, is non-symmetric. The size of the BSE matrix scales quadratically O(N2

b ) in the
size Nb of the atomic orbitals basis sets, commonly used in ab initio electronic structure
calculations. Hence, the direct diagonalization of O(N6

b )-complexity becomes prohibitive
even for moderate size molecules.

Traditional methods for computer simulation of excitation energies for molecular systems
require large computational facilities. Therefore there is a steady need for new algorithmic
approaches for calculating the absorption spectra of molecules with less computational cost
and having a good potential for application to larger systems. Recent tensor-structured
methods for real-space electronic structure calculations provide cost-effective algorithms
based on low-rank data sparse representations, which are transparent in implementation
and suitable for MATLABR© on a laptop.

Conceptually, this paper continues the previous article [6], where a reduced basis approach
to the Bethe-Salpeter algebraic eigenvalue problem (EVP) was introduced based on the
idea of low-rank plus diagonal approximation to the BSE matrix blocks, which leads to a
reduction of computational cost for a number of smallest in modulus eigenvalues from O(N6)
to O(N2). The possibility for such an approximation of the BSE matrix blocks is suggested
by the output of tensor-structured solvers for the Hartree-Fock (HF) eigenvalue problem
[19, 21, 25, 22]. It provides not only the full set of eigenvalues and the coefficients for the
expansion of molecular orbitals in a given basis for the ground state energy, but also an
efficient representation of the two-electron integrals (TEI) tensor in a form of a low-rank
Cholesky factorization1 [23, 21].

Using the factorized TEI we applied and studied in [6] the approximate numerical solution
of the BSE problem by a reduced basis method which included two steps. First, the diagonal
plus low-rank approximation to blocks in the 2× 2 BSE block matrix is calculated, enabling
an easier partial eigenvalue solver for a large simplified system relying only on matrix-vector
multiplications with rank-structured matrices. Second, the reduced basis approach was
applied, via projection of the exact BSE matrix onto a reduced basis, constructed by the
eigenvectors of the simplified eigenvalue problem. In our construction of the BSE matrix
blocks, we use the particular description of the related quantities in the BSE matrix presented
in [41], where the noninteracting Green’s function was utilized.

In this paper, we propose and study two approaches to approximate the solution of the
Bethe-Salpeter eigenvalue problem by using structured iterative solvers. Both are based on
low-rank factorizations in the generating matrices [6].

First, we consider iterative schemes for computing several tens of the smallest in modulus
eigenvalues for both the BSE problem and its Tamm-Dancoff approximation (TDA), based on
the full representation of the eigenvectors and low-rank approximations of the BSE matrix

1The tensor-structured calculation of the TEI is designed by using a nonstandard “black-box“ density
fitting scheme and efficient 3D tensor-product convolution with the Newton kernel in 1D complexity. Fine
3D grids of the order of 1015 provide high accuracy, all algorithms are implemented in MATLAB on a laptop.
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blocks. The most efficient subspace iteration is based on the application of the matrix
inverse, which for our matrix formats can be evaluated in an efficient way using the Sherman-
Morrison-Woodbury formula. As discussed in [6], the method reduces the numerical expense
of the direct diagonalization down to O(N2

b ) in the size of the atomic orbitals basis set, Nb.
The numerical experiments show that this method is economical up to small amino acids,
where the numerical cost for computing several hundreds of eigenvalues decreases by orders
of magnitude.

In the second approach, a reduction of the numerical cost in the case of large system
size is achieved by adapting an ALS-type iteration (in particular, the DMRG iteration) for
computing the eigenvectors in the block-QTT tensor representation [11]. The application of
the QTT-approximation is motivated by the observation [21] that the generating Cholesky
factors in the TEI tensor exhibit average QTT-ranks proportional only to the number of
occupied orbitals in the molecular system, No, and independent of the total BSE matrix
size, O(N2

b ). For eigenvectors in the block-QTT format, the QTT ranks are even smaller,
typically proportional to the number of the sought eigenvectors, which makes this approach
to solving the BSE eigenvalue problem very competitive. Contrarily to the conventional
QTT matrix representations, in this paper we approximate only the columns in the Cholesky
factor of a low-rank part of the BSE matrix in the QTT format, thus keeping the low-rank
form V = LLT and low rank QTT structure for L simultaneously. This allows to avoid the
prohibitive increase of the QTT matrix rank.

Instead of the problematic rank approximation to the statically screened interaction
part of the BSE matrix, which complicated the trade-off between low-rank and accuracy
requirements noticed in [6], here we propose to represent this part by a small active sub-
block, with a size balancing the storage for rank-structured representations of other matrix
blocks. We demonstrate that this combination of low-rank plus reduced-block approximation
exhibits at least one order of magnitude higher precision at a similar low numerical cost2.
Moreover, we observe a distinct two-sided error estimate for some tens of the smallest BSE
eigenvalues, with the upper bounds resulting from the reduced basis problem and the lower
bounds from the simplified BSE system matrix with diagonal plus low-rank and reduced
block structure.

Notice that methods for solving partial eigenvalue problems for matrices with a special
structure as in the BSE setting are conceptually related to the approaches for Hamiltonian
matrices [4, 7, 30, 15, 9], particularly to those based on minimization principles [1, 2]. The
special class of BSE-type equations leads to the so-called complex J-symmetric matrices,
which have been intensively studied in [8, 34, 33, 35, 5] with a particular focus on the BSE
problem [5]. Various structured eigensolvers tailored for electronic structure calculations are
discussed in [44, 45, 10, 36, 32, 49].

The rest of the paper is organized as follows. In Section 2 we recall the reduced basis
approach to the BSE problem introduced in [6], based on low-rank factorization of the BSE
matrix blocks. Next, in Section 3 we describe the enhanced structural representation of the
BSE system matrix by the reduced-block approximation to the statically screened interaction
sub-matrix. The enhanced structured approximation improves the accuracy of the reduced
basis method as justified by numerical simulations. Section 4 describes structured iterative

2As it was shown in [6], for the pure low-rank approach, with moderate ǫ-truncation of the rank param-
eters, the average error in the eigenvalues is of the order of 0.1 eV.
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solvers for the central part of the spectrum in the simplified auxiliary problem. Section 5
discusses the benefits of the structured iterative solver based on the QTT tensor approxima-
tion of vectors and matrices in the framework of ALS-type subspace iterations in block-QTT
format. In particular, we present and analyze numerically an algorithm for solving the BSE
problem in O(log(No)N

2
o ) complexity, where No ≤ CNb (C ≈ 0.1) denotes the number of

occupied molecular orbitals.
Numerical tests (in MATLAB) confirm the considerable decrease in computational time

while attaining sufficient accuracy. The conclusions summarize the main results and devise
directions for future work.

2 The reduced basis approach to the BSE problem re-

visited

The construction of the BSE matrix includes computations of several auxiliary quantities
[41, 6] represented in terms of the energy spectra εj, j = 1, . . . , Nb, and the rank-RB two-
electron integrals (TEI) matrix projected onto the Hartree-Fock molecular orbital basis,

V = [v′ia′,jb′] a′, b′ ∈ Iv := {No + 1, . . . , Nb}, i, j ∈ Io := {1, . . . , No},

where V ′ = [v′ia′,jb′] is a submatrix of the full TEI matrix, Nb is the number of GTO basis
functions and No denotes the number of occupied orbitals (see [21, 6] for more details).

The 2 × 2-block matrix representation of the Bethe-Salpeter equation is given by the
following eigenvalue problem determining the excitation energies ωn:

(
A B
B∗ A∗

)(
xn

yn

)
= ωn

(
I 0
0 −I

)(
xn

yn

)
, (2.1)

where the matrix blocks (of size Nov ×Nov, with Nov = No(Nb −No)) are defined by

A = ∆ε+ V − Ŵ , B = V − W̃ . (2.2)

Here, the diagonal part is given by the ”energy” matrix

∆ε = [∆εia,jb] ∈ RNov×Nov : ∆εia,jb = (εa′ − εi)δijδab,

where εi and εa′ are the eigenvalues of the related Hartree-Fock equation. Here, in the
left-hand side, we shift the a′, b′ indices to 1, introducing a = a′ − No and b = b′ − No,
i.e., a, b = 1, . . . , Nv = Nb − No. The double indices (i, a) and (j, b) can be seen as single
long indices ia, jb (and vice versa) using the standard lexicographic grouping, e.g., ia =
i + (a − 1)No = 1, . . . , Nov. The system (2.2) and all classical algebraic operations are
considered w.r.t. the univariate indices ia, jb. However, the double index notation remains
useful for describing fine structures, such as submatrices.

