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The Link of Intellectual Engagement
to Cognitive and Brain Aging

Martin Lovdén
Lars Backman
Ulman Lindenberger

, s human cognitive ability static and is the brain fixed? Certz}inly not. An
individual’s cognitive performance varies systematically trf)m day-to-
day, minute-to-minute, and second-to-second (Rabbitt et al., 2001; Schmiedek et al.,
2013). Flux at the level of the brain is not in any way an exception, but rather' Fhe
normal modus operandi of brain structure and function (Faisal et al., 2008). Cogmt'lve
performance also changes over longer time periods: it improves consideral?ly during
child development (Jones and Conrad, 1933) and declines in aging ('S‘chzue, 1?94).
The volume and integrity of the brain change in a similar way over the lifespan (Giedd
et al., 1999; Raz et al., 2005). . .

Can humans improve their cognitive performance? Certainly. Eatlng breakfast is
a good idea (Hoyland et al., 2009). Drinking a cup of coffee may sometlmes. enhance
performance (Nehlig, 2010). Though long-term side effects prevail, the right dos-
age of nicotine improves attention and working memory (Heishman et al.,'2()10).
Acquiring knowledge and strategies in a domain affects memory for fioma.m-rele-
vant information (Bartlett, 1932; Chase and Simon, 1973). Education‘m childhood
and early adulthood improves performance on tests of intelligence (Cliffordson and
Gustafsson, 2008; Brinch and Galloway, 2012). During the 20th centlfry, each ne\-v
generation performed better than their parents on tests measuring a varu.:Fy of cqg_np
tive functions (Flynn, 1984). No doubt, then, human behavior can modify cognitive
performance, but of course, not every aspect of human behavior. does the trick. In
this chapter, we evaluate the evidence for and against the hypothesis that engagement

461



462 Health and Disease

in cognitively demanding activities positively influences cognitive performance in
healthy aging, and we review which brain mechanisms can be linked to such effects.
We focus this review on whether cognitive activity influences processing efficiency
(Lévdén et al., 2010a); that cognitively healthy older adults can acquire new skills and
enhance their task-relevant cognitive strategies is undisputed.

Between-Person Differences in Intellectual Engagement
and Cognitive Performance

One approach to investigate whether engagement in cognitively demanding activities
improves performance in old age is to sample, typically with questionnaires, individ-
uals’ involvement in various types of cognitively stimulating activities (e.g., leisure
activities of various kinds, such as reading books, solving cross-words, and playing
board games). Between-person differences in engagement (e.g., frequency, duration)
in these activities are then related to differences in cognitive performance in various
ways. Obviously, longitudinal within-person data provide the most powerful founda-
tion for estimating these various associations (e.g., Hertzog et al., 2009).

Results from the Victoria Longitudinal Study (VLS) reveal that decline in cognitive
leisure activities over a 6-year period in old age was associated with decline in cogni-
tive performance, including fact recall (Hultsch et al., 1999) and aspects of processing
speed (Bielak et al., 2007; see also Bielak et al., 2014). The magnitude of these asso-
ciations was, however, relatively small, with the median correlation between change
in cognitive activity and change in the various measures of cognitive performance
in the VLS studies being only 0.10. However, a comprehensive analysis of four dif-
ferent longitudinal studies with up to 21 years of follow-up data support these initial
findings, with changes in participation in cognitively stimulating leisure activities
being consistently associated with changes in reasoning, verbal fluency, memory, and
knowledge (rs = .23-.50; Mitchell et al., 2012).

Note that correlations between cognitive performance and lifestyle are generally
not informative of the causal direction of influence (Hultsch et al., 1999; Lévdén et
al., 2005; Gow et al., 2012b). That is, the cognitive engagement hypothesis would pre-
dict such associations, but reverse causation, with decline in cognitive performance
leading to a less active life, is equally tenable, given that people are not randomly
assigned to lifestyles that differ in the degree of cognitive challenge. In addition,
changes in some third variable (e.g., health) may drive both activity and cognitive
changes. Investigating the association between level of engagement in cognitive stim-
ulating activities at one point in time and subsequent change in cognitive performance
has been one way to try to approach these issues of causality. Several findings of a
positive association between engagement levels and change in performance have been
reported from longitudinal studies (e.g., Hultsch et al., 1999; Schooler and Mulatu,
2001; Bosma et al., 2002; Wilson et al., 2003; Wang et al., 2013). However, other
studies have failed to find such associations (e.g., Aartsen et al., 2002; Gow et al.,
2012b; Gow et al., 2012a; Mitchell et al., 2012). Some have found that cognitive
performance predicts subsequent change in activity engagement (e.g., Schooler and
Mulatu, 2001; Aartsen et al., 2002; Bosma et al., 2002). A comprehensive way to
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approach these level-change associations is to apply a statistical model for longitudi-
nal data termed the dual-change score model (McArdle and Hamagami, 2001). In this
model, both hypothetical level-change influences can be simultaneously estimated,
while accounting for the effect of previous level of a variable on subsequent change
in that variable, as well as for the overall linear change. With respect to intellectual
activities, Ghisletta et al. (2006) found that media consumption (e.g., radio, TV, news-
papers) and intellectual leisure activities (games and cross-words) were related to
subsequent changes in perceptual speed, but not vice versa (see also Lévdén et al.,
2005). Supporting this pattern, Small et al. (2012) observed that cognitive activities
were associated with change in episodic and semantic memory, without the reverse
influence. However, Small et al. (2012) also reported reciprocal associations between
cognitive activities and speed of lexical access.

