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Abstract

The functional architecture of spontaneous BOLD fluctuations has been characterized in
detail by numerous studies, demonstrating its potential relevanzdiamarker. However,

the systematic investigation of its consistency is still in its infancy. Here, we analyze both the
within- and between-subject variability as well as the test-retest reliability of resting-state
functional connectivity (FC) estimates in a unique data set comprising multiple fMRI scans
(42) from 5 subjects, and 50 single scans from 50 subjects. To this aim we adopted a
statistical framework enabling us to disentangle the contribution of different sources of
variability and their dependence on scan duration, and showed that the low reliability of single
links can be largely improved using multiple scans per subject. Moreover, we show that
practically all observed inter-region variability (at the link-level) is not significant and due to
the statistical uncertainty of the estimator itself rather than to genuine variability among areas.
Finally, we use the proposed statistical framework to demonstrate that, despite the poor
consistency of single links, the information carried by the whole-brain spontaneous
correlation structure is indeed robust, and can in fact be usedrastional fingerprint.
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1 Introduction

Neuroimaging techniques allow us to deal non-invasively with two main principles of brain
functioning: segregation and integration. Relationships between segregate regions can be
described at different scales, with different techniques, and the strengths of these relationships
can help us to understand ithmtegrative roles. Some methods help to describe the physical
wiring between the brain regions (e.g., diffusion tensor imaging, tractography, etc), while
others quantify the functional relationshigween regions’ activity (Friston[2017]). To date,

one of the most widely adopted techniques used to characterize the functional structure (also
referred to as functional connectome) has been resting-state functional magnetic resonance
imaging (rs-fMRI). Resting-state is commonly defined as the condition in which the
participant is not performing any overt task, but lies still in the scanner (with eyes closed or
fixating on a cross on a screen) while not focusing on any particular thought or sensation (see
e.g.,Biswal et al[1999 or more recenZuo and Xing[2014). The method is based on the
guantification of local changes in blood oxygenation through the use of the so-called blood-
oxygen level-dependent (BOLD) signal (Ogawa et al. [1990]), that have been demonstrated to
partially reflect underlying neural activations (Logothetis et al. 2001, Logothetis 2008, Magri
et al. 2012). Functional connectivity (FC) between different regions of interests (ROIS) is then
guantified with measures of statistical dependencies between such changes in different brain
regions, with the Pearson correlation coefficient being the most commonly used (see e.g.

Friston[2011)).

Resting-state functional connectivity (rs-FC) has already been adopted to differentiate
between subjectBinn et al.[2015 and groups, either coming from healthy or pathological
populationgsee for exampl&osazza and Minaf2017] for a review and references therein),

or between different brain states (see for example the case of learniigeima-Carrillo
etal.[2014 and references in there). The advantages of this method lie on its spatial
resolution, speed and completenessgothetis[2009). In fact, by using a resting-state fMRI
san of about 5 minutest is possible to obtain a large-scale description of the functional
relationships between all brain areas. Those advantages make this technique potentially very
powerful, even considering that it measures neural activity only indirectly through the BOLD
signal Logothetis[2008). The unrestricted nature of the resting-state experiments could in
fact mirror a wide range of cognitive states and operations (Christoff et al., 2009; Richiardi et
al., 2011, Hurlburt et al., 2015).

Interestingly, functional connectome studies show a differential pattern of findim¢jse one

hand they show a very stable architecture of correlated spontaneous activity, on the other hand
they indicate a high variability in the functional structure, with temporal dynamics ranging
from less than one seconMlifra et al.[2015)), to days Anderson et al[2011]; Laumann

etal. [2019. According to the current literature, a crucial factor influencing the stability of
the resting-state FC is scan duration. The most common acquisition timméQsnain, even

though recent evidence indicates the importance of using much longer scans to obtain reliable
FC estimates Anderson et al[2017; Birn et al.[2013; Hacker et al[2013; Laumann

etal. [2019). A qusstion that has both theoretical and practical relevance is how much data
we need to accurately and reliable estimate the FC of a single sulieat (

etal. [2013; Laumann et al[2015; Finn et al[2015). One of the main objectives of our



http://dx.doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online Nov. 19, 2016; doi: http://dx.doi.org/10.1101/081976. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

study is to reconcile these apparently conflicting aspects of resting-state FC.