The ”energy” matrix can be represented in the Kronecker product form

∆ε = INo
⊗ diag{εa′ : a

′ ∈ Iv} − diag{εi : i ∈ Io} ⊗ INv
,
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where INo
and INv

are the identity matrices of the respective sizes. The matrices W̃ and Ŵ
are obtained by certain transformations of the matrix V .

In the present paper, the atomic orbitals are real-valued which imposes that the matrices
A and B in (2.1) are also real-valued. Hence, in what follows, we use the notation AT instead
of A∗ etc.

The matrices V and W̃ are proven to have small ǫ-rank3 (see Lemmas 2.1, 2.2 and 3.1 in
[6]). In particular, there holds

V ≈ LV L
T
V , LV ∈ RNov×RV , RV ≤ RB, (2.3)

with the rank estimates RV = RV (ǫ) = O(Nb| log ǫ|) and rank(W̃ ) ≤ rank(V ). The argu-
ments in [6] are based on an assumption concerning the separation properties of the TEI
tensor in the Hartree-Fock calculations using Gaussian type orbitals [23, 21], i.e., that the ǫ-
rank of the TEI tensor represented in the atomic orbital basis satisfies RB(ǫ) = O(Nb| log ǫ|).
This basic assumption was verified numerically in [23, 21] for all molecular systems consid-
ered there. It was also demonstrated for the matrix V , see [6, Figure 1]. Moreover, a rank
behavior like RB = O(Nb) is conventionally used in the literature on electronic structure
calculations although analytic proofs of this fact remain out of reach.

It was found in [6] that the matrix Ŵ can be approximated by the low-rank substitute
only up to the limited precision ǫ0, so that a computationally inexpensive (but not accurate
enough) approach to get rid of this limitation may be the rank approximation with the

constraints rank(Ŵ ) ≤ rank(V ).
Matrices in the form (2.1) are called J-symmetric (which equals Hamiltonian structure

for real matrices), see [5] for implications on the algebraic properties of the BSE matrix.
Solutions of equation (2.1) come in pairs: excitation energies ωn with eigenvectors (xn,yn),
and de-excitation energies −ωn with eigenvectors (y∗

n,x
∗
n). The spectral problem (2.1) can

be rewritten in the equivalent form

F

(
xn

yn

)
≡

(
A B

−BT −AT

)(
xn

yn

)
= ωn

(
xn

yn

)
. (2.4)

The dimension of the matrix in (2.1) is 2NoNv × 2NoNv, where No and Nv denote the
numbers of occupied and virtual orbitals, respectively. In general, NoNv is asymptotically
of the order O(N2

b ), i.e., the spectral problem (2.1) may become computationally expensive
even for moderate size molecules, say for Nb ≈ 100. Indeed, the direct eigenvalue solver for
(2.1) (full diagonalization) appears to be infeasible due to O(N6

b ) complexity scaling.
The main idea of the reduced basis approach introduced in [6] can be described as follows.

Instead of solving the partial eigenvalue problem for finding, say, m0 eigenpairs satisfying
equation (2.4), we first solve the slightly simplified auxiliary spectral problem with a modified
matrix F0. The approximation F0 is obtained from F by using low-rank approximations of
the matrices

Ŵ 7→ Ŵr = LWL
⊤
W , and W̃ 7→ W̃r = Y Z⊤ (2.5)

in the matrix blocks A and B, respectively, i.e., A and B are replaced by

A 7→ A0 := ∆ε+ V − Ŵr and B 7→ B0 := V − W̃r, (2.6)

3Conventionally, we define the matrix ǫ-rank as the result of the truncated SVD w.r.t. the threshold ǫ > 0.
Throughout the paper, ǫ denotes the rank truncation parameter.
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Figure 2.1: Diagonal plus low-rank structure of the matrix A0.
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Figure 2.2: Low-rank structure of the matrix B0.

where we assume for simplicity rank(Ŵr) ≤ r and rank(W̃r) ≤ r. Here, we take into account
that the matrix V , precomputed by the tensor-based Hartree-Fock solver [22], is already
represented in the low-rank format (2.3) inherited from the Cholesky decomposition of the
TEI matrix B, see [21, 6].

The simplified auxiliary problem reads

F0

(
un

vn

)
≡

(
A0 B0

−BT
0 −AT

0

)(
un

vn

)
= λn

(
un

vn

)
. (2.7)

This eigenvalue problem is a simplification of (2.4), since now the matrix blocks A0 and B0,
defined in (2.6), are composed of diagonal and low-rank matrices, see Figures 2.1 and 2.2
illustrating the data sparse structure of these matrix blocks.

Having computed the set of eigenpairs {(λn, ψn) = (λn, (un,vn)
T )}, corresponding to m0

nearest to zero eigenvalues (middle part of the spectrum) of the modified problem (2.7),
we solve the full eigenvalue problem for the reduced matrix (reduced model) obtained by
projection of the initial equation onto the problem adapted small basis set {ψn}

m0
n=1 of size

m0.
Now, define a matrix G0 = [ψ1, . . . , ψm0 ] ∈ R2Nov×m0 , whose columns are the eigenvectors

of F0, compute the related Galerkin and mass matrices by projection onto the reduced basis
specified by the columns in G0,

M0 = GT
0 FG0 ∈ Rm0×m0 , S0 = GT

0G0 ∈ Rm0×m0 ,

and then solve the reduced generalized eigenvalue problem of small size m0 ×m0,

M0qn = γnS0qn, qn ∈ Rm0 . (2.8)

The portion of the m0 eigenvalues γn, is expected to be very close to the lowest excitation
energies ωn (n = 1, . . . , m0) in the initial spectral problem (2.1).

The so-called Tamm-Dancoff approximation (TDA) simplifies the equation (2.4) to a
standard Hermitian eigenvalue problem

Axn = µnxn, xn ∈ RNov , A ∈ RNov×Nov (2.9)
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with the factor two smaller matrix size Nov. The reduced basis approach via low-rank
approximation can be applied directly to the TDA equation, such that the simplified auxiliary
problem reads

A0u = λnu,

where we are interested in finding the m0 smallest eigenvalues.
Extensive numerical tests confirm the efficiency of the reduced model approach applied

to both TDA and BSE problems for a number of single molecules, as well as to chain type
systems [6].

Although the auxiliary eigenvalue equation (2.6) is much simpler than (2.4), the compu-
tation of dozens of eigenvectors from (2.7) corresponding to the middle part of the spectrum
remains to be a challenging numerical task since the traditional algebraic solvers often con-
verge slowly. As a remedy, one can perform matrix-vector operations with the inverse ma-
trices A−1

0 or F−1
0 . The efficient construction and implementation of the structured matrix

inverses A−1
0 and F−1

0 will be addressed in Section 4.

3 Approximating Ŵ in reduced-block format

Taking into account limitations of the low-rank decomposition to the statically screened
interaction matrix Ŵ , in what follows, we introduce an alternative way to the data-sparse
approximation of this matrix based on its restriction to a smaller-size active sub-matrix.

Figure 3.1: Visualizing the first m0 BSE eigenvectors for the H32 chain (left) with NW = 554,
and Glycine amino acid molecule (right) with NW = 880.

This approach is motivated by the numerical consideration (observed for all molecular
systems considered so far) that eigenvectors corresponding to the central part of the spectrum
have dominating components supported by a rather small part of the full index set of size
2Nov, see Figure 3.1 for m0 = 30. Indeed, their effective support is compactly located at
the first “active” indexes {1, . . . , NW} and {Nov+1, . . . , Nov+NW} in the respective blocks,
where NW ≪ Nov.