The mixed nature of the findings likely reflects the presence of several sources
of influence (Hertzog et al., 2009; Bielak, 2010). For example, the sampled activ-
ities and the variables that they form vary substantially across studies, and differ-
ent activities may mean different effects for different individuals (Salthouse et al.,
2002). A related problem is that individuals’ engagement in select leisure activities
is only a very small portion of the cognitive demands in their lives, and the impor-
tance of this portion may vary among older adults and certainly across the lifespan.
For example, during extensive periods of life we spend more time in work than in
leisure activities. This balance shifts across the lifespan, with retirement perhaps
being the most dramatic change. Indeed, support for positive associations between
intellectually challenging occupations and level and change trajectories of cognitive
performance in old age is available (Jorm et al., 1998; Schooler et al., 1999; Bosma
et al., 2003; Andel et al., 2007; Finkel et al., 2009; Marquie et al., 2010; Van der
Elst et al., 2012). Also here reverse causation might, however, operate. Individuals
higher in cognitive ability are more likely to make their way into more demanding
Jjobs, and the cognitive ability differences, rather than intellectual engagement, may
drive old-age differences in level and change of cognitive performance (Salthouse,
2006). A few attempts to account for early differences in cognitive ability have been
reported. In one study, Gow et al. (2014) observed a seemingly counterintuitive neg-
ative association between occupational demands and cognitive performance after
statistically controlling for early cognitive ability. This finding implies that, of two
persons with the same cognitive ability at age 50, the individual with the more intel-
lectually demanding job had lower cognitive ability in old age (60-80 years) than
the one with the less demanding job. Even if we take these findings at face value
and disregard potential methodological problems with controlling for earlier perfor-
mance at the observed level (Glymour et al., 2005), we note that such findings are
not incompatible with the hypothesis that cognitive engagement is beneficial for per-
formance. This becomes clear when, for example, factoring in evidence indicating
that retirement can have a detrimental effect on cognitive performance (Schaie, 2005;
Finkel et al., 2009; Rohwedder and Willis, 2010; Roberts et al., 2011; Bonsang et
al., 2012; Mazzonna and Peracchi, 2012). For example, Finkel et al. (2009) reported
that individuals in occupations characterized by high complexity of work with people
(e.g., jobs with mentoring and negotiations demands) displayed steeper decline after
retirement than individuals with jobs scoring low on this dimension (but see Fisher
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et al., 2014). For individuals in occupations with higher complexity, retirement may
constitute a greater change in life conditions, and cognitive performance may thus
be differentially affected. With such a background, the findings reported by Gow et
al. (2014) could also make sense from the point of view of the engagement hypoth-
esis: Of two persons with the same cognitive ability at age 50, the individual with
the more intellectually demanding job may have the same cognitive ability as the
person in the job with lower demands just because job conditions positively affect
cognitive ability. When this influence is not there anymore, the individual in the more
intellectually demanding job may have lower cognitive performance. In this sense,
failure to find that level of engagement positively affects subsequent change (i.e.,
differential preservation of cognitive abilities; Salthouse, 2006) is not inconsistent
with the engagement hypothesis. Such findings could just be reflecting that individu-
als’ current engagement in cognitively demanding activities is what matters for per-
formance, which would play out in observations of level-level and change-change
associations. Level-change associations, such as whether initial differences are pre-
served or whether they are differentially preserved, are not necessarily informative,
and may differ depending on the time frame they capture. In line with this view,
studies with shorter longitudinal time spans are also the ones that more often find sig-
nificant level-change associations (Lovdén et al., 2005; Ghisletta et al., 2006; Small
et al., 2012). Such a pattern fits theoretical models of adult plasticity that pinpoint
ongoing adaptations to a mismatch between experiential demands and functional
capacity as partially determining performance (Lovdén et al., 2010a). That is, what
you do, rather than what you did, could be the key player. However, we also note that
retirement may affect cognitive performance via mechanisms other than reductions
of cognitive stimulation, so that effects of retirement on performance do not provide
strong evidence for the engagement hypothesis.

