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Abstract

This paper concerns asynchrony in iterative processes, focusing on gradient descent and tatonnement, a
fundamental price dynamic.

Gradient descent is an important class of iterative algorithms for minimizing convex functions. Classically,
gradient descent has been a sequential and synchronous process, although distributed and asynchronous variants
have been studied since the 1980s. Coordinate descent is a commonly studied version of gradient descent. In
this paper, we focus on asynchronous coordinate descent on convex functions F : Rn

→ R of the form

F (x) = f(x) +

n∑

k=1

Ψk(xk),

where f : Rn
→ R is a smooth convex function, and each Ψk : R → R is a univariate and possibly non-smooth

convex function. Such functions occur in many data analysis and machine learning problems.
We give new analyses of cyclic coordinate descent, a parallel asynchronous stochastic coordinate descent,

and a rather general worst-case parallel asynchronous coordinate descent. For all of these, we either obtain
sharply improved bounds, or provide the first analyses. Our analyses all use a common amortized framework.
The application of this framework to the asynchronous stochastic version requires some new ideas, for it is
not obvious how to ensure a uniform distribution where it is needed in the face of asynchronous actions that
may undo uniformity. We believe that our approach may well be applicable to the analysis of other iterative
asynchronous stochastic processes.

We extend the framework to show that an asynchronous version of tatonnement, a fundamental price dynamic
widely studied in general equilibrium theory, converges toward a market equilibrium for Fisher markets with
CES utilities or Leontief utilities, for which tatonnement is equivalent to coordinate descent.
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1 Introduction

Gradient descent, an important class of iterative algorithms for minimizing convex functions, is a key subroutine in
many computational problems. Broadly speaking, gradient descent proceeds by moving iteratively in the direction
of the negative gradient of a convex function. Classically, gradient descent is a sequential and synchronous process.
Distributed and asynchronous variants have also been studied, starting with the work of Tsitsiklis et al. [43] in the
1980s; these variants have been experiencing a resurgence of attention due to recent advances in multi-core parallel
processing technology and a strong demand for speeding-up large-scale gradient descent problems via parallelism.

In this paper, we consider the problem of (approximately) finding a minimum point of a convex function
F : Rn → R of the following form:

F (x) = f(x) +

n∑

k=1

Ψk(xk),

where f : Rn → R is a smooth convex function, and each Ψk : R→ R is a univariate convex function, but may be
non-smooth. Such functions occur in many data analysis and machine learning problems, such as linear regression
(e.g., the Lasso approach to regularized least squares [39]) where Ψk(xk) = |xk|, logistic regression [30], ridge
regression [38] where Ψk(xk) is a quadratic function, and Support Vector Machines [19] where Ψk(xk) is often a
quadratic function or a hinge loss (essentially, max{0, xk}). Neither |xk| nor the hinge loss are smooth at xk = 0.

Coordinate descent is a commonly studied version of gradient descent. It proceeds by repeatedly selecting and
updating a single coordinate of the argument to the convex function. Coordinate descent is appealing because
in a single iteration one need compute the gradient only in the direction of the update, which can be much less
expensive than the usual gradient descent, which computes the full gradient. The offsetting cost, of course, is that
in any iteration, little progress may be made.

Until fairly recently, convergence could be shown only for versions of coordinate descent in which each update was
along the “best” coordinate, whose determination required the computation of the full gradient, rather nullifying
the advantage of this approach [32]. Futhermore, the presence of the non-smooth terms in F (x) has meant that
until recently there were few analyses of the convergence rate of coordinate descent on such functions. Of late,
the advent of very large scale problems in which the full gradient of the smooth part might be unavailable or too
expensive to compute, has resulted in the use of coordinate descent, and the observation that it works well in
practice. Analyses have emerged to justify this observation.

The first analyses were for sequential stochastic updates [32, 36, 28, 27]: at each iteration the next coordinate
to update is chosen uniformly at random (there are also versions in which different coordinates can be selected
with different probabilities). The expected bounds in this case provide a benchmark against which the bounds for
other update sequences can be compared.

The next set of analyses were for cyclic coordinate descent [40, 37, 4, 23]. Here the coordinates are repeatedly
updated one at a time in a fixed order. We improve the best currently known worst case bound on the rate of
convergence due to Hua and Yamashita [23] by a factor of Θ(

√
n/ logn) where n is the number of coordinates.

Of late, there has also been considerably interest in parallel versions of coordinate descent. One important
issue in parallel implementations is whether to ensure the different processors are all using up-to-date information
for their computations. To ensure this requires considerable synchronization, locking, and consequent waiting.
The two analyses to date that do not make this assumption are those by Avron, Druinsky and Gupta [3], and
Liu and Wright [26]; they called this the “inconsistent read” model. We follow this approach; its advantage is
that it reduces and potentially eliminates the need for waiting. At the same time, as some of the data being
used in calculating updates will be out of date, one has to ensure that the out-of-datededness is bounded in some
fashion. Again, following Liu and Wright, we assume there is a bounded amount of overlap between the various
updates, and we show how to implement this property in a lightweight manner. By means of a new analysis we
considerably improve the bounds given by Liu and Wright, achieving linear speed-up for a considerably wider range
of parameters. Further, as we will explain, Liu and Wright’s analysis is in fact incomplete and it is not clear how
to complete it.

We also consider worst case bounds in the asynchronous parallel setting. This analysis covers the following
natural case, among many others: suppose the coordinates are evenly partitioned among the processors, with each
processor updating its coordinates in cyclic order. Again, for a considerable parameter range, we achieve linear
speedup compared to the sequential cyclic coordinate case. As far as we know, there was no previous analysis for
this type of setting.

The challenges produced by an asynchronous setting are the lack of control over the timing of updates (as
we shall see, even in a stochastic setting one cannot assume the update commits are uniformly distributed across
the coordinates), and the possibility of having out-of-date information, as already mentioned. This would mean
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that bad individual updates (updates that increase the value of the convex function) are unavoidable in general.
As we shall see, in our Asyncrhonous Coordinate Descent (ACD) algorithms, every update leads to errors in
subsequent gradient measurements at other cores (or processors). A natural question to ask is whether such errors
can propagate and be persistent and whether they might, in the worst case, prohibit convergence toward a minimal
point. Our amortized analysis shows that this will not happen when the step sizes used in the ACD algorithms
and the degree of parallelism are suitably bounded. The following observation forms a key part of the analysis: if
there is a bad update to one coordinate, it can only be due to some recent good updates to other coordinates, or
to chaining of this effect.

Our analyses all follow a common framework. We use an amortized analysis which relates the actual progress
to the desired progress, where the desired progress is a constant fraction of the progress achieved with sequential
stochastic updating. The amortization is used to hide the difference between these two measures of progress by
amortizing it over multiple updates. As we shall see, this difference is bounded by the squares of appropriate
gradient differences, and using Lipschitz parameters, these can in turn be bounded by changes to the squares of
recent changes to the coordinates. The final ingredient is to show that the progress is an upper bound on a (small)
multiple of the squares of the change to the updated coordinate. Combining these ingredients yields a lower bound
on the rate of progress. Of course, the details of the combination vary from one version of coordinate descent to
another, and the asynchronous stochastic analysis in particular is quite non-trivial.

We finish by extending this framework to analyze an asynchronous tatonnement price update rule for some
classes of market economies. The reason for considering an asynchronous rule is that in the context of the Ongoing
Market introduced by Cole and Fleischer [17] it allows for a more natural behavior than the classic auctioneer
model of tatonnement, as we discuss in more detail in Section 7.

Related Work Convex optimization is one of the most widely used methodologies in applications across multiple
disciplines. Unsurprisingly, there is a vast literature studying convex optimization, with various assumptions and
in various contexts. We refer readers to Nesterov’s text [31] for an excellent overview of the development of
optimization theory. Distributed and asynchronous computation has a long history in optimization, initiated by
the seminal works of Tsitsiklis, Bertsekas and Athans [43, 5]; more recent results include [8, 6]. See Frommer and
Szyld [22] for a fairly recent review, Liu et al. [27] for an account of recent developments, and Wright [46] for a
recent survey on coordinate descent.

While many convergence results were proved for synchronous gradient descent, only a few convergence results
are known for cyclic coordinate descent, including Tseng [40], Saha and Tewari [37], Beck and Tetruashvili [4] and
Hua and Yamashita [23]. We note that before the year 2012, as pointed out by Nesterov [32], no global convergence
rate for cyclic coordinate descent had been established, and he commented that establishing such a bound is “almost
impossible”. Although the recent work [37, 4, 23] proved his comment wrong, the late appearance of analyses for
such a natural coordinate descent methodology suggests it is difficult to analyze, and further serves as an indicator
of the strength of our amortized approach which handles a wide range of scenarios.

Stochastic coordinate descent, in which coordinates are updated in random order, has recently attracted atten-
tion. Relevant works include Nesterov [32], Richtárik and Takác [36] and Lu and Xiao [28].

Two versions of asynchronous stochastic coordinate descent were analyzed by Liu et al. [27] and by Liu and
Wright [26]. Both obtained bounds for both convex and “optimally” strongly convex functions1, attaining speed-up
more or less linear in the number of cores so long as they are not too numerous. Liu et al. [27] obtained bounds
similar to ours (see their Corollary 2 and our Theorem 4), but the version they analyzed is more restricted than
ours in two aspects: first, they imposed the unrealistic assumption of consistent reads, and second, they considered
only smooth functions (i.e., without the non-smooth univariate components Ψk). The version analyzed by Liu
and Wright [26] is the same as ours. While not explicitly stated, the latter bound degrades when the parallelism
exceeds Θ(n1/4).2 Our bound has a similar flavor but with a limit of Θ(n1/2). Further, both analyses overlooked
the fact that asynchronous actions may undo the distributional uniformity of the updates (we will explain why this
happens in Section 5), and thus their analyses are incomplete.

In statistical machine learning, the objective functions to be minimized typically have the form
∑

i ℓ(x, Zi),
where the Zi are samples; updates are typically sample-wise but not coordinate-wise, so our model will not cover
these update algorithms. It is a very interesting problem to investigate if there is an adaption of our model and
amortized analysis for these algorithms. Many of the assumptions made for asynchronous sample-wise updates
share similarities with ours. For instance, Tsianos and Rabbat [42] extended the analysis of Duchi, Agarwal and

1This is a weakening of the standard strong convexity.
2This is expressed in terms of a parameter τ , renamed q in this paper, which is essentially the possible parallelism; this connection

depends on the relative times to calculate different updates. Their bound also depends on the ratio of two Lipschitz parameters.
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Wainwright [21] to analyse distributed dual averaging (DDA) with communication delay; the same authors [35]
studied DDA with heterogeneous systems, i.e., distributed computing units with different query and computing
speeds. Langford, Smola and Zinkevich [24] and Liu et al. [27] also studied problems with bounded communication
delay.

Avron, Druinsky and Gupta [3] recently studied an asynchronous and randomized version of the Gauss-Seidel
algorithm for solving symmetric and positive definite matrix systems. They show that being less aggressive, i.e.,
reducing step sizes, can actually improve the guaranteed convergence rate.

In a similar spirit to our analysis, Cheung, Cole and Rastogi [14] analyzed asynchronous tatonnement in certain
Fisher markets. This earlier work employed a potential function which drops continuously when there is no update
and does not increase when an update is made. This approach could be followed for the current market setting, and
in fact is the approach we took in an earlier version of this work (this did require the design of a completely new
potential function compared to the one used in [14]). But in the current work, we instead use a discrete analysis
which has more in common with our coordinate descent analyses.

For the closely related topic of learning dynamics in games, where updates are based on the payoffs received by
agents, again, the classical approach assumes synchronous or round-robin updates with up-to-date payoffs; models
with stochastic update schedules were also studied previously (e.g., in [7, 1, 29]), while learning dynamics with
delayed payoffs [33] were studied recently.

Organization of This Paper In Section 2, we formally describe our models of coordinate descent, and state our
main results on cyclic coordinate descent, asynchronous coordinate descent and its stochastic variant. In Section
3, we highlight the key observations and lemmas which underlie our three main results. In Sections 4–6, we delve
further into each of these results. Finally, in Section 7, we describe our model of asynchronous tatonnement and
state the associated convergence result. Omitted proofs are given in the appendix.

2 Model and Main Coordinate Descent Results

We consider the problem of (approximately) finding a minimum point of a convex function F : Rn → R of the form
F (x) = f(x) +

∑n
k=1 Ψk(xk), where f : Rn → R is a smooth convex function, and each Ψk : R→ R is a univariate

and possibly non-smooth convex function. Let X∗ denote the set of minimum points of F ; we use x∗ to denote a
minimum point of F . Without loss of generality, we assume that F ∗, the minimum value of F , is zero.

We recap a few standard terminologies. Let ~ej denote the unit vector along coordinate j.

Definition 1. The function f is L-Lipschitz-smooth if for any x,∆x ∈ R
n, ‖∇f(x+∆x)− f(x)‖ ≤ L · ‖∆x‖.

For any coordinates j, k, the function f is Ljk-Lipschitz-smooth if for any x ∈ R
n and r ∈ R, |∇kf(x+ r ·~ej)−

∇kf(x)| ≤ Ljk · |r|. Also, as is standard, Lj denotes Ljj .

Let Lmax := maxj,k Ljk, and let Lres := maxj
(∑

k(Ljk)
2
)1/2

.

Next, we introduce the following notation.

Notation 1. For d, g, x ∈ R, Γ ∈ R
+ and Ψ : R → R a univariate, proper, convex and lower semi-continuous

function, let

W (d, g, x,Γ,Ψ) := − gd − Γ

2
· d2 + Ψ(x) − Ψ(x+ d);

the function W is often called a proximal function. Also, let

Ŵ (g, x,Γ,Ψ) := max
d∈R

W (d, g, x,Γ,Ψ) and d̂(g, x,Γ,Ψ) := argmax
d∈R

W (d, g, x,Γ,Ψ).

We note that Ŵ (g, x,Γ,Ψ) ≥W (0, g, x,Γ,Ψ) = 0.

We will use kt to denote the coordinate being updated at time t. We will also use ∆x to denote d̂(g, x,Γ,Ψ),
and more specifically ∆xt

kt
when we want to focus on the coordinate kt updated at time t.

Update Rule If the implementation is sequential, or parallel and synchronous, the standard coordinate descent
update rule, applied to coordinate j, first computes the accurate gradient gj := ∇jf(x

t−1), and then performs the
update given below with a suitable parameter Γj :

xt
j ← xt−1

j + d̂(gj , x
t−1
j ,Γj ,Ψj) and ∀k 6= j, xt

k ← xt−1
k .
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However, in an asynchronous environment, an updating processor (or core) might possess outdated information
x̃ instead of xt−1, so the gradient the core computes will be g̃j := ∇jf(x̃), instead of the accurate value ∇jf(x

t−1).
Our update rule, which is naturally motivated by its synchronous counterpart, is

xt
j ← xt−1

j + d̂(g̃j , x
t−1
j ,Γj ,Ψj) = xt−1

j +∆xt
j and ∀k 6= j, xt

k ← xt−1
k . (1)

2.1 Results

The basis form of all our results is given by the following meta-theorem (or a slight variant of it for the stochastic
case), where we use a common step size Γ for all the coordinates.

Theorem 1. Let Γ be a sufficiently large step size for the update rule, and let r, q be two fixed integer parameters.
Let A(t) be a non-negative function with A(0) = 0, and let H(t) := F (xt) +A(t). Suppose that

• for all t ≥ 1, H(t) ≤ H(t− 1), i.e., H(t) is a decreasing function of t;

• there exists constants α, β > 0 such that for any t ≥ 2r,

t∑

i=t−2r+1

[H(i− 1)−H(i)] ≥
t−r∑

i=t−2r+1

[
α

n

n∑

k=1

Ŵk(∇kf(x
i−1), xi−1

k ,Γ,Ψk) +
β

q
· A(i − 1)

]
.

(i) Then, if F is strongly convex with parameter µF ,
3 and f has strongly convex parameter µf ,

F (xt) ≤
[
1−min

{
α

2n
· µF

µF + Γ− µf
,

β

2q

}]t−2r+1

· F (x◦).

(ii) Now suppose that F is convex. Let R be the radius of the level set for x◦. Formally, let X = {x |F (x) ≤ F (x◦)};
then R = supx∈X minx∗∈X∗ ||x− x∗||. Then, for t ≥ r,

F (xt) ≤ F (p◦)

1 + min
{

β
4q F (p◦) , α

8n F (p◦) , 1
8ΓR2

}
·H(2r − 1) · (t− 2r + 1)

.