We define the selected sub-matrix Ŵb in Ŵ , by keeping the balance between the storage
size for the active sub-block Ŵb and the storage for the matrix V . Since the storage and
numerical complexity of the rank-RV matrix V is bounded by 2RV Nov, we control the size
of the restricted NW ×NW block Ŵb by the relation

NW = CW

√
2 RV Nov, (3.1)
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Figure 3.2: Visualizing the average decay of BSE eigenvectors at logarithmic scale corresponding
to the m0 smallest eigenvalues for the H32 chain (left) and the Glycine amino acid molecule (right).

where the constant CW is close to 1. The approximation error introduced due to the corre-
sponding matrix truncation can be controlled by the choice of the constant CW .

Figure 3.2 shows the decay of BSE eigenvectors at logarithmic scale computed by aver-
aging over m0 eigenvectors (corresponding to the smallest eigenvalues) by

em0(:, 1) =
1

2
log

(
m0∑

α=1

z(:, α)2

)
∈ R2Nov , where z = (x, y), (3.2)

for the same molecular structures as in Figure 3.1. We notice that this figure confirms
the computed choice of NW for H32 chain, NW = 554, and Glycine amino acid molecule,
NW = 880, with the truncation ε = 0.1 for low-rank approximation of other blocks.
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+

Rv Nw

−A =

N
ov

N
ov

Figure 3.3: Diagonal plus low-rank plus reduced-block structure of the matrix Â.

Keeping the diagonal in the matrix Ŵ unchanged, we define the simplified matrix by
Ŵ 7→ ŴNW

∈ RNov×Nov , where

ŴNW
(i, j) =

{
Ŵ (i, j), i, j ≤ NW or i = j, and
0 otherwise.

(3.3)

The simplified matrix Â is then given by

A 7→ Â := ∆ε+ V − ŴNW
, (3.4)

while the modified block B0 remains the same as in (2.6). The corresponding structure of

the simplified matrix Â is illustrated in Figure 3.3.
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This construction guarantees that the storage and matrix-vector multiplication complex-
ity for the simplified matrix block Â remains of the same order as that for the matrix V
characterized by a low ε-rank. Table 3.1 demonstrates how the ratio NW/Nov evolves with
the increasing problem size.

Molecule H2O H2O2 N2H4 C2H5OH H32 C2H5 NO2 C3H7 NO2

NW 114 269 266 460 552 880 1149
Nov 180 531 657 1430 1792 3000 4488

NW/Nov 0.63 0.5 0.4 0.3 0.32 0.29 0.25

Table 3.1: The ratio NW/Nov for some molecules.

We modify the simplified matrix

F0 7→ F̂ by replacing A0 7→ Â in (2.7),

which leads to the corrections in the eigenvalues λn 7→ λ̂n and eigenvectors G0 7→ Ĝ =
[ψ1, . . . , ψm0 ] ∈ R2Nov×m0 by solving the simplified problem,

F̂ψn = λ̂nψn,

defined by the low-rank plus block-diagonal approximation F̂ to the initial BSE matrix F .
The corresponding eigenvalues γ̂n of the modified reduced system of the type (2.8), specified
by the Galerkin and stiffness matrices

M̂ = ĜTFĜ, Ŝ = ĜT Ĝ ∈ Rm0×m0 ,

solve the eigenvalue problem of small size,

M̂qn = γ̂nŜqn, qn ∈ Rm0 , (3.5)

by the direct diagonalization.
The following numerical examples illustrate the approximation error vs. the rank trun-

cation parameter ε > 0 in the reduced basis method characterized by the choice of the
constant CW in the simplified matrix Â described in (3.4). Spectral data and errors are
given in eV. Tables 3.2 (N2H4 molecule) and Table 3.3 (H16 chain) demonstrate the numeri-

cal errors λ̂1−ω1 and γ̂1−ω1 for the minimal BSE eigenvalue ω1 for different rank truncation
parameters ε, indicating the two-sided error estimates addressed in Remark 3.1 below.

Remark 3.1 It is worth to note that numerical results indicate the important property ob-
served for all molecular systems tested so far: the several close to zero eigenvalues λ̂k and
γ̂k provide lower and upper bounds for the exact BSE eigenvalues ωk, i.e.

λ̂k ≤ ωk ≤ γ̂k, k = 1, 2, . . . , m0 ≤ m0.

9



CW \ ǫ 0.2 0.1 0.05 0.01
0.8 −0.09; 0.006 (148) −0.03; 0.04 (213) −0.008; 0.014 (284) −0.005; 0.0025 (406)
1.0 −0.1; 0.05 (185) −0.036; 0.03 (266) −0.015; 0.0076 (355) −0.008; 0.0003 (507)
1.2 −0.1; 0.05 (222) −0.04; 0.02 (320) −0.017; 0.0038 (426) NW = Nov

Table 3.2: N2H4, Nov = 657. Errors λ̂1 − ω1; γ̂1 − ω1 (in eV), vs. ε and CW . Here NW for
corresponding CW and ǫ is given in brackets.

CW \ ε 0.2 0.1 0.05 0.01
0.8 −0.23; 0.13 (131) −0.054; 0.08 (157) −0.047; 0.06 (168) −0.006; 0.02 (200)
1.0 −0.28; 0.06 (164) −0.1; 0.01 (196) −0.073; 0.015 (210 −0.005; 0.02 (250)
1.2 −0.31; 0.01 (197) −0.1; 0.01 (236) −0.074; 0.013 (251) −0.001; 0.005 (301)

Table 3.3: H16 chain, Nov = 448: Errors λ̂1−ω1; γ̂1−ω1 (in eV), vs. ε and CW ; NW is given
in brackets.
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Figure 3.4: Two-sided bounds for the BSE excitation energies for the H32 chain (left) and C2H5NO2

molecule (right).
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The upper bound via the eigenvalues γ̂k can be explained by the variational form of the
reduced problem setting. However, the understanding of the lower bound property, when
using the output from the simplified system, addresses an interesting open problem.

Figure 3.4 demonstrates the two-sided error estimates declared in Remark 3.1. Here the
“black” line represents the eigenvalues for the auxiliary problem of the type (2.7), but with

the modified matrix F̂ , while the blue line represents the eigenvalues of the reduced equation
(3.5) of the type (2.8) with the Galerkin matrices M̂ and Ŝ.

Figures 3.5 and 3.6 represents examples of upper and lower bounds for the whole sets of
m0 ≤ 250 eigenvalues for larger molecules. We observe that the lower bound is violated only
for few larger excitation energies at the level below the truncation error ǫ.
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Figure 3.5: The errors (in eV) in eigenvalues for simplified and reduced schemes: the N2H4 for
m0 = 260 eigenvalues (left), the H32 chain (right) with m0 = 100. Zero level designates the solution
of the initial BSE problem.
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We conclude that the reduced basis approach based on the modified auxiliary matrix M̂
via reduced-block Ansätze (3.4), provides considerably better accuracies ωn − γ̂n than that
for γn corresponding to matrix M0. Table 3.4 compares the accuracies for first eigenvalues
of the reduced BSE problem based on the “pure” low-rank approximation |ω1 − γ1| from
equation (2.8) with those resulting from combined block plus low-rank approximation |ω1 −
γ̂1|, computed for several molecules.

Molecule H2O N2H4 C2H5OH C2H5 NO2 C3H7 NO2

BSE size 3602 13142 26602 60002 89762

|ω1 − γ1| 0.2 0.27 0.4 0.38 0.53
|ω1 − γ̂1| 0.02 0.03 0.08 0.05 0.1

Table 3.4: Accuracies (in eV) for the reduced BSE problem eigenvalues for low-rank [6]
|ω1 − γ1| and for block plus low-rank approximation |ω1 − γ̂1| to BSE matrices with the
ǫ = 0.1.

4 Iterative solver for central part of the spectrum

In this section we discuss the construction of an iterative solver for the partial eigenvalue
problem in (2.7) focusing on rank-structured approximation of the matrix inverses A−1

0 and

F−1
0 , further optimization of the sparsity pattern in Ŵ and on the choice of the initial guess

by using solutions of the TDA model.