Overall, this line of inquiry may thus benefit from a more systematic approach
to sampling intellectual activities, including the entire life space of intellectual
demands (leisure activities, work, family life, and so forth) and from more attention
to individual differences in the balance of these aspects of life and how they change
in importance over time. As things stand, it seems safe to conclude that there is an
association between engagement in cognitively demanding activities and cogni-
tive performance in aging. Studies of the association between level of engagement
and subsequent change that focus on a shorter longitudinal time span (around 2-3
years) support the notion that cognitive activity influences subsequent change in
performance. The causal nature of the association is, however, likely to be complex
and scientific consensus on this issue is unlikely to be reached based on studies
of naturally occurring between-person differences alone. Progress in this field is
likely to come from abandoning simplistic attempts to pit the hypothesis that activ-
ity affects cognitive ability against the prediction that ability affects selection of
activities. The path dependency of the life course needs more careful conceptual
consideration and longitudinal study: People with higher cognitive abilities may be
more likely to select or be selected into more challenging environments, and these
environments, in turn, may further improve their abilities, whereas the reverse
may be true for individual with lower cognitive abilities (Schooler et al., 1999;
Schooler and Mulatu, 2001). Individuals with higher abilities may experience the
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same environment differently from individuals with lower abilities. The resulting
scenario would be one in which the two directions of influence—abilities affecting
lifestyles, and lifestyles affecting abilities—are positively correlated over time.
This would be consistent with theoretical and empirical claims pointing to the
importance of gene—environment correlations in understanding individual differ-
ences in development (e.g., Beam and Turkheimer, 2013).

Effects of Cognitive Training on Performance in Old Age

Intervention studies could provide less ambiguous support for the hypothesis that
intellectual engagement affects performance. A few such studies have used multi
modal engagement interventions (e.g., group-based diverse problem solving tasks,
computer and photo-editing courses), with encouraging results for memory (Park et
al., 2014) and reasoning (Stine-Morrow et al., 2008; Tranter and Koutstaal, 2008).
Studies focusing on cognitive training promise to more specifically localize such
effects to the impact of cognitive activity. The first generation of such studies generally
included teaching individuals to use efficient cognitive strategies (e.g., method-of-loci
for memorizing words). Results were disappointing in the sense that improvements
on the trained tasks did not transfer to related but nontrained tasks (Verhaeghen et
al., 1992; Ball et al., 2002; Hertzog et al., 2009). Probing transfer of improvements is
important because this provides a tool for examining whether processing efficiency
has been improved (L6vdén et al., 2010a). That is, if improvements can be observed
on tasks where training-related acquisition of knowledge (e.g., better strategies and
improved response mapping) can be reasonably well excluded as a factor behind any
improvements, then it can be assumed that training has affected processing efficiency.
A more recent generation of studies has examined the effects of practice on various
types of cognitively challenging tasks, such as off-the-shelf video games (Basak et
al., 2008), working memory tasks (Dahlin et al., 2008b), and a mix of cognitive tasks
(Schmiedek et al., 2010). Karbach and Verhaeghen (2014) recently summarized this
literature in a meta-analysis that focused on training of working memory and exec-
utive tasks. This analysis yielded net training effects (gains for training group minus
gains for controls) of 0.5 SD for near transfer (measuring the trained ability using
untrained tasks) and 0.2 SD for far transfer (measuring any nontrained ability, such as
reasoning, episodic memory, and speed). Younger and older adults displayed similar
effects sizes.

With near-transfer effects, it is, without a detailed model or task analysis, diffi-
cult to exclude that acquisition of knowledge (e.g., strategies) is responsible for the
observed gains. One may therefore argue that this type of outcome measure is prob-
lematic in a meta-analysis. A skeptical reader may also argue that far-transfer effects
suffer from the same problem, especially when selected far-transfer tasks are hetero-
geneous, so that the tasks in each individual study need to be carefully analyzed. We
therefore conducted our own meta-analysis, focusing exclusively on reasoning as an
outcome measure. To gain power and generality we included all types of process-
ing-based cognitive training (e.g., working memory, inhibition, episodic memory, and
computer game training, but no combinations with other activities, such a physical
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training, and no strategy training, general enrichment interventions, and meditation
studies). Further, we only included studies if the method sections were sufficiently
detailed to make sure that training procedures did not directly include reasoning or
strategy training. Further inclusion criteria were (1) a pretest—posttest design includ-
ing a control group; (2) a healthy older sample (mean age > 60); and (3) publication
of the study between January 2000 and July 2014.