The existing form of this theorem does not involve the function A and the parameter r had been limited to
r = 1. The definition of A varies from analysis to analysis though they are somewhat similar. The theorem is
proved in the appendix for the main part of the analysis concerns the proof of the premise of this theorem.

For the sequential stochastic version of coordinate descent, α = 1 and Γ ≥ Lmax suffices. Clearly, the minimum
possible value of Γ and the value of α control the convergence rate. Accordingly, in Table 1, we report our new
results in terms of α and the minimum Γ.

Algorithm Known Result New Result
cyclic Γ ≥ max{M,L}; M ≤ L

√
n Γ ≥ 4√

3
L ⌈log2 n⌉

α = O(1) [23, 2015] 4 r = n and α = 1
3 (β not needed)

Asynchronous stochastic (SACD) Γ ≥ 2Lmax Γ ≥ Lmax

linear speedup if: q ≤
(

Γ
√
n

4eLres

)1/2
q ≤ min

{
Γ
√
n−q

8
√
10Lres

, 9
100n

}

[26, 2015] 5 r = 1, α = 1
2 , and β = α·q

n

Worst case asynchronous (PACD) Γ ≥ 16√
3
L
√
κmax ⌈log2 r⌉

linear speedup if: no prior work q ≤ Γ
√
3

8·Lmax

r ≥ n, α = n
3r , and β = 1

2

Table 1: The Coordinate Descent Results as a Function of Γ, α and β.

3i.e., for all x, y ∈ R
n and F ′(x) which is any subgradient of F at x, F (y) ≥ F (x) + 〈F ′(x), y − x〉+ 1

2
µF ||y − x||2.

4This analysis was not expressed precisely.
5This analysis was incomplete. Also, it used a quite different approach so it is not evident what corresponded to α.
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Cyclic Coordinate Descent (CCD) Here the n coordinates are repeatedly updated in a fixed order. We have
the following result.

Theorem 2. If Γ ≥ 4√
3
L ⌈log2 n⌉, then the bound of Theorem 1 holds with r = n and α = 1

3 . (β is not needed.)

Asynchronous Coordinate Descent — General Setting. The coordinate descent process starts at an initial
point x◦ = (x◦

1, x
◦
2, · · · , x◦

n). Multiple cores then iteratively update the coordinate values. We assume that at
each time, there is exactly one coordinate value being updated. In practice, since there will be little coordination
between cores, it is possible that multiple coordinate values are updated at the same moment ; but by using an
arbitrary tie-breaking rule in our analysis, we can immediately extend the analysis to these scenarios.

In our algorithms, the cores use a shared memory which stores the coordinate values. Each core iteratively
performs the following tasks without global coordination: (1) chooses a coordinate k according to some rule;
(2) retrieves coordinate values from the shared memory; let x̃ = (x̃1, x̃2, · · · , x̃n) denote the retrieved values; (3)
computes ∇kf(x̃); (4) requests a lock on the memory that stores the value of the k-th coordinate; (5) updates
the k-th coordinate using rule (1); 6 (6) releases the lock. We note that if the rule in Step (1) enforces that each
coordinate is always updated by exactly one core, then Steps (4) and (6) can be omitted.

The retrieval times for Step (2) plus the gradient-computation time for Step (3) can be non-trivial, and also in
Step (4) a core might need to wait if the coordinate it wants to update is locked by another core. Thus, during
this period of time other coordinates are likely to be updated. For each update, we call the period of time spent
for performing the above tasks the interim interval of the update. We say that update A interferes with update
B if the finishing time of update A lies in the interim interval of update B.

Parallel Asynchronous Coordinate Descent (PACD) The time of an update refers to the moment it finishes.
We assume that the rule in Step (1) satisfies the following two assumptions:

Assumption 1. There exists a non-negative integer q such that for any update at time t, the only updates that
interfere with it are those at times t− 1, t− 2, · · · , t− q.

Assumption 2. There exists a parameter r such that each coordinate is updated at least once in any time interval
of length r. Also, in any time interval of length r, each coordinate is updated at most κmax times.

We note that even without any global coordination, in many circumstances, n ≤ r = O(n) and κmax would be
a small constant. In Appendix C, we provide a simple implementation method with modest overhead for strictly
enforcing the two assumptions.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then, if Γ ≥ 16√
3
L
√
κmax ⌈log2 r⌉, Theorem 1 holds with

α = n
3r and β = 1

2 , when q ≤ Γ
√
3

8·Lmax
.

Stochastic Asynchronous Coordinate Descent (SACD) Here each core repeatedly selects a coordinate to
update uniformly at random. A difficulty we face is that the resulting orderings of the updates by start time and
by commit time need not be the same. For our result we assume that the algorithm selects exactly t̄ coordinates
to update for some prespecified t̄, and that these coordinates are all updated, with the commit times constrained
by the following assumption.

Assumption 3. There exists a non-negative integer q such that for any update at time t, the only updates that
interfere with it are those at times t− 1, t− 2, · · · , t− q and t+ 1, t+ 2, · · · , t+ q.

This can be enforced in almost the same way as Assumption 1.

Theorem 4. Suppose that Assumption 3 holds. If Γ ≥ maxj Lj, then in expectation, the bound of Theorem 1 holds

for t = t̄, with r = 1 and α = 1
2 , when q ≤ min

{
Γ
√
n−q

8
√
10Lres

, 9
100n

}
, and β = α·q

n .

6 An implementation detail: even if the core had retrieved the value of the k-th coordinate from the shared memory in Step (2), the
core needs to retrieve it again in Step (5), because it needs the most updated value when applying the update rule (1).
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3 Key Ideas

3.1 Technical Overview

Let kt denote the index of the coordinate that is updated at time t, let xkt
denote its updated value, let

gtkt
:= ∇kt

f(xt−1) be the value of the gradient along coordinate xkt
computed at time t using up-to-date

values of the coordinates, and let g̃tkt
be the actual value computed, which may use some out-of-date values.

As we shall see, an update guarantees the following progress

F (xt−1)− F (xt) ≥ Ŵkt
(g̃tkt

, xt−1
kt

,Γ,Ψkt
). (2)

In the case of a sequential stochastic update this implies

E
[
F (xt−1)− F (xt)

]
≥ 1

n

n∑

k=1

Ŵk(g
t
k, x

t−1
k ,Γ,Ψk), (3)

from which one can deduce the convergence results in Theorem 1 in expectation.

3.2 Technical Approach

All our results build on the following lemmas.

Lemma 1. F (xt−1)− F (xt) ≥ Ŵkt
(gtkt

, xt−1
kt

,Γ,Ψkt
)− 1

Γ (g
t
kt
− g̃tkt

)2.

Lemma 2. F (xt−1)− F (xt) ≥ 1
4Γ (∆xkt

)
2 − 1

Γ (g
t
kt
− g̃tkt

)2. If gtkt
= g̃tkt

, then F (xt−1)− F (xt) ≥ 1
2Γ (∆xkt

)
2
.

Combining Lemmas 1 and 2 yields

F (xt−1)− F (xt) ≥ 1

2
Ŵkt

(gtkt
, xt−1

kt
,Γ,Ψkt

) +
1

8
Γ (∆xkt

)
2 − 1

Γ
(gtkt
− g̃tkt

)2 (4)

or F (xt−1)− F (xt) ≥ 1

2
Ŵkt

(gtkt
, xt−1

kt
,Γ,Ψkt

) +
1

4
Γ (∆xkt

)
2

if gtkt
= g̃tkt

. (5)

However, the progress we would like is the term 1
n

∑n
k=1 Ŵk(g

t
k, x

t−1
k ,Γ,Ψk) from (3). The following lemma will

allow us to relate the progress we have in (4) to the progress we desire.

Lemma 3. For any gj, g
′
j, Ŵj(gj , xj ,Γ,Ψj) ≥ 2

3 · Ŵj(g
′
j , xj ,Γ,Ψj) − 4

3Γ · (gj − g′j)
2.

The final issue will be to bound the differences (g1j − g2j )
2 in terms of the (∆xt

kt
)2, which we approach by using

the Lipschitz parameters for the gradients as defined in Definition 1. Specifically, for x1, x2 ∈ R
n, for any k, let

∆xk := x1
k − x2

k, and for i = 1, 2, let gij := ∇jf(x
i). Then

(
g1j − g2j

)2 ≤
[

n∑

k=1

Lkj |∆xk|
]2

(6)

and

n∑

j=1

(
g1j − g2j

)2 ≤ L2
n∑

k=1

(∆xk)
2
. (7)

The challenge is to combine these equations while minimizing Γ.

4 Cyclic Coordinate Descent (CCD)

In the CCD case, accurate gradients are used for all updates, so we will use equation (5). To use Theorem 1, for
the CCD case, we set r = n and A(t) ≡ 0, and hence H(t) = F (xt). Then by (5), the first condition required in
Theorem 1 is satisfied.

Next, we establish the second condition required for using Theorem 1. For any t ≥ 2n,

t∑

i=t−2n+1

[H(i− 1)−H(i)] ≥
t∑

i=t−2n+1

[
1

2
Ŵki

(giki
, xi−1

ki
,Γ,Ψki

) +
Γ

4
(∆xki

)2
]
.
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Applying Lemma 3 yields

t∑

i=t−2n+1

[H(i− 1)−H(i)]

≥
t∑

i=t−2n+1




i∑

j=max{t−2n+1,i−n+1}

[
1

3n
Ŵki

(gjki
, xj−1

ki
,Γ,Ψki

)− 2

3Γn

(
gjki
− giki

)2 ]
+

Γ

4
(∆xki

)2




≥
t−n∑

j=t−2n+1

1

3n

n∑

k=1

Ŵk(g
j
k, x

j−1
k ,Γ,Ψk)

+


Γ

4

t∑

i=t−2n+1

(∆xki
)2 − 2

3Γn

t∑

i=t−2n+1

i∑

j=max{t−2n+1,i−n+1}

(
gjki
− giki

)2



︸ ︷︷ ︸
Q

(8)

Thus, once we can prove that Q ≥ 0 for some sufficiently large Γ, we can apply Theorem 1 with α = 1/3 and
β = 1. (Since A(t) ≡ 0, we can use any positive constant β.) The rest of this section is devoted to showing that
Γ ≥ 4√

3
L ⌈log2 n⌉ suffices.

For each i = 0, 1, 2, · · · , ⌊lg(n− 1)⌋ = ⌈lg n⌉ − 1, we divide the time interval [t − 2n + 1, t] into consecutive
intervals of length 2i. We call such time intervals the doubling intervals, and let D denote the collection of all such
doubling intervals. By Definition 1, for each doubling interval [τb, τc],

n∑

k=1

(gτbk − gτck )
2 ≤ L2

τc−1∑

τ=τb

(
∆xτ

kτ

)2
. (9)

On the other hand, any
(
gjki
− giki

)
, with 0 ≤ i − j < n, can be written as a telescoping summation

(
gjkt
− giki

)
=

∑ℓ
a=1

(
g
τa−1

ki
− gτaki

)
for some ℓ = ℓ(j, i) ≤ 2 ⌈lg n⌉, where each [τa−1, τa] is a doubling inter-

val, τ0 = j, and τℓ = i. Then, by the Cauchy-Schwarz inequality,

(
gjki
− giki

)2
≤ 2 ⌈lgn⌉

ℓ∑

a=1

(
g
τa−1

ki
− gτaki

)2
. (10)

Then,
2

3Γn

t∑

i=t−2n+1

i∑

j=max{t−2n+1,i−n+1}

(
gjki
− giki

)2

≤ 4 ⌈lgn⌉
3Γn

t∑

i=t−2n+1

i∑

j=max{t−2n+1,i−n+1}

ℓ(j,i)∑

a=1

(
g
τa−1

ki
− gτaki

)2
(by Eqn. (10))

(∗)
≤ 4 ⌈lgn⌉

3Γn

∑

[τb,τc]∈D

n∑

k=1

n · (gτbk − gτck )
2

≤ 4 ⌈lgn⌉
3Γ

∑

[τb,τc]∈D

τc−1∑

a=τb

L2(∆xa
ka
)2 (by Eqn. (9))

(∗∗)
≤ 4 ⌈lgn⌉L2

3Γ

t∑

i=t−2n+1

⌈lg n⌉
(
∆xi

ki

)2
=

4 ⌈lgn⌉2 L2

3Γ

t∑

i=t−2n+1

(
∆xi

ki

)2
. (11)

We explain why inequalities (∗) and (∗∗) hold here. For (∗), observe that in the triple summation above, for any

doubling interval [τb, τc] and any k, each (gτbk − gτck )
2
term appears at most n times. For (∗∗), observe that in the

double summation above, for any i, each
(
∆xi

ki

)2
term appears at most ⌈lg n⌉ times.

Thus, for Q ≥ 0, it suffices that 4⌈lgn⌉2L2

3Γ ≤ Γ
4 , or equivalently, Γ ≥ 4√

3
L ⌈lg n⌉.

In Appendix F, we describe a family of convex functions for which the above relationship between the squares
of the gradient differences and the squares of the coordinate differences has a Θ(log2 n) gap, indicating that the
bound in this part of the analysis is tight.
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5 Stochastic Asynchronous Coordinate Descent (SACD)

The analysis in the stochastic case is quite subtle. The difficulty is that randomization occurs at the time the
coordinates are selected, and in this selection order the coordinates are uniformly distributed. However, the
updates occur at commit time need not be in the same order, owing to possible asynchronous effects such as varying
computation times for different coordinates7, varying communication delay, interference from other computations
(e.g., due to mutual exclusion8), and interference from the operating system. The fact that these orderings might be
different was overlooked in the prior analysis by Liu and Wright [26], and consequently their analysis is incomplete.
The present analysis is significantly different, and furthermore, we show that the requirement of Liu and Wright
for guaranteeing linear speed-up can be relaxed almost quadratically.

We will be using the starting time of the updates as reference points, and thus future updates in this ordering
might interfere with the current update. However, in any standard stochastic analysis, the progress is analyzed
conditioning on the current information available. Our high-level approach to achieve this is: with the current
information in hand, give a worst-case estimate on how future updates can interfere with the current update.

While the above high-level approach seems natural, its implementation is quite non-trivial. We think it is
plausible that our approach may be also effective in analyzing other asynchronous stochastic iterative systems.

Suppose there are a total of T updates. We view the whole stochastic process as a branching tree of height T .
Each node in the tree corresponds to the moment when some core randomly picks a coordinate to update, and
each edge corresponds to a possible update. We will use π to denote a path from the root down to some edge of
the tree.

At this point, it is helpful to introduce the concept of a history. Suppose π is a path of length t, and let N be π’s
final node. What had really happened before N , or in other words, what is the history before N ? By our timing
scheme and by Assumption 3, we are sure that all updates strictly before time t− q had committed before N , and
thus all information about such updates belong to the history. Also, the coordinates ks for s ∈ [t − q, t − 1] were
already chosen, so their identities also belong to the history; however, some or all of their updated values might not
yet belong to the history.

We first give an analysis that deals with the simpler scenario when all updates are consistent, i.e., no future up-
date interferes with a current update. This analysis will then be generalized to handle the scenario with inconsistent
updates.

5.1 SACD with Consistent Updates

(4) gives in expectation

F (xt−1)− F (xt) ≥ 1

2n

n∑

k=1

Ŵk(g
t
kt
, xt−1

k ,Γ,Ψk) +
1

8
Γ (∆xkt

)
2 − 1

Γ
(gtkt
− g̃tkt

)2.

We will show that in expectation, that for any t′,

∑

1≤t≤t′

1

Γ
(gtkt
− g̃tkt

)2 ≤
∑

1≤t≤t′

1

8
Γ (∆xkt

)
2
.

This is not quite good enough for proving a convergence bound, for this only gives progress in an amortized sense.
We leave to the appendix and to the general non-consistent update case the additional elements. (Basically, we

consider the function F (xt) plus additional terms that are fractions of Γ (∆xks
)
2
for s ≤ t, and show that for this

function the progress is of the form 1
2n

∑n
k=1 Ŵk(g

t
kt
, xt−1

k ,Γ,Ψk) plus a
1
2n portion of the the additional term. To

achieve this we will need to increase Γ a little from the value the derivation below obtains.)
Fix a path π of length t. Let ∆maxx

t
kt

denote the maximum value that ∆xt
kt

can assume when the first t − q
updates on path π have been fixed. Let ∆minx

t
kt

denote the analogous minimum value. Let gtmax,kt
denote the

value of gtkt
used to evaluate ∆maxx

t
kt

and gtmin,kt
denote the value of gtkt

used to evaluate ∆minx
t
kt
.

