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Abstract (150) 

 

Metacognition, or the capacity to introspect on one’s own mental states, has been mostly 

characterized through confidence reports in visual tasks. A pressing question is to what extent 

the results from visual studies generalize to other domains. Answering this question allows 

determining whether metacognition operates through shared, domain-general mechanisms, or 

through idiosyncratic, domain-specific mechanisms. Here, we report three new lines of evidence 

for decisional and post-decisional mechanisms arguing for the domain-generality of 

metacognition. First, metacognitive efficiency correlated between auditory, tactile, visual, and 

audiovisual tasks. Second, confidence in an audiovisual task was best modeled using 

supramodal formats based on integrated representations of auditory and visual signals. Third, 

confidence in correct responses involved similar electrophysiological markers for visual and 

audiovisual tasks that are associated with motor preparation preceding the perceptual judgment. 

We conclude that the domain-generality of metacognition relies on supramodal confidence 

estimates and decisional signals that are shared across sensory modalities. 
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Introduction 

Humans have the capacity to access and report the contents of their own mental states 

including percepts, emotions, and memories. This capacity, first known as introspection, has 

been under scrutiny for centuries, and has stirred heated debates among philosophers and 

psychologists alike (Lyons, 1986). In neuroscience, the reflexive nature of cognition is now the 

object of research, under the broad scope of the term metacognition (that is, “cognition about 

cognition”, for reviews see Koriat, 2006; Fleming, Dolan, & Frith, 2012). A widely used method 

to study metacognition is to have observers do a challenging task (“first-order task”), followed by 

a confidence judgment regarding their own task performance (“second order task”; Fleming & 

Lau 2012, see Figure 1 left panel). In this operationalization, metacognitive accuracy can be 

quantified as the correspondence between subjective confidence judgments and objective task 

performance. By finely tuning confidence according to performance, a subject with good 

metacognitive skills will be more confident after correct vs. incorrect responses. While some 

progress has been made regarding the statistical analysis of confidence judgments (Galvin et 

al., 2003; Maniscalco & Lau, 2012; Barrett, Dienes, & Seth, 2013), and more evidence has been 

gathered regarding the brain areas involved in metacognitive monitoring (for review see 

Grimaldi, Lau, & Basso, 2015), the core properties and underlying mechanisms of 

metacognition remain largely unknown. One of the central questions is whether, and to what 

extent, metacognitive monitoring should be considered domain-general: is the computation of 

confidence fully independent of the nature of the task (i.e., domain-generality), or does it also 

involve task-specific components (i.e., domain-specificity)? According to the domain-generality 

hypothesis, metacognition would have a quasi-homuncular status, the monitoring of all 

perceptual processes being operated through a single shared mechanism. Instead, domain-

specific metacognition would involve a distributed network of monitoring processes that are 

specific for each sensory modality or cognitive domain.  

 

The involvement of supramodal, prefrontal brain regions during confidence judgments first 

suggested that metacognition is partly governed by domain-general rules (e.g., Fleming et al, 

2010, 2012; Yokoyama et al., 2010). At the behavioural level, this is supported by the fact that 

metacognitive performance (Song et al., 2011), and confidence estimates (de Gardelle, Le 

Corre, & Mamassian, 2014) correlate across subjects between two different visual tasks, as well 

as between  a visual and an auditory task (de Gardelle & Mamassian, 2016). However, the 

domain-generality of metacognition is challenged by the report of weak or null correlations 
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between metacognitive accuracies across different tasks involving vision, audition, and memory 

(Ais, Zylberberg, Barttfeld, & Sigman, 2016), and by the finding that functionally co-existing 

metacognitive brain regions are involved in different tasks, including frontal areas for 

metaperception and precuneus for metamemory (McCurdy et al., 2013). This anatomo-

functional distinction is further supported by the fact that meditation training improves 

metacognition for memory, but not for vision (Baird, Mrazek, Phillips, & Schooler, 2014). 

Compared to previous work, the present study sheds new light on the issue of domain-

generality by comparing metacognitive monitoring of stimuli from distinct sensory modalities, but 

during closely-matched first order tasks.  

 

Overall, the evidence supporting the domain-generality of metacognition is mixed, and no 

mechanism explaining its hypothetical origins has been proposed. Two non-mutually exclusive 

mechanisms responsible for domain-generality can be considered. First, metacognition may be 

domain-general in case monitoring operates on supramodal confidence estimates, computed 

with an identical format or neural code across different tasks or sensory modalities (mechanism 

1; Pouget, Drugowitsch, & Kepecs, 2016). Second, metacognition may be domain-general in 

case a non-perceptual signal drives the computation of confidence estimates (mechanism 2). 

Among them, likely candidates are decisional cues such as reaction times during the first-order 

task, as they are present no matter the sensory modality at play, and are thought to play an 

important role for confidence estimates (Yeung & Summerfield, 2012).  

 

Here we sought to test the hypothesis of domain-generality in metacognition, and directly 

explore the two above-mentioned mechanisms. At the behavioral level, we first investigated the 

commonalities and specificities of metacognition across sensory domains including touch, a 

sensory modality that has been neglected so far. Namely, we examined correlations between 

metacognitive performance during a visual, auditory, and tactile discrimination task (Experiment 

1). Next, extending our paradigm to conditions of audiovisual stimulation, we quantified for the 

first time the links between unimodal and multimodal metacognition (Deroy et al., 2016), and 

assessed through computational modeling how multimodal confidence estimates are built 

(Experiment 2). This allowed us to assess if metacognition is domain-general because of the 

generic format of confidence. Finally, we investigated the neural mechanisms of unimodal and 

multimodal metacognition and repeated Experiment 2 while recording 64-channel 

electroencephalography (EEG, Experiment 3). This allowed us to identify neural markers with 

high temporal resolution, focusing on those preceding the response in the first-order task to 
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assess if metacognition is domain-general because of the presence of decisional cues 

(mechanism 2; Boldt et al., 2015). Namely, we assessed the presence of domain-general 

versus domain-specific mechanisms of metacognition during the motor preparation preceding 

the perceptual first-order task, as quantified by event-related potentials (ERPs) and alpha 

suppression over sensorimotor regions. The present data reveal (1) correlations in 

metacognitive behavioral efficiencies across different unimodal and bimodal perception, (2) 

computational evidence for integrative, supramodal representations during audiovisual 

confidence estimates (mechanism 1), and (3) the presence of similar neural markers of domain-

general metacognition preceding the first-order task (mechanism 2). Altogether, these 

behavioural, computational, and neural findings provide non-mutually exclusive mechanisms 

explaining the domain-generality of metacognition during human perception.  

 

 

Figure 1: Experimental procedure. Participants had to perform a perceptual task on a stimulus (first 
order task), and then indicate their confidence in their response by placing a cursor on a visual analog 
scale (second order task). The types of stimuli and first order task varied across conditions and 
experiments, as represented schematically on the right panel. In Experiment 1, a pair of two images, 
sounds, or tactile vibrations was presented on each trial. The stimuli of each pair were lateralized and 
differed in intensity (here high intensity is depicted in red, low intensity in pink). The first order task was to 
indicate whether the most intense stimulus was located on the right (as depicted here) or left side. In 
Experiment 2, either two pairs of two images (unimodal visual condition), two sounds (unimodal auditory 
condition), or one pair of two images with one pair of two sounds (bimodal audiovisual condition) were 
presented on each trial. The first-order task was to indicate whether the most intense stimulus of each 
pair were both on the same side (congruent trial), or each on a different side (incongruent trial, as 
depicted here). Experiment 3 was a replication of Experiment 2 including EEG recordings, focusing on the 
unimodal visual condition and the bimodal audiovisual condition. The order of conditions within each 
experiment was counterbalanced across participants.  
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Results 

Experiment 1 

We first aimed at comparing metacognitive accuracy across the visual, auditory, and tactile 

modalities. Participants were presented with a pair of simultaneous stimuli at a right and left 

location, and asked to indicate which of the two stimuli had the highest intensity (Figure 1, right 

panel). In this way, the first-order task consisted in a 2-alternative forced choice on visual, 

auditory, or tactile intensity (i.e., respectively contrast, loudness, or force). After each choice, 

participants reported their confidence on their previous response (second-order task) (Figure 1, 

left panel). The main goal of this experiment was to test the existence of correlations in 

metacognitive efficiency between sensory modalities. Before examining them, we report general 

results of type 1 and type 2 performances. First, we aimed to equate first-order performance in 

the three modalities using a 1-up/2-down staircase procedure (Levitt, 1971). Although this 

approach prevented large inter-individual variations, some minor differences across modalities 

subsisted, as revealed by a one-way ANOVA on d’ measuring first order sensitivity 

[F(1.92,26.90) = 8.76, p < 0.001, ηp² = 0.38] (Figure 2a). First-order sensitivity was lower in the 

auditory condition [mean d’ = 1.20 ± 0.05 (95% CI)] as compared to the tactile [mean d’ = 1.37 ± 