Our initial screening of search results from Pubmed, Web of Science, and avail-
able meta-analyses and reviews (Kueider et al., 2012; Reijnders et al., 2013; Karr et
al., 2014; Kelly et al., 2014; Noack et al., 2014; Brehmer et al., 2014; Karbach and
Verhaeghen, 2014) resulted in 73 candidate studies, of which 20 were eligible accord-
ing to the above criteria. These studies reported results for samples with a mean age of
69 years (range 6179 years) and a mean total sample size of 51 (29-139) individuals.
The training groups trained on average 993 minutes (range = 180-6000 minutes).
Eleven studies had an active control group. Thirteen studies focused on working-
memory training, one on task switching, one on computer game training, one on inhi-
bition, and four on several cognitive domains. Ten studies had Raven’s matrices as
a single reasoning outcome, four had Cattell’s culture fair test, one had reasoning
tasks from WAIS III, one had a letter series task only, and four had several reasoning
tasks. As main measures for the meta-analyses we computed one Standardized Mean
Difference (SMD; Hedges’ g) for each study of the difference between the training
and control groups at pretest and one at posttest. An average SMD was computed
across tasks for the studies reporting multiple reasoning tasks.

Results of a random effects analysis (maximum likelihood in Open Meta Analyst;
Wallace et al., 2012) of the post-test difference in reasoning performance between
training and control groups showed a significant weighted mean group differences
favoring the training group (g = 0.192, SE = .097, p = .049). There was no such dif-
ference at pretest (g = —0.012, SE = .081, p = .878). The standardized mean increase
for the training groups was 0.342 (SE = .076, p < .001). The increase for the control
groups was 160 (SE = .067, p = .018). The difference between these effects (i.e., the
net training effect) is 0.182, which corresponds well with the observed post-test dif-
ference between the groups.

Publication bias was addressed by first computing standardized net effect sizes
for each study, which arguably is the effect that may drive a publication bias. We are
not aware of a way to compute the standard errors for these effects, so we related
this effect size to total sample size (rather than SE, which is otherwise the preferred
measure; Sterne and Egger, 2001). The scatterplot (Figure 18.1) of this association
showed no indication of publication bias, and sample size was not significantly
related to effect size (p = .61), However, the plot shows that two of the small-sized
{(and thus likely low-powered) studies (Borella et al., 2010; Carretti et al., 2013)
report somewhat deviant net effect sizes. We therefore excluded these two studies
in a sensitivity analysis, which showed a lower and nonsignificant posttest differ-
ence between the groups (g = 0.136, SE = .094, p = .148). The pretest difference
was essentially zero (g = -0.007, SE = .091, p = .939). The increase for the training
groups included in this analysis was 0.255 (SE = .062, p < .001). The increase for
the control groups was .158 (SE = .071, p = .025). The difference between these
effects (i.e., the net training effect) is 0.097. Figure 18.2 shows a forest plot of the
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Figure 18.1 Funnel plot relating total sample size to net SMD (Standardized Mean Difference)
of cognitive training on reasoning ( SMD_ . for the training group—SMD__  for the control
group). The dashed line indicates the mean net SMD.

individual effect sizes and the weighted mean effect sizes across all studies and
when excluding the two deviant studies. Figure 18.3 shows the corresponding infor-
mation at pretest.

The effect sizes were significantly heterogeneous at posttest (I = 52.59, p = 0.002),
but not at pretest (/* = 32.84, p = 0.058). Increases were significantly heterogeneous
for the training groups (#* = 38.33, p = 0.029), but not for the control groups (I = 0.00,
p =0.959). These results suggest that the training regimens used in the various stud-
ies may differ in efficiency (e.g., due to differences in sample composition, outcome
variables, and training paradigms). We therefore explored associations with a few
potentially moderating factors.

Mean age of the sample was unrelated to posttest differences (p = .911) and to
gains in the training groups (p = .37). Training length was also unrelated to posttest
differences (p = .174) and not related to gains in the training groups (p = .419).
When mutually adjusted, neither training length nor age had a significant effect (both
ps > .217). Excluding the two studies with outlying positive effects and two studies
with outlying length of training did not change these findings. Studies with Raven’s
matrices as an outcome did not demonstrate larger posttest differences than other
studies (p =.361), and gains were not larger in these studies either (p = .146). Studies
with working memory training tended to report larger posttest differences than other
studies (p = .079), but gains were not larger in these studies (p = .827). Excluding
the two studies with outlying positive effects did not substantially alter these results.
Studies with an active control group did not report smaller posttest differences than
other studies (p = .844), and neither gains in the training group (p = .387) nor gains
in the control group differed between active and passive control groups (p = .897).
Thus, we conclude that the observed heterogeneity remains unexplained.