7 The amount of computation required for one coordinate can be quite different from that for another coordinate.
8This is needed when commiting updates to the same coordinate.
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Then, by Lemma 5 in Appendix A,

(
∆maxx

t
kt
−∆minx

t
kt

)2 ≤ 1

Γ2

(
gtmax,kt

− gtmin,kt

)2

≤ 1

Γ2


 ∑

s∈[t−q,t−1]

Lks,kt
max

{∣∣∆maxx
s
ks
−∆minx

s
ks

∣∣ ,
∣∣∆maxx

s
ks

∣∣ ,
∣∣∆minx

s
ks

∣∣}


2

≤ q

Γ2
·

∑

s∈[t−q,t−1]

L2
ks,kt

max
{(

∆maxx
s
ks
−∆minx

s
ks

)2
,
(
∆maxx

s
ks

)2
,
(
∆minx

s
ks

)2}
.

Define
(
∆FE xπ,t

k

)2
= E

[(
∆maxx

t
kt
−∆minx

t
kt

)2]
. Then

(
∆FE xπ,t

k

)2 ≤ q

Γ2
·

∑

s∈[t−q,t−1]

1

n

∑

kt

L2
ks,kt

max
{(

∆maxx
s
ks
−∆minx

s
ks

)2
,
(
∆maxx

s
ks

)2
,
(
∆minx

s
ks

)2}

≤ q

n · Γ2
·

∑

s∈[t−q,t−1]

∑

kt

L2
resmax

{(
∆maxx

s
ks
−∆minx

s
ks

)2
,
(
∆maxx

s
ks

)2
,
(
∆minx

s
ks

)2}
. (12)

Since
∣∣∆minx

s
ks

∣∣ ,
∣∣∆maxx

s
ks

∣∣ ≤
∣∣∆xs

ks

∣∣+
(
∆maxx

s
ks
−∆minx

s
ks

)
, we have

(
∆minx

s
ks

)2
,
(
∆maxx

s
ks

)2 ≤ 2
(
∆xs

ks

)2
+ 2

(
∆maxx

s
ks
−∆minx

s
ks

)2
.

Thus

(
∆FE xπ,t

k

)2 ≤ qL2
res

n · Γ2

∑

s∈[t−q,t−1]

[
2
(
∆maxx

s
ks
−∆minx

s
ks

)2
+ 2

(
∆xs

ks

)2]
.

Now average over all nodes in a level, i.e. over all paths π. Let
(
∆FE

t xkt

)2
= E

[(
∆FE xt

kt

)2]
. Also, let

(Ex
s )

2
= E

[(
∆xs

ks

)2]
. Then

(
∆FE

t xt
kt

)2 ≤ qL2
res

n · Γ2

∑

s∈[t−q,t−1]

[(
∆FE

s xs
ks

)2
+ (Ex

s )
2
]
. (13)

Let ν =
q2L2

res

n·Γ2 and choose Γ so that ν < 1. Then we can repeatedly redistribute the terms (∆FE
s )2 to level s

and apply the upper bound in (13) recursively, ad infinitum. We see that level s receives a total charge of at most

ν · (Ex
s )

2 1

1− ν
. (14)

5.2 General SACD

When the updates might be inconsistent, the argument becomes more intricate. We highlight the main ideas here,
and defer the full proof to Appendix B. For now we assume that for each individual coordinate its updates remain
consistent w.r.t. each other. In the appendix, we show the very minor change in our analysis needed to remove this
assumption (increasing q to 2q suffices).

The difficulty is that we wish to use the uniformly random distribution based on the coordinate selection times
so as to be able to take expectations. But from the perspective of this ordering, the update to xkt

at “time” t, may
be affected by updates to some or all of the next q coordinates in this ordering. Further, depending on the random
choices, which of the next q coordinates have an effect may vary.

The key issue is how to do the averaging in (12) for now we have to consider future as well as past coordinate
updates (i.e. s > t on the RHS). For the RHS terms need not be independent of the choice of k any more. To avoid
this difficulty we will average over a smaller collections of substitutable paths. For the averaging at time t, we will
be considering paths that extend to time t+ q, and the coordinates we will be allowing to vary will be those being
updated in the time range [t, t+ q].

A particular collection will be identified by having exactly ℓ updates to xkt
in the time interval [t, t + q], for

1 ≤ ℓ ≤ q, at some specific times t = ti1 , ti2 , . . . , tiℓ ≤ t + q. A substitutable sequence — replaces xkt
by xk′

t
at

9



these ℓ time steps and leaves the other coordinates unchanged (in the sense of which coordinates are updated, not
what are the values of the updates).

The key point is that if the update of xkt
at time t depends on one of the other coordinate updates in the range

[t + 1,+t + q] then the latter coordinate’s update does not depend on the update to xkt
nor on any of the later

updates to xkt
. This property remains true for all the substitutable coordinates xk′

t
.

As the interval [t+1, t+q] includes at most q distinct coordinates, there are at least n−q substitutable coordinates
in any collection of substitutable coordinates. Further, these collections partition the coordinate updates at level t.

Following the averaging over substitutable coordinates, we seek to average over all the coordinates to obtain
an overall expectation. As stated, this does not work unfortunately. The difficulty is that the terms ∆FE xπ,s

ks
, as

we define them, need not be identical on the substitutable paths, which is needed in order to replace the terms
L2
ks,kt

by 1
nL

2
res. However, it turns out that on the RHS it suffices to use a restricted form of these terms, which

is identical across substitutable paths. Then, having done the averaging over substitutable paths, one can upper
bound the restricted form by the general term ∆FE xπ,s

ks
. We then average over all paths, obtaining a bound of the

form (27).

6 Parallel Asynchronous Coordinate Descent (PACD)

Again, we want to apply Theorem 1. Let H(t) := F (xt) +A(t), where

A(t) =
1

16

t∑

τ=max{t−q,1}

(τ + q)− t

q
· Γ
(
∆xτ

kτ

)2
.

For each time i, let α(i) denote the time of the latest update to coordinate ki which is strictly before time i; let
it be 0 if no such update exists. In Appendix C, we will show that if Γ ≥ 4qLmax, then H is decreasing; also, we
will use Lemma 3 (in a spirit similar to the CCD case), and also Inequality (4), to show that

t∑

i=t−2r+1

[H(i− 1)−H(i)]

≥
t−r∑

j=t−2r+1

[
1

3r

n∑

k=1

Ŵk(g
j
k, x

j−1
k ,Γ,Ψk) +

1

2q
·A(j − 1)

]

+


 3

64

t−2r∑

i=t−2r−q

i− t− 2r + q

q
Γ
(
∆xi

ki

)2
+

1

16

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2



− 2

3Γr

t∑

i=t−2r+1

i∑

j=max{α(i)+1,t−2r+1}

(
gjki
− giki

)2
−

t∑

i=t−2r+1

1

Γ
(giki
− g̃iki

)2. (15)

In the above inequality, there are four terms. The first term matches with what is required for applying Theorem
1, on setting α = n/(3r) and β = 1/2. Our remaining task is to show that for some sufficiently large Γ, the three
remaining terms, in sum, are non-negative. To achieve this, we will show that for some sufficiently large Γ,

2

3Γr

t∑

i=t−2r+1

i∑

j=max{α(i)+1,t−2r+1}

(
gjki
− giki

)2
≤ 1

64

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2
(16)

and
t∑

i=t−2r+1

1

Γ
(giki
− g̃iki

)2 ≤ 3

64

t−2r∑

i=t−2r−q

i − t+ 2r + q

q
Γ
(
∆xi

ki

)2
+

3

64

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2
. (17)

We call the above left hand sides the first and second type of gradient error, respectively.

Bounding The First Type of Gradient Error. The analysis is almost identical to that in the CCD case,
apart from the following two changes. The first change is to construct doubling intervals of length 2i for i =

10



0, 1, 2, · · · , (⌈lg r⌉ − 1). The second change is to apply the following inequality in place of (9). For each doubling
interval [τ1, τ2], by a use of the Cauchy-Schwarz inequality, we show that

n∑

k=1

(gτ1k − gτ2k )2 ≤ L2
n∑

k=1


 ∑

τ∈[τ1,τ2] and kτ=k

|∆xkτ
|




2

≤ L2
n∑

k=1

κmax

∑

τ∈[τ1,τ2] and kτ=k

(∆xkτ
)2 = L2κmax

τ2∑

τ=τ1

(∆xkτ
)2 .

Thus, for (16) to hold, we need Γ ≥ 16√
3
L
√
κmax⌈lg r⌉.

Bounding The Second Type of Gradient Error. By Assumption 1 and Definition 1,∣∣gtkt
− g̃tkt

∣∣ ≤ Lmax

∑t−1
τ=max{1,t−q} |∆xkτ

|. Then by the Cauchy-Schwarz inequality,

(
gtkt
− g̃tkt

)2 ≤ (Lmax)
2q

t−1∑

τ=t−q

(∆xkτ
)2 , (18)

and hence

t∑

i=t−2r+1

1

Γ
(giki
− g̃iki

)2 ≤
t∑

i=t−2r+1

(Lmax)
2q

Γ

i−1∑

τ=i−q

(∆xkτ
)
2

≤ (Lmax)
2q

Γ




t−2r∑

i=t−2r−q

(i − t+ 2r + q) · (∆xkτ
)2 +

t∑

i=t−2r+1

q · (∆xkτ
)2


 .

Thus, for (17) to hold, we need (Lmax)
2q

Γ ≤ 3Γ
64q , or equivalently, Γ ≥ 8√

3
qLmax.

To summarize, we need Γ ≥ max
{

16√
3
L
√
κmax⌈lg r⌉ , 8√

3
qLmax

}
.

7 Asynchronous Tatonnement in CES Fisher Markets

The concept of a market equilibrium was first proposed by Walras [45]. He also proposed an algorithmic approach
for finding equilibrium prices, namely to adjust prices by tatonnement: upward if there is too much demand and
downward if too little. Since then, studies of market equilibria and tatonnement have received much attention in
economics, operations research, and most recently in computer science [2, 44, 20, 15, 17, 18, 14, 13, 34]. Underlying
many of these works is the issue of what are plausible price adjustment mechanisms and in what types of markets
they attain a market equilibrium.

The tatonnements studied in prior work have mostly been continuous, or discrete and synchronous. Observing
that real-world market dynamics are highly distributed and hence presumably asynchronous, Cole and Fleischer [17]
initiated the study of asynchronous tatonnement with their Ongoing market model, a market model incorporating
update dynamics.

Cheung, Cole and Devanur [13] showed that tatonnement is equivalent to coordinate descent on a convex function
for several classes of Fisher markets, and consequently that a suitable synchronous tatonnement converges toward
the market equilibrium in two classes of markets: complementary-CES Fisher markets and Leontief Fisher markets.
This equivalence also enables us to apply our amortized analysis to show that the corresponding asynchronous
version of tatonnement converges toward the market equilibrium in these two classes of markets. We note that
the tatonnement for Leontief Fisher markets analyzed in [13] had an unnatural constraint on the step sizes; our
analysis removes that constraint.

As Cole and Fleischer [17] argued, any realistic price dynamics must involve out-of-equilibrium trade in order
to induce the imbalances leading to price updates. Further, they argued that simple rules with relatively low
information requirements were more plausible. The lowest imaginable level of information would be for each seller to
only know the demand for the good it was selling, and for any price updating to occur in a non-coordinated manner,
i.e., asynchronously. Accordingly, Cole and Fleischer analyzed the performance of an asynchronous tatonnement in
a market that repeated, which they named the Ongoing market. The market also incorporated warehouses (buffers)
to cope with imbalances between supply and demand.
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We review a few standard notions. A Fisher market comprises a set of n goods and two sets of agents, sellers
and buyers. The sellers bring the goods to market and the buyers bring money with which to buy the goods.
The trade is driven by a collection of non-negative prices {pj}j=1···n of the goods. Without loss of generality, we
can assume that each seller brings one distinct good to the market, and she is the price-setter for this good. By
normalization, we may assume that there is one unit of each good.

Each buyer i starts with ei money, and has a utility function ui(xi1, xi2, · · · , xin) expressing her preferences: if
she prefers bundle {xa

ij}j=1···n to bundle {xb
ij}j=1···n, then ui({xa

ij}j=1···n) > ui({xb
ij}j=1···n). At any given prices

{pj}j=1···n, each buyer i seeks to purchase a utility-maximizing bundle of goods costing at most ei. The demand
for good j, denoted by xj , is the total quantity of the good sought by all buyers. The supply of good j is the
quantity of good j its seller brings to the market, which we have assumed to be 1. The excess demand for good
j, denoted by zj , is the demand for the good minus its supply, i.e., zj = xj − 1. Prices {p∗j}j=1···n form a market
equilibrium if, for any good j with p∗j > 0, zj = 0, and for any good j with p∗j = 0, zj ≤ 0.

The Ongoing market simply repeats the market over a sequence of time periods called days. Sellers are allowed
to update their prices as frequently as they wish, but at least once a day (in order to ensure progress toward
convergence — a slower rate of updating can be captured by redefining what is a day).

A CES utility function has the form

u (x1, x2, · · · , xn) = (a1(x1)
ρ + a2(x2)

ρ + · · ·+ an(xn)
ρ)1/ρ ,

where ρ ≤ 1 and for all ℓ, aℓ ≥ 0. When ρ is negative, the goods form complements, and hence the utility function
is called a complementary-CES utility function. A Leontief utility function has the form

u (x1, x2, · · · , xn) = min
ℓ∈S
{bℓxℓ} ,

where S is a non-empty subset of the goods in the market, and ∀ℓ ∈ S, bℓ > 0.
Cheung, Cole and Devanur [13] showed that tatonnement is equivalent to gradient descent on a convex function

φ for Fisher markets with buyers having complementary-CES or Leontief utility functions. To be specific, [13]
showed that for the convex function φ(p) =

∑
k pk +

∑
i ûi(p), where ûi(p) is the optimal utility that buyer i

attains at prices p, we have that ∇kφ(p) = −zk(p). The corresponding update rule is

p′j = pj · (1 + λ ·min{zj, 1}) , (19)

where λ > 0 is a suitable constant. As the update rule was multiplicative, they assumed that the initial prices were
positive.

As argued in [17], when the economic activity is occurring over time, it is natural to base each price update for
a good on the excess demand observed by its seller since the time of the last price update to her good (possibly
weighted toward more recent sales). This perceived excess demand can be written as the product of the length
of the time interval with an instantaneous excess demand at some specific time in this interval, which yields the
following modification of update rule (19).

p′j = pj · (1 + λ ·min{z̃j, 1} · (t− αj(t))) , (20)

where αj(t) denotes the time of the latest update to price j strictly before time τ , z̃j is a value between the
minimum and maximum instantaneous excess demands during the time interval (αj(t), t), and λ > 0 is a suitable
constant.

As we will see in Appendix D, having λ ≤ 1/37 suffices. In comparison, in the synchronous version, λ ≤ 1/6
suffices. This implies that the step sizes of the asynchronous tatonnement can be kept at a constant fraction of
those used in its synchronous counterpart.

Theorem 5. For λ ≤ 1/37, asynchronous tatonnement price updates using rule (20) converge toward the market
equilibrium in any complementary-CES or Leontief Fisher market.

To prove Theorem 5, we perform an analysis similar in spirit to that of Theorem 3. However, since there is no
global Lipschitz bounds for the function φ(p) employed in [13], we have to settle for local Lipschitz bounds, and
this introduces extra technical difficulties. The proof of Theorem 5 is deferred to Appendices D and E.

In an earlier version of this paper [12], we proved the same result using a potential function, and we extended
that analysis to account for the warehouses that are present in the Ongoing Market model; the warehouses allowed
excess over and under demands to be handled in a natural way, by drawing down or adding to stocks in the
warehouses. While we are confident the present analysis can be extended in a similar way, we have yet to do so.
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8 Discussion

Computer Science has long been concerned with the organization and manipulation of information in the form of
well-defined problems with a clear intended outcome. But in the last 15 years, Computer Science has gained a new
dimension, in which outcomes are predicted or described, rather than designed. This work assesses the performance
of iterative problems of both types via a rather general amortized analysis.