0.07, p = 0.002] and visual conditions [mean d’ = 1.33 ± 0.07, p = 0.004] (Figure 2a; see SI for 

further analyses). This aspect of our results is likely due to the difficulty of setting perceptual 

thresholds with adaptive staircase procedures. Importantly however, it does not prevent us from 

comparing metacognitive performance across senses, as the metrics of metacognitive 

performance we used are independent of first-order sensitivity. Indeed, metacognitive sensitivity 

was estimated with meta-d’, a response-bias free measure of how well confidence estimates 

track performance on the first-order task (Maniscalco & Lau, 2012). A one-way ANOVA on 

meta-d’ revealed a main effect of condition [F(1.93,25.60) = 5.92, p = 0.009, ηp² = 0.30] (Figure 

2b). To further explore this main effect and rule out the possibility that it stemmed from 

differences at the first-order level, we normalized metacognitive sensitivity by first-order 

sensitivity (i.e., meta-d’/d’), to obtain a pure index of metacognitive performance called 

metacognitive efficiency. Only a trend for a main effect of condition was found [F(1.76,24.61) = 

3.16, p = 0.07, ηp² = 0.18] (Figure 2c), revealing higher metacognitive efficiency in the visual 

[mean ratio = 0.78 ± 0.13] vs. auditory domain [mean meta-d’/d’ ratio = 0.61 ± 0.15; paired t-

test: p = 0.049]. The difference in metacognitive efficiency between the visual and the tactile 

conditions [mean ratio = 0.70 ± 0.10] did not reach significance [paired t-test: p = 0.16]. These 

results and others that are secondary to test the domain-generality hypothesis of metacognition 

are further discussed in SI.  
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Crucially, we found positive correlations between metacognitive efficiency in the visual and 

tactile conditions [adjusted R² = 0.21, p = 0.047] (Figure 2e), and in the auditory and tactile 

conditions [adjusted R² = 0.24, p = 0.038] (Figure 2f). (The data were inconclusive regarding the 

correlation between the visual and auditory condition [adjusted R² = 0.07, p = 0.17, Bayes 

Factor = 0.86] (Figure 2d)). These results reveal shared variance between auditory, tactile, and 

visual metacognition, in line with the domain-generality hypothesis. Moreover, the absence of 

any correlation between first-order sensitivity and metacognitive efficiency in any of the 

conditions [all adjusted R² < 0; all p-values > 0.19], rules out the possibility that such domain-

generality during the second-order task was confounded with first-order performance.  

  

 

Figure 2: Upper row: Violin plots representing first order sensitivity (a: d’), metacognitive sensitivity (b: 
meta-d’), and metacognitive efficiency (c: meta-d’/d’) in the auditory (A, in red), tactile (T, in green), and 
visual modalities (V, in blue). Full dots represent individual data points. Empty circles represent average 
estimates. Error bars represent the standard deviation. The results show that independently of first-order 
performance, metacognitive efficiency is better in vision compared to audition. Lower row: correlations 
between metacognitive efficiencies in the visual and auditory conditions (3d), visual and tactile conditions 
(3e), and tactile and auditory conditions (3f). The results show that metacognitive efficiency correlates 
across sensory modalities, in favor of the domain-general hypothesis. *** p < 0.001, ** p < 0.01, + p < 0.1.  
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Experiment 2 

Experiment 1 revealed correlational evidence for the domain-generality of perceptual 

metacognition across three modalities. A previous study (McCurdy et al., 2013), however, 

dissociated brain activity related to metacognitive accuracy in vision versus memory, despite 

clear correlations at the behavioral level. Thus, correlations between modalities are compelling, 

but not sufficient to support the domain-generality hypothesis. We therefore put the evidence of 

experiment 1 to a stricter test in Experiment 2, by comparing metacognitive efficiency for 

unimodal vs. bimodal, audiovisual stimuli. We reasoned that if metacognitive monitoring 

operates independently from the nature of sensory signals from which confidence is inferred, 

confidence estimates should be as accurate when made on unimodal or bimodal signals. In 

contrast, if metacognition operated separately in each sensory modality, one would expect that 

metacognitive efficiency for bimodal stimuli would only be as high as the minimal metacognitive 

efficiency for unimodal stimuli. Besides mere comparisons, the domain-generality hypothesis 

also implies the existence of correlations between unimodal and bimodal metacognitive 

efficiencies, thereby extending the correlations across distinct unimodal stimulations reported in 

Experiment 1 to bimodal stimulations. Participants performed three different perceptual tasks, all 

consisting in a congruency judgment between two pairs of stimuli (Figure 1, right panel). In the 

unimodal visual condition, participants indicated whether the most contrasted stimuli of each 

pair were situated on the same or different side of the screen. In the unimodal auditory 

condition, they indicated whether the loudest sounds of each pair were played in the same ear 

or in two different ears. In the bimodal audiovisual condition, participants indicated whether the 

side corresponding to the most contrasted Gabor patch of the visual pair corresponded with the 

side of the loudest sound of the auditory pair. The staircase procedure minimized variations in 

first-order sensitivity [F(1.75,22.80) = 2.12, p = 0.15, ηp² = 0.14], such that sensitivity in the 

auditory [mean d’ = 1.31 ± 0.12], audiovisual [mean d’ = 1.38 ± 0.12], and visual conditions 

[mean d’ = 1.25 ± 0.11] were similar (Figure 3a, and SI for further analyses). We found a main 

effect of condition for both metacognitive sensitivity [meta-d’: F(1.98,25.79) = 4.67, p = 0.02, ηp² 

= 0.26], and metacognitive efficiency [ratio meta-d’/d’:  F(1.95,25.40) = 6.63, p = 0.005, ηp² = 

0.34] (Figure 3b and 3c, respectively). Pairwise comparisons revealed higher metacognitive 

efficiency in the visual [mean ratio = 0.94 ± 0.19] vs. auditory [mean meta-d’/d’ ratio = 0.65 ± 

0.17; paired t-test: p = 0.005] and audiovisual domains [mean meta-d’/d’ ratio = 0.70 ± 0.15; 

paired t-test: p = 0.02]. As auditory and audiovisual metacognitive efficiencies were not different 

[p = 0.5, BF = 0.38], the differences in metacognitive efficiency are likely to stem from 

differences between auditory and visual metacognition, as found in Experiment 1. Importantly, 
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congruency judgments required that participants responded on the basis of the two presented 

modalities. Thus, the fact that metacognitive efficiency is similar in the audiovisual and auditory 

tasks implies that the resolution of confidence estimates in the bimodal condition is as good as 

that in the more difficult unimodal condition (in this case, auditory), despite it requiring the 

analysis of two sources of information.  

 

Crucially, we found again correlations between metacognitive efficiency in the auditory and 

visual conditions [adjusted R² = 0.24, p = 0.043] (Figure 3d), as in experiment 1; more 

importantly, we also found correlations between metacognitive efficiency in the auditory and 

audiovisual conditions [adjusted R² = 0.23, p = 0.046] (Figure 3e) and a trend between 

metacognitive efficiency in the visual and audiovisual conditions [adjusted R² = 0.15, p = 0.097] 

(Figure 3f). This contrasted with no correlations between first-order sensitivity and metacognitive 

efficiency in any of the conditions [all R² < 0.06; all p > 0.19] except in the visual condition, 

where high d’ was predictive of low meta-d’/d’ values [R² = 0.39, p = 0.01]. The absence of such 

correlations in most conditions makes it unlikely that relations in metacognitive efficiency were 

driven by similarities in terms of first-order performance. In addition to the equivalence between 

the resolution of unimodal and bimodal confidence estimates, the correlations in metacognitive 

efficiency between unimodal and bimodal conditions suggest that metacognitive monitoring for 

unimodal vs. bimodal signals involves shared mechanisms (i.e. domain-generality).  
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Figure 3: Upper row: Violin plots representing first order sensitivity (3a: d’), metacognitive sensitivity (3b: 
meta-d’), and metacognitive efficiency (3c: meta-d’/d’) in the auditory (A, in red), audiovisual (AV, in 
green), and visual modalities (V, in blue). Full dots represent individual data points. Empty circles 
represent average estimates. Error bars represent the standard deviation. The results show that 
independently of first-order performance, metacognitive efficiency is better for visual stimuli vs. auditory or 
audiovisual stimuli, but not poorer for audiovisual vs. auditory stimuli. Lower row: correlations between 
metacognitive efficiency between conditions. Lower row: correlations between relative metacognitive 
efficiency in the visual and auditory conditions (3d), audiovisual and auditory conditions (3e), and 
audiovisual and visual conditions (3f). The results show that metacognitive efficiency correlates between 
unimodal and bimodal perceptual tasks, in favor of the domain-general hypothesis. ** p < 0.01, * p < 0.05. 