In summary, studies of the effects of practicing cognitive tasks on reasoning per-
formance in old age report a significant but small average effect size (roughly 0.2
SD). This estimate is virtually identical to the far-transfer effect reported by Karbach
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and Verhaeghen (2014). The effect is not very robust. In particular, the exclusion of
two extreme effect sizes reduced the overall effect to a nonsignificant point estimate
of around 0.13 SD. Similar positive outliers were also included in the analysis by
Karbach and Verhaeghen (2014). The effect size tends to be lower than a report of a
significant average effect of working memory training on reasoning performance in
younger adults of 0.24 SD (Au et al., 2015). Note however that the effect size in these
studies of younger adults that had an active control group was only 0.06. In our anal-
ysis of studies on older adults, the difference between an active and passive control
group was, however, minimal. Though power is low with only 20 studies and with,
at best, a small overall effect, it is worrisome that theoretically-predicted moderators
of the effects, such as for example length of training (Lovdén et al., 2010a), are not
associated with effect sizes (see also Au et al., 2015; Karbach and Verhaeghen, 2014).
We thus conclude that cognitive training, as currently implemented, at best has a very
small effect on cognitive processing efficiency, as indexed by transfer to reasoning
tasks, in old age. A firm conclusion of the trustworthiness of this effect must await
accumulation of more studies. We also note that almost all of the published studies
are seriously underpowered (a total sample of around 200 subjects is needed to detect
a net effect of 0.2 SD with a power of 0.8; the power for the typical study with a total
sample size of 40 subjects is only around 0.20 (Faul et al., 2009)). This fact substan-
tially limits the value of reviewing results from individual studies in this field. At
the same time, we note that meta-analyses are no methodological remedy for flawed
studies. Several factors, such as publication bias, which we tested for, but also other
confounds that are harder to detect, such as selective reporting of only significant
findings, may positively bias the average effect size. Finally, we note that, with only
observed indicators of reasoning ability, it is difficult to entirely exclude that ability-
extraneous changes, such as strategy improvements, influence the measures of rea-
soning. To reduce this problem, future studies should obtain several measures of the
target ability and form a factor of the common variance of these measures (Noack et
al., 2009; Lovdén et al., 2010a; Schmiedek et al., 2010; Noack et al., 2014).

Effects of Intellectual Engagement on the Brain in Old Age

Understanding how the brain responds structurally to cognitive activity and how such
changes relate to cognitive performance may provide much credibility to the engage-
ment hypothesis by providing feasible mechanistic pathways. Reports from cross-
sectional studies have shown that individual differences in participation in leisure
activities, including cognitively demanding activities, in old age are related to individ-
ual differences in a variety of brain measures, including total brain volume, grey matter
volume, white matter volume, white matter lesions (Hafsteinsdottir et al., 2012), and
beta-amyloid deposition (Landau et al., 2012). Interestingly, the associations between
activity levels (both physical and cognitive) and cognition, as well as with beta-amy-
loid deposition, have been reported to be stronger for individuals who have greater
genetic risk regarding cognitive impairment and dementia (most notably APOE &4
carriers; (Kivipelto et al., 2008; Head et al., 2012; Ferencz et al., 2014; Wirth et al.,
2014). Under the assumption that a sedentary lifestyle is a phylogenetically recent
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phenomenon, these results suggest that this variation in genetic risk has remained in the
population because it is relatively inconsequential under non-sedentary living condi-
tions and now becomes effective for some individuals (Raichlen and Alexander, 2014).
It may even have been advantageous for offspring not to carry the burden of an older
individual that for some reason (e.g., injury) cannot remain active and contribute to
bringing food on the table. This line of reasoning is consistent with the notion that so-
called “vulnerability alleles” may also serve as plasticity alleles (Belsky et al., 2009).

The association between educational attainment, as a proxy for early exposure to
cognitively demanding activities, and brain variables has also been studied quite inten-
sively. For cognitive performance in healthy aging, educational exposure is related to
levels of cognitive performance, but not to trajectories of change, in old age (Lévdén
et al., 2004; Zahodne et al., 2011). Causal pathways are likely to be complex here,
but there is evidence from natural quasi-experiments that education may partly serve
to improve cognitive performance (Ceci, 1991; Cliffordson and Gustafsson, 2008;
Brinch and Galloway, 2012). When triangulating individual differences in education
and cognition with measures of brain integrity, interesting patterns have emerged. For
example, Bennett et al. (2003) reported a study of older Catholic priests, nuns, and
monks who underwent annual clinical evaluations and brain autopsy at death. A com-
posite index of amyloid plaques and neurofibrillary tangles (i.e., classic Alzheimer’s
disease pathology) was associated with lower level of cognitive function in close
proximity to death. This association was, however, smaller in participants with higher
levels of education. This finding suggests that cognitive activities may result in long-
term advantages (e.g., availability of alternative cognitive strategies, better integrity
of other aspects of the brain that matter for cognitive performance) that may offset
the effect of this type of pathology on cognitive performance. In general, this notion
has been supported in studies of both education (Wilson et al., 2004) and other types
of cognitive activity (Scarmeas et al., 2003; Helzner et al., 2007; Hall et al., 2009).
The relative absence of long-term longitudinal brain data in this domain of research
is, however, a major shortcoming. To our knowledge, the few published longitudinal
studies with extensive brain measurements and activity measures have only longitudi-
nal data of activities and not of brain structure (e.g., Gow et al., 2012c; Vaughan et al.,
2014), which limit the conclusions that can be drawn.