Iterative procedures are pervasive in optimization (for example, see [22] and references therein). As these are
often applied to very large problem instances, it is desirable to perform multiple iterations or portions of iterations
in parallel. Then the challenge is to avoid inconsistent updating by the various parts of the computation that
proceed in parallel. This can be avoided by synchronizing appropriately, but this introduces its own costs and
delays. Thus, asynchronous algorithms, which can tolerate inconsistent updates, are particularly desirable; see [26]
and [46, Section 4] for further discussion.

Practitioners have used parallel and asynchronous optimization algorithms for a long time. The folklore is
convergence to minimum can usually be achieved, but linear speedup is rarely achievable. In this paper, we use
an amortized approach to analyze a very general form of asynchronous coordinate descent (ACD). The approach
allows us to prove the first convergence results for general parallel ACD, to improve existing convergence results
on cyclic coordinate descent and stochastic ACD, and further, to provide sufficient conditions for achieving linear
speedup in various settings, which are given in terms of structural parameters of the underlying convex function.
These provide an interesting theoretical counterpoint to the folklore.

Iterative updating also arises in many natural systems. Examples include bird flocking [9], influence systems [10],
spread of information memes across the Internet [25] and market economies [17]. Many of these problems fall into
the broad category of analyzing dynamical systems. Dynamical systems are also a staple of the physical sciences;
often the dynamics are captured via elegant deterministic sets of rules (e.g., Newton’s law of motion, Maxwell’s
equations for electrodynamics). The modeling of dynamical systems with intelligent agents presents new challenges
because agent behavior may not be wholly consistent or systematic. One issue that has received relatively little
attention is the timing of agents’ actions. In most prior analyses, amenable timing schemes (e.g., synchronous
or round robin updates) and perfect information retrieval were assumed, perhaps because they were more readily
analyzed. In contrast, in this paper we give an analysis that handles the more generalized timing schemes and
imperfect information retrieval that can occur due to asynchrony, in the context of an asynchronous tatonnement
price update rule for market economies; this is achieved by extending the coordinate descent analysis to apply to
this setting. We believe it is worthwhile to investigate whether the insight our approach provides will prove helpful
in achieving more realistic analyses of other agent-based dynamical systems in which asynchrony is natural.

The amortized analysis of tatonnement given here has its roots in some of the earlier amortized analysis of
Ongoing markets [18, 14]. Since updates in these markets can happen at arbitrary times, it is natural to model
time as being continuous. This leads to potential functions with a mix of integral and discrete terms, where progress
(i.e., the decrease in the potential function) is continuous, and at the events, price updates, the potential function is
guaranteed not to increase. In this paper, instead, we adapt the PACD analysis to handle arbitrary update times,
but without the need for integral terms (although an equivalent formulation with such terms is possible). We note
that the amortization in this analysis is quite distinct from the one in [14].
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A Some Basic Lemmas and Facts

A.1 Notation and Basic Facts

Recall we assume that at each time, there is exactly one coordinate value being updated. For any time τ , let kτ
denote the coordinate which is updated at time τ , and let ∆xkτ ,τ := xτ

kτ
− xτ−1

kτ
.

Since, for each coordinate j, the parameter Γj and the function Ψj remain unchanged throughout the ACD
process, to avoid clutter, we use the shorthand

Wj(d, g, x) := W (d, g, x,Γj ,Ψj) Ŵj(g, x) := Ŵ (g, x,Γj ,Ψj) d̂j(g, x) := d̂(g, x,Γj ,Ψj).

Note that Wj(0, g, x) = 0; thus Ŵj(g, x) ≥ 0.
Let [n] denote the set of coordinates {1, 2, · · · , n}. In this proof, Ψ will always denote a function R→ R which

is univariate, proper, convex and lower semi-continuous.
It is well-known that for any k ∈ [n], x ∈ R

n and r ∈ R,

f(x+ r~ek) ≤ f(x) +∇kf(x) · r +
Lk

2
r2. (21)

Also, for any x, r ∈ R
n,

f(x+ r) ≤ f(x) +

n∑

k=1

∇kf(x) · rk +
L

2

n∑

k=1

(rk)
2. (22)

Finally, for any τ ≥ 1, we define the progress as follows:

PRG(τ − 1) :=

n∑

k=1

Ŵk(∇kf(x
τ−1), xτ−1

k ,Γ,Ψk). (23)

A.2 Some Lemmas about the Functions Ŵ and d̂, and Proof of Lemma 3

We state five technical lemmas concerning the functions Ŵ and d̂. The following fact, which follows directly from
the definition of Ŵ , will be used multiple times:

If 0 < Γ < Γ′, then ∀g, x ∈ R, Ŵ (g, x,Γ,Ψ) ≥ Ŵ (g, x,Γ′,Ψ). (24)

Lemma 4 (Three-Point Property, [11, Lemma 3.2]). For any proper, convex and lower semi-continuous function
Y : R→ R and for any x− ∈ R, let x+ := argmaxx∈R

{
−Y (x)− Γ(x− x−)2/2

}
. Then for any x′ ∈ R,

Y (x′) +
Γ

2
(x′ − x−)2 ≥ Y (x+) +

Γ

2
(x′ − x+)2 +

Γ

2
(x+ − x−)2.

Lemma 5 ([41, Lemma 4]). For any g1, g2, x ∈ R and Γ ∈ R
+,

∣∣∣d̂(g1, x,Γ,Ψ)− d̂(g2, x,Γ,Ψ)
∣∣∣ ≤ 1

Γ
· |g1 − g2| .

Lemma 6. For any g, x ∈ R and Γ ∈ R
+, Ŵ (g, x,Γ,Ψ) ≥ Γ

2

(
d̂(g, x,Γ,Ψ)

)2
.

Proof: We apply Lemma 4 with x− = x′ = 0 and Y (d) = gd − Ψ(x) + Ψ(x + d). Then W (d, g, x,Γ,Ψ) =

−Y (d)− Γd2/2, and hence x+, as defined in Lemma 4, equals d̂(g, x,Γ,Ψ). These yield

Y (0) ≥ Y (d̂(g, x,Γ,Ψ)) + Γ ·
(
d̂(g, x,Γ,Ψ)

)2
.

Since Y (0) = 0 and −Y (d̂(g, x,Γ,Ψ)) = Ŵ (g, x,Γ,Ψ) + Γ
2

(
d̂(g, x,Γ,Ψ)

)2
, we are done.

Lemma 7. For any g, x ∈ R, Γ ∈ R
+ and 0 ≤ q ≤ 1,

W (q · d̂(g, x,Γ,Ψ), g, x,Γ,Ψ) ≥ q · Ŵ (g, x,Γ,Ψ).

14



Proof: The lemma can be proved easily using the fact that W (d, g, x,Γ,Ψ) is a concave function of d, as follows:

W (q · d̂(g, x,Γ,Ψ), g, x,Γ,Ψ) ≥ (1− q) ·W (0, g, x,Γ,Ψ) + q ·W (d̂(g, x,Γ,Ψ), g, x,Γ,Ψ)

= (1− q) · 0 + q · Ŵ (g, x,Γ,Ψ).

We finish this subsection by using Lemmas 5 and 6 to prove Lemma 3.

Lemma 3. For any g1, g2, x ∈ R and Γ ∈ R
+, Ŵ (g2, x,Γ,Ψ) ≤ 3

2Ŵ (g1, x,Γ,Ψ) + 2
Γ (g1 − g2)

2.

Proof: To avoid clutter, we use the shorthand d̂(gi) := d̂(gi, x,Γ,Ψ) for i = 1, 2.

Ŵ (g1, x,Γ,Ψ)

= max
d∈R

W (d, g1, x,Γ,Ψ)

≥ W (d̂(g2), g1, x,Γ,Ψ)

= − g1 · d̂(g2)− Γ · d̂(g2)2/2 + Ψ(x)− Ψ(x+ d̂(g2))

= − g2 · d̂(g2)− Γ · d̂(g2)2/2 + Ψ(x)− Ψ(x+ d̂(g2)) + (g2 − g1) ·
[
d̂(g1) + (d̂(g2)− d̂(g1))

]

≥ Ŵ (g2, x,Γ,Ψ)− |g1 − g2| ·
∣∣∣d̂(g1)

∣∣∣− |g1 − g2| ·
∣∣∣d̂(g2)− d̂(g1)

∣∣∣

≥ Ŵ (g2, x,Γ,Ψ)− |g1 − g2| ·
∣∣∣d̂(g1)

∣∣∣− 1

Γ
(g1 − g2)

2 (By Lemma 5)

≥ Ŵ (g2, x,Γ,Ψ)− 1

Γ
(g1 − g2)

2 − Γ

4
(d̂(g1))

2 − 1

Γ
(g1 − g2)

2 (AM-GM ineq.)

≥ Ŵ (g2, x,Γ,Ψ)− 2

Γ
(g1 − g2)

2 − 1

2
Ŵ (g1, x,Γ,Ψ). (By Lemma 6)

A.3 Proof of Theorem 1

Recall the definition of PRG(t− 1) in (23). We will use the following lemma from [36, Lemmas 4,6]. We provide a
proof here for completeness.

Lemma 8 (([36, Lemmas 4,6])).
(a) Suppose that f, F are strongly convex with parameters µf , µF > 0 respectively, and also suppose that Γ ≥ µf .
Then

PRG(t− 1) ≥ µF

µF + Γ− µf
· F (xt−1).

(b) Let R := minp∗∈P∗ ‖xt−1 − p∗‖. Then

PRG(t− 1) ≥ min

{
1

2
,
F (xt−1)

2Γ R2

}
· F (xt−1).

Proof: First of all, we show a lower bound for PRG(t− 1), which will be used to prove both (a) and (b).

PRG(t− 1) =

n∑

k=1

max
dk∈R

{
−∇kf(x

t−1) · dk − Γ · (dk)2/2 + Ψk(x
t−1
k )−Ψk(x

t−1
k + dk)

}

≥ max
d∈Rn

{
n∑

k=1

[
−∇kf(x

t−1) · dk − Γ · (dk)2/2 + Ψk(x
t−1
k )−Ψk(x

t−1
k + dk)

]
}
.

When f is strongly convex with parameter µf , for any d ∈ R
n,

f(xt−1 + d) ≥ f(xt−1) +

n∑

k=1

∇kf(x
t−1) · dk +

µf

2

n∑

k=1

(dk)
2.
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Thus

PRG(t− 1) ≥ max
d∈Rn

{
f(xt−1)− f(xt−1 + d)− Γ− µf

2

n∑

k=1

(dk)
2 +

n∑

k=1

[
Ψk(x

t−1
k )−Ψk(x

t−1
k + dk)

]
}

= max
d∈Rn

{
F (xt−1)− F (xt−1 + d)− Γ− µf

2

n∑

k=1

(dk)
2

}

≥ max
0≤β≤1

{
F (xt−1)− F

(
βp∗ + (1− β)xt−1

)
− (Γ− µf )β

2

2

n∑

k=1

(xt−1
k − p∗k)

2

}
. (25)

To prove (a), we apply the following characterization of strong convexity of F : for any 0 ≤ β ≤ 1,

F
(
βp∗ + (1− β)xt−1

)
≤ β · F (p∗) + (1− β) · F (xt−1) − µFβ(1 − β)

2

n∑

k=1

(xt−1
k − p∗k)

2.

Note that F (p∗) = F ∗ = 0. By (25),

PRG(t− 1) ≥ max
0≤β≤1

{
β · F (xt−1) +

µFβ(1− β)− (Γ− µf )β
2

2

n∑

k=1

(xt−1
k − p∗k)

2

}

≥
(
β · F (xt−1) +

µFβ(1 − β)− (Γ− µf )β
2

2

n∑

k=1

(xt−1
k − p∗k)

2

)∣∣∣∣∣
β=µF /(µF+Γ−µf )

=
µF

µF + Γ− µf
· F (xt−1).

Note that the constraint β ≤ 1 forces Γ ≥ µf .
To prove (b), let p∗ denote a point in P ∗ such that ‖xt−1− p∗‖ ≤ R, where P ∗ is the set of minimum points for

F . By the convexity of F , when 0 ≤ β ≤ 1, F (βp∗ + (1 − β)xt−1) ≤ (1 − β) · F (xt−1). Since f is convex, µf ≥ 0
always. From (25),

PRG(t− 1) ≥ max
0≤β≤1

{
β · F (xt−1)− Γβ2

2
R2

}
.

The R.H.S. of the above inequality is a maximization of a quadratic function of β, which can be easily solved to
yield the lower bound in (b).

The following proof is a generalization of the above result to account for rounds of length r > 1, and our
amortization function A(t).

Proof of Theorem 1:
Proof of (i). By the second assumption and Lemma 8,

t∑

i=t−2r+1

[H(i− 1)−H(i)] ≥
t−r∑

i=t−2r+1

[
α

n
PRG(i − 1) +

β

q
·A(i − 1)

]

≥
t−r∑

i=t−2r+1

[
α

n
· µF

µF + Γ− µf
F (xi−1) +

β

q
· A(i− 1)

]

≥
t−r∑

i=t−2r+1

δ ·H(i− 1),

where δ := min
{

α
n ·

µF

µF+Γ−µf
, β

q

}
.

By the assumption that H is decreasing,

t−r∑

i=t−2r+1

δ ·H(i− 1) ≥ δ

2
·

t∑

i=t−2r+1

H(i− 1).
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Combining all the above yields

t∑

i=t−2r+1

H(i) ≤
(
1− δ

2

)
·

t∑

i=t−2r+1

H(i− 1) =

(
1− δ

2

)
·

t−1∑

i=t−2r

H(i).

For any t ≥ 2r, iterating the above inequality (t− 2r + 1) times yields

t∑

i=t−2r+1

H(i) ≤
(
1− δ

2

)t−2r+1 2r−1∑

i=0

H(i).

Since H is decreasing, the summation in LHS is at least 2r ·H(t), while the summation in RHS is at most 2r ·H(0).
Thus,

H(t) ≤
(
1− δ

2

)t−2r+1

·H(0).

To finish the proof, note that since A(t) is non-negative by assumption, F (xt) ≤ H(t), and note that since A(0) = 0,
H(0) = F (p◦).

Proof of (ii). By the second assumption and Lemma 8,

t∑

i=t−2r+1

[H(i− 1)−H(i)] ≥
t−r∑

i=t−2r+1

[
α

n
PRG(i− 1) +

β

q
·A(i − 1)

]

≥
t−r∑

i=t−2r+1

[
α

n
·min

{
1

2
,
F (xi−1)

2Γ R2

}
· F (xi−1) +

β

q
· A(i − 1)

]
.

For each i, there are two possible cases:

• If F (xi−1) ≤ A(i− 1), then A(i − 1) ≥ H(i−1)
2 , thus

α

n
·min

{
1

2
,
F (xi−1)

2Γ R2

}
· F (xi−1) +

β

q
· A(i− 1) ≥ β

2q
·H(i− 1).

• If F (xi−1) > A(i− 1), then F (xi−1) > H(i−1)
2 , thus

α

n
·min

{
1

2
,
F (xi−1)

2Γ R2

}
· F (xi−1) +

β

q
· A(i− 1) >

α

2n
·min

{
1

2
,
H(i− 1)

4Γ R2

}
·H(i− 1).

Since H is a decreasing function, H(i− 1) ≤ H(0) = F (p◦). Thus, unconditionally, we have

α

n
·min

{
1

2
,
F (xi−1)

2Γ R2

}
· F (xi−1) +

β

q
· A(i− 1) ≥ min

{
β

2q
,

α

4n
,
H(i− 1)

4Γ R2

}
·H(i− 1)

≥ min

{
β

2q F (p◦)
,

α

4n F (p◦)
,

1

4Γ R2

}
·H(i− 1)2.

Note that the term min
{

β
2q F (p◦) , α

4nF (p◦) , 1
4Γ R2

}
is independent of i. We let ε denote it.

Now, we have

t∑

i=t−2r+1

[H(i− 1)−H(i)] ≥
t−r∑

i=t−2r+1

ε H(i− 1)2

≥ ε

r

(
t−r∑

i=t−2r+1

H(i− 1)

)2

(by the Power Mean Inequality)

≥ ε

r

(
1

2

t∑

i=t−2r+1

H(i− 1)

)2

(H is a decreasing function)

=
ε

4r

(
t∑

i=t−2r+1

H(i− 1)

)2
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For brevity, let Sτ :=
∑τ

i=τ−2r+1H(i). Then the above inequality translates to

St−1 − St ≥
ε

4r
(St−1)

2
.