 

 

Computational models of confidence estimates for bimodal signals 

Using the data from experiment 2, we next sought to reveal potential mechanisms underlying 

the computation of confidence in the bimodal condition. For this, we first modeled the proportion 

of trials corresponding to high vs. low confidence in correct vs. incorrect type 1 responses, in the 

unimodal auditory and unimodal visual conditions separately. Each condition was represented 

by a 2-dimensional signal detection theory (SDT) model with standard assumptions and only 2 

free parameters per participant, namely internal noise σ and confidence criterion c (see Figure 

4, Methods and SI for details). This simple model accounted for more than half the total 

variance in participants’ proportion of responses both in the unimodal visual [R² = 0.68] and 
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unimodal auditory conditions [R² = 0.57]. We then combined the fitted parameter values under 

different rules to estimate and compare their fits to the audiovisual data. Note that with this 

procedure, and unlike the fits to the unimodal conditions, the data used to estimate the model 

parameters were different from those on which the model fits were compared. We evaluated 

different models systematically by grouping them into three families, varying in degree of 

domain-generality. We present here the best model from each family (see figure 4 and figure S5 

for schematics of all models tested). The domain-general model echoes the unimodal models 

and represents the highest degree of integration: here, confidence is computed on the basis of 

the joint distribution of the auditory and visual modalities. The comparative model assumes that 

confidence is computed separately for each modality and in a second step combined into a 

single summary measure. The single-modality model assumes that confidence varies with the 

internal signal strength of a single modality and therefore supposes no integration of information 

at the second-order level. We compared these different models by calculating their respective 

BIC weights (BICw, Burnham & Anderson, 2002; Solovey, Graney, & Lau, 2014), which quantify 

the relative evidence in favour of a model in relation to all other models considered.  

 

By examining individual BICw in a ternary plot (Figure 4d; see also figure S4 for individual 

model fits), we found that the best model for most participants was either the domain-general or 

the comparative model, whereas the BICw for the single-modality model was equal to 0. Yet, we 

note that the single-modality model is also plausible, as it does predict the responses of four 

participants better than any of the other two models. Taken together these computational results 

suggest that most participants computed confidence in the bimodal task by using information 

from the two modalities under a supramodal format that is independent of the sensory modality, 

in agreement with the first mechanism for domain-general metacognition we introduced. We 

conclude that the confidence reports for audiovisual signals arise either from the joint 

distribution of the auditory and visual signals (domain-general model), or are computed 

separately for distinct modalities, and then combined into a single supramodal summary statistic 

(comparative model). These two models are therefore good candidates to explain the domain-

generality of metacognition. Besides this first mechanism in favor of the domain-general 

hypothesis, we next sought to assess if metacognition was domain-general due to the influence 

of decisional cues that are shared between sensory modalities (see introduction: mechanism 2). 
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Figure 4: Model predictions (a, b, c): Ellipses represent the partially overlapping bivariate internal signal 
distributions for each of the stimulus combinations, represented at a fixed density contour. The top right 
quadrant corresponds to congruent stimuli, where the stimuli in each pair were stronger on the right side. 
The colours represent the predicted confidence, normalized to the interval [0,1] for every combination of 
internal signal strength for each stimulus pair (XA, XV). Note that for models A and B, confidence 
increases with increasing internal signal level in both modalities, whereas in the single-modality model C, 
confidence depends on the signal strength of only one modality. (d.) Individual BIC weights for the 
three model fits in the audiovisual condition. The arrows show how to read the plot from an arbitrary 
data point in the diagram, indicated with a red triangle. Consider that the sum of the BICw for all models 
(A., B. and C.) amounts to 1 for each participant. To estimate the relative BICw of each model for any 
given participant, take the lines parallel to the vertex labeled 1 for that model. The intersection between 
the line parallel to the vertex and the triangle edge corresponding to the model indicates the BICw. 

 

 

Our modeling results suggest that confidence estimates are encoded in a supramodal format, 

compatible with the domain-generality hypothesis for metacognition. Notably however, apparent 

domain-generality in metacognition could arise in case non-perceptual signals are taken as 

inputs for the computation of confidence. In models implying a decisional locus for 

metacognition (Yeung & Summerfield, 2012), stimulus-independent cues such as reaction times 

during the first-order task take part in the computation of confidence estimates. This is 

empirically supported by a recent study showing that confidence in correct responses is 

decreased in case response-specific representations encoded in the premotor cortex are 

disrupted by transcranial magnetic stimulation (Fleming et al., 2015). In the present study, 

decisional parameters were shared across sensory modalities, since participants used a 
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keyboard with their left hand to perform the first-order task for all sensory modalities. To extend 

our modeling results and assess whether domain-generality in metacognition also involves a 

decisional locus (mechanism 2 discussed above), we examined how participants used their 

reaction times to infer confidence in different conditions. Specifically, we quantified the overlap 

of first-order reaction times distributions corresponding to correct vs. incorrect responses, as a 

summary statistic representing how reaction times differ between correct and incorrect trials. 

We measured how reaction time overlap correlated with the overlap of confidence ratings after 

correct vs. incorrect first-order responses, which is a summary statistic analogous to ROC-

based methods typically used to quantify metacognitive sensitivity with discrete confidence 

scales (Fleming & Lau, 2012). If confidence involves a decisional-locus, one would expect a 

correlation between confidence overlap and reaction time overlap, so that participants with the 

smallest confidence overlap (i.e., highest metacognitive sensitivity) are the ones with the 

smallest reaction times overlap (i.e., distinct reaction times in correct vs. incorrect responses). 

Interestingly in Experiment 1, the correlation strength mirrored the difference in metacognitive 

efficiency we found between sensory modalities: higher correlations were found in the visual 

domain (adjusted R ² = 0.54, p = 0.002; average metacognitive efficiency = 0.78 ± 0.13), 

compared to the tactile (adjusted R² = 0.26, p = 0.03; average metacognitive efficiency = 0.70 ± 

0.10) and auditory domains (adjusted R² = -0.06, p = 0.70; average metacognitive efficiency = 

0.61 ± 0.15; see figure S1). This suggests that decisional parameters such as reaction times in 

correct vs. incorrect trials may inform metacognitive monitoring, and may be used differently 

depending on the sensory modality with a bigger role in visual than in tactile and auditory tasks. 

Importantly, even though such correlations between reaction time overlap and confidence 

overlap would be expected in experiments containing a mixture of very easy and very difficult 

trials, the correlations in the visual and tactile modalities reported above persisted even after the 

variance of perceptual evidence was taken into account using multiple regressions. This rules 

out the possibility that these correlations are explained by variance in task difficulty. This pattern 

of results was not found in Experiment 2 (i.e. no correlation between reaction times and 

confidence overlaps; all R² < 0.16, all p > 0.1), but replicated in Experiment 3 as further detailed 

below.  
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Experiment 3.  

The aim of experiment 3 was three-fold. First and foremost, we sought for the first time to 

document the potential common and distinct neural mechanisms underlying unimodal and 

bimodal metacognition. Following the link between reaction times and metacognitive efficiency 

uncovered in Experiment 1, we expected to find domain-general neural markers of 

metacognition preceding the first-order task, as quantified by the amplitude of event-related 

potentials (ERPs) as well as in alpha suppression over the sensorimotor cortex prior to key 

press (Pfurtscheller & Da Silva, 1999).  Second, we aimed at replicating the behavioural results 

from Experiment 2, especially the correlation between visual and audiovisual metacognitive 

efficiency. Third, we aimed at estimating the correlations between confidence and reaction times 

overlap on a new group of participants. Therefore, we tested participants on these two 

conditions only.  

 

Behavioural data 

The staircase procedure minimized variations in first-order sensitivity [t(17) = 0.3, p = 0.76, d = 

0.07], such that sensitivity in the audiovisual [mean d’ = 1.15 ± 0.07] and visual conditions 

[mean d’ = 1.17 ± 0.05] were similar (see SI for further analyses). No difference in metacognitive 

sensitivity was found between conditions [t(17) = 0.78, p = 0.44, d = 0.09] or efficiency [t(17) = 

0.78, p = 0.44, d = 0.08]. Crucially, we replicated our main results from Experiment 2, as we 

found a positive significant correlation between relative metacognitive accuracy in the 

audiovisual and visual conditions [adjusted R² = 0.47, p < 0.001], and no correlation between 

first-order sensitivity and metacognitive efficiency in either condition [both R² < 0.01; both p-

values > 0.3] (Figure 5). Regarding the decisional locus of metacognition, Experiment 3 

confirmed the results of Experiment 1: reaction time and confidence overlaps correlated more in 

the visual condition (adjusted R ² = 0.41, p = 0.003), than in the audiovisual condition (adjusted 

R² = -0.05, p = 0.70), suggesting that decisional parameters such as reaction times may inform 

metacognitive monitoring, although differently between the visual and audiovisual conditions. 