4.1 Inverse iteration for diagonal plus low-rank matrix

Iterative eigenvalue solvers, such as Lanczos or Jacobi-Davidson methods, are quite efficient
in approximation of the largest eigenvalues, but may suffer from slow convergence if applied
for computation of the smallest or intermediate eigenvalues. We are interested in both of
these scenarios. There are both positive and negative eigenvalues in (2.7), and we need
the few ones with the smallest magnitude. In the TDA model (2.9), we solve a symmetric
positive definite problem A0u = λnu, but again the smallest eigenvalues are required.

In both cases, the remedy is to invert the system matrix, so that the eigenvalues of
interest become largest. The MATLAB interface to ARPACK (procedure eigs) [31] assumes
by default that the user-defined function solves a linear system with the matrix instead of
multiplying it, when the smallest eigenvalues are requested. In our case, we can implement
this efficiently, since the matrix consists of an easily invertible part (diagonal), plus a low-
rank correction, and hence we can use the Sherman-Morrison formula [50].

To shorten the notation, we set up the rank-r decompositions following (2.5), Ŵr =

LWL
T
W , W̃r = Y ZT , and define

A0 = ∆ε+ PQT , P =
[
LV LW

]
, Q =

[
LV −LW

]
,

B0 = ΦΨT , Φ =
[
LV Y

]
, Ψ =

[
LV −Z

]
.

(4.1)

12



taking into account (2.3).
Consider first the TDA model (2.9). The Sherman-Morrison formula for A0 in (4.1) reads

A−1
0 = ∆ε

−1 −∆ε
−1P

(
I +QT∆ε

−1P
)−1

QT∆ε
−1. (4.2)

Here the inner 2r × 2r matrix K =
(
I +QT∆ε

−1P
)−1

is small and can be computed
explicitly at the expense O(r3 + r2Nov). Hence, the matrix-vector product A−1

0 un requires
multiplication by the diagonal matrix∆ε

−1 and the low-rank matrix in the second summand.
This amounts to the overall cost O(Novr).

To invert F0, we first derive its LU decomposition. One can verify that

F0 =

[
A0 B0

−BT
0 −AT

0

]
=

[
A0 0

−BT
0 I

] [
I A−1

0 B0

0 S

]
, S = −AT

0 +BT
0 A

−1
0 B0. (4.3)

To solve a system F0

[
z
y

]
=

[
u
v

]
, we need one action of A−1

0 and of the inverse of the Schur

complement S−1. Indeed,

z̃ = A−1
0 u, ỹ = v +BT

0 z̃,

y = S−1ỹ, z = z̃− A−1
0 B0y.

(4.4)

Note that A−1
0 B0 is a low-rank matrix and can be precomputed in advance. The action of

A−1
0 is given by (4.2), so we address now the inversion of the Schur complement.
Plugging (4.2) into S, we obtain

S = −∆ε −QP T +ΨΦTA−1
0 ΦΨT = −(∆ε +QSP

T
S ),

where
QS =

[
Q Ψ

(
ΦT∆ε

−1PKQT∆ε
−1Φ− ΦT∆ε

−1Φ
)]
, PS =

[
P Ψ

]
. (4.5)

Therefore,

S−1 = −
(
∆ε

−1 −∆ε
−1QSKSP

T
S ∆ε

−1
)
, KS =

(
I + P T

S ∆ε
−1QS

)−1
. (4.6)

Keeping intermediate results in these calculations, we can trade off the memory against the
CPU time. The computational cost of (4.5) and then (4.6) is again bounded by O(r2Nov),
while the implementation of (4.4) takes O(rNov) operations.

We have thus proven the following statement.

Lemma 4.1 (Complexity of the diagonal plus low-rank approach) Let the rank pa-

rameters in the decompositions of V , Ŵ and W̃ not exceed r. Then the rank structured
representations of the inverse matrices A−1

0 and F−1
0 can be precomputed with the overall

cost O(Novr
2). The complexity for each inversion A−1

0 u or F−1
0 w is bounded by O(Novr).

Lemma 4.1 indicates that for both, the BSE and TDA models, the asymptotic complexity
for one iterative step is of the same order. Precomputation of intermediate matrices is
described in Algorithm 1, and their use in the structured matrix inversion is shown in
Algorithm 2 below.
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Algorithm 1 Precomputation of parts of A−1
0 and F−1

0

Require: ∆ε and low-rank factors of V , Ŵr, W̃r (2.5).
1: Assemble P =

[
LV LW

]
, Q =

[
LV −LW

]
, Φ =

[
LV Y

]
, Ψ =

[
LV −Z

]
.

2: Compute Pε = ∆ε
−1P , Qε = ∆ε

−1Q.
3: Compute K = (I +QTPε)

−1 ∈ R2r×2r.
4: Compute PεK = PεK.

{Stop here if only A−1
0 is of interest}

5: Compute Φε = ∆ε
−1Φ, Ψε = ∆ε

−1Ψ.
6: Parts of QS: ΦεP = ΦT

ε P , ΦεQ = QTΦε.
7: Assemble QSε =

[
Qε Ψε

(
ΦεPKΦεQ − ΦTΦε

)]
, PSε =

[
Pε Ψε

]
.

8: Compute KS = (I +
[
P Ψ

]T
QSε)

−1 ∈ R4r×4r

9: Compute QSεK = QSεKS. {For the Schur complement}

10: Compute ΦAB = ∆ε
−1Φ− PεK

(
QT

ε Φ
)
. {For A−1

0 B0}

Algorithm 2 Solution of linear systems with A0 and F0

Require: Precomputed matrices PεK , Qε, QSεK, PSε,ΦAB from Alg. 1 and ∆ε,Φ,Ψ.

Ensure: z̃ = A−1
0 u and

[
z
y

]
= F−1

0

[
u
v

]

1: Apply the TDA inverse as z̃ ≡ A−1
0 u = ∆ε

−1u− PεK

(
QT

ε u
)
.

{Stop here if only A−1
0 is of interest}

2: Compute ỹ = v +Ψ
(
ΦT z̃

)
using (4.4)

3: Apply the Schur complement y ≡ S−1ỹ = −∆ε
−1ỹ +QSεK

(
P T
Sεỹ
)
.

4: Compute z = z̃− ΦAB

(
ΨTy

)
.

Table 4.1 compares CPU times (sec) for full eig and the rank-structured iteration for
TDA problem (2.9) in Matlab implementation. The rank-truncation threshold is ε = 0.1, the
number of computed eigenvalues is m0 = 30. The bottom line shows the CPU times (sec) of
the eigs procedure applied with the inverse matrix-vector product A−1

0 u using Algorithm 2
(marked by ”inv”). The other lines show results of the corresponding algorithms which used
the traditional product A0u (A0 in the low-rank form). Notice that the results for Matlab
version of LOBPCG by [27] are presented for comparison. We see that the inverse-based
method is superior in all tests.

Remark 4.2 Notice that the initial guess for the subspace iteration applied to the full BSE
can be constructed, replicating the eigenvectors computed in the TDA model. It provides
rather accurate approximation to the exact eigenvectors for the initial BSE system (2.4). In
[6] it was shown numerically that the TDA approximation error |µn − ωn| of the order of
10−2 eV is achieved for the compact and extended molecules presented in Table 4.1.

Table 4.2 compares CPU times (sec) for the full eig-solver and the rank-structured eigs-
iteration applied to the inverse of simplified rank-structured BSE system (2.7).
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Molecular syst. H2O N2H4 C2H5OH H32 C2H5 NO2 H48 C3H7 NO2

TDA size 1802 6572 14302 17922 30002 40322 44882

eig(A0) 0.02 0.5 4.3 9.8 37.6 91 127.4
lobpcg(A0) 0.22 0.6 5.4 2.77 18.2 5.6 34.2
eigs(A0) 0.07 0.29 1.7 0.49 − − −

eigs(inv(A0)) 0.05 0.08 0.17 0.11 0.32 0.34 0.5

Table 4.1: Times (s) for eigenvalue problem solvers applied to TDA matrix (”−” means that
the respective iteration did not converge).

Molecule H2O N2H4 C2H5OH H32 C2H5 NO2 H48 C3H7 NO2

No, Nb 5, 41 9 , 82 13, 123 16, 128 20, 170 24, 192 24, 211
BSE matrix size 3602 13142 28602 35842 60002 80642 89762

eig(F0) 0.08 4.2 33.7 68.1 274 649 903
eigs( inv(F0)) 0.13 0.28 0.7 0.77 2.2 2.3 3.9

Table 4.2: Times (s) for the simplified rank-structured BSE matrix F0.