Again, effects of training studies offer a more direct test of whether and how cog-
nitive engagement affects the brain. In humans, a large body of literature has reported
that regional grey-matter volume and cortical thickness, probed with T1-weighted
magnetic resonance (MR) imaging, changes in response to motor (Draganski et al.,
2004), cognitive (Draganski et al., 2006), and physical (Erickson et al., 2011) activity
in younger adults. The biological nature, behavioral correlates, and time-course of
these changes are, however, largely unknown (for reviews, see May, 2011; Zatorre
et al., 2012; Lovdén et al., 2013). Evidence on effects of cognitive activity on brain
volume in older adults is also scarce. In one of the few available studies, Engvig et
al. (2010) studied middle-aged and older adults taking part in an 8-week training
regimen in a mnemonic (the Method of Loci) aimed at improving episodic mem-
ory. Compared to controls, the trained persons showed a regional increase of cor-
tical thickness in right insula, left lateral orbitofrontal cortex, and fusiform cortex.
Increases in right fusiform and lateral orbitofrontal cortex were related to larger
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improvement in memory performance. Lovdén et al. (2012) investigated the effects of
spatial navigation training on hippocampal volume and integrity in younger and older
men. The training group navigated in a virtual world while walking on a treadmill
for 45 minutes every other day over a period of four months. A walking-only control
group was also included. Results showed navigation-related performance gains and
stable hippocampal volume that were also maintained four months after termination
of training. In contrast, control groups showed the typical age-related hippocampal
decrease in volume. Follow-up analyses revealed training-related cortical thickening
in precuneus and paracentral lobule in younger, but not in older, participants (Wenger
et al., 2012). In the COGITO study (Schmiedek et al., 2010), younger and older adults
trained for a total of 101 1-hour sessions on a set of working memory, episodic mem-
ory, and perceptual speed tasks. Using data from this study, Raz et al. (2013) showed
that cognitive training was associated with less decrease of cerebellar volumes, but
that training did not modify cortical volume changes. Thus, also older adults may
display experience-dependent changes in grey matter structure, but the magnitude of
these changes may sometimes be reduced. This pattern is consistent with correspond-
ing animal work (for a review, see Lovdén et al., 2013).

Animal research shows that also the brain’s white matter can be shaped by expe-
rience (Fields, 2008). In humans, amount of piano practicing in childhood and early
adulthood relates to white-matter microstructure, as assessed with diffusion-tensor
imaging (DTI; Bengtsson et al., 2005). Practicing juggling (Scholz et al., 2009), med-
itation (Tang et al., 2010), and reasoning (Mackey et al., 2012) in younger adulthood
also tesults in microstructural changes in regional white matter of the brain. Lévdén
et al. (2010b) reported that such experience-dependent plasticity extends into old age.
In this study, younger and older adults trained for a total of 101 1-hour sessions on a
set of working memory, episodic memory, and perceptual speed tasks. As compared
with a control group, training affected several DTI metrics and increased the area of
the anterior, but not the posterior, part of corpus callosum. These brain changes were
of similar magnitude in both age groups. Effects on white-matter microstructure in old
age have also been observed after other types of cognitive interventions (Strenziok et
al., 2014), including training that has been mainly strategy based (Engvig et al., 2012;
Chapman et al., 2015). For example, Engvig et al. (2012) reported training-related
changes in DTI metrics from their study of method-of-loci training. Participants in
the training group showed a relative increase in fractional anisotropy (FA), a measure
of density and coherence of the white matter tissue, in a frontal region compared with
a decrease in controls. Increases in memory performance correlated with changes in
FA. Though biological interpretations of changes in DTI metrics are difficult, the pat-
tern of changes (i.e., primarily decreases of radial diffusivity) in some of these studies
suggests a role for myelin-related processes in plasticity of white matter (Lovdén et
al., 2010b; Engvig et al., 2012).