Altogether, these behavioral results from three experiments with different subject samples 

confirm the existence of shared variance in metacognitive efficiency between unimodal and 

bimodal conditions, and do not support major group differences between them. Further, they 

support the role of decisional factors such as reaction times estimates, as predicted when 

considering a decisional locus for metacognition.  
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Figure 5: Violin plots represent first-order sensitivity (5a: d’), metacognitive sensitivity (5b: meta-d’), and 
metacognitive efficiency (5c: meta-d’/d’) in the audiovisual (AV, in green), and visual conditions (V, in 
blue). Full dots represent individual data points. Empty circles represent average estimates. Error bars 
represent the standard deviation. The results show no difference between visual and audiovisual 
metacognitive efficiency. 5d represents the correlation between metacognitive efficiency in the 
audiovisual and visual conditions.  

 

 

 

EEG data 

Next, we explored the neural bases of visual and audiovisual metacognition, focusing on the 

decisional locus of confidence by measuring ERPs locked to the type 1 response, taking into 

account the differences in type 1 reaction times between the visual and audiovisual tasks (562 

ms shorter in the visual condition on average: t(17) = 6.30, p < 0.001). Since we showed that 

decisional parameters such as reaction times inform metacognitive monitoring, this analysis was 

carried out on a set of scalp electrodes over the right sensorimotor cortex that included the left 

hand representation with which participants performed the first-order task (see Boldt & Yeung 

for findings showing that parietal scalp regions also correlate with confidence prior to response). 

Incorrect type 1 responses were not analyzed as the lower-bound of the confidence scale we 

used corresponded to a “pure guess”, and therefore did not allow disentangling detected vs. 

undetected errors.  
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We first compared the average ERP amplitude time-locked to the onset of correct type 1 

responses as a function of confidence, using linear mixed models with condition as a fixed effect 

(visual vs. audiovisual, see Methods and SI for details). This analysis revealed main effects, 

whereby the modulations of ERP amplitudes by confidence were similar in the visual and 

audiovisual condition, and interaction effects, whereby the amplitude modulations differed 

across conditions. A first main effect of confidence was found early before the type 1 response, 

underlying a negative relationship between ERP amplitude and confidence (-600 to -550 ms; p 

< 0.05, fdr-corrected, see figure 6a, left panel, showing the grand average between the visual 

and audiovisual condition). A second main effect of confidence peaked at -300 ms (-400 to -100 

ms; p < 0.05, fdr-corrected), so that trials with high confidence reached maximal amplitude 300 

ms before key press. These two effects are characterized by an inversion of polarity from an 

early-negative to a late-positive relationship, which has been linked to selective response 

activation processes (i.e., lateralized readiness potentials, see Eimer, 1998 for review, and 

Bujan et al., 2009 for previous results in metamemory). Thus, the present data show that 

sensorimotor ERP also contribute to metacognition as they seemed impacted by confidence 

both in the audiovisual and visual conditions. Of note, confidence modulated the amplitude and 

not the onset latency of the ERP, which suggests that the timing of response selection itself 

does not depend on confidence. We complemented this ROI analysis by exploring the relation 

between confidence and ERP amplitude for all recorded electrodes (figure 6a, right panel). This 

revealed that the later effect 300 ms before key press was centered on centro-parietal regions 

(i.e., including our region of interest; p < 0.001) as well as more frontal electrodes, potentially in 

line with several fMRI studies reporting the role of the prefrontal cortex for metacognition 

(Fleming et al., 2010; McCurdy et al., 2013, see Grimaldi et al., 2015 for review). The linear 

mixed model analysis also revealed significant interactions, indicating that the modulation of 

ERP amplitude as a function of confidence was significantly stronger in the visual condition, with 

again one early (-750 to -600 ms) and late component (-350 to – 150 ms; Figure 6b, left panel)). 

Topographical analysis of these interactions implicated frontal and parieto-occipital electrodes. 

These results at the neural level are consistent with our behavioural data, since we found that 

reaction times have more influence on the computation of confidence in the visual compared to 

the audiovisual condition.  
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Figure 6. Voltage amplitude time-locked to correct type 1 responses as a function of confidence. 
a. left panel: time course of the main effect of confidence within a pre-defined ROI. Although raw 
confidence ratings were used for the statistical analysis, they are depicted here as binned into four 
quartiles, from quartile 1 corresponding to trials with the 25% lowest confidence ratings (light pink), to 
quartile 4 corresponding to trials with the 25% highest confidence ratings (dark red).  Right panel: same 
analysis as shown in (a) on the whole scalp. The plot represents the time-course of the summed F-value 
over 64 electrodes for the main effect of confidence. The topography where a maximum F-value is 
reached (*) is shown next to each plot. b. left panel: time course of the interaction between confidence 
and condition following a linear mixed model analysis within the same ROI as in (a). Although raw 
confidence ratings were used for the statistical analysis, the plot represents the difference in voltage 
amplitude between trials in the 4th vs. 1st confidence quartile. Right panel: same analysis as shown in (b) 
on the whole scalp, with corresponding topography. In all plots, grey bars correspond to significant main 
effects (a) or interactions (b), with p < 0.05 fdr-corrected. Significant effects on topographies are 
highlighted with black stars (p < 0.001, uncorrected).  

 

Complementary to ERP amplitude, we also analyzed oscillatory alpha power as a signature of 

motor preparation (i.e, pre-movement related desynchronization, see Pfurtscheller & Da Silva, 

1999). Results of the linear mixed model analysis revealed a sustained main effect of 

confidence starting 300 ms before key press and continuing until 200 ms after the type 1 

response (p < 0.05 fdr-corrected), showing a negative relationship between confidence and 

alpha power (i.e., alpha suppression, figure 7a, left panel). Note that, opposite to what we found 

in the amplitude domain, the main effect of confidence on alpha power was found even after a 

first-order response was provided. Likewise, the topographical analysis revealed a different 

anatomical localization than the effect we found in the amplitude domain, with more posterior, 
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parieto-occipital electrodes involved. This suggests that alpha suppression prior to type 1 

response varies as a function of confidence non-differentially in both the audiovisual and visual 

conditions. The linear mixed model analysis also revealed a main effect of condition, with higher 

alpha power in the visual vs. audiovisual condition (figure 7b, left panel). This could be related to 

the fact that the audiovisual task was judged more demanding by participants, as reflected by 

their longer type 1 reaction times. Finally, significant interactions between confidence and 

condition were found, with topographical locations predominantly within frontal electrodes. 

Taken together, the main effects of confidence on voltage amplitude and alpha power reveal 

some of the markers validating the domain-generality hypothesis at a decisional locus. These 

are likely to be part of a bigger set of neural mechanisms, operating at a decisional, but also 

post-decisional locus that was not explored here (Pleskak & Busemeyer, 2010). The existence 

of significant interactions reveals that some domain-specific mechanisms are also at play during 

metacognition, which accounts for the unexplained variance when correlating metacognitive 

efficiencies across modalities at the behavioral level.  

 
 

 

Figure 7. Alpha power time-locked to correct type 1 responses as a function of confidence. The 
legend is identical to that of figure 6, with alpha power instead of voltage amplitude.  
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Discussion  

Is perceptual metacognition domain-general, with a common mechanism for distinct tasks and 

sensory modalities, or is it domain-specific, with idiosyncratic mechanisms for each task and 

sensory modality? As of today, this issue remains unsettled because the vast majority of 

experiments on metacognitive perception only involved the visual modality (but see Ais, 2016; 

de Gardelle 2016). In vision, Song and colleagues (2011) found that about half of the variance 

in metacognitive sensitivity during a contrast discrimination task was explained by metacognitive 

sensitivity in an orientation discrimination task, suggesting some level of generality across 

different tasks within the visual domain. Likewise, roughly a quarter of the variance in 

metacognitive sensitivity during a contrast discrimination task was explained by metacognitive 

sensitivity during a memory task involving words presented visually (McCurdy et al., 2013). 

Here, we extend these studies beyond vision with several new experiments aimed at assessing 

the generality of metacognition across three sensory modalities as well as conjunctions of two 

sensory modalities. In Experiment 1 we tested participants in three different conditions, which 

respectively required discriminating the side on which visual, auditory or tactile stimuli were 

most salient. We found positive correlations between metacognitive efficiency across sensory 

modalities, and ruled out the possibility that these correlations stemmed from differences in first-

order performances (Maniscalco & Lau, 2012). These results extend the report by Ais and 

colleagues (2016) and de Gardelle and colleagues (2016) of similarities between auditory and 

visual metacognition to auditory, tactile, and visual laterality discrimination tasks, and therefore 

support the existence of a common mechanism underlying metacognitive judgments in three 

distinct sensory modalities. 