Note that St−1 ≥ St ≥ 0. Dividing both sides by St−1 · St yields

1

St
− 1

St−1
≥ ε

4r

St−1

St
≥ ε

4r
.

Iterating the above inequality t− 2r + 1 times yields

1

St
− 1

S2r−1
≥ ε

4r
(t− 2r + 1)

and hence

St ≤
1

1
S2r−1

+ ε
4r (t− 2r + 1)

=
S2r−1

1 + ε
4 ·

S2r−1

r · (t− 2r + 1)
.

Since H is a decreasing function, St ≥ 2r ·H(t), while 2r ·H(2r− 1) ≤ S2r−1 ≤ 2r ·H(0) = 2r ·F (p◦). Thus,

H(t) ≤ F (p◦)

1 + ε
4 ·

2r·H(2r−1)
r · (t− 2r + 1)

=
F (p◦)

1 + ε
2 ·H(2r − 1) · (t− 2r + 1)

.

We finish the proof by noting that F (xt) ≤ H(t).

A.4 Proofs of Lemmas 1 and 2

Lemmas 1 and 2 follows directly from the lemma below. In the following lemma we allow the use of distinct Γj for
each coordinate, as this generalization will be used in the tatonnement analysis.

Lemma 9. Suppose there is an update to coordinate j at time t according to rule (1), and suppose that Γj ≥ Lj.
Let gj = ∇jf(x

t−1) and g̃j = ∇jf(x̃). Then

F (xt−1)− F (xt) ≥ Γj

2
(∆xj,t)

2 − |gj − g̃j| · |∆xj,t|

and F (xt−1)− F (xt) ≥ Ŵ (gj, x
t−1
j ,Γj ,Ψj)−

1

Γj
(gj − g̃j)

2.

Proof: To avoid clutter, we use the shorthand dj := d̂j(gj , x
t−1
j ) and d̃j := d̂j(g̃j , x

t−1
j ). By update rule (1),

d̃j = ∆xj,t.

F (xt) = f(xt) + Ψj(x
t
j) +

∑

k 6=j

Ψk(x
t
k)

≤ f(xt−1) + gj d̃j +
Γj

2
(d̃j)

2 +Ψj(x
t−1
j + d̃j) +

∑

k 6=j

Ψk(x
t−1
k ) (By (21), (1), and the assumption Γj ≥ Lj)

= F (xt−1) + g̃j d̃j +
Γj

2
(d̃j)

2 −Ψj(x
t−1
j ) + Ψj(x

t−1
j + d̃j) + (gj − g̃j)d̃j

= F (xt−1)− Ŵj(g̃j , x
t−1
j ) + (gj − g̃j)d̃j .

Hence,
F (xt−1)− F (xt) ≥ Ŵj(g̃j , x

t−1
j )− (gj − g̃j)d̃j .

Then we can apply Lemma 6 to prove the first inequality in Lemma 9:

F (xt−1)− F (xt) ≥ Ŵj(g̃j, x
t−1
j )− (gj − g̃j)d̃j ≥

Γj

2
(d̃j)

2 − |gj − g̃j| · |d̃j |.

18



We prove the second inequality in Lemma 9 as follows:

F (xt−1)− F (xt) ≥ Ŵj(g̃j , x
t−1
j )− (gj − g̃j)d̃j

≥ Wj(dj , g̃j , x
t−1
j )− (gj − g̃j)d̃j

= Wj(dj , gj , x
t−1
j ) + (gj − g̃j)dj − (gj − g̃j)d̃j

= Ŵj(gj , x
t−1
j ) + (gj − g̃j)(dj − d̃j)

≥ Ŵj(gj , x
t−1
j )− |gj − g̃j | · |dj − d̃j |

≥ Ŵj(gj , x
t−1
j )− 1

Γj
(gj − g̃j)

2 (By Lemma 5).
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B Stochastic Asynchronous Coordinate Descent (SACD)

We begin by fixing a path π from the root to a leaf to analyze the update to xπ,t
kt

. Because the commit ordering
need not match the start ordering of updates, when considering the updates of other variables that can influence
the updates of xπ,t

kt
we will want to exclude certain updates, which is done via the following definition of R. For

any set R ⊂ [t− q, t+ q], let

R :=
{
s ≤ t+ q

∣∣∣ ∃ r ∈ R such that s ≥ r and ks = kr

}
.

In fact, the only sets R we consider are R = φ or R is a singleton.
Let ∆t

maxx
π,R,u
ku

denote the maximum value that ∆xπ,u
ku

can assume when the first t − q − 1 updates on path

π have been fixed, assuming the update does not read any of the updates at times in R, nor any of the variables
updated at times v > t + q. Let ∆t

minx
π,R,u
ku

denote the analogous minimum value. Let gπ,t,R,u
max,ku

denote the value

of gπ,uku
used to evaluate ∆t

maxx
π,R,u
ku

and gπ,t,R,u
min,ku

denote the value of gπ,uku
used to evaluate ∆t

minx
π,R,u
ku

. Note that

∆t
maxx

π,R,u
ku

= ∆t
minx

π,R,u
ku

= ∆xπ,u
ku

if u < t− q. Also, ∆t
maxx

π,R,u
ku

≥ ∆t
maxx

π,φ,u
ku

and ∆t
minx

π,R,u
ku

≤ ∆t
minx

π,φ,u
ku

.
Then, by Lemma 5,

(
∆t

maxx
π,φ,u
ku

−∆t
minx

π,φ,u
ku

)2
≤ 1

Γ2

(
gπ,t,φ,umax,ku

− gπ,t,φ,umin,ku

)2

≤ 1

Γ2


 ∑

s∈[min{t−q,u−q},min{t+q,u+q}]\{u}

Lks,ku
·max

{∣∣∣∆t
maxx

π,{u},s
ks

−∆t
minx

π,{u},s
ks

∣∣∣ ,
∣∣∣∆t

maxx
π,{u},s
ks

∣∣∣ ,

∣∣∣∆t
minx

π,{u},s
ks

∣∣∣
}]2

≤ 2q

Γ2
·

∑

s∈[min{t−q,u−q},min{t+q,u+q}]\{u}

L2
ks,ku

·max

{(
∆t

maxx
π,{u},s
ks

−∆t
minx

π,{u},s
ks

)2
,
(
∆t

maxx
π,{u},s
ks

)2
,

(
∆t

minx
π,{u},s
ks

)2}
.

We are interested in those ku whose update is not determined when the update of kt starts and whose update can
affect the update of xkt

. Consequently, for a fixed u, we only consider t in the range [u − q, u + q], for a larger t
means that ∆xπ,u

ku
is already fixed, and a smaller t means that the update of xku

does not affect the update of xkt
.

For a fixed u, we maximize over t ∈ [u − q, u + q] and then average over a collection k′u of substitutable ku
(letting π′ denote the substitutable path in which k′u replaces ku), which gives

E

[
max

t

{(
∆t

maxx
π,φ,u
k′
u
−∆t

minx
π,φ,u
k′
u

)2} ∣∣∣ k′u and ku are substitutable

]

≤ 2q

(n− q)Γ2

∑

s∈[u−2q,u+q]\{u}

L2
res ·max

t

{(
∆t

maxx
π,{u},s
ks

−∆t
minx

π,{u},s
ks

)2
,

(
∆t

maxx
π,{u},s
ks

)2
,
(
∆t

minx
π,{u},s
ks

)2}
.

This averaging is legitimate because on the RHS the paths π being considered in the averaging all have the same

values for ∆t
maxx

π,{u},s
ks

and for ∆t
minx

π,{u},s
ks

as their computation does not involve updates in {u}.
Since max

{∣∣∣∆t
minx

π,{u},s
ks

∣∣∣ ,
∣∣∣∆t

maxx
π,{u},s
ks

∣∣∣
}
≤ max

{∣∣∣∆t
minx

π,φ,s
ks

∣∣∣ ,
∣∣∣∆t

maxx
π,φ,s
ks

∣∣∣
}
, and as

∆xπ,s
ks
∈
[
∆t

minx
π,φ,s
ks

, ∆t
maxx

π,φ,s
ks

]
, we have

∣∣∣∆t
minx

π,{u},s
ks

∣∣∣ ,
∣∣∣∆t

maxx
π,{u},s
ks

∣∣∣ ≤
∣∣∆xπ,s

ks

∣∣+
(
∆t

maxx
π,φ,s
ks

−∆t
minx

π,φ,s
ks

)
;

it follows that

(
∆t

minx
π,{u},s
ks

)2
,
(
∆t

maxx
π,{u},s
ks

)2
≤ 2

(
∆xπ,s

ks

)2
+ 2

(
∆t

maxx
π,φ,s
ks

−∆t
minx

π,φ,s
ks

)2
.
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Thus

E

[
max

t

{(
∆t

maxx
π,φ,u
k′
u
−∆t

minx
π,φ,u
k′
u

)2} ∣∣∣ k′u and ku are substitutable

]

≤ 2qL2
res

(n− q)Γ2

∑

s∈[u−2q,u+q]\{u}
max

t

[
2
(
∆t

maxx
π,φ,s
ks

−∆t
minx

π,φ,s
ks

)2
+ 2

(
∆xπ,s

ks

)2
]
.

Now, we extend the expectation to all paths π. Let
(
∆FE

u

)2
denote the resulting expectation for level u:

(
∆FE

u

)2
= Eπ

[
max

t

(
∆t

maxx
π,φ,u
ku

−∆t
minx

π,φ,u
ku

)2]
.

Also, let (Ex
s )

2 = Eπ

[(
∆xπ,s

ks

)2]
. Then,

(∆FE
u )2 ≤ 4qL2

res

(n− q)Γ2

∑

s∈[u−2q,u+q]\{u}

[(
∆FE

s

)2
+ (Ex

s )
2
]
≤ 4qL2

res

(n− q)Γ2

∑

s∈[u−2q,u+2q]\{u}

[(
∆FE

s

)2
+ (Ex

s )
2
]
. (26)

Let ν =
16q2L2

res

(n−q)Γ2 and choose Γ so that ν < 1. Then we can repeatedly redistribute the terms (∆FE
s )2 to level s

and apply the upper bound in (26) recursively, ad infinitum. We see that level s receives a total charge of at most

ν · (Ex
s )

2 1

1− ν
. (27)

B.1 Rate of Convergence

(4) gives in expectation

F (xt−1)− F (xt) ≥ 1

2

n∑

kt=1

[
Ŵkt

(gtkt
, xt−1

kt
,Γ,Ψk) +

1

8
Γ
(
∆xt

kt

)2 − 1

Γ
(gtkt
− g̃tkt

)2
]
.

We want to bound 1
Γ (g

t
kt
− g̃tkt

)2 by 1
8Γ
(
∆xt

kt

)2
in expectation in an amortized sense. By the discussion above,

Eπ

[
1
Γ (g

t
kt
− g̃tkt

)2
]
is bounded by

∑

s∈[t−2q,t+2q]

s6=t

ν

4q

[
Γ ·
(
∆FE

s

)2
+ Γ · (Ex

s )
2
]
. (28)

Let F (t) = E [F (xt)]. Considering the recursively unwound form of (26), i.e., with the RHS having only terms

of the form (Ex
s )

2
, shows that some of the cost in (28) at time t has already been paid for (namely for the terms

with s < t), while some of the progress will be paid for in the future (for terms with s > t). Accordingly we
introduce two functions A+(t) and A−(t); A+(t) will be the exact value of the progress already achieved that is
needed in the future, and A−(t) is the exact value of the already desired progress that will be paid for in the
future. A+(t), A−(t) ≥ 0 for all t, A+(0) = A−(0) = 0 and A+(T ) = A−(T ) = 0, for a run that lasts for exactly T
iterations. Let H(t) = F (t) + (1 + γ)A+(t)−A−(t), for a suitable parameter γ > 0. We will show that

H(t− 1)−H(t) ≥ 1

n

[
1

2

n∑

kt=1

Ŵkt
(gtkt

, xt−1
kt

,Γ,Ψk) +
1

2
(1 + γ)A+(t− 1)

]
. (29)

The standard coordinate descent convergence bound then applies to H , namely:

Theorem 6. If (29) holds, then:
(i) If F is strongly convex with parameter µF , and f has strongly convex parameter µf , then

H(t) ≤
[
1− 1

2n
· µF

µF + Γ− µf

]t
·H(0). (30)

(ii) Now suppose that F is convex. Let R be the radius of the level set for x◦. Then, for t ≥ 0,

H(t) ≤ H(0)

1 + 1
2n ·min

{
1 , H(0)

Γ R2

}
· t

. (31)
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As F (T ) = H(T ) and F (0) = H(0), (30) and (31) continue to hold with F (T ) replacingH(T ) and F (0) replacing
H(0).

In order to determine the right value for γ we will need to derive some bounds on A+(t) and A−(t). By (27),

the total demand for (Ex
s )

2
is at most ν

1−ν · Γ · (Ex
s )

2
. We write the (Ex

s )
2
demand at time t as m(s, t) · Γ · (Ex

s )
2
,

where m(s, t) is a suitable function. We will derive tight bounds on m(s, t) based on (28), assuming that s and t
range unboundedly over (−∞,+∞), which are upper bounds for their actual values in a T iteration computation.
As (28) is symmetric about t, it follows that m(t, t+ i) = m(t, t− i), for all i ≥ 1. Further, the bound on the total

demand for (Ex
s )

2
, namely ν

1−ν ·Γ · (Ex
s )

2
, continues to apply as the earlier argument did not assume any particular

bounds on s and t. We will show the following bounds:

Lemma 10. Suppose that ν ≤ 1/3. Then,

(A) m(t, t) ≤ ν
4q · ν

1−ν ;

(B) for any k ≥ 0 and 1 ≤ i ≤ 2q, m(t, t+ k · 2q + i) ≤ 1
4q · ν

k+1

1−ν ;

(C) for any i ≥ 1, m(t, t+ i) ≥ m(t, t+ i+ 1);

(D) for any i ≥ 1, m(t, t+ 2q + i) ≤ ν ·m(t, t+ i); and

(E) m(t, t) ≥ m(t, t+ 2q + 1).

Proof: To derive the bound, consider a fixed t and the demand for it generated at each level s. By (28), this

demand comes in the form of two terms, bounded by ν
4q · Γ · (Ex

t )
2
, for t < s ≤ t+ 2q, and

∑
u∈[s−2q,s+2q]\{s}

ν
4q ·

Γ ·
(
∆FE

u

)2
, for all s ≥ t, with the terms in the sum being redistributed recursively.

Let us view (28) as an iterative process, defined as follows. First, define m1 as below:

m1(t, s) :=





ν

4q
, if t < s ≤ t+ 2q

0, otherwise,

and for j ≥ 1, define mj+1 recursively as

mj+1(t, s) :=





ν

4q
+

∑

u∈[s−2q,s+2q]\{s}

ν

4q
·mj(t, u), if t < s ≤ t+ 2q

∑

u∈[s−2q,s+2q]\{s}

ν

4q
·mj(t, u), otherwise.

It is easy to verify by induction that mj(t, s) satisfies the bounds (A) and (B) for all j. Clearly, limj→∞ mj(t, s) is
an upper bound on m(t, s), and so it follows that m(t, s) satisfies these bounds too.

To prove bounds (C), (D) and (E), we again look at mj(t, s) and verify by induction that it satisfies the bounds,
and thus the bounds hold for the function m too.

We will use following bound (F), which can be proved easily by induction: for j ≥ 1, mj+1(t, s) ≥ mj(t, s).
To prove (C), we separate into three cases. If i > 2q,

mj+1(t, t+ i)−mj+1(t, t+ i+ 1) =
ν

4q

[
mj(t, t+ i− 2q)−mj(t, t+ i) +mj(t, t+ i+ 1)−mj(t, t+ i+ 2q + 1)

]

≥ ν

4q

[
mj(t, t+ i− 1)−mj(t, t+ i) +mj(t, t+ i+ 1)−mj(t, t+ i+ 2)

]
≥ 0,

in which the inequality holds by induction hypothesis. If i = 2q,

mj+1(t, t+ 2q)−mj+1(t, t+ 2q + 1) ≥ ν

4q

[
1 +mj(t, t)−mj(t, t+ 2q) +mj(t, t+ 2q + 1)−mj(t, t+ 4q + 1)

]

≥ 0 if 1 ≥ 1

4q
m(t, t+ 2q), i.e., if 1 ≥ 1

4q
· ν

1− ν
; ν ≤ 4

5
suffices.
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If 1 ≤ i ≤ 2q, we use the definition of mj , bounds (A) and (B) and the assumption that ν ≤ 1/3:

mj+1(t, t+ i)−mj+1(t, t+ i+ 1) =
ν

4q

[
mj(t, t+ i− 2q)−mj(t, t+ i) +mj(t, t+ i+ 1)−mj(t, t+ i+ 2q + 1)

]

≥ ν

4q

[
ν

4q
− ν

4q
· 1

1− ν
+

ν

4q
− ν

4q
· ν

1− ν

]

=

(
ν

4q

)2

·
(
2− 1 + ν

1− ν

)
≥ 0.