The development of biomarkers derived from resting-state BOLD-fMRI scans that are able to
characterize the functional architecture of individual brains is important for cognitive as well
as for clinical neuroscience. For a biomarker to be successful, it has to be reliable; as such,
two conditions must be met: on one hand, it should be stable for the same subject (or
condition) across different sessions, whereas on the other hand it should substantially vary
over different subjects (or conditions). The second requirement ensures that the biomarker is
selective for the variable of interest, and could thus be used to effectively discern between
different subjects or conditions. The principle behind the two above mentioned criteria
suggests a rather straightforward way to quantify the reliability of a potential biomarker,
namely by comparing the within-subject (-condition) variability with the between-subject (-
condition) variability. If these two types of variability can be described through the use of a
normal variable, an index commonly adopted to measure this ratio is the intra-class
correlation coefficient (ICC) a measure widely used in the psychological sciences to assess
test-retest reliabilityShehzad et a[2009; Zuo and Xing[2014). We will use the ICC as our

main toolin assessing the reliability of resting-state FC.

Although numerous studies have been devoted to characterize the functional architecture of
spontaneous BOLD-fMRI fluctuations, the test-retest reliability of functional indices has
begun to be addressed only recentAnderson et al[2017]; Birn et al.[2013; Hacker

etal. [2013; Zuo and Xing2014). From the results reported in the literature, one of the
main findings is that test-retest reliability of functional indices between regions of interest
(ROIs), as quantified by the intra-class correlation (ICC), seems to strongly vary over brain
regions and over pairs of brain regions (for link-based indices). What has not been made
explicit in previous studies, however, is an analysis of the variability of the reliability
measures themselves. Indeed, reported variation of reliability has been interpreted to reflect
differences in the reliability of the functional indices, without taking into consideration the
statistical uncertainty due to finite sample in the estimates of the ICC.

Within the context of resting-state BOLD-fMRI, where the number of subjects and the
number of scans by subject are usually limited, the variance of ICC estimators can be very
high. Assessment of the variance of the estimated ICC is particularly relevant for
investigating its heterogeneity over regions, links, and networks as doaonand

Xing [2014. In fact, a proper assessment of the ICC variability was lacking in the above-cited
studies, and as such its claimed that heterogeneity has still to be demonstrated.

In the present study, we replicated most of the analyses presented in Shehzad et al. [2009];
Birn et al. [2013]; Zuo and Xing [2014]; Laumann et al. [2015], as indeed they are pioneers in
the analysis of both FC variability and reliability. In particular, we investigate the test-retest
reliability of resting-state FC-fMRI, and its variability. To this aim, we use fMRI to measure
the resting-state activity in a group of 6 participants, each of them scanned 50 times, which
allowed assessing the intersession (segskgession) reliability.

The paper is divided into three main sections, each one aimed at answering different questions:
In the first section, we briefly present the data to provide the reader with an intuition of the
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variability and reliability of FC.In the second section, we analyze the variability and
reliability of functional connectivity at the link level; the former estimated by the standard
deviation of the correlation coefficients between ROIs, the latter through the ICC. We analyze
how a finite number of samples influences both the variability and the reliability of the
functional connectivity estimates. We conclude the first section showing that it is not possible
to statistically differentiate between links based on their ICC value, as all the correlation
coefficients can be described, as a first approximation, with a unique, low ICC value (=0.2).

As it has been suggested before (see e.g. a nice schematic Fesumihe et al[201Q0) that
different parcellations can influence the resulting FC estimates, we repeat our analysis using
two different parcellations: one based on anatomy, (AAtourio-Mazoyer et a[2003),

and one based on functionalitySiien et alf2013). We focus on characterizing and
quantifying the nature of variability observed in empirical functional connectivity by
decomposing it into the variability due to finite-sample statistical fluctuations and into
variability that is likely due to real dynamic changes in the strength of the functional
connections. We systematically analyze the behavior of these variability factors both for
different scan durations and for multiple sessibmshe last section we analyze the reliability

of the whole FC matrix. For this purpose, we compare the FC matrices obtained in different
sessions both within- and between-subject, showing that the complex information contained
in those matrices is much more stable than the correlations between individual pairs of ROIs.
Indeed, by means of a general linear model, we solve the apparent contradiction of low link-
wise reliability and stability of the whole-brain FC matrix.