 

In Experiment 2, we further extended these results to a different task and also generalized them 

to bimodal stimuli (Deroy et al., 2016). First, using a first-order task that required congruency 

rather than laterality judgments, we found again that metacognitive efficiency in an auditory task 

correlated with metacognitive efficiency in a visual task. Second, we designed a new condition 

in which participants had to perform congruency judgments on bimodal, audiovisual, signals, 

which required the information from both modalities to be taken into account. Three further 

observations from these conditions support the notion of domain-generality in perceptual 

metacognition. First, we observed that metacognitive efficiency in the audiovisual task was 

indistinguishable from that in the unimodal auditory task, suggesting that the computation of 

joint confidence is not only possible but can also occur at no behavioral additional cost. These 
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results confirm and extend those of Experiment 1 in a different task and with different 

participants, and further suggest that performing confidence estimates during a bimodal task 

was not more difficult than doing so during the hardest unimodal task (in this case, auditory), 

despite it requiring the computation of confidence across two perceptual domains. We take this 

as evidence in support of domain-generality in perceptual metacognition. Second, we found a 

positive and significant correlation in metacognitive efficiency between the auditory and 

audiovisual conditions, and a trend between the visual and audiovisual conditions, later 

replicated in Experiment 3. As in Experiment 1, these results cannot be explained by 

confounding correlations with first-order performance. We take this as another indication that 

common mechanisms underlie confidence computations for perceptual tasks on unimodal and 

bimodal stimuli. While the reported correlations involved a rather low number of participants and 

were arguably sensitive to outliers (McCurdy et al., 2013), we note that they were replicated 

several times, under different conditions and tasks in different groups of participants, which is 

likely in less than 1% of cases under the null hypothesis (binomial test).  

 

The next piece of evidence we brought in favor of domain-general metacognition goes beyond 

correlational evidence, and provides new insights regarding the mechanisms involved in 

confidence estimates when the signal extends across two sensory modalities. Using a modeling 

approach, we found that data in the audiovisual condition was better predicted by models that 

computed confidence with a supramodal format, based on the information from both the 

auditory and visual modalities, as compared to simpler models that considered only either one 

of the two modalities. We take this as evidence in favor of the first mechanism we introduced, 

according to which metacognition is domain-general because monitoring operates on 

supramodal confidence estimates, computed with an identical neural code across different 

sensory modalities. Importantly, while our modeling analyses argue clearly against single-

domain models as predictors of participants’ behaviour, they could not clearly distinguish 

between the domain-general average model and the single-modality minimum confidence 

model. In Experiment 2, the differences in intensity between the left and right stimuli of the 

auditory and visual pairs were yoked: the staircase procedure we used controlled both pairs 

simultaneously, increasing (decreasing) the difference between the left and right stimuli in both 

modalities after an incorrect (two correct) response. As a result, we sampled values from a 

single diagonal in the space of stimulus intensities, which limits the modeling results. In future 

studies, non-yoked stimuli pairs could be used —albeit at the cost of a longer experimental 
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session— to explore wider sections of the landscape of confidence as a function of internal 

signal to better test the likelihood of the models studied here.  

 

Finally, we assessed in Experiment 3 whether domain-general metacognition could arise due to 

the second mechanism we introduced, according to which domain-generality is driven by the 

influence of non-perceptual, decisional signals during the computation of confidence estimates. 

For this purpose, we replicated correlations in metacognitive efficiency between the visual and 

audiovisual conditions, while examining the neural mechanisms of visual and audiovisual 

metacognition preceding the perceptual judgment (i.e., at a decisional level). In a response-

locked analysis with confidence and condition as within-subject factors, we found that 

confidence preceding the type 1 response was reflected in ERP amplitude and alpha power 

(main effect), within a region of interest that included the parietal and sensorimotor cortex 

corresponding to the hand used for the type 1 task, as well as more frontal sites. Before 

discussing the main effects of confidence, we note that the analysis also revealed interactions 

between confidence and condition, revealing that idiosyncratic mechanisms are also at play 

during the metacognitive monitoring of visual vs. audiovisual signals, and that modulations of 

ERP and alpha power as a function of confidence were overall greater in the visual vs. 

audiovisual condition. Regarding the main effects, we found an inversion ERP polarity over left 

sensorimotor regions, suggesting a link between confidence and selective response activation, 

so that trials with high confidence in a correct response were associated with stronger motor 

preparation (Eimer, 1998; Bujan et al., 2009). Regarding alpha power, we found relative alpha 

desynchronization in occipito-parietal regions, which has been shown to reflect the level of 

cortical activity, and is held to correlate with processing enhancement (Pfurtscheller, 1992). At 

the cognitive level, alpha suppression is thought to instantiate attentional gating, so that 

distracting information is suppressed (i.e. Foxe & Snyder, 2011; Pfurtscheller & Da Silva, 1999; 

Klimesch, 2012). Indeed, higher alpha power has been shown in cortical areas responsible for 

processing potentially distracting information, both in the visual and audiovisual modalities 

(Foxe, Simpson, & Ahlfors, 1998). More recently, pre-stimulus alpha power over sensorimotor 

areas was found to be negatively correlated with confidence (Baumgarten, Schnitzler, & Lange, 

2014; Samaha, Iemi, Postle, 2016), or attentional ratings during tactile discrimination 

(Whitmarsh, Oostenveld, Almeida, & Lundqvist, 2016). Although these effects are usually 

observed prior to the onset of an anticipated stimulus, we observed them prior to the type 1 

response, suggesting that low confidence in correct responses could be due to the effect of 

inattention to common properties of first-order task execution such as motor preparation or 
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reaction time (stimulus locked-analyses that are not reported here revealed no effect of 

confidence prior to stimulus onset). This is compatible with a recent study showing that 

transcranial magnetic stimulation over the premotor cortex before or after a visual first-order 

task disrupts subsequent confidence judgments (Fleming et al., 2015).  

 

The finding of lower alpha power with confidence in correct responses is compatible with the 

observation that participants with more distinct reaction times between correct and incorrect 

responses had better metacognitive efficiency, as revealed by the correlation between 

confidence and reaction times overlaps following correct vs. incorrect responses. Thus, 

attention to motor task execution may feed into the computation of confidence estimates, in a 

way that is independent of the sensory modality involved, thereby providing a potential 

decisional mechanism for domain-general metacognition. In experiment 1, we also found that 

confidence and reaction times overlap were more correlated in the visual condition compared to 

the tactile, auditory, or audiovisual conditions. Based on these results, we speculate that 

decisional parameters in link with processes related to movement preparation inform 

metacognitive monitoring. Our EEG results and the correlations between reaction time and 

confidence overlaps suggest that decisional parameters may have a stronger weight in the 

visual than in the other modalities, which could explain the relative superiority of visual 

metacognition over other senses. We argue that this decisional mechanism in metacognition is 

compatible with the domain-generality hypothesis, in addition to the supramodal computation of 

confidence supported by our behavioral and modeling results. 

Conclusion 

Altogether, our results highlight two non-mutually exclusive mechanisms for the finding of 

correlated metacognitive efficiencies across auditory, tactile, visual and audiovisual domains. 

First, our modeling work showed that confidence estimates during an audiovisual congruency 

task have a supramodal format, following computations on the joint distribution or on the 

comparisons of the auditory and visual signals. Thus, metacognition may be domain-general 

because of supramodal formats of confidence estimates. Second, our electrophysiological 

results revealed that increased confidence in a visual or audiovisual task coincided with the 

amplitude of ERP and decreased alpha power prior to type 1 response, suggesting that 

decisional cues may be a determinant of metacognitive monitoring. Thus, metacognition may be 

domain-general not only because confidence estimates are supramodal by nature, but also 

because they may be informed by decisional and movement preparatory signals that are shared 

across modalities.  
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Methods 

Participants 

A total of 50 participants (Experiment 1: 15 including 8 females, mean age = 23.2 years, SD = 

8.3 years; Experiment 2: 15 including 5 females, mean age = 21.3 years, SD = 2.6 years; 

Experiment 3: 20 including 6 females, mean age = 24.6 years, SD = 4.3 years) from the student 

population at the Swiss Federal Institute of Technology (EPFL) took part in this study, in 

exchange for monetary compensation (20 CHF per hour). All participants were right-handed, 

had normal hearing and normal or corrected-to-normal vision, and no psychiatric or neurological 

history. They were naive to the purpose of the study and gave informed consent, in accordance 

with institutional guidelines and the Declaration of Helsinki. The data from two participants were 

not analyzed (one in Experiment 1 as the participant could not perform the auditory task, and 

one from Experiment 2 due to a technical issue with the tactile device). 