Bound (D) is straightforward given bounds (C) and (F):

mj+1(t, t+ 2q + i) =
ν

4q

∑

u∈[t+i,t+4q+i]\{t+2q+i}
mj(t, u) ≤ ν ·mj(t, t+ i) ≤ ν ·mj+1(t, t+ i).

Bound (E) is also straightforward given bound (C):

mj+1(t, t) = 2
∑

u∈[t+1,t+2q]

ν

4q
·mj(t, u)

≥
∑

u∈[t+1,t+2q]

ν

4q
·mj(t, u) +

∑

u∈[t+2q+2,t+4q+1]

ν

4q
·mj(t, u) = mj+1(t, t+ 2q + 1).

Corollary 11. A+(t) ≤∑1≤s≤t
2q
1−ν ·m(s, t+ 1) · Γ · (Ex

s )
2.

Proof: By bounds (C) and (D) of Lemma 10,

A+(t) =
∑

s≤t

∑

v>t

m(s, v) · Γ · (Ex
s )

2 ≤
∑

s≤t

2q ·m(s, t+ 1)
[
1 + ν + ν2 + . . .

]
· Γ · (Ex

s )
2

≤
∑

s≤t

2q

1− ν
·m(s, t+ 1) · Γ · (Ex

s )
2 .

Next we show (29).

Lemma 12. Suppose that ν ≤ 1
10 , γ = q

n(1−ν)−q , and q ≤ 1−ν
5 n. Then

H(t− 1)−H(t) ≥ 1

2n

[
n∑

kt=1

Ŵkt
(gtkt

, xt−1
kt

,Γ,Ψk) +A+(t− 1)

]
.

Proof:

H(t− 1)−H(t) ≥
[
F (t− 1) + (1 + γ)A+(t− 1)−A−(t− 1)

]
−
[
F (t) + (1 + γ)A+(t)−A−(t)

]

≥ 1

2n
E

[
n∑

k=1

Ŵk(g
t
kt
, xt−1

k ,Γ,Ψk)

]
+

Γ

8
(Ex

t )
2 − 1

Γ
E

[(
gtkt
− g̃tkt

)2]

+ (1 + γ) ·
[
A+(t− 1)−A+(t)

]
−
[
A−(t− 1)−A−(t)

]

≥ 1

2n
E

[
n∑

k=1

Ŵk(g
t
kt
, xt−1

k ,Γ,Ψk)

]
+

Γ

8
(Ex

t )
2 − 1

Γ
E

[(
gtkt
− g̃tkt

)2]

+ (1 + γ)

[
t−1∑

s=1

m(s, t) · Γ · (Ex
s )

2 −
∑

v>t

m(t, v) · Γ · (Ex
t )

2

]

+

T∑

v=t+1

m(v, t) · Γ · (Ex
v )

2 −
t−1∑

s=1

m(t, s) · Γ · (Ex
t )

2
.
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Now, note that

1

Γ
E

[(
gtkt
− g̃tkt

)2] ≤
T∑

s=1

m(s, t) · Γ · (Ex
s )

2 ,

and hence

H(t− 1)−H(t) ≥ 1

2n
E

[
n∑

k=1

Ŵk(g
t
kt
, xt−1

k ,Γ,Ψk)

]
+ γ ·

t−1∑

s=1

m(s, t) · Γ · (Ex
s )

2

+

(
1

8
− (1 + γ) ·

∑

v>t

m(t, v) − m(t, t) −
t−1∑

s=1

m(t, s)

)
Γ · (Ex

t )
2

≥ 1

2n
E

[
n∑

k=1

Ŵk(g
t
kt
, xt−1

k ,Γ,Ψk)

]
+ γ · 1− ν

2q
· A+(t− 1) (by Corollary 11)

+


1

8
−
∑

v≥1

m(t, v) − γ
∑

v>t

m(t, v)


 Γ · (Ex

t )
2 .

We want γ(1−ν)
2q ≥ 1

2n (1 + γ); i.e., γ · n(1− ν) ≥ q + qγ; γ ≥ q
n(1−ν)−q suffices.

By symmetry,
∑

v>t m(t, v) ≤ 1
2 · ν

1−ν . Thus, it suffices that 1
8 ≥ ν

1−ν

(
1 + γ

2

)
; with ν ≤ 1

10 , it suffices that
1
8 ≥ 1

9 (1 +
1
2γ), which holds if γ ≤ 1

4 , i.e., if n(1 − ν)− q ≥ 4q, or q ≤ 1−ν
5 n.

Recall that ν =
16q2L2

res

(n−q)Γ2 . We have shown that (29) holds if ν ≤ 1
10 , and hence so do the conclusions of Theorem 6.

This holds if q ≤ Γ
√
n−q

4
√
10·Lres

and q ≤ 9
50n.

Fully general non-consistent coordinates Here we address the possibility that the start and commit times of
a single coordinate need not be consistent. We address this by providing each coordinate with a virtual start time,
where the virtual start times are consistent with the commit times. For each coordinate xk, the virtual start times
are simply the actual start times of xk in sorted order, with the i-th such time becoming the virtual start time for
the update instance of xk with the i-th commit time in sorted order. The effect, for an update whose virtual start
time come before its actual start time, is to increase the number of earlier updates that would interfere with it,
but only up to at most 2q. To see this, suppose the update at start time t receives the virtual start time s < t.
Then the updates at times s and t could interfere with each other, and so s ≥ t − q. The only new updates that
could interfere with the update with real start time t are the up to q updates with start times in [s− q, s− 1], the
updates before time s that might interfere with the update with real start time s.

So it suffices to replace q with 2q in the previous bounds.
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C Parallel Asynchronous Coordinate Descent (PACD)

C.1 Proof of Inequality (15)

First of all, by (4),

t∑

i=t−2r+1

[H(i− 1)−H(i)]

≥
t∑

i=t−2r+1

[
1

2
Ŵki

(giki
, xi−1

ki
,Γ,Ψki

) +
1

8
Γ
(
∆xi

ki

)2 − 1

Γ
(giki
− g̃iki

)2
]
+A(t− 2r)−A(t)

Recall that for each time i, α(i) denotes the time of the latest update to coordinate ki strictly before time i,
and is 0 if no such update exists. Note that i− α(i) ≤ r by Assumption 2. Then by Lemma 3,

Ŵki
(giki

, xi−1
ki

,Γ,Ψki
) ≥ 1

r

i∑

j=max{α(i)+1,t−2r+1}

[
2

3
· Ŵki

(gjki
, xj−1

ki
,Γ,Ψki

) − 4

3Γ
·
(
gjki
− giki

)2 ]
,

and hence

t∑

i=t−2r+1

[H(i− 1)−H(i)]

≥
t∑

i=t−2r+1

1

3r

i∑

j=max{α(i)+1,t−2r+1}
Ŵki

(gjki
, xj−1

ki
,Γ,Ψki

) − 2

3Γr

t∑

i=t−2r+1

i∑

j=max{α(i)+1,t−2r+1}

(
gjki
− giki

)2

+
1

8

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2 −
t∑

i=t−2r+1

1

Γ
(giki
− g̃iki

)2 + A(t− 2r)−A(t)

≥
t−r∑

j=t−2r+1

1

3r

n∑

k=1

Ŵk(g
j
k, x

j−1
k ,Γ,Ψk) +

[
1

8

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2
+A(t− 2r)−A(t)

]

− 2

3Γr

t∑

i=t−2r+1

i∑

j=max{α(i)+1,t−2r+1}

(
gjki
− giki

)2
−

t∑

i=t−2r+1

1

Γ
(giki
− g̃iki

)2

≥
t−r∑

j=t−2r+1

[
1

3r

n∑

k=1

Ŵk(g
j
k, x

j−1
k ,Γ,Ψk) +

1

2q
· A(j − 1)

]

+


1
8

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2 − 1

2q

t−r∑

j=t−2r+1

A(j − 1) + A(t− 2r)−A(t)




− 2

3Γr

t∑

i=t−2r+1

i∑

j=max{α(i)+1,t−2r+1}

(
gjki
− giki

)2
−

t∑

i=t−2r+1

1

Γ
(giki
− g̃iki

)2.

By a direct expansion using the definition of A,

1

8

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2 − 1

2q

t−r∑

j=t−2r+1

A(j − 1) + A(t− 2r)−A(t)

≥ 3

64

t−2r∑

i=t−2r−q

i− t+ 2r + q

q
Γ
(
∆xi

ki

)2
+

1

16

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2

≥ 3Γ

64q




t−2r∑

i=t−2r−q

i − t+ 2r + q

q
Γ
(
∆xi

ki

)2
+

t∑

i=t−2r+1

Γ
(
∆xi

ki

)2

 ,

and we are done.
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C.2 Proving that H is Decreasing

For any t ≥ 1, by (4),

H(t− 1)−H(t)

≥ 1

2
Ŵkt

(gtkt
, xt−1

kt
,Γ,Ψkt

) +
1

8
(∆xt

kt
)2 − 1

Γ
(gtkt
− g̃tkt

)2 +
1

16

t−1∑

i=max{1,t−q}

1

q
· Γ(∆xi

ki
)2 − 1

16
(∆xt

kt
)2

≥ − (Lmax)
2q

Γ

t−1∑

i=max{1,t−q}
(∆xi

ki
)2 +

Γ

16q

t−1∑

i=max{1,t−q}
(∆xi

ki
)2. (by (18))

When Γ
16q ≥

(Lmax)
2q

Γ , or equivalently Γ ≥ 4qLmax, we are done.

C.3 Enforcing Assumptions 1 and 2

To enforce Assumption 1, one can use two fetch-and-add global counters, one for counting the number of updates
that have been started, and the other counting the number of updates that have finished. A core is allowed to
initiate a new iteration only when the two counters differ by at most q/2. Then, if the updates require a similar
amount of computation and communication, and assuming the asynchronous effects are not too variable, it is
plausible that there will not be much busy waiting for q a small multiple of the number of cores.

Next, we describe one modest overhead method to enforce Assumption 2 in the following setting: the coordinates
are distributed among the processors so that they have similar work loads and each processor iterates over its
coordinates cyclically.

We choose kstop = ⌊r/2n⌋. We maintain a global counter of the number of updates that have committed using
the fetch and add operation. We will be partitioning the updates into pseudo-rounds which have length at most r.

Each processor keeps a count of the number of updates it has committed since the current pseudo-round began
(we will explain how the start of a pseudo-round is detected shortly). If this count reaches kstop times its number
of variables it waits for the start of the next pseudo-round before performing more updates. Thus two updates of
any variable must occur within 2(n− 1) ⌊r/2n⌋+ 1 ≤ r updates of each other. Further, in any round of r updates,
there can be at most κmax

.
= 2kstop updates to any one variable.

To identify the start of a new pseudo-round we use 3 shared counters, whose roles rotate over cycles of 3 pseudo-
rounds. The current counter keeps track of the number of variables that have been updated at least once during
the current pseudo-round, by means of fetch and add operations. A new pseudo-round begins when the current
counter attains the value n. At that point, we switch to updating the second counter, and as each commit in this
round is performed the third counter is reset to 0.

Note that if keeping counters for each processor’s collection of variables is impractical, one could instead follow
the above procedure for each variable separately.
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D Tatonnement Analysis for Complementary-CES Fisher Markets

In the tatonnement analysis, the control variables are prices, so it is more natural to use p (instead of x in the
ACD setting) to denote their values.

D.1 Comparison with the PACD Analysis

At a high level, the analysis is similar to that for PACD. Again we define a function A(t) ≥ 0 andH(t) = φ(pt)+A(t)
(note that φ plays the role of F here), with A(0) = 0. The basic idea is to show that if there are a series of updates
between times t and t′, where t− 3 ≤ t′ ≤ t− 2, then H(t′)−H(t) ≥ H(t′) · exp(−ε) for a suitable constant ε > 0.
This then implies that for any t ≥ 2, F (xt) ≤ H(t) ≤ e−ε·Θ(t) ·H(p◦) = F (x◦).

There are a few modifications to the PACD analysis. First, the function φ(p) does not admit global Lipschitz
parameters. We have to settle for using local Lipschitz parameters, and also using adaptive step sizes in the update
rule. Second, we will use individual Ljk parameters to bound gradient errors, instead of using the lump parameter
Lmax — this is crucial for showing that λ, the parameter in update rule (20), can be as large as Θ(1).

Third, for tatonnement, the two types of gradient errors in the PACD setting can be merged into one. To see
why, note that in the market setting, each seller of a good does not observe the prices of the other goods, but rather
the excess demand of her own good which is a function of all prices, while the excess demand is the same of the
gradient of φ at current prices. Thus, each update to a good uses an excess demand value of the good which lies
between the minimum and maximum values since the last update to the same good — this difference between the
used value and the accurate value is the source of the second type of error in the PACD setting. When translated
to the coordinate descent setting, the update uses a gradient value which is between the minimum and maximum
values since the last update to the same coordinate, and as we will see, it can be bounded in exactly the same way
as the first type of error. In contrast, in the PACD setting, due to inconsistent reads, the used gradient value need
not lie between the minimum and maximum gradient values since the last update to the same coordinate.

We note that φ is a smooth function so Ψk ≡ 0, and consequently we omit it from the arguments of the function
Ŵk.

D.2 Analysis

Notations, Definitions and Two Lemmas. Recall update rule (20). Note that, for the purposes of our
analysis, for each update we now need to know the elapsed time since the previous update to the same coordinate,
or since time 0 if it is the first update to that coordinate; for the update at time τ , we denote this by ∆tτ . We
let αk(τ) denote the time of the most recent update to pk strictly before time τ , or time 0 if there is no previous
update to this price. We let α(τ) denote the time of the most recent update to any coordinate strictly before time
τ , or time 0 if there is no previous update to this price. And we let δτ := τ − α(τ).

Recall that the coordinates being updated are prices pj . We let pt−kt
denote the value of coordinate pkt

right
before it is updated at time t. In our analysis, when we write

∑
τ∈I , where I is some time interval, the summation

is summing over all updates occurred in the time interval I.
For each update τ , let gmax,τ

k and gmin,τ
k denote the maximum and minimum of accurate gradient values along

coordinate k in the time interval (αkτ
(τ), τ).

We need the following two lemmas. The first lemma is a variant of Lemma 9, which takes account of the time
intervals. The second lemma can be derived easily from the Power-Mean inequality.

Lemma 13. Suppose there is an update to coordinate j at time t according to rule (20), and suppose that Γj ≥ Lj.
Let τ = α(t). Let gj = ∇jf(p

τ ) and g̃j = ∇jf(p̃). Then

F (pτ )− F (pt) ≥ Γj

2

(∆ptj)
2

∆t
− |gj − g̃j| · |∆ptj |

and F (pτ )− F (pt) ≥ Ŵ (gj , p
τ
j ,Γj,Ψj) ·∆t− 1

Γj
(gj − g̃j)

2 ·∆t.

This is proved in exactly the same way as Lemma 9. We can then deduce the following variant of (4).

F (pτ )− F (pt) ≥ 1

2
Ŵ (gj , p

τ
j ,Γj ,Ψj) ·∆t +

Γj

8

(∆ptj)
2

∆t
− 1

Γj
(gj − g̃j)

2 ·∆t. (32)
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Lemma 14. Suppose that w1, w2, · · · , wℓ and y1, y2, · · · , yℓ are non-negative numbers. Then




ℓ∑

j=1

wjxj




2

≤




ℓ∑

j=1

wj






ℓ∑

j=1

wj · (xj)
2


 .

Analysis Details. We define the function A(t) as follows.