4.2 Inversion of the block-sparse matrices

If ŴNW
is kept in the block-diagonal form as in (3.4), inverting Â = ∆ε+ V − ŴNW

is also
easy, similarly to the case (2.6). We can use the same Sherman-Morrison-Woodbury scheme

as in Algorithms 1 and 2. To that end, we aggregate ∆εW = ∆ε− ŴNW
, while in the low-

rank factors, only P = Q = LV remains. After that, all calculations in Algorithms 1 and 2
are repeated unchanged, replacing all ∆ε by ∆εW , where the latter is now a block-diagonal
matrix.

The particular modifications for the enhanced algorithm are as follows. Let us split ∆ε =
blockdiag(∆ε1,∆ε2), where ∆ε1 has the size NW , and ∆ε2 ∈ RN ′

W
×N ′

W with N ′
W = Nov −

NW representing the remaining values. The same applies to ŴNW
= blockdiag(Wb, diag(w2)),

where w2 contains the elements on the diagonal of Ŵ which do not belong to Wb. Then the
implementation of the matrix inverse

∆ε
−1
W = blockdiag((∆ε1 −Wb)

−1, (∆ε2 − diag(w2))
−1) (4.7)

requires inversion of an NW × NW dense matrix, and a diagonal matrix of size N ′
W =

Nov − NW . Since NW is chosen small, the complexity of this operation is moderate. Now
all steps requiring multiplication with ∆ε

−1 in Algorithms 1–2 can be substituted by (4.7).
The numerical complexity of the new inversion scheme is estimated in the next lemma.

Lemma 4.3 (Complexity of the reduced-block algorithm) Suppose that the rank pa-

rameters in the decomposition of V and W̃ do not exceed r and the block-size NW is chosen
from the equation (3.1). Then the rank structured plus reduced-block representations of the

inverse matrices Â−1 and F̂−1 can be set up with the overall cost O(N
3/2
ov r3/2 +Novr

2). The

complexity of each inversion Â−1u or F̂−1w is bounded by O(Novr).
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Molecular syst. H2O N2H4 C2H5OH H32 C2H5 NO2 H48 C3H7 NO2

TDA size 1802 6572 14302 17922 30002 40322 44882

eigs(inv(Â)) 0.07 0.09 0.25 0.77 0.54 3.0 1.0

eigs(inv(F̂ )) 0.21 0.37 1.11 1.10 2.4 2.92 4.6

BSE vs. F̂ : |γ̂1 − ω1| 0.02 0.03 0.08 0.07 0.05 0.10 0.1

Table 4.3: Block-sparse matrices: times (s) for eigensolvers applied to TDA and BSE systems.
Bottom line shows the error (eV) for the case of block-sparse approximation to the diagonal

matrix block Â, ε = 0.1.

Proof. Inversion of the NW×NW dense block in (4.7) requires O(N3
W ) operations. Hence, the

condition (3.1) ensures that the cost of setting up the matrix (4.7) is bounded byO(N
3/2
ov r3/2).

After that, multiplication of (4.7) by anNov×r matrix (e.g. in Line 2 of Algorithm 1) requires
O(N2

W r +N ′
W r) = O(Nov(r

2 + r)) operations. In Algorithm 2, multiplication of (4.7) by a
vector is performed with O(N2

W +N ′
W ) = O(Novr) cost. The complexity of the other steps

is the same as in Lemma 4.1.
Numerical illustrations for the enhanced data sparsity are presented in Table 4.3.
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Figure 4.1: CPU times vs. m0 for N2H4 (dashed line) and C2H5NO2 (solid line) and C2H5OH
(doted line) molecules.

Notice that the performance of the low-rank and block-sparse solvers is comparable, but
the second one provides better sparsity and higher accuracy in the computed eigenvalues,
see §3. It is remarkable that the approach, based on the inverse iteration applied to the
diagonal plus low-rank plus reduced-block approximation, outperforms the full eigenvalue
solver by several orders of magnitude, see Tables 4.2 and 4.3.

The data in previous tables corresponds to the choice m0 = 30. Figure 4.1 indicates a
merely linear increase in the computational time with respect to the increasing value of m0.
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5 Solving BSE spectral problems in the QTT format

In the recent years, the tensor methods were recognized as the powerful techniques that allows
to enhance the traditional numerical methods by using low-rank separable representations
of discretized functions and operators. In this section we introduce the main notations and
definitions of the rank-structured tensor formats which will be used for data-sparse repre-
sentation of large matrices and long vectors arising from the BSE problem. The approach is
based on the so-called quantized-TT (QTT) low-rank tensor approximation [24] of vectors
and matrices described in §5.2.

5.1 Rank-structured representation of multi-dimensional tensors

A real tensor of order d is defined as an element of the finite dimensional Hilbert space
Wm = RM1×...×Md composed of the d-fold, M1 × ...×Md real-valued arrays (tensors), where
m = (M1, . . . ,Md), and Iℓ := {1, . . . ,Mℓ}, ℓ = 1, . . . , d. A tensor A ∈ RM1×...×Md is
represented entry-wise by

A = [a(i1, ..., id)] ≡ [a(i)] ≡ [ai1,...,id] ≡ [ai] with i ∈ I = I1 × ...× Id.

The Euclidean scalar product, 〈·, ·〉 : Wm ×Wm → R, is defined by

〈A,B〉 :=
∑

i∈I

aibi, A,B ∈ Wm.

The storage size for a dth order tensor scales exponentially in d, dim(Wm) = M1 · · ·Md,
that causes the so-called “curse of dimensionality”. In this section, for ease of presentation
we assume Mℓ =M for ℓ = 1, . . . , d.

The efficient low-parametric representations of dth order tensors can be realized by using
low-rank separable decompositions (formats). The commonly used canonical and Tucker
tensor formats [28] are constructed by linear combination of the simplest separable elements
given by rank-1 tensors,

U = u(1) ⊗ · · · ⊗ u(d) ∈ RM1×···×Md, u(ℓ) ∈ RMℓ ,

with entries ui1,...id = u
(1)
i1

· · ·u
(d)
id
, which can be stored using dM numbers.

Tensor-structured numerical methods for PDEs were particularly initiated by employ-
ment of the canonical and Tucker tensor formats in grid based “ab initio“ electronic structure
calculations, namely, for accurate evaluation of the 3D convolution integrals with the New-
ton kernel, see [22] and references therein. The literature overview on multi-linear algebra
and tensor numerical methods for PDEs can be found, for example, in [28, 26, 16, 12, 22].

In this paper we apply the factorized representation of dth order tensors in the tensor train
(TT) format [40], which is a particular case of thematrix product states (MPS) decomposition
[53, 52, 48]. The latter was introduced long since in the physics community and successfully
applied in quantum chemistry computations and in spin systems modeling. For a given rank
parameter r = (r1, . . . , rd−1), and the respective index sets Jℓ = {1, ..., rℓ} (ℓ = 1, . . . , d −
1), the rank-r TT format contains all elements A = [a(i1, . . . , id)] ∈ Wm which can be
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represented as the contracted products of 3-tensors over the d-fold product index set J :=
×d−1

ℓ=1Jℓ, such that

A =
∑

(α1,...,αd−1)∈J

a
(1)
1,α1

⊗ a(2)
α1,α2

⊗ · · · ⊗ a
(d)
αd−1,1

,

or entry-wise

a(i) =

r∑

(α1,...,αd−1)=1

a
(1)
1,α1

(i1)a
(2)
α1,α2

(i2) · · ·a
(d)
αd−1,1

(id) = A(1)(i1)A
(2)(i2) · · ·A

(d)(id),

with generating vectors a
(ℓ)
αℓ−1,αℓ ∈ RMℓ, and rℓ−1 × rℓ matrices A(ℓ)(iℓ) = [a

(ℓ)
αℓ−1,αℓ(iℓ)], (ℓ =

1, . . . , d) under the convention r0 = rd = 1. The TT representation reduces the storage cost
to O(dr2M), r = max rℓ, M = maxMℓ.