2 Materialsand Methods
2.1 Data acquisition and pre-processing

Fifty eight participants were recruited. Eight of the participants volunteered to be included in
thelongitudinal part of the study in which they were scanned 40-50 times over the course of 6
months (2 male, mean age 29, SD= 2.6, range: 24-32). Two of the participants (one male, one
female) did not find the time to continue with the study and had to be excluded from further
analysis. We had to exclude even the last male participant, who, in contrast to the instruction
received, tried to apply relaxation exercise during the scan which largely influenced the
measure (see figure S3 in the supplementary material). The other fifty participants (all female,
mean age 24, SD=3.1, range: 18-32) were part of another study that was conducted during the
same period of time and underwent scanning with the same MRI sequences only once.
According to personal interviews (Mini-International Neuropsychiatric Interview,
Margraf[1994) the participants to the longitudinal study were free of psychiatric disorder
and had never previously suffered from a mental disease. The other participants were asked
on the phone during recruitment whether they ever had a psychiatric disease and negated that.
Other medical and neurological disorders were also reasons for exclusion. No participant
showed abnormalities in the MRI. The study was approved by the local ethics committee
(Charité University Clinic, Berlin). After complete description of the study, we obtained
informed written consent.

Images were collected on a 3T Magnetom Trio MRI scanner system (Siemens Medical
Systems, Erlangen, Germany) using a 12-channel radiofrequency head coil. Structural images


http://dx.doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online Nov. 19, 2016; doi: http://dx.doi.org/10.1101/081976. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

were obtained using a three-dimensional T1-weighted magnetization-prepared gradient-echo
sgquence (MPRAGE) based on the ADNI protocol (www.adni-info.org) (repetition time (TR)

= 2500 ms; echo time (TE) = 4.77 ms; Tl = 1100 ms, acquisition matrix = 256 x 256 x 192,
flip angle = 7deg; 1 x 1 x 1 nthvoxel size). Functional images were collected using a T2*-
weighted echo planar imaging (EPI) sequence sensitive to blood oxygen level dependent
(BOLD) contrast (TR = 2000 ms, TE = 30 ms, image matrix = 64 x 64, FOV = 216 mm, flip

angle = 80 deg, voxel size 3 x 3 x 3 M6 axial slices, 5 min duration).

The first 10 volumes were discarded to allow the magnetisation to approach a dynamic
equilibrium, and for the participants to get used to the scanner noise. Part of the data pre-
processing, including slice timing, head motion correction (a least squares approach and a 6-
parameter spatial transformation) and spatial normalization to the Montreal Neurological
Institute (MNI) template (resampling voxel size of 3mm x 3mm x 3mm), were conducted
using the SPM5 and Data Processing Assistant for resting-state fMRI (DPAR&6<Gan

and Yu-Fend201Q). A spatial filter of 4 mm FWHM (full-width at half maximum) was used.
Participants showing head motion above 3.0 mm of maximal translation (in any direction of x,

y or z) and 1.0 deg of maximal rotation throughout the course of scanning would have been
excluded; this was not necessary. We further analyzed head motion by correlating the frame-
displacement measure (FD) with the estimated FC (see text). FD is reduced to a scalar value
per each volume using the formula indicatedPmwer et al[2017, and then it is averaged

over volumes.

After pre-processing, linear trends were removed. Then the fMRI data were temporally band-
pass filtered (0.01-0.25 Hz); but we repeated our analysis even with temporally band-pass
filter (0.01 - 0.08 Hz), commonly adopted to reduce the very low-frequency drift and high-
frequency respiratory and cardiac noidBis(val et al[1995; Lowe et al[199]). The
spatidly normalized data were parcellated using two atlases: the automated anatomical
labeling (AAL) atlas Tzourio-Mazoyer et al2003) and a recently proposed functional atlas
(Shen et al. [2013] Results for functional parcellations and for the narrow temporal filter are
guditative very similar to the ones presented in the main text, and are only reported in the
supplementary material (see figures S1 and S2).

We decided to instruct participants to close their eyes during the resting state data acquisition
despite the fact that resting state acquisitions with eyes open have been shown to result in
slightly higher reliability of BOLD functional connectivityZou et al.[2015), since the

resting state data acquisition, in the longitudinal study, was part of a 1 hour scanning protocol
that the participants completed every other day. Due to this fact the likelihood of falling
asleep during scanning seemed particularly high to the authors and therefore the decision was
taken to record all resting states with eyes closed and ask the participants after each scan
session to report whether they slept during the resting state scan or not. We tested whether
being asleep or not affect the distribution, but we can exclude this possibility (see figure S4 in
the supplementary material). Although recently it has been recommended to acquire 10-20
min of Resting stateBirn et al.[2013; Laumann et al[2015), we had to constrain data
acquisition to 5 min per scan as the resting state sequence was only one of several sequences
acquired in the longitudinal scan sessions. Moreover these 5 mins are representative of usual
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scanning times in many clinical studies.