A(t) =
1

3

∑

τ∈(t−1,t]

∑

k 6=kτ

(2−min{1, Uk(τ, t)}) · L[τ,τ+1]
kτ ,k

· pτk
pτ−kτ

·
(
∆pτkτ

)2

∆tτ
,

where Uk(τ, t) denotes the number of updates to coordinate k in the time interval (τ, t], and each L parameter of the

format L
[τa,τb]
jk is an upper bound on the Lipschitz gradient parameter Ljk of the function φ, within a rectangular

hull of those prices which might appear in the time interval [τa, τb] only.
For some t ≥ 2 at which there is an update, we let ta denote the time of the latest update strictly before time

(t− 2); we let ta = 0 if no such update exists. We let tb denote the time of the earliest update in the time interval
[t− 1, t].

∑

τ∈(ta,t]

[H(α(τ)) −H(τ)]

≥
∑

τ∈(ta,t]

[
1

2
Ŵkτ

(gτkτ
, pτ−kτ

,Γτ
kτ
) ·∆tτ +

Γτ
kτ

8
· (∆pτkτ

)2

∆tτ
− 1

Γτ
kτ

(gτkτ
− g̃τkτ

)2 ·∆tτ

]
+ A(ta)−A(t)

(∗)
≥

∑

τ∈(ta,t]

[
1

2
Ŵkτ

(gτkτ
, pτ−kτ

,Γτ
kτ
) ·∆tτ +

Γτ
kτ

8
·
(∆pτkτ

)2

∆tτ
− 1

Γτ
kτ

(gmax,τ
kτ

− gmin,τ
kτ

)2 ·∆tτ

]
+ A(ta)−A(t).

(33)

Inequality (∗) holds because in the tatonnement setting, both the accurate gradient (excess demand) gτkτ
and the

inaccurate gradient (excess demand) g̃τkτ
must lie in between gmax,τ

kτ
and gmin,τ

kτ
. Note that in the PACD setting

which allows inconsistent read, this does not hold.9

By Lemma 3, for each τ ∈ (ta, t],

Ŵkτ
(gτkτ

, pτ−kτ
,Γτ

kτ
) ·∆tτ

≥
∑

ν∈(max{ta,αkτ (τ)},τ ]

[
2

3
Ŵkτ

(gνkτ
, pν−kτ

,Γτ
kτ
) · δν −

4

3
· 1

Γτ
kτ

·
(
gνkτ
− gτkτ

)2 · δν
]

≥ 2

3


 ∑

ν∈(max{ta,αkτ (τ)},τ ]
Ŵkτ

(gνkτ
, pν−kτ

,Γτ
kτ
) · δν


 − 4

3
· 1

Γτ
kτ

· (gmax,τ
kτ

− gmin,τ
kτ

)2 ·∆tτ . (34)

For any k and any time ν, we let Γν
k denote the step size used by the update to coordinate k on or after time

9In PACD, cores retrieve outdated prices and use them to compute gradients, while in the tatonnement setting, sellers observe
outdated gradients (excess demands) directly.
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ν. Combining (33) and (34) yields

∑

τ∈(ta,t]

[H(α(τ)) −H(τ)]

≥ 1

3

∑

τ∈(ta,t]

∑

ν∈(max{ta,αkτ (τ)},τ ]
Ŵkτ

(gνkτ
, pν−kτ

,Γτ
kτ
) · δν

+


1

8

∑

τ∈(ta,t]

Γτ
kτ

(∆pτkτ
)2

∆tτ
+A(ta)−A(t)


 − 5

3

∑

τ∈(ta,t]

1

Γτ
kτ

· (gmax,τ
kτ

− gmin,τ
kτ

)2 ·∆tτ

≥ 1

3

∑

ν∈(ta,tb]

δν ·
n∑

k=1

Ŵk(g
ν
k , p

ν−
k ,Γν

k)

+


1

8

∑

τ∈(ta,t]

Γτ
kτ

(∆pτkτ
)2

∆tτ
+A(ta)−A(t)


 − 5

3

∑

τ∈(ta,t]

1

Γτ
kτ

· (gmax,τ
kτ

− gmin,τ
kτ

)2 ·∆tτ

=
∑

ν∈(ta,tb]

δν ·
(
1

3

n∑

k=1

Ŵk(g
ν
k , p

ν−
k ,Γν

k) +
1

12
·A(α(ν))

)

+


1

8

∑

τ∈(ta,t]

Γτ
kτ

(∆pτkτ
)2

∆tτ
− 1

12

∑

ν∈(ta,tb]

δν ·A(α(ν)) +A(ta)−A(t)


 − 5

3

∑

τ∈(ta,t]

1

Γτ
kτ

· (gmax,τ
kτ

− gmin,τ
kτ

)2 ·∆tτ .

In [13], it was proved that the function φ is strongly convex, and that the maximum Γ value throughout the
tatonnement is upper bounded by a finite constant which depends on the starting price p◦.10 We denote the finite
upper bound on all Γ’s by Γ, and the strong convexity parameter of φ by µφ. We let ε := µφ/(µφ + Γ). Then by
Lemma 8,

n∑

k=1

Ŵk(g
ν
k , p

ν−
k ,Γν

k) ≥ ε · F (α(ν)).

By replacing ε with min{ε/3 , 1/12}, we have

∑

τ∈(ta,t]

[H(α(τ)) −H(τ)]

≥
∑

ν∈(ta,tb]

ε · δν ·H(α(ν)) +


1

8

∑

τ∈(ta,t]

Γτ
kτ

(∆pτkτ
)2

∆tτ
− 1

12

∑

ν∈(ta,tb]

δν · A(α(ν)) + A(ta)−A(t)




− 5

3

∑

τ∈(ta,t]

1

Γτ
kτ

· (gmax,τ
kτ

− gmin,τ
kτ

)2 ·∆tτ . (35)

We are going to prove that the final two terms, in sum, are non-negative. Then the above inequality is equivalent
to saying that the progress from time ta to time t is at least the progress achieved by the following process: over
the time interval (ta, tb], which is divided into subintervals indexed by ν, of respective length δν , such that in each
interval the progress is reducing H by a factor of at least exp(−ε · δν). Since the length of the time interval (ta, tb]
is at least 1,

H(t) ≤ H(ta) · exp


−ε ·

∑

ν∈(ta,tb]

δν


 ≤ H(ta) · exp(−ε).

Iterating the above inequality from time t down to at least time 2 yields

F (pt) ≤ H(t) ≤ exp(−ε · (t/3− 1)) ·H(0) = exp(−ε · (t/3− 1)) · F (p◦),

as desired.
We handle the remaining tasks in the next two subsections, namely showing that when each Γt

k is sufficiently
large, H is decreasing, and the last two terms in (35), in sum, are non-negative.

10Their argument concerned the synchronous setting, but it can be reused without change for the asynchronous setting.
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D.2.1 H is a Decreasing Function

For any time τ at which there is an update, from (33) and the definition of A, we have

H(α(τ)) −H(τ) ≥ 1

2
Ŵkτ

(gτkτ
, pτ−kτ

,Γτ
kτ
) ·∆tτ +

Γτ
kτ

8
· (∆pτkτ

)2

∆tτ
− 1

Γτ
kτ

(
gmax,τ
kτ

− gmin,τ
kτ

)2
·∆tτ

+
1

3

∑

ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kν ,kτ

·
pτ−kτ

pν−kν

·
(
∆pνkν

)2

∆tν
− 2

3

∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ

·
(
∆pτkτ

)2

∆tτ
.

Next,

(
gmax,τ
kτ

− gmin,τ
kτ

)2
≤


 ∑

ν∈(αkτ (τ),τ)

L
[ν,τ ]
kν ,kτ

∣∣∆pνkν

∣∣



2

=


 ∑

ν∈(αkτ (τ),τ)

(
L
[ν,τ ]
kν ,kτ

·∆tν ·
pν−kν

pν−kτ

)
·
(∣∣∆pνkν

∣∣
∆tν

·
pν−kτ

pν−kν

)


2

≤


 ∑

ν∈(αkτ (τ),τ)

L
[ν,τ ]
kν ,kτ

·∆tν ·
pν−kν

pν−kτ




 ∑

ν∈(αkτ (τ),τ)

L
[ν,τ ]
kν ,kτ

·
pν−kτ

pν−kν

·
(
∆pνkν

)2

∆tν


 (by Lemma 14)

≤


 ∑

ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ ]
kν ,kτ

·∆tν ·
pν−kν

pτ−kτ




 ∑

ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kν ,kτ

·
pτ−kτ

pν−kν

·
(
∆pνkν

)2

∆tν


 . (36)

Combining all the above yields

H(α(τ)) −H(τ)

≥ 1

2
Ŵkτ

(gτkτ
, pτ−kτ

,Γτ
kτ
) ·∆tτ +


Γτ

kτ

8
− 2

3

∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ



(
∆pτkτ

)2

∆tτ

+


1

3
− 1

Γτ
kτ

∑

ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ ]
kν ,kτ

·∆tν ·
pν−kν

pτ−kτ




 ∑

ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kν ,kτ

·
pτ−kτ

pν−kν

·
(
∆pνkν

)2

∆tν


 .

Thus, for H to be decreasing, it suffices that

Γτ
kτ
≥ 16

3

∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ

and Γτ
kτ
≥ 3

∑

ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ ]
kν ,kτ

·∆tν ·
pν−kν

pτ−kτ

.

But we will impose the stronger requirement that

Γτ
kτ
≥ 6

∑

ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ ]
kν ,kτ

·∆tν ·
pν−kν

pτ−kτ

.

D.2.2 The Sum of the Last Two Terms in (35) is Non-negative

It remains to show that the sum of the last two terms in (35) is non-negative, i.e.,

1

8

∑

τ∈(ta,t]

Γτ
kτ

(∆pτkτ
)2

∆tτ
− 1

12

∑

ν∈(ta,tb]

δν · A(α(ν)) + A(ta)−A(t) ≥ 5

3

∑

τ∈(ta,t]

1

Γτ
kτ

· (gmax,τ
kτ

− gmin,τ
kτ

)2 ·∆tτ .
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We first simplify the LHS using the definition of A:

1

8

∑

τ∈(ta,t]

Γτ
kτ

(∆pτkτ
)2

∆tτ
− 1

12

∑

ν∈(ta,tb]

δν · A(α(ν)) + A(ta) − A(t)

≥ 1

8

∑

τ∈(ta,t]

Γτ
kτ

(∆pτkτ
)2

∆tτ
− 1

12

∑

ν∈(ta−1,tb]

2

3

∑

k 6=kν

L
[ν,ν+1]
kν ,k

· pνk
pν−kν

·
(
∆pνkν

)2

∆tν

+
1

3

∑

ν∈(ta−1,ta]

∑

k 6=kν

L
[ν,ν+1]
kν ,k

· pνk
pν−kν

·
(
∆pνkν

)2

∆tν
− 2

3

∑

ν∈(t−1,t]

∑

k 6=kν

L
[ν,ν+1]
kν ,k

· pνk
pν−kν

·
(
∆pνkν

)2

∆tν

≥
(
1

3
− 1

18

) ∑

ν∈(ta−1,ta]

∑

k 6=kν

L
[ν,ν+1]
kν ,k

· pνk
pν−kν

·
(
∆pνkν

)2

∆tν
+

∑

τ∈(ta,t]


Γ

τ
kτ

8
−
(

1

18
+

2

3

) ∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ


 (∆pτkτ

)2

∆tτ
.

By imposing the requirement that Γτ
kτ
≥ 8

∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτ
k

pτ−

kτ

, we have

1

8

∑

τ∈(ta,t]

Γτ
kτ

(∆pτkτ
)2

∆tτ
− 1

12

∑

ν∈(ta,tb]

δν ·A(α(ν)) + A(ta) − A(t) ≥ 5

18

∑

τ∈(ta−1,t]

∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ

(∆pτkτ
)2

∆tτ
.

On the other hand, by (36) and by the condition imposed on the Γs in the last subsection,

5

3

∑

τ∈(ta,t]

1

Γτ
kτ

· (gmax,τ
kτ

− gmin,τ
kτ

)2 ·∆tτ ≤
5

3

∑

τ∈(ta,t]

1

6

∑

ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kν ,kτ

·
(
∆pνkν

)2

∆tν

≤ 5

18

∑

τ∈(ta−1,t]

∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ

(∆pτkτ
)2

∆tτ
.

D.2.3 Upper Bounds on the Local Lipschitz Parameters, and Determining the Γ’s

In the last two subsections, we have imposed the requirements

Γτ
kτ
≥ 8

∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ

and Γτ
kτ
≥ 6

∑

ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ ]
kν ,kτ

·∆tν ·
pν−kν

pτ−kτ

, (37)

where the L parameters are the local Lipschitz parameters of the function φ. Our remaining tasks are to derive
lower bounds on the two summations above.

Suppose in a Fisher market with buyers having complementary-CES utility functions, each buyer i has a budget
of ei, and her CES utility function has parameter ρi. For each i, let θi := ρi/(ρi − 1). As we have discussed in
Section 7, at any given prices p ∈ (R+)n, buyer i computes the demand-maximizing bundle of goods costing at
most ei; we let xiℓ(p) denote the buyer i’s demand for good ℓ at prices p.

In a Fisher market with buyers having complementary-CES utility functions, Properties 1 and 2 below are
well-known. Property 3 was proved in [13].

1. For any k 6= j, ∣∣∣∣
∂2φ

∂pj ∂pk
(p)

∣∣∣∣ =
∑

i

θi xij(p) xik(p)

ei
≤
∑

i

xij(p) xik(p)

ei
.

2. Given positive prices p, for any 0 < r1 < r2, let p
′ be prices such that for all ℓ, r1pℓ ≤ p′ℓ ≤ r2pℓ. Then for all

ℓ, 1
r2
xℓ(p) ≤ xℓ(p

′) ≤ 1
r1
xℓ(p).

3. If for each ℓ,
∣∣∣∆xℓ

pℓ

∣∣∣ ≤ 1
6 , then

φ(p+∆x)− φ(p)−
∑

ℓ

∇ℓφ(p) ·∆xℓ ≤
∑

ℓ

1.5xℓ

pℓ
(∆xℓ)

2.
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Lemma 15. If the parameter λ in update rule (20) is at most 1/20, then

∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ

≤ 5

4
· xkτ

(pτ−)

pτ−kτ

and
∑

ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ ]
kν ,kτ

·∆tν ·
pν−kν

pτ−kτ

≤ 11

4
· xkτ

(pτ−)

pτ−kτ

.

Proof: Since λ ≤ 1/20, it is easy to observe that for any ν ∈ [τ, τ + 1] and for any k (including coordinate kτ ),

e−2/20 · pτ−k ≤ pνk ≤ e2/19 · pτ−k . (38)

Accordingly, we let

P̃ :=
{
(p̃1, p̃2, · · · , p̃n)

∣∣∣∀k ∈ [n], e−2/20 · pτ−k ≤ p̃k ≤ e2/19 · pτ−k
}
.

∑

k 6=kτ

L
[τ,τ+1]
kτ ,k

· pτk
pτ−kτ

≤ 1

pτ−kτ

∑

k 6=kτ

(
max
p̃∈P̃

∣∣∣∣
∂2φ

∂pkτ
∂pk

(p̃)

∣∣∣∣
)
· pτk

≤ 1

pτ−kτ

∑

k 6=kτ

∑

i

(e2/20xikτ
(pτ−)) · (e2/20xik(p

τ−))

ei
· pτ−k (By Properties 1 and 2)

≤ e1/5

pτ−kτ

∑

i

xikτ
(pτ−)

∑

k 6=kτ

xik(p
τ−) · pτ−k
ei

≤ e1/5

pτ−kτ

∑

i

xikτ
(pτ−) (The second summation is at most 1, due to the budget constraint)

= e1/5 · xkτ
(pτ−)

pτ−kτ

≤ 5

4
· xkτ

(pτ−)

pτ−kτ

. (39)

For the time range ν ∈ [αkτ
(τ), τ ], the inequality (38) holds also.

∑

ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ ]
kν ,kτ

·∆tν ·
pν−kν

pτ−kτ

≤ 1

pτ−kτ

∑

ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ ]
kν ,kτ

·∆tν · e2/19 · pτ−kν

≤ e2/19

pτ−kτ

∑

k 6=kτ

L
[αkτ (τ),τ ]
k,kτ

· pτ−k ·
∑

ν∈(αkτ
(τ),τ)

kν=k

∆tν

≤ 2e2/19

pτ−kτ

∑

k 6=kτ

L
[αkτ (τ),τ ]
k,kτ

· pτ−k . (Observe that the
∑

ν

∆tν term

above is at most 2)

The summation
∑

k 6=kτ
L
[αkτ (τ),τ ]
k,kτ

·pτ−k above can be bounded as in (39), yielding an upper bound of e1/5 ·xkτ
(pτ−).