  

General procedure 

All three experiments were divided into two main phases. The first phase aimed at defining the 

participant’s threshold during a perceptual task using a 1-up/2-down staircase procedure (Levitt, 

1971). In Experiment 1, participants indicated which of two stimuli presented to the right or left 

ear (auditory condition), wrist (tactile condition), or visual field (visual condition) was the most 

salient. Saliency corresponded respectively to auditory loudness, tactile force, and visual 

contrast (see below for details). In Experiment 2, participants indicated whether the two most 

salient stimuli among two simultaneous pairs were presented to the same or different ear 

(auditory condition), visual field (visual condition), or whether the side of the most salient 

auditory stimulus corresponded to the side of the most salient visual one (audiovisual condition). 

Stimuli were presented simultaneously for 250 ms. All staircases included a total of 80 trials and 

lasted 5 min. All thresholds were defined as the average stimulus intensity during the last 25 

trials of the staircase procedure. All staircases were visually inspected, and restarted in case no 

convergence occurred by the end of the 80 trials (i.e., succession of multiple up/down 

reversals). The initial stimulation parameters in the audiovisual condition of Experiments 2 and 3 

were determined by a unimodal staircase procedure, applied successively to the auditory and 

visual condition.  

 

In the second phase, participants did the same perceptual task, starting with the stimulus 

intensity determined in phase 1. Another 1-up/2-down staircase procedure was used to keep 

task performance around 71% throughout phase 2, taking into account training or fatigue 
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effects. Immediately after providing their response on the perceptual task, participants reported 

their confidence on their preceding response on a visual analog scale using a mouse with their 

right hand. The left and right end of the scale were labeled “Very unsure” and “Very sure”, and 

participants were asked to report their confidence as precisely as possible, trying to use the 

whole scale range, and validate their response with a left click. During a training phase of 10 

trials, the cursor turned green/red upon clicking after a correct/incorrect response on the 

perceptual task. No feedback was provided after the training phase. To exclude trials with trivial 

mistakes, participants could use the right click to indicate when they had pressed the wrong 

button, or other obvious lapses of attention. In the audiovisual condition of Experiments 2 and 3, 

auditory and visual stimuli intensities were yoked, so that a correct (incorrect) answer on the 

bimodal stimulus led to an increase (decrease) in the stimulus intensity in both modalities. Each 

condition included a total of 400 trials, divided into 5 blocks. The three conditions (two in 

Experiment 3) were run successively in a counterbalanced order. One entire experimental 

session lasted 3 hours.  

 

Stimuli 

Audiovisual stimuli were prepared and presented using the Psychophysics toolbox (Brainard, 

1997; Pelli, 1997; Kleiner, Brainard, Pelli 2007) in Matlab (Mathworks). The auditory stimuli 

consisted of either a 1100 Hz sinusoidal (high pitch “beep” sound) or 200 Hz sawtooth function 

(low pitch “buzz” sound), played through headphones in stereo for 250 ms with a sampling rate 

of 44100 Hz. The loudness between the two ears was manipulated to control for task 

performance. In phase 1, the initial inter-ear intensity difference was 50%, and increased 

(decreased) by 1% after each incorrect (two correct) answers. The initial difference and step 

size were adapted based on individual performance. The initial difference in phase 2 was based 

on the results from phase 1, and the step size remained constant. In the auditory condition of 

Experiments 2, both sounds were played simultaneously in both ears, and were distinguished 

by their timber. When necessary, a correction of hearing imbalance was performed prior to the 

experiment to avoid response biases.  

 

Tactile stimuli were delivered on the palmar side of each wrist by a custom-made vibratory 

device, using coin permanent-magnetic motors (9000 rpm maximal rotation speed, 9.8 N 

bracket deflection strength, 55 Hz maximal vibration frequency, 22 m/s² acceleration, 30 ms 

delay after current onset) controlled by a Leonardo Arduino board through pulse width 

modulation. Task difficulty was determined by the difference in current sent to each motor. In 
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phase 1, the initial inter-wrist difference was 40%, and increased (decreased) by 2% after each 

incorrect (two correct) answers. The initial difference and step size were adapted individually, 

based on subjects performance. A correction of tactile imbalance due to a difference of pressure 

between the vibrator and the wrist was performed prior to the experiment to avoid response 

biases. The initial difference in phase 2 was based the results from phase 1, and the step size 

remained constant.  

 

Visual stimuli consisted in pairs of two 5° x 5° gabor patches (5 cycles/°, 11° center-to-center 

distance). When only one pair was presented (visual condition of Experiment 1, audiovisual 

condition of Experiments 2 and 3, requiring a laterality judgment), it was vertically centered on 

the screen. When two pairs were presented (visual condition of Experiment 2 and 3, requiring a 

congruency judgment), each pair was presented 5.5° above/below the vertical center of the 

screen. Visual contrast was manipulated, starting with a difference of contrast between gabor 

patches of 40%, and an increment (decrement) of 2.5% after one incorrect (two correct) 

answers. 

 

Behavioural analysis 

The first 50 trials of each condition were excluded from analysis as they contained large 

variations of perceptual signal. Only trials with reaction times between 100 ms and 3 s for the 

type 1 task and type 2 task were kept (corresponding to an exclusion of 22.2% of trials in 

Experiment 1 and 12.6% in Experiment 2). In Experiment 3, we used a more lenient superior 

cutoff of 5 s, resulting in 3.7 % excluded trials, as many trials had to be removed due to artifacts 

in the EEG signal. Meta-d’ was computed with the Matlab (Mathworks) toolbox provided by 

Maniscalco & Lau (2012, 2014), with confidence binned into 6 quantiles per participant and per 

condition. All other behavioural analyses were performed with R (2016), using notably the afex 

(Singmall et al., 2015), BayesFactor (Morey & Rouder, 2015), and ggplot2 (Wikham, 2009) 

packages. The overlap between confidence and reaction times probability density functions 

after correct and incorrect responses was computed with the overlap package (Meredith & 

Ridout, 2014). In all ANOVAs, degrees of freedom were corrected using the Greenhouse-

Geisser method.  

 

Preprocessing of EEG data 

Continuous EEG was acquired at 1024 Hz with a 64-channels Biosemi ActiveTwo system 

referenced to the common mode sense–driven right leg ground (CMS-DRL). Signal 
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preprocessing was performed using custom Matlab (Mathworks) scripts using functions from the 

EEGLAB (v 13.5.4, Delorme & Makeig, 2004), Adjust (Mognon, Jovicich, Bruzzone, & Buiatti, 

2011) and Sasica toolboxes (Chaumon, Bishop, & Busch, 2015). The signal was first down-

sampled to 512 Hz and band-pass filtered between 1 and 45 Hz (Hamming windowed sinc finite 

impulse response filter). Following visual inspection, artifact-contaminated electrodes were 

removed for each participant, corresponding to 3.4% of total data. Epoching was performed at 

type 1 response onset. For each epoch, the signal from each electrode was centered to zero 

and average-referenced. Following visual inspection and rejection of epochs containing 

artifactual signal (3.9% of total data, SD = 2.2%), independent component analysis (Makeig, 

Bell, Jung, & Sejnowski, 1996) was applied to individual data sets, followed by a semi-automatic 

detection of artifactual components based on measures of autocorrelation, correlation with 

vertical and horizontal EOG electrodes, focal channel topography, and generic discontinuity 

(Chaumon et al., 2015). Automatic detection was validated by visually inspecting the first 15 

component scalp map and power spectra. After artifacts rejection, epochs with amplitude 

changes of ±100 μV DC-offset were excluded (2.9 % of epochs, SD = 3.1%), and the artifact-

contaminated electrodes were interpolated using spherical splines (Perrin, Pernier, Bertrand, & 

Echallier, 1989).  

  

Statistical analyses of EEG data 

Analyses were performed using custom Matlab scripts using functions from the EEGLAB 

(Delorme & Makeig, 2004) and Fieldtrip toolboxes (Oostenveld, Fries, Maris, & Schoffelen, 

2011). Event-related potentials were centered on zero. Time-frequency analysis was performed 

using Morlet wavelets (3 cycles) focusing on the 8-12 Hz band. Voltage amplitude and alpha 

power were averaged within 50 ms time windows, and analyzed with linear mixed effects 

models using R together with the lme4 and lmerTest packages (Bates, Maechler, Bolker, & 

Walker, 2014; Kuznetsova, Brockhoff, & Christensen, 2014). Models were performed on each 

latency and electrode for individual trials, including raw confidence rating and condition (i.e., 

visual vs. audiovisual) as fixed effects, and random intercepts for subjects. Random slopes were 

not added as they induced convergence failures (i.e., parsimonious instead of maximal models, 

see Bates et al., 2015). Statistical significance for ERPs and alpha power within the region of 

interest was assessed after correction for false-discovery rate. Topographic analyses were 

exploratory, and significance was considered for p < 0.001 without correcting for multiple 

comparisons.  
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Modeling Procedure 

Our models assume that confidence in each trial is proportional to the likelihood of a correct 

answer, given a joint distribution of the internal signal associated with the two pairs of visual or 

auditory stimuli. Relying on two parameters, we aimed at calculating the proportion of trials in 

which confidence was higher/lower than the median confidence value, for correct/incorrect type 

1 response, for congruent/incongruent stimuli. For each participant, we estimated the internal 

noise (σ) and confidence criterion (c) that best fitted the proportion of trials in the 8 

corresponding categories (2 confidence bins x 2 accuracies x 2 conditions).  