It is often convenient to characterize the TT-rank r = (r1, . . . , rd−1) with a single number.
We therefore introduce the notion of the effective (average) rank of a TT-tensor A. In the
case of equal mode sizes M , it is defined as the positive solution of the quadratic equation

r1 +

d−1∑

k=2

rk−1rk + rd−1 = r +

d−1∑

k=2

r2 + r = 2r + (d− 2)r2, (5.1)

and will be denoted by reff or average QTT rank r.

5.2 Quantized-TT approximation of function related vectors

In the case of large mode sizeM , the asymptotic storage for a dth order tensor can be reduced
to logarithmic scale O(d logM) by using the quantics-TT (QTT) tensor approximation [24].
In the present paper, we apply this approximation techniques to longNov-vectors representing
the columns of the LV factor and other parts of the BSE matrix, as well as to the eigenvectors
of the BSE system.

The QTT-type approximation of an M-vector with M = qd
′

, d′ ∈ N, q = 2, 3, ..., is
defined as the tensor decomposition (approximation) in the TT or canonical format applied
to a tensor obtained by the folding (reshaping) of the initial vector to an d′-dimensional
q × · · · × q data array. The latter is thought of as an element of the multi-dimensional
quantized tensor space Qq,d′ =

⊗d′

j=1K
q, K ∈ {R,C}, and d′ is the auxiliary dimension

(virtual, in contrary to the real space dimension d) parameter that measures the depth of
the quantization transform. A vector x = [xi]i∈I ∈ WM = RM , is reshaped to its multi-
dimensional quantized image in Qq,d′ by q-adic folding,

Fq,d′ : x → X = [x(j)] ∈ Qq,d′ , j = {j1, . . . , jd′},

with jν ∈ {1, . . . , q} for ν = 1, . . . , d′. Here, for fixed i, we have x(j) := xi, and jν = jν(i)
is defined via q-coding, jν − 1 = C−1+ν , such that the coefficients C−1+ν are found from the
q-adic representation of i− 1 (binary coding for q = 2),

i− 1 = C0 + C1q
1 + · · ·+ Cd′−1q

d′−1 ≡
d′∑

ν=1

(jν − 1)qν−1.
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Assuming that for the rank-r TT approximation of the quantized image X there holds
rk ≤ r, k = 1, . . . , d′, the complexity of such representation for the tensor X reduces to the
logarithmic scale

qr2 logqM ≪ M.

The computational gain of the QTT approximation is justified by the perfect rank de-
composition proven in [24] for a wide class of function-related tensors obtained by sampling
the corresponding functions over a uniform or properly refined grid. This class of functions
includes complex exponentials, trigonometric functions, polynomials and Chebyshev poly-
nomials, as well as wavelet basis functions. We refer to [13, 39, 20, 26] for further results on
QTT approximation and their application.

As an example we present the basic results on the rank-1 (resp. rank-2) QTT represen-
tation (with q = 2) of the exponential (resp. trigonometric) vectors [24]. For given N = 2d

′

,
and z ∈ C, the exponential N -vector, z := {zn = zn−1}Nn=1, can be reshaped by the dyadic
folding to the rank-1, 2⊗d′-tensor,

F2,d′ : z 7→ Z = ⊗d′

p=1[1 z
2p−1

]T ∈ Q2,d′ . (5.2)

The number of representation parameters specifying the QTT image is reduced dramatically
from N to 2 log2N .

The trigonometric N -vector, t = ℑm(z) := {tn = sin(ω(n − 1))}Nn=1, ω ∈ R, can be
reshaped by the successive dyadic folding

F2,d′ : t 7→ T ∈ Q2,d′ ,

to the 2⊗d′-tensor T, which has both the canonical C-rank, and the QTT-rank equal to 2.
The explicit rank-2 QTT-representation of the single sin-vector in {0, 1}⊗d′ (see [14, 39])

with kp = 2p−1ip, ip ∈ {0, 1}, reads

t 7→ T = ℑm(Z) = [sin ωk1 cos ωk1]⊗
d′−1
p=2

[
cos ωkp − sin ωkp
sin ωkp cos ωkp

]
⊗

[
cos ωk′d
sin ωk′d

]
.

The number of representation parameters is 8d′ − 8.
The TT approximation to dyadic folding of some 2d

′

×2d
′

matrices was presented in [38].
The construction and analysis of the QTT representation to the Laplacian related matrices
is developed in [18]. The definition of the so-called Matrix Product Operator (MPO) is given
in §5.4.

In this paper we apply the QTT approximation method to the BSE eigenvalue problem,
where matrices and eigenvectors are transformed to the QTT representation, and the arising
high-dimensional eigenvalue problem is solved by using the block-TT tensor format [11].
Different from the standard QTT matrix representation, in this paper we represent only
the columns of the Cholesky factor LV in the low-rank representation of the leading matrix
V = LV L

T
V . This allows to keep the low-rank form LV L

T
V and the low rank QTT structure

for LV simultaneously.
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5.3 Numerical investigation of the QTT ranks for the BSE-related

data

The motivating point for the following considerations in this section was the curious nu-
merical observation discussed in [23, 21]. It was demonstrated that the QTT ranks [24] of
the columns in the Cholesky factor for the TEI tensor are almost equal to the fundamental
structural characteristic of the molecular system, the number of occupied molecular orbitals
No, i.e., they do not depend on the size N2

b of the TEI matrix, determined by the number
of GTO basis functions Nb. This fact indicates the existence of the tensor-structured QTT
representation for the Cholesky factors with the very mild complexity scaling in the matrix
size N2

b .
Here we demonstrate that a very similar property can be observed for the matrices and

vectors involved in the BSE spectral problem.
First, we investigate numerically the QTT ranks of the long eigenvectors in the BSE

problem and the canonical QTT ranks in the skeleton vectors of the low-rank matrix fac-
torizations in the case of compact molecules and chains of atoms. In all numerical tests
conducted in this section the QTT truncation rank was chosen according to the relative ac-
curacy ǫ = 10−6. Specifically, in numerical tests we found that the QTT-ranks do not depend
on the problem size Nov and, hence, on the number of GTO basis functions specifying the
size of the BSE system, but again depend only on the fundamental physical characteristics
of the molecular system, No.

Next, Table 5.1 illustrates that for the TDA model applied to single molecules and to
molecular chains, the average QTT ranks, computed for the columns in the LV factor in (2.3)
and for m0 = 30 TDA-eigenvectors (corresponding to the smallest eigenvalues), are almost
equal or even smaller than the number of occupied molecular orbitals, No, in the system
under consideration. Notice that these results are obtained by compression of each column
from LV or eigenvectors separately. In the next section §5.4, we apply the so-called block-TT
format where the meaning of QTT approximation is adapted to the subset of eigenvectors.

Mol. sys. H2O H16 N2H4 C2H5OH H32 C2H5 NO2 C3H7 NO2

No 5 8 9 13 16 20 24
QTT ranks of LV 5.4 7 9.1 12.7 14 17.5 21

QTT ranks of e-vectors 5.3 7.6 9.1 12.7 13.6 17.2 20.9
Nov 180 448 657 1430 1792 3000 4488

Table 5.1: Average QTT ranks of the column vectors in LV and the m0 eigenvectors (corre-
sponding to the smallest eigenvalues) in the TDA problem.

Table 5.2 demonstrates that the considerable variation of the basis size for fixed molecular
systems of H12 or H24 chains (hence with fixed number No) practically does not change the
QTT ranks of the columns in the LV factor in (2.3) (QTT ranks of BSE eigenvectors are
almost the same, see Table 5.1).

Figure 5.1 indicates that the behavior of the QTT ranks in the columns of the LV -factor
reproduces the system size Nov in terms of No on the logarithmic scale.
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H12, No = 6 Nb 36 48 72 84
size BSE 3602 5042 7922 9362

QTT ranks 5.4 6.5 6.6 7.0

H24, No = 12 Nb 72 96 144 168
size BSE 14402 20162 31682 37442

QTT ranks 9.5 11.6 11.8 12.7

Table 5.2: Average QTT ranks of columns in the LV factor vs. No and the BSE-size for
Hydrogen chains: weak dependence on the number of basis functions Nb can be observed.
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Figure 5.1: QTT ranks (left) and Nov on logarithmic scale (right) vs. the number of orbitals, No.