Considering the theoretical importance of efficient large-scale connectivity for
higher-order cognition in general (Fields, 2008) and for cognitive performance in
aging (O’Sullivan et al., 2001; Andrews-Hanna et al., 2007; Bartzokis, 2011; but see
Lovdén et al., 2014), as well as effects of cognitive activity on white-matter structure,
attention to effects of training on functional connectivity is warranted. In line with
this notion, Anguera et al. (2013) reported that older adults training in dual tasking
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increased their task-related long-range phase (theta) coherence, as assessed with EEG,
between frontal and parietal areas. In another study, Chapman et al. (2015) found
increases in cerebral blood flow, particularly in the default mode network and the
central executive network, as well as greater connectivity at rest in these networks,
as observed with functional MR imaging, after strategy-based reasoning training
(see also Li et al., 2014). Other studies have, however, also observed decrease in
connectivity in a ventral attention network at rest (Strenziok et al., 2014). Studies
of training-related changes in classic measures of functional activity in old age are
delivering even worse scattering of results. Just as in studies of younger adults (Kelly
and Garavan, 2005), practice on cognitive tasks has been associated with both corti-
cal activity decreases (e.g., Dahlin et al., 2008a; Brehmer et al., 2011) and increases
(e.g., Erickson et al., 2007; for reviews, see Lustig et al., 2009; Brehmer et al., 2014).
In a study by Erickson et al. (2007), performance increases after dual-task training
were related to activity increases during the dual-task condition in left ventro-lateral
frontal cortex and in right dorsolateral prefrontal cortex among trained older adults.
Dabhlin et al. (2008b) reported training-related cortical activation decreases (in right
anterior prefrontal cortex, right somatosensory association cortex, and right supram-
arginal gyrus) in younger and older adults after five weeks of updating training. In
addition to these cortical decreases, younger adults who, in contrast to older adults,
also improved in a near-transfer task, showed striatal increases in both the trained
and the transfer task, but these changes were not observed in older adults. Increases
in striatal activity after updating training in younger adults have later been replicated,
but are also shown to decrease again after an initial increase (Kuhn et al., 2013). These
findings suggest that the time course of training-related brain changes needs to stud-
ied with better resolution to develop, test, and refine cerebral models of learning and
transfer (see also Lévdén et al., 2013),

Mechanisms behind the Influence of Intellectual
Engagement in Aging

Which are the brain mechanisms that mediate potential effects of cognitive activ-
ity on cognitive processing efficiency in aging? From a general perspective, these
mechanisms may come in three major and complementary forms (Barulli and Stern,
2013): (a) through improving brain functioning and performance in younger age with-
out altering brain aging per se (Satz, 1993; Lovdén et al., 2010a); (b) by aiding com-
pensatory reactions to primary brain aging (Baltes et al., 1999; Stern, 2002; Park and
Reuter-Lorenz, 2009; Stern, 2009); and (c) by fostering maintenance of a young-adult
like brain in old age (Nyberg et al., 2012),

According to the first form, cognitive activities during the life course (e.g., edu-
cation, occupation) may improve brain integrity in the life period during which they
operate (Satz, 1993; Stern, 2002, 2009). To the extent that these improvements are
maintained, it will take more time before a critical threshold for functional impair-
ments (e.g., compromised independence, dementia diagnosis) will be reached. This
simple but important point is sometimes called “brain reserve” (Satz, 1993; Stern,
2002, 2009).
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Lifetime cognitive activities may also aid compensatory reactions to primary
aging, so that effects of brain aging on performance may be reduced in old age, which
implies different trajectories of performance change in old age for individuals with
the same change in brain integrity but who differ in life time cognitive activity. This
notion, often referred to as cognitive reserve (Stern, 2002, 2009) or simply flexibility
(L6vdén et al., 2010a), holds that lifetime cognitive activities (e.g., education) may
give individuals better opportunities to handle the negative effects of brain aging on
cognitive performance, perhaps by giving the individual a larger and more flexible set
of neurophysiological routes and cognitive skills (e.g., knowledge and strategies) to
handle different situations (see also Lovdén et al., 2010a). This notion has received
tentative support by studies reporting a negative association between a cognitively
engaged lifestyle and brain integrity in some groups (e.g., in dementia; Scarmeas et
al., 2003) when cognitive performance is controlled for.