 

Model of one participant 

We modeled each participant’s internal signal as a bivariate normal. Each dimension 

corresponded to one of the stimuli pairs in each condition. The bivariate distribution was 

parametrically defined with an arbitrary mean of μ = (1,1) and two standard deviations σ1, σ2. In 

the bimodal condition, σ1 and σ2 corresponded to the internal noise for the visual and auditory 

signal respectively, and were allowed to vary independently. In the unimodal conditions instead, 

σ1 and σ2 corresponded to each of the stimuli pairs of the same modality and were therefore 

constrained to be equal. An additional parameter c determined the criterion above which a 

decision was associated with high confidence ratings (i.e., type 2 criterion). Thus, the model 

relied on three assumptions: first, it assumed equal priors for all possible stimuli. Second, type-1 

decisions were assumed to be unbiased and optimal. Third, confidence was defined as 

proportional to the density P(correct|x1, x2), where x1, x2 correspond to the strength of the 

evidence of each pair of stimuli in a given trial. (In models of unimodal conditions, x1, x2 

corresponded to two stimuli pairs in the same modality; whereas in the bimodal conditions they 

corresponded to the auditory and visual stimuli. We use the notation x1, x2 for generality). We 

argue that the assumption of equality for σ1 and σ2 is a reasonable one in the unimodal visual 

case, where the two stimuli pairs differed only on their vertical position (but did not differ in their 

distance from the vertical midline). This assumption however is less clearly valid in the unimodal 

auditory condition, where the two pairs of stimuli were phenomenologically different (a sinewave 

‘beep’ vs. a sawtooth ‘buzz’). We note that the model was flexible enough to fit the different 

behavioural patterns of most participants, and that the model fits obtained for the unimodal 

auditory condition were comparable to those in the unimodal visual condition (see Results).  
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Modeling strategy 

We first estimated the σ and c parameters from the unimodal data for each participant, and then 

combined them under different models to estimate their fits to the audiovisual data (See Figure 

S2). Note that with this procedure, and unlike the fits to the unimodal conditions, the data used 

to estimate the model parameters were different from those on which the model fits were 

compared. We grouped the models into three families to compare them systematically. The 

family of domain-general models echoes the unimodal models and represent the highest degree 

of integration: here, confidence is computed on the basis of the joint distribution of the auditory 

and visual modalities (Figure 4a). Within this family, the average model considers one value of σ 

for each modality and takes a criterion resulting from the mean of the two modalities estimated. 

The family of comparative models (Figure 4b) assumes that confidence can only be computed 

separately for each modality and combined into a single summary measure in a second step. 

Within this family, the minimum-confidence model takes the minimum of the two independent 

confidence estimates as a summary statistic. Finally, the family of Single-modality models 

(figure 4c), assumes that confidence varies with the internal signal strength of a single modality 

and therefore supposes no integration of information at the second-order level. Within this 

family, the maximum efficiency model computes confidence on the basis of the modality with the 

best metacognitive efficiency alone. We calculated the Bayesian information criterion (BIC) to 

compare the different models while accounting for differences in their number of parameters. 

 

Our modeling approach can be seen as an extension of recent work (Aitchinson, Bang, 

Bahrami, & Latham, 2015), where two-dimensional SDT models similar to the ones we 

developed here revealed that participants estimated their confidence as the likelihood of a 

correct response given the sensory data. These models were defined for a 2-interval forced-

choice task, where the two intervals were mutually exclusive and the signal strength in one 

interval carried information about the alternative interval. Consequently, confidence increased 

with increasing signal strength in one interval, and decreasing signal strength in the other 

interval. In our task, on the other hand, congruency judgments had to be made on the basis of 

both stimulus pairs; and the strength of the sensory signal in one modality did not carry 

information about the second modality. Thus, in our models, the estimated confidence increased 

with increasing signal strength in both dimensions considered (see Figure S2, cf. Figure 9 from 

Aitchinson et al).  
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Decision rule - type 1 task 

We modeled the type 1 decision (i.e., the congruency judgment) as a ratio of log likelihoods.  

𝑑 =  𝑙𝑜𝑔 (
𝑃(𝐿𝐿 𝑜𝑟 𝑅𝑅)

𝑃(𝐿𝑅 𝑜𝑟 𝑅𝐿)
)        eq. 1 

Where LL, RR, LR and RL correspond to the four possible stimuli combinations of stimuli x1, x2 

most salient on the left (L) or right (R) side. LL and RR correspond to congruent stimuli pairs 

and LR, RL to incongruent stimuli pairs. It follows from eq. 1 (for the derivations, see SI) that the 

optimal type-1 criteria are placed at x1 = 0 and x2 = 0.  

 

Confidence judgment - type 2 task 

We modeled the type-2 decision (i.e., the confidence judgment) as the probability of having 

given a correct response, given the stimulus strength. We then tested eight different models 

under which confidence may be computed (see SI for schematics representing the predictions 

and BIC values for all models). In the domain-general models, confidence is computed on the 

basis of the joint bivariate distribution in the bimodal condition. Thus,  

𝑐𝑜𝑛𝑓 ∝  𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋1, 𝑋2)  ∝  𝑃(𝑅1|𝑋1) ⋅ 𝑃(𝑅2|𝑋2)    eq. 2  

The three members of this family differed in the values of σ used for each of the terms.   

In the three domain-specific models considered, confidence is computed independently for each 

dimension and, in a subsequent step, a summary measure is reported: either the maximum of 

the two computed confidence values (Maximum confidence eq. 3), the average of the two 

(Mean confidence, eq. 4) or the minimum of the two (Minimum confidence, eq. 5). 

𝑐𝑜𝑛𝑓 ∝  𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋1, 𝑋2)  ∝  𝑚𝑎𝑥( 𝑃(𝑅1|𝑋1), 𝑃(𝑅2|𝑋2) )    eq. 3 

𝑐𝑜𝑛𝑓 ∝  𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋1, 𝑋2)  ∝  (𝑃(𝑅1|𝑋1) + 𝑃(𝑅2|𝑋2)) / 2     eq. 4 

𝑐𝑜𝑛𝑓 ∝  𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋1, 𝑋2)  ∝  𝑚𝑖𝑛( 𝑃(𝑅1|𝑋1), 𝑃(𝑅2|𝑋2) )    eq. 5 

In the single-domain models, confidence is calculated based only on a single modality, namely 

the one with the highest or lowest metacognitive efficiency as measured in the unimodal 

conditions (Maximum or Minimum metacognition model respectively, eq. 6).   

𝑐𝑜𝑛𝑓 ∝  𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋1)  ∝ 𝑃(𝑅1|𝑋1)    𝑜𝑟 𝑐𝑜𝑛𝑓 ∝  𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋2)  ∝ 𝑃(𝑅2|𝑋2)     eq. 6 

 

Model fits 

We first estimated the percentage of variance explained by the unimodal models. To calculate 

R2, we first used the nlme package in R (Pinheiro et al., 2016) to estimate the predictive power 

of our models while allowing for random intercepts for each participant. We then used the 

piecewiseSEM package (Lefcheck, 2015) to estimate the percentage of variance explained, 
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following the methods developed by Nagakawa et al. (2013). BIC weights for the model fits to 

the bimodal condition were estimated following (Burnham & Anderson, 2002) and the details are 

described elsewhere (Solovey et al., 2014).  
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Supplementary Information 

 

Supplementary behavioural results.  

 

Experiment 1.  No effect of condition on response criterion [F(1.96,27.47) = 0.30, p = 0.74, ηp² 

= 0.02] nor on average confidence was found [F(1.87,26.21) = 2.42, p = 0.11, ηp² = 0.15]. As 

reported previously (Ais et al., 2016), average confidence ratings correlated between the 

auditory and visual conditions [adjusted R² = 0.26, p = 0.03], between the tactile and visual 

conditions [adjusted R² = 0.55, p = 0.001], and between the auditory and tactile conditions 

[adjusted R² = 0.51, p = 0.002]. No effect of condition on type 1 reaction times [F(1.78,24.96) = 

0.28, p = 0.73, ηp² = 0.02] or type 2 reaction times [F(1.77,24.84) = 1.77, p = 0.39, ηp² = 0.06]. 

was found.  