Noting that 2 · e2/19 · e1/5 ≤ 11
4 , we are done.

To conclude, by (37) and Lemma 15, we need that

Γτ
kτ
≥ 33

2
· xkτ

(pτ−)

pτ−kτ

.

Note that in update rule (20), it is equivalent to that Γτ
kτ

= 1
λ·pτ−

kτ

·max{z̃kτ
, 1}. Thus, we need that

λ ≤ 2

33
· max{z̃kτ

, 1}
xkτ

(pτ−)
≤ 2

33
· max{z̃kτ

, 1}
e2/19 · x̃kτ

≤ 2

33 · e2/19 ·
1

2
,

or slightly stronger, λ ≤ 1/37.
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E Tatonnement Analysis for Leontief Fisher Markets

It is well-known that Leontief utility functions can be considered as the “limit” of CES utility functions as ρ→ −∞.
We note that the three properties listed in Appendix 7 also hold for Leontief utility functions. However, we cannot
apply the analysis in Appendix 7 to the Leontief Fisher markets for two reasons. Firstly, while φ remains convex,

it is no longer strongly convex, so µφ = 0. Secondly, recall that Γτ
kτ
≥ 33

2 ·
xkτ (pτ−)

pτ−

kτ

. For Leontief Fisher markets,

it is possible that some good j has zero equilibrium price. Under this scenario, for convergence to the equilibrium,
Γt
j has to grow towards infinity.
Here, we provide additional arguments which build on top of the result that H(t) decreases with t, to show that

tatonnement with update rule (20) still converges toward the market equilibrium. However, this result does not
provide a bound on the rate of convergence.

Tatonnement in Leontief Fisher markets was first analysed by Cheung, Cole and Devanur [13]. They gave a
bound on the convergence rate, but with a less natural update rule — in their update rule, Γt

j increases with
the number of buyers in the market, and is also a function of the demands for all the goods, both of which seem
unnatural, while the Γt

j used here is independent of the number of buyers and depends only on the demand for
good j.

E.1 Analysis

Lemma 16. Let αj(t), t be the times at which two consecutive updates to pj occur. Let ∆t = t − αj(t) Then

H(αj(t))−H(t) ≥ Γt
j

8 ·
(∆pt

j)
2

∆t .

Proof: Same as in Section D.2.1, except that instead of using (32), we use the following inequality instead:

F (pt)− F (pα(t)) ≥
Γt
j

4

(
∆ptj

)2

∆t
− 1

Γt
j

(gj − g̃j)
2 ·∆t.

In [13], they showed that there exists a finite positive number U which is an upper bound on all the prices
throughout the tatonnement process.

Lemma 17. Suppose that there are consecutive updates to pj at times τ0 < τ1 < · · · < τm, where τm − τ0 ≤ 2. If∣∣pτ0j − pτmj
∣∣ ≥ ǫ, where ǫ ≤ 1, then H(τ0)−H(τm) ≥ ǫ2 ·min

{
1
16 ,

1
64λU

}
.

Proof: For q = 1, 2, · · · ,m, let ∆pj,q be the change made to pj by the update at time τq, and let z̃j,q be the

z̃-value used for the update, i.e., Γ
τq
j =

max{1,z̃j,q}

λp
τ
−
q

j

and ∆pj,q = λp
τ−

q

j ·min{1, z̃j,q} ·∆tq.

If z̃j,q < 1, then
Γ
τq
j (∆pj,q)

2

∆tq
=

1

λp
τ−
q

j

(∆pj,q)
2

∆tq
≥ 1

λU

(∆pj,q)
2

∆tq
.

If z̃j,q ≥ 1, then

Γ
τq
j (∆pj,q)

2

∆tq
=

z̃j,q

λp
τ−
q

j

· λ2

(
p
τ−

q

j

)2

·∆tq = λp
τ−

q

j z̃j,q ·∆tq ≥ |∆pj,q|.

By Lemma 16,

H(τ0)−H(τm) =

m∑

q=1

(H(τq−1)−H(τq)) ≥
1

8

m∑

q=1

Γ
τq
j (∆pj,q)

2

∆tq

≥ 1

8λU

∑

q:z̃j,q<1

(∆pj,q)
2

∆tq
+

1

8

∑

q:z̃j,q≥1

|∆pj,q|.
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By the assumption |pτ0j − pτmj | ≥ ǫ,
∑m

q=1 |∆pj,q| ≥ ǫ. Let σ := ǫ−1
∑

q:z̃j,q≥1 |∆pj,q|. Then
∑

q:z̃j,q<1 |∆pj,q| ≥
max{0, (1− σ)ǫ}. By the Cauchy-Schwarz inequality,

[max{0, (1− σ)ǫ}]2 ≤


 ∑

q:z̃j,q<1

|∆pj,q|




2

=


 ∑

q:z̃j,q<1

∣∣∣∣∣
∆pj,q√
∆tq

∣∣∣∣∣ ·
√
∆tq




2

≤


 ∑

q:z̃j,q<1

(∆pj,q)
2

∆tq




 ∑

q:z̃j,q<1

∆tq




≤ 2
∑

q:z̃j,q<1

(∆pj,q)
2

∆tq
,

as τm − τ0 ≤ 2. Then
∑

q:z̃j,q<1
(∆pj,q)

2

∆tq
≥ 1

2 [max{0, (1− σ)ǫ}]2 and hence

H(τ0)−H(τm) ≥ 1

16λU
[max{0, (1− σ)ǫ}]2 +

σǫ

8
.

By considering the following three cases: σ ≥ 1, 1 > σ ≥ 1/2 or σ < 1/2, it is not difficult to show that the
minimum value of R.H.S. of the above inequality is at least ǫ2 ·min

{
1
16 ,

1
64λU

}
.

Corollary 18. For any ǫ > 0, there exists a finite time Tǫ such that for any good j, any t ≥ Tǫ, and any 0 ≤ ∆t ≤ 1,
|ptj − pt+∆t

j | ≤ ǫ.

Proof: Suppose not, then by Lemma 17, H drops by at least ǫ2 · min
{

1
16 ,

1
64λU

}
infinitely often. But H(0) is

finite and H remains positive throughout, a contradiction.

Proof of Theorem 5 for the Leontief case: The proof comprises four steps. We need the following defini-
tions: for any two price vectors pA and pB, let d(pA, pB) denote the L1 norm distance between the two price
vectors, i.e., d(pA, pB) =

∑
j |pAj − pBj |. For any two sets of price vectors PA and PB, let d(PA, PB) :=

infpA∈PA, pB∈PB d(pA, pB).

Step 1. Let Ω be the set of limit points of a tatonnement process. We show that Ω is non-empty and connected.

Since all prices remain bounded by U throughout the tatonnement process, Ω is non-empty.
Suppose Ω is not connected. Let Ωa denote a connected component of Ω that is well separated from Ωb = Ω\Ωa,

i.e., d(Ωa,Ωb) = ǫ′ > 0 (if there is no such Ωa then Ω is connected). By the definition of limit points, there exists
a finite time such that thereafter the prices in the tatonnement process are always within an ǫ′/4-neighborhood of
either Ωa or Ωb. This forces an infinite number of updates, each separated by at least one time unit, such that each
update makes a change to a price by at least at least ǫ′/(2n). This contradicts Corollary 18.

Step 2. Recall that a market equilibrium is a price vector p∗ at which for each j, p∗j > 0 implies zj(p
∗) = 0 and

p∗j = 0 implies zj(p
∗) ≤ 0. We define a pseudo-equilibrium: a price vector p̃ is a pseudo-equilibrium if for each

j, p̃j > 0 implies zj(p̃) = 0. Note that every market equilibrium is a pseudo-equilibrium. We show that all limit
points in Ω are pseudo-equilibria.

Suppose not. Let p′ ∈ Ω be a price vector which is not a pseudo-equilibrium, i.e., there exists j such that p′j > 0
but zj(p

′) 6= 0. Let ǫ′′ ≤ p′j |zj(p′)|/32 be a positive number such that for any price vector p̀ in the ǫ′′-neighborhood
of p′, we must have p̀j ≥ p′j/2 and zj(p̀) lie between zj(p

′)/2 and zj(p
′).

By the definition of limit points, the tatonnement process enters the (ǫ′′/2)-neighborhood of p′ infinitely often.
By Corollary 18, there exists a finite time such that subsequently, every time the tatonnement process enters the
ǫ′′/2-neighborhood of p′, it stays in the ǫ′′-neighborhood of p′ for at least three time units. Within the first two
time units, pj is updated for at least once, and by update rule (20), such updates will make a total change to pj of
at least λ(p′j/2)(|zj(p′)| /2) ≥ 8ǫ′′, which forces quitting the ǫ′′-neighborhood of p′ strictly before the three time
unit interval, a contradiction.

Step 3. We show that the excess demands at all limit points in Ω are identical.

For every subset of goods S, let ΩS = {p′ ∈ Ω | p′k > 0⇔ k ∈ S}. For each buyer, there are two cases:
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• the buyer wants at least one good in S, say good ℓ:
Observe that by the definition of pseudo-equilibrium and Step 2, every price vector in ΩS , excluding the zero
prices in the price vector, is a market equilibrium for the sub-Leontief-market comprising the goods in S.
Codenotti and Varadarajan [16] pointed out that the demands for the goods in S of each buyer are identical
at every market equilibrium of the sub-Leontief market, and hence also in the original Leontief market. So
the buyer demands the same positive but finite amount of good ℓ at every price vector in ΩS in the original
market. Also note that the buyer always demands the goods in the original market in a fixed proportion.
This forces the demands for the goods not in S of the buyer to also be identical at every price vector in ΩS .

• the buyer wants no good in S:
Then the buyer demands an infinite amount of each good that she wants, and demands zero amount of each
good that she does not want.

In either case, the buyer’s demands for each good at every price vector in ΩS are identical, and hence also the total
demand for each good.

Then consider a graph G with each vertex corresponding to a subset of goods S such that ΩS is non-empty, and
two vertices S1, S2 being adjacent if and only if d (ΩS1 ,ΩS2) = 0. Since excess demands are a continuous function11

of prices, if S1 and S2 are adjacent, then the excess demands for all goods at every price vector in S1 ∪ S2 are
identical. By Step 1, the graph G is connected, thus the excess demands at all limit points in Ω are identical.

Step 4. We show that every limit point in Ω is indeed a market equilibrium.

Suppose not, i.e., there exists a limit point p′ in Ω which is a pseudo-equilibrium but not a market equilibrium,
i.e., there exists k such that p′k = 0 but zk(p

′) > 0. By Step 3, zk is positive at every limit point in Ω, and hence
every pk at every limit point must be zero. By the definition of limit points, for any ǫ > 0, beyond a finite time,
the tatonnement process must stay within the ǫ-neighborhood of Ω thereafter. By choosing a sufficiently small ǫ,
zk is bounded away from zero in the ǫ-neighborhood of Ω, and hence pk increases indefinitely and eventually pk
becomes so large that the tatonnement process must leave the ǫ-neighborhood of Ω, a contradiction.

11The range of the excess demand functions is the extended real line R∪{+∞}; continuity of the excess demand function is w.r.t. the
usual topology on the extended real line. To be specific, if zk(p) = +∞ for some p and k, then for any M ∈ R, there exists an ǫM > 0
such that zk(p) ≥ M in the ǫM -neighborhood of p.
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F Toward a CCD Lower Bound?

We present a family of strongly convex functions of 4n coordinates for which the relationship between the squares
of the gradient differences and the squares of the changes in the coordinates, (∆xkt

)2, given in (11) are tight, for
suitable choices of the ∆xkt

. This suggests that the logn factor in our bound is not artificial.
We will be considering quadratic functions whose Hessians are 4n × 4n matrices of the form Mn = Dn + An,

where Dn is a diagonal matrix with entry 2λmax and An is a symmetric matrix with eigenvalues all bounded
in magnitude by λmax. It then follows that Mn has eigenvalues in the range [λmax, 3λmax]. We will show that
λmax ≤ 4.5, though our computation on matrices of size up to 1200 strongly suggest it is about 3.68.

An is the following matrix. Its first row has the form

(0, a1, 0, a2, . . . , 0, an, 0,−an, 0, . . . , 0,−a2, 0− a1).

Succesive rows are obtained by rotating one position to the right and flipping the signs. We choose ai =
1
i . For

instance,

A2 =




0 1 0 1
2 0 − 1

2 0 −1
1 0 −1 0 − 1

2 0 1
2 0

0 −1 0 1 0 1
2 0 − 1

2
1
2 0 1 0 −1 0 − 1

2 0
0 − 1

2 0 −1 0 1 0 1
2

− 1
2 0 1

2 0 1 0 −1 0
0 1

2 0 − 1
2 0 −1 0 1

−1 0 − 1
2 0 1

2 0 1 0




Next, we prove the claimed bound on An’s eigenvalues. Define Bn = A2
n. Let Bn’s first row be written as

(b1, 0, b2, 0, . . . , bn, 0, bn+1, 0, . . . , b2n, 0).

Note that if λ is an eigenvalue of An then λ2 is an eignevalue of Bn. We will show that Bn’s eigenvalues are
all bounded by 2π2 in magnitude and hence An’s eigenvalues are at most

√
2π in magnitude (note that as An is

symmetric, all its eigenvalues are real).
Note that

b1 = 2

n∑

i=1

1

i2
≤ 2 · π

2

6
=

π2

3
.

For 2 ≤ i ≤ n,

bi = −
i−1∑

h=1

i

h
· 1

i− h
+

n∑

h=i

1

h
· 1

h− i+ 1
−

i−1∑

h=1

1

n− h+ 1
· 1

n− i+ 1 + h
+

n∑

h=i

1

n− h+ 1
· 1n+ i− h

= − 1

i

i−1∑

h=1

(
1

h
+

1

i− h

)
+

1

i− 1

n∑

h=i

(
1

h− i+ 1
− 1

h

)
− 1

2n− i+ 2

i−1∑

h=1

(
1

n− h+ 1
+

1

n− i+ 1 + h

)

+
1

i− 1

n∑

h=i

(
1

n− h+ 1
− 1

n+ i− h

)

= − 2

i

i−1∑

h=1

1

h
+

1

i− 1




i−1∑

j=1

1

j
−

n∑

j=n−i+2

1

j


− 2

2n− i+ 2

i−1∑

h=1

1

n− h+ 1
+

1

i− 1




i−1∑

j=1

1

j
−

n∑

j=n−i+2

1

j




=
2

i(i− 1)

i−1∑

h=1

1

h
− 2

i− 1

n∑

j=n−i+2

1

j
− 2

2n− i+ 2

i−1∑

h=1

1

n− h+ 1
.

By the mirror symmetry of Bn’s first row, 2 ≤ i ≤ n, b2n−i = bi. Finally,

b2n = −2
n∑

i=1

1

i
· 1

n+ 1− i
< 0.
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Observe that
∑2n

i=1 bi = [
∑n

i=1(ai + (−ai)]2 = 0. Thus,
∑2n

i=1 |bi| is bounded by twice the sum of the positive
parts in the expressions for the bi, namely:

2n∑

i=1

|bi| ≤ 2

[
b1 + 2

n∑

i=2

2

i(i− 1)

i−1∑

h=1

1

h

]

≤ 2π2

3
+ 8

n∑

i=2

[
1

i − 1

i−1∑

h=1

1

h
− 1

i

i∑

h=1

1

h
+

1

i2

]

≤ 2π2

3
+ 8

[
1− 1

n

n∑

h=1

1

n
+

n∑

i=1

1

i2

]

≤ 2π2

3
+

8π2

6
= 2π2.

Note that
√
2π ≈ 4.44.

We finish by demonstrating the need for a logarithmic term. Suppose ∆pkt
= 1 for 1 ≤ t ≤ 8n. In the expression

Q in (8) (but now we have 4n coordinates instead of n), for each i ≥ 4n, each sum
∑i

j=i−4n+1

(
gjki
− giki

)2
includes

the terms
2n∑

j=1

(
j∑

h=1

1

h

)2

≥
2n∑

j=1

(ln j)2 ≥ n ln2 n,

thus the sum on the RHS of Q is at least 2
3Γn · 4n · n ln2 n = 8

3Γn ln2 n, while the sum on the LHS of Q is 8Γn,

demonstrating that for this analysis to work we need Γ2 = Ω(ln2 n).
Of course, this does not exclude the possibility that a different analysis could produce a tighter bound.
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