It is worth to note that in the case of single molecules, the commonly used number
of GTO basis sets satisfy the relation Nb/No ≥ CGTO ≈ 10 (see examples below), which
implies the asymptotic behavior Nov ≈ CGTON

2
o . Hence, the QTT rank estimate rQTT ≈ No

obtained above leads to the asymptotic complexity of the QTT-based tensor solver,

WBSE = O(log(Nov)r
2
QTT ) = O(log(No)N

2
o ), (5.3)

which is asymptotically on the same scale as that for the data-structured algorithms based
on full-vector arithmetics (see Section 4). The same observation applies to the chain type
molecular systems.

However, the high precision Hartree-Fock calculations may require much larger GTO
basis sets so that the constant CGTO may increase considerably. In this situation, the QTT-
based tensor approach seems to outperform the algorithms in full-vector arithmetics.

An even more important consequence of (5.3) is that the rank behavior rQTT ≈ No

indicates that the QTT tensor-based algorithm has memory requirements and algebraic
complexity of the order of O(log(No)N

2
o ) depending only on the fundamental physical char-

acteristics of the molecular system, the number of occupied molecular orbitals, No (but not
on the system size N2

ov). This remarkable property traces back to the similar feature ob-
served in [23, 21]: QTT ranks of the column vectors in the low-rank Cholesky factorization
to the TEI matrix are proportional to No.

Remark 5.1 Based on the previous discussion, we summarize that the estimate (5.3) spec-
ifies a bound on the asymptotic algebraic complexity of the large scale BSE eigenvalue prob-
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lems, which is determined by only the inherent characteristics of the molecular system known
in advance.

5.4 Block-TT eigenvalue solver in high-dimensional QTT format

Since the eigenvectors of the TDA problem exhibit moderate QTT ranks, it is tempting to
apply the TT eigenvalue solver, such as the DMRG algorithm [53, 48]. As we are always
looking for several eigenvectors, we can use the accelerated version [11], where only one TT
block is considered at once.

However, a straightforward application of the algorithm from [11] to the Bethe-Salpeter
problem would be inefficient due to large QTT ranks of the matrix. In this section, we in-
troduce a mixed representation of the matrix, and adapt the DMRG algorithm accordingly.

In the general setting, given an eigenvalue problem AU = UΛ, the method assumes that
the matrix is given in the matrix TT (also called as Matrix Product Operator) format

A(i, j) = A(1)(i1, j1)A
(2)(i2, j2) · · ·A

(d′)(id′ , jd′), (5.4)

where i and j are multi-indexes comprised of i1, . . . , id′ and j1, . . . , jd′ , respectively. Each
term A(ℓ)(iℓ, jℓ) in the right-hand side is a rℓ−1 × rℓ matrix, similarly to the “vector” TT
format, but parametrized by two original indexes iℓ, jℓ, 1 ≤ iℓ, jℓ ≤ qℓ. Here we use the
general notation d′ for the dimension parameter used in the description of the QTT format
in §5.2. The mode size Mℓ in the general definition of the TT format is substituted by qℓ for
the QTT tensors.

A slight generalization of the QTT format introduced in Section 5.2 involves different
prime dimensions of a tensor, instead of the same value q. Given initial dimensions No and
Nv, we decompose these numbers into smallest nontrivial prime factors, say,

No = q1 · · · qo, Nv = qo+1 · · · qd′ ,

such that the total problem size Nov = q1 · · · qd′ yields the corresponding index factorization,
allowing the TT format (5.4). If No and Nv are powers of 2, we end up with the classical
QTT format with 2 × · · · × 2-tensors. But in a more general case, any other small factors
(like 3, 5, 7, and so on) are possible. For example, let No = 8 and Nv = 100. Then
No = 2 · 2 · 2 = q1q2q3, respectively, and q4q5q6q7 = 2 · 2 · 5 · 5 = Nv, so d′ = 7. This
decomposition is therefore unique up to a permutation of numbers. Precise values of the
QTT ranks might depend on the permutation, but their qualitative magnitudes (and hence
the overall complexity) remain the same in the considered examples.

The eigenvectors are sought in the block QTT format

Um(i) = U(1)(i1) · · ·U
(ℓ−1)(iℓ−1)Û

(ℓ)(iℓ, m)U(ℓ+1)(iℓ+1) · · ·U
(d′)(id′), (5.5)

where Û(ℓ) is a special TT block, containing the eigenvector enumerator m = 1, . . . , m0.
Using the SVD, one can decompose Û(ℓ) and move m to a neighboring block [11]. Suppose
we want to replace m into the (ℓ + 1)-th block. Remember that Û(ℓ) can be seen as a 4-

dimensional tensor, indexed as Û
(ℓ)
sℓ−1,sℓ(iℓ, m), where sℓ−1, sℓ are the indexes running from 1

to the TT ranks rℓ−1 and rℓ, respectively. We reshape Û(ℓ) into a matrix Û(sℓ−1iℓ, msℓ) and
compute its truncated SVD,

Û ≈ UΣVT , U ∈ Rrℓ−1qℓ×r′
ℓ, VT ∈ Rr′

ℓ
×m0rℓ .
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The left factor can be seen as a 3-dimensional tensor U
(ℓ)
sℓ−1,s

′

ℓ

(iℓ) = U(sℓ−1iℓ, s
′
ℓ), where

s′ℓ = 1, . . . , r′ℓ is the new rank index, and the new TT rank r′ℓ is the rank of the truncated
SVD above. Thus, U(ℓ) is a valid TT block without m. The right factor ΣVT is multiplied
with the next TT block U(ℓ+1):

Û
(ℓ+1)
s′
ℓ
,sℓ+1

(iℓ+1, m) =

rℓ∑

sℓ=1

Σ(s′ℓ, s
′
ℓ)V

T (s′ℓ, msℓ)U
(ℓ+1)
sℓ,sℓ+1

(iℓ+1).

Again, reshaping the factors appropriately, one can implement this as a Matrix-Matrix prod-
uct. The left-hand side Û(ℓ+1) is now of the form of Û(ℓ) in (5.5), with ℓ replaced by ℓ + 1.
Replacing sℓ with s

′
ℓ, Û

(ℓ) withU(ℓ) andU(ℓ+1) with Û(ℓ+1), we obtain the sought counterpart
of (5.5) with ℓ+1 instead of ℓ. Similarly, we can switch from ℓ to ℓ−1. Notice that the new
rank r′ℓ can be chosen from the range 1, . . . ,min(rℓ−1qℓ, rℓm0), i.e. it can be either larger or
smaller than rℓ, depending on the truncation threshold in SVD. It allows to determine all
TT ranks adaptively in the course of DMRG iteration.

The DMRG technique is an alternating Rayleigh quotient minimizer. Instead of the full

solution, we plug the TT format (5.5) into the Rayleigh quotient tr(U⊤AU)
tr(U⊤U)

, and minimize it
over the ℓ-th TT block,

Û(ℓ) = arg min
Û(ℓ)∈Rrℓ−1×qℓ×rℓ×m0

tr(U⊤AU)

tr(U⊤U)
where U equals (5.5).

It can be seen that this minimization problem is equivalent to a smaller eigenvalue problem
with a Galerkin projection of the matrix. Given ℓ, combine the remaining blocks U(p), p 6= ℓ,
into the frame matrix U6=ℓ ∈ RNov×rℓ−1qℓrℓ ,

U6=ℓ(i, αℓ−1jℓαℓ) = U(1)(i1) · · ·U
(ℓ−1)
:,αℓ−1

(iℓ−1)δiℓ,jℓU
(ℓ+1)
αℓ,:

(iℓ+1) · · ·U
(d′)(id′).

Then the local problem reads

(
UT
6=ℓAU6=ℓ

)
û(ℓ) = û(ℓ)Λ, û(ℓ) ∈ Rrℓ−1qℓrℓ×m0 , (5.6)

where the diagonal Λ contains the Ritz values, approximating the eigenvalues of the original
problem. After solving this problem, the block Û(ℓ) is populated with the elements of û(ℓ).
The method iterates over all TT blocks, going from ℓ = 1 to d′ and back to 1, switching from
ℓ to ℓ+1 or ℓ−1 via SVD as described above. The initial guess can be a randomly-populated
TT format (5.5) with ℓ = 1.