In the likely absence of an active gene program that causes human aging (Kirkwood,
2005), the major goals in the cognitive neuroscience of aging must be to identify the
mechanisms causing damage to accumulate in the brain and the variety of mecha-
nisms that operate to protect us from this damage. Related to this view, individuals
that decline less in cognitive performance in aging do not have to be those individuals
who can compensate for decline in brain integrity, but rather those who can main-
tain brain integrity in the first place (Nyberg et al., 2012). According to this “brain
maintenance” view, mechanisms protecting the brain against age-graded risks differ
in number and strength across and within individuals. Certain types of behavior may
lead to neurophysiological effects that modify brain aging directly, but others may
also indirectly protect the brain by offsetting negative conditions. For example, an
engaged lifestyle in old age may confer advantages for brain aging because nega-
tive pathways, such as loneliness, depression, stress, and malnutrition, become less
likely. Cognitive activity may also have direct effects on brain integrity through a
multitude of mechanisms. For example, basic neuroscience work indicates that neural
activity can induce myelination (Fields, 2008; Wake et al., 2011). Cognitive training
may improve white matter integrity (Lovdén et al., 2010b). Myelin undergoes many
negative changes in aging (Bartzokis, 2011), and white matter integrity in general also
shows negative adult age differences (Madden et al., 2012}, of which some thus could
be postponed by positive effects of cognitive activities. To the extent that aging of
white-matter integrity contributes to cognitive aging (Salthouse, 2011; Lovdén et al.,
2014), one may thus speculate that cognitive activity could serve to maintain cognitive
functioning through relatively preserved white-matter integrity. Many other similar
direct mechanisms are also available, such as activity-dependent release of growth
factors (LL&vdén et al., 2011), alterations of release of neurotransmitters (Bickman
et al., 2011), and activity-dependent structural changes of the neuron (Zatorre et al.,
2012; Lovdén et al., 2013; Lindenberger, 2014).

At first glance, the brain-maintenance concept seems unable to deal with the find-
ing that commonly measured aging-related brain changes (Salthouse, 2011) and puta-
tive markers of pathology (Boyle, 2013) leave a major portion of age-related cognitive
decline unexplained. However, such findings do not require that a cognitive reserve
account must be evoked to explain the remaining individual differences in cognition.
Rather, the presence of such residual variability may simply mean that our current
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knowledge of the mappings between brain changes and changes in behavior is incom-
plete. These mappings may also differ across individuals if there is more than one
physiological pathway into cognitive decline. In addition, such mappings may change
within individuals, possibly reflecting selection mechanisms (Lindenberger, 2014; see
also Edelman, 1987; Lautrey, 2003).

In particular, aging-related cognitive decline and dementia are likely to have
related and multifactorial etiologies (Drachman, 2007). Seventy percent of all indi-
viduals suffering from dementia are older than 75 years (Fratiglioni and Qiu, 2011).
A majority of these persons show not only the pathology typically associated with
Alzheimer’s disease (e.g., plaques) but also vascular injuries (Viswanathan et al.,
2009). To this we must add a wide range of known (e.g., changes in neurotransmitter
functioning; Bickman et al., 2010) and as yet unknown aging-related brain changes,
all of which may contribute to individual differences in late-life cognitive functioning.
Of course, determinants of individual differences in cognitive abilities before aging-
related changes have emerged must also be factored into the equation.

In summary, researchers are confronted with many-to-many mappings between
brain integrity and cognitive abilities in aging and dementia. For example, assume
that the amyloid burden of two individuals is identical. Assume also that one of these
individuals is diagnosed with dementia or has low cognitive performance, whereas
the other individual has no dementia diagnosis or shows high performance. Further
assume that the low-functioning individual has fewer years of education than the
high- functioning individual. Reserve concepts offer viable explanations of such a
scenario. The cognitive reserve notion describes well the possibility that the high-
performing individual may have been able to better cope with the accumulation of
amyloid, perhaps due to the higher flexibility that comes with added years of edu-
cation (Lovdén et al., 2010a). However, an alternative explanation in terms of brain
maintenance seems just as viable: The high-functioning individual may have accu-
mulated fewer vascular injuries—or any number of other unknown, imperfectly mea-
sured, or unmeasured alterations—perhaps reflecting advantageous lifestyle habits
associated with education. Thus, the presence of residual variability in functioning
after accounting for select aspects of age-related brain pathology does not discrim-
inate between the reserve and maintenance views, because several aspects of brain
integrity determine functioning and dementia diagnosis in old age, including those
that have not been observed in the particular study in question, or that have not yet
been discovered.

Thus, although these general models never have been proposed as mechanistic
theories of aging, but rather as general frameworks, further progress in the field is
likely to come from operationally defining the concepts and from the generation of
predictions that can tease the models apart. Future work needs to develop models that
can estimate the contribution of brain reserve, cognitive reserve, and maintenance to
successful cognitive aging. Conceivably, these general models in the cognitive neu-
roscience of aging are complementary, related across individuals, and differing in
importance across the adult life span. To delineate the multiple sources of individ-
ual differences in aging and the potential effects of cognitive activity on cognitive
aging, we need to intensify our efforts at discovering and measuring what matters.
In our view, what matters are the between-person differences in change that we can
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predict and explain, rather than speculations about why there is variance that we can-
not account for.
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