 

Experiment 2. As in Experiment 1, no effect of condition on response criterion [F(1.87,24.27) = 

2.12, p = 0.14, ηp² = 0.14] nor on average confidence was found [F(1.76,24.64) = 0.91, p = 0.40, 

ηp² = 0.06]. No evidence of multisensory integration was found at the first-order level, as the 

perceptual thresholds determined by the staircase procedure were not lower in the bimodal vs. 

unimodal conditions [p = 0.17]. This is likely due to the task at hand involving a congruency 

judgment. Average confidence ratings correlated between the auditory and audiovisual 

conditions [adjusted R² = 0.56, p = 0.001], between the visual and audiovisual conditions 

[adjusted R² = 0.38, p = 0.01], and a trend was found between the auditory and visual conditions 

[adjusted R² = 0.12, p = 0.11]. A significant main effect of condition on type 1 reaction times 

[F(1.66,21.53) = 18.05, p < 0.001, ηp² = 0.58] revealed faster responses in the visual [1.30 s ± 

0.10 s] compared to the auditory [1.47 s ± 0.13 s] and audiovisual task [1.68 s ± 0.11 s]. No 

difference was found for type 2 reaction times [F(1.82,23.62) = 1.69, p = 0.21, ηp² = 0.11].   

 

Experiment 3. Contrary to what was found in Experiments 1 and 2, response criterion varied 

across conditions [t(17) = 4.33, p < 0.001, d = 0.63], with a tendency to respond “congruent” 

more pronounced in the audiovisual [mean criterion = 0.27 ± 0.12] vs. visual condition [mean 

criterion = -0.02 ± 0.15]. This effect was unexpected but did not preclude from running 

subsequent analyses dealing with metacognitive sensitivity that are independent of response 

criterion. We found no effect on average confidence [t(17) = 0.56, p = 0.14, d = 0.08]. Average 

confidence ratings correlated between the visual and audiovisual conditions [adjusted R² = 0.65, 

p < 0.001]. 
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Figure S1: Reaction times and confidence overlap. Upper row. Histogram and density functions of 

reaction times (left) and confidence ratings (right) following correct (in green) and incorrect type 1 

responses (in red), for a representative participant in the auditory (A), tactile (T), and visual (V) conditions. 

Lower row. Correlation between the reaction times and confidence overlaps following correct and 

incorrect type 1 responses across participants. The metacognitive efficiency (meta-d’/d’) for each modality 

is mentioned on the top-right corner of each plot. Note that the correlation strength varies accordingly to 

metacognitive efficiency. The auditory condition is represented in red, the tactile condition in green, and 

the visual condition in blue. 
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Modeling  

As described in the Methods, LL, RR, LR and RL correspond to the four possible stimuli 

combinations of the internal signal intensity x1, x2, with LL and RR corresponding to congruent 

stimuli pairs and LR, RL corresponding to incongruent stimuli pairs. 

 

Type-1 decision for all models 

According to the type-1 decision rule, the decision will be “congruent” if d > 0 and “incongruent” 

if  d < 0, where: 

 

𝑑 = 𝑙𝑜𝑔 (
𝑃(𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡)

𝑃(𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡)
) =  𝑙𝑜𝑔 (

𝑃(𝐿𝐿 𝑜𝑟 𝑅𝑅)

𝑃(𝐿𝑅 𝑜𝑟 𝑅𝐿)
)         

𝑑 =  𝑙𝑜𝑔 (
𝑃(𝐿𝐿|𝑋1,𝑋2) + 𝑃(𝑅𝑅|𝑋1,𝑋2)

𝑃(𝐿𝑅|𝑋1,𝑋2) + 𝑃(𝑅𝐿|𝑋1,𝑋2)
)     

 

Applying Bayes’ rule and assuming equal priors: 

𝑑 =  𝑙𝑜𝑔 ( 
𝑃(𝑋1|𝐿) ⋅ 𝑃(𝑋2|𝐿)  +  𝑃(𝑋1|𝑅) ⋅ 𝑃(𝑋2|𝑅)

𝑃(𝑋1|𝐿) ⋅ 𝑃(𝑋2|𝑅)  +  𝑃(𝑋1|𝑅) ⋅ 𝑃(𝑋2|𝐿)
 ) 

 

And it follows that the criterion for d = 0 where the congruent and incongruent stimuli are equally 

likely, should satisfy the relation: 

 

𝑃(𝑋1|𝐿) ⋅ 𝑃(𝑋2|𝐿)  +  𝑃(𝑋1|𝑅) ⋅ 𝑃(𝑋2|𝑅)  =  𝑃(𝑋1|𝐿) ⋅ 𝑃(𝑋2|𝐿)  +  𝑃(𝑋1|𝑅) ⋅ 𝑃(𝑋2|𝑅)   

 

The two solutions to this relation are given by  

{𝑋1 = 0, 𝑋2 ∈ ℜ } 𝑎𝑛𝑑 {𝑋1 = 0, 𝑋2 ∈ ℜ }  

 

Type-2 decision (confidence judgment) 

We considered eight different ways in which confidence could be computed in the bimodal 

audiovisual condition. 

 

Under the domain-general models:  

𝑐𝑜𝑛𝑓 ∝  𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋1, 𝑋2)  ∝  𝑃(𝑅1|𝑋1) ⋅ 𝑃(𝑅2|𝑋2)   

 

Assuming bivariate normal distributions of the internal signals, and that each modality takes the 

σ value it can be shown that  
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𝑐𝑜𝑛𝑓 ∝  
1

1 +  𝑒−𝑑1 +  𝑒−𝑑2  +  𝑒−𝑑1 −𝑑2
;  𝑑1 = |

𝑋1×2×𝜇1

𝜎1
2 | ;  𝑑2 = |

𝑋2×2×𝜇2

𝜎2
2 | 

 

Under the domain-specific, minimum confidence model: 

𝑐𝑜𝑛𝑓 ∝  𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋1, 𝑋2)  ∝  𝑚𝑖𝑛( 𝑃(𝑅1|𝑋1), 𝑃(𝑅2|𝑋2) ) 

 

And hence: 

𝑐𝑜𝑛𝑓 ∝ 𝑚𝑖𝑛 (
1

1 + 𝑒−𝑑1
,

1

1 + 𝑒−𝑑2
) 

 

And finally, under the second domain-specific, mean confidence model:  

 

𝑐𝑜𝑛𝑓 ∝ 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| 𝑋1, 𝑋2)  =  (𝑃(𝑅1|𝑋1) + 𝑃(𝑅2|𝑋2)) / 2 

𝑐𝑜𝑛𝑓 ∝ (
1

1 + 𝑒−𝑑1
 +  

1

1 + 𝑒−𝑑2
) 
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Individual model fits  

 

Figure S2: Modeling strategy. We modeled the unimodal data (top panel) to obtain estimates of the modality-specific 

internal noise (σ) and criterion (c) for each participant. We then combined these values to predict the bimodal data of 

the audiovisual condition, according to three rules depicted by colors (bottom panel). Blue stands for domain-general 

models, red stands for comparative models, and green stands for single-modality models. We estimated BIC and 

BICw to compare the candidate models in the bimodal conditions.    
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Figure S3: Individual model fits for the unimodal visual condition. Each plot shows the response rates for a 

participant in experiment 2. Two kinds of trials were presented: congruent (represented with black lines) and 

incongruent (represented with grey lines). After a median split of each participant’s confidence ratings, four possible 

responses resulted from the combination of the congruency judgment (“congruent”/”incongruent”) and the confidence 

judgment (“high confidence”/”low confidence”, represented here as “sure”/”unsure”). The red lines represent the 

response rates predicted by the unimodal model. These model predictions are presented here for illustration 

purposes only. They are the result of searching the parameter space (σ, c) for the values that best predicted the 8 

response rates. While they suggest that the unimodal model we used was plausible, they were not subjected to any 

model comparison.      
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Figure S4: Individual model fits for the unimodal auditory condition. See legend in figure S2 for details.   
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Figure S5: Observed and predicted response rates for each participant, for the three best models (namely, the 

domain-general Mean model, the domain-specific conservative Minimum model and the single-domain Maximum 

metacognition model). Each model predicted response rates for 8 categories that result from combining the three 

factors: stimulus congruency (congruent/incongruent), response (correct/incorrect) and binned confidence (high/low). 

High and low confidence responses were defined as above or below each participant’s median confidence, across all 

conditions.    
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Figure S6: Left panel: confidence model predictions for all models tested. Ellipses represent the partially overlapping 

bivariate internal signal distributions for each of the stimuli combinations, represented at a fixed density contour. The 

models allowed the auditory and visual modalities to have different σ parameters, leading to ellipses instead of 

circles. Within each schematic of model predictions, the top right quadrant corresponds to congruent stimuli, where 

the stimuli of both pairs were stronger on the right side. The colors represent the predicted relative confidence for 

every combination of internal signal strength for each stimulus pair (XA, XV). Note that in all models except the two 

single-modality ones, confidence increases with increasing evidence in all four quadrants, because the congruency 

judgment is based on the conjunction of stimuli, and cannot be performed on basis of one stimulus only (see 

Aitchison et al., 2015 for similar work) Right panel: BIC values for the model fits in the audiovisual condition. 
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