Construction of the reduced matrix UT
6=ℓAU6=ℓ in (5.6) depends on the representation for

A. If A is given in the matrix TT format (5.4), the complexity is proportional to the squared

QTT rank of A, which is in turn summed from the QTT ranks of ∆ε, V and Ŵ . Although
∆ε and Ŵ have moderate QTT ranks, this is not the case for V .

Fortunately, V is well approximated by a matrix which is low-rank in the usual sense,
V = LV L

T
V . The factor LV has moderate ranks in the standard, “vector” QTT format,

LV (i, α) = L(1)(i1) · · ·L
(d′−1)(id′−1)L

(d′)(id′ , α).

23



H12, No = 6, Nb 36 48 72 84
1 DMRG iter CPU time 0.019 0.02 0.034 0.04

av. QTT rank 19.0 20.2 22.0 22.6
mem(QTT)

Novm0
1.07 1.00 0.94 0.92

‖µqtt−µ⋆‖

‖µ⋆‖
2.86e-2 1.22e-2 4.60e-3 8.41e-3

H12, No = 6, CPU time 0.02 0.04 0.06 0.08
2 DMRG iters av. QTT rank 9.7 14.5 14.7 13.9

mem(QTT)

Novm0
0.25 0.35 0.23 0.18

‖µqtt−µ⋆‖
‖µ⋆‖

3.29e-3 6.36e-3 5.84e-3 7.03e-3

H24, No = 12 Nb 72 96 144 168
1 DMRG iter CPU time 0.10 0.17 0.09 0.12

av. QTT rank 21.8 22.5 23.5 23.7
mem(QTT)

Novm0
0.42 0.36 0.66 0.74

‖µqtt−µ⋆‖
‖µ⋆‖

1.95e-1 1.10e-1 6.8e-2 5.8e-2

H24, No = 12 CPU time 0.06 0.1 0.23 0.21
2 DMRG iters av. QTT rank 13.5 19.8 17.7 17.8

mem(QTT)

Novm0
0.14 0.20 0.3 0.3

‖µqtt−µ⋆‖

‖µ⋆‖
6.43e-3 9.50e-3 8.69e-3 8.97e-3

Table 5.3: DMRG iteration in block-QTT format for TDA model with m0 = 30 sought
eigenvalues and all low-rank approximation thresholds 0.1. µ⋆ is computed for the exact
TDA matrix (2.9).

This is a counterpart of the block TT format (5.5), where the enumerator α is placed in the
last TT block.

In each DMRG step, the projected matrix (5.6) is constructed as

UT
6=ℓAU6=ℓ = UT

6=ℓ∆εU6=ℓ +
(
UT
6=ℓLV

) (
UT
6=ℓLV

)T
− UT

6=ℓŴU6=ℓ,

where each product is implemented in a fast way, using the TT formats of U6=ℓ, ∆ε, LV and

Ŵ .

Remark 5.2 Note that here Ŵ is the original matrix from (2.2), compressed in the ma-
trix QTT format (5.4). No additional low-rank or block-diagonal constraints are imposed.
Therefore the results of the DMRG method in this section should be compared directly to the
result of the exact eigenvalue solver.

The reduced eigenvalue problem (5.6) has the size rℓ−1qℓrℓ and can be solved using the full
eig. The only explicitly iterative part is a sweep over different TT blocks in the alternating
fashion. By “iteration”, we mean the sequential sweep from the first to the d′-th TT block,
or the other way around.

The numerical results are presented in Table 5.3: CPU time (sec.), average QTT rank,
memory ratio (the storage of the QTT format over the total number of elements in the
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full representation) and the relative error of the eigenvalues. We use the tolerance 10−6 to
compress ∆ε into the matrix TT format4, but for all other approximations, including the
factorization V = LV L

T
V , the tolerance is set to ε = 0.1. We notice that one DMRG iteration

gives insufficient accuracy of the solution, but the second iteration delivers a relative error
below the theoretical estimate ε2. The CPU time is comparable or smaller than the time of
the best Sherman-Morrison inversion methods in the previous section, as demonstrated in
Table 5.4 (cf. Table 4.3). Recall that the row “absolute error” in Table 5.4 represents the
quantity ‖µqtt − µ⋆‖ = (

∑m0

m=1(µqtt,m − µ⋆,m)
2)1/2 characterizing the total absolute error in

the first m0 eigenvalues calculated in the Euclidean norm.

Molecular syst. C2H5OH H32 C2H5 NO2 H48 C3H7 NO2

TDA size 14302 17922 30002 40322 44882

time QTT eig 0.14 0.23 0.32 0.28 0.63
abs. error (eV) 0.08 0.19 0.17 0.14 0.00034

Table 5.4: Time (s) and absolute error (eV) for QTT-DMRG eigensolvers for TDA matrix.

The QTT format provides also a considerable reduction of memory needed to store eigen-
vectors.

In this paper we apply the QTT tensor approximations for fast solution of the TDA
problem. The application of these techniques to the full BSE system is also possible and will
be considered in a forthcoming paper.

6 Conclusions

This paper presents efficient iterative solution techniques for the Bethe-Salpeter large-scale
eigenvalue problem using the reduced basis approach via low-rank factorizations introduced
in [6].

For the statically screened interaction part of the BSE sub-matrix, which was problematic
for the low-rank representation in [6], we have found a beneficial substitution by a small
sub-block, which reduces the approximation error by an order of magnitude. Moreover,
it provides two-sided error estimates for the exact BSE excitation energies in the case of
compact and chain-type molecular systems.

We show that the structured inverse iterations (using efficient products with matrix
inverses) provide fast convergence for calculation of the required central part of the BSE
spectrum. For both BSE and TDA models, the inverse matrix can be represented in the same
diagonal plus low-rank plus reduced-block format by using the Sherman-Morrison scheme.
The estimates of the complexity of the algorithms for diagonal plus low-rank plus reduced-
block inverse iterations are presented in Lemmas 4.1 and 4.3.

The solution of the BSE spectral problem in the QTT format is discussed in detail. The
QTT tensor transform of the initial BSE system to the higher dimensional setting allows
to construct a structured solver of complexity O(log(No)N

2
o ), see (5.3). This complexity

4This accuracy is necessary, since ∆ε is the dominant part of the matrix. Fortunately, the TT ranks of
∆ε are below 10 even for such accuracy, whereas the ranks of LV and Ŵ may exceed a hundred.

25



is determined by only the number of occupied orbitals, No, in the molecular system (i.e.,
by physical characteristics of the molecule), but it is almost independent of the system
size determined by the number of atomic orbitals basis functions, Nb. In numerical tests
we observe a significant reduction of solution time. For example, TDA calculations in QTT
format for the C2H5OH molecule with matrix size 14302 take 0.14 sec, while for the C3H7NO2

(Alanine amino-acid) with TDA matrix size 44882, the CPU time increases only to 0.63 sec.
The results are confirmed by a number of numerical tests conducted throughout the

paper for various moderate size molecules and molecular chains. Note that the solution of
the eigenvalue problem with the rank-structured representation of the BSE matrix reduces
calculation times for large enough molecules at least by two orders of magnitude, see, for
example, Table 4.2, where for Alanine amino-acid, with matrix size 89762, direct calculation
takes 903 sec, while the low-rank iteration takes 4 sec. Further reduction of complexity is
achieved when using the DMRG-type iteration in the block-QTT tensor format, see Tables
5.3, 5.4.

Several directions for future research work on the rank-structured reduced basis method
for computation of excitation energies of molecules and solids will be considered. Partic-
ularly, this includes improving the considered BSE model by some additional correction
terms, developments of the new data-sparse matrix structures, and further applications of
algorithms to large and lattice-structured molecular systems. Notice that in solid state
physics and materials science, BSE gives rise to eigenvalue problems of huge dimension
2NoNvNk × 2NoNvNk, where Nk is the number of k-points used to discretize the Brillouin
zone. This introduces an even larger system size and hence, the QTT approach seems to be
even more promising in this application area.
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