2.2 Functional connectivity analysis

Spontaneous fluctuations, both at the voxel- and ROI-level, were characterized by the
populationvariances?(X) of the BOLD-fMRI time-serieX. For the BOLD-fMRI time-series

X = (Xq,..., Xy) of a given voxel/ROI, the variance was estimated by the sample vafigpde

~ 1 =

G2(X) = s Xis. (X — %)%,

which is an unbiased estimatorafX). In the above equatioX denotes the sample mean of

X. Functional connectivity (FC) was characterized by the population Pearson correlation
coefficientp:

__ Cov(X)Y)
p(X; Y) - O’(X)O'(Y),

where (X)Y) denotes a pair of BOLD-fMRI time-series. For a pair of BOLD-fMRI time-series
X = (Xg,w Xy andyY = (Y 4,...,Y ), p Was estimated by the sample Pearson correlation

coefficientp:

S(X V) = Ly K DED)
pPX.Y) = N-1“=1 306
From the experimental data, we obtained, for a given subject and link, a series of sample

correlation coefficientg,,..., px, whereK denotes the number of scan sessions. To test for

non-zero inter-scan mean and variance of the corresponding population correlation
coefficientsp,,...,px we used the sample mean and variance, respectively, of the series of
sample correlation coefficients as test statispeglues were obtained by approximating the
respective null-distributions using appropriate surrogate data (see Section 2.3) and corrected
for multiple comparisons across links using the Benjamini-Hockberg method with a false-
discovery-rate (FDR) of 5%.

2.3 Construction of surrogate data

We constructed surrogate data under the null-hypotheses of zero inter-scan FC mean and
variance, based on a constrained randomization procedure first propoggathard and
Theiler[1994. We first describe the construction for data from a single scan session and
subsequetly, describe how to use it to test for zero inter-scan FC mean and variance.

Let X = (Xq,..., Xy) andyY = (Y 4,...,Y ) denote BOLD-fMRI time-series from two different
ROTI’s, whereN denotes the length of the scan. To construct a surrogate copy of the pair of
time-series X, Y'), the discrete Fourier transforfis= (X,..., X\) of X and¥ = (Y3,..,, ¥y) of

Y are calculated and, subsequently, the Fourier coefficients are multiplied by random
(complex-valued) phases:

Xﬁurr — Xn eiqs,’{ ,

for n=1,..., N and similarly forY . The phasegf, ..., % are independently drawn from the
uniform distribution on the interval [Br]. Surrogate copieX®'" andY U™ of X and Y,

respectively, are then obtained by applying the inverse discrete Fourier transfoiii snd
?SUI’I‘.
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There are two cases to consider. In the first case, the ppaSese drawn independently
from the phaseg,", and therefore the surrogate time-seX&4" andY " have the same

sample autocovariance functionsXaandY , respectively, but are uncorrelated. This data can
hence be used to test for non-zero FC. In the seconddgdse,¢,,”, so thatx®" andY S

have the same sample autocovariance function§ aaxsd Y and also the same sample cross
covariance function. This data can hence be used to test for dynamidHiR@riks
etal. [2019). We refer to these two types of surrogate datanaesherent and coherent,
respectively.

To construct surrogate data under the null-hypothesis of zero inter-scan FC variance, we
concatenated, for a given subject, the BOLD-fMRI data from all scan sessions, generated
1000 coherent surrogate copies, and subsequently calculated the test-statistic values to
approximate their null-distribution and to calculptealues.

Concatenating data from different sessions can lead to jumps in the time-series, and therefore
to a possible bias in the statistical hypothesis testing. To exclude any bias, we assessed the
performance of the testing procedure by generating 1000 synthetic data-sets with the same
dimensions and a similar auto-correlation structure as the experimental BOLD-fMRI data,
applied the procedure to test for non-zero inter-scan FC variance asnd.05, and
calculated the percentage of false positives, which yield#%.3/Nhen the scan sessions were
shortened, the percentage of false positives remained between 5 and 6%, only increasing to 8%
in the extreme case of 15 samples per scan session. This shows that the testing procedure
performs well.

2.4 Test-retest reliability

Test-retest reliability of the functional indices was quantified by the intraclass correlation
coefficient (ICC), which, for a given functional index can be defined as follows$lirout

and Fleis§1979). Letv;; bethe measured index values of subjeatd scan sessignwhere
i=1..,,nandj=1,..,k

The index is assumed to have the following fovg = u + b; + w;;, whereu denotes the
expectation value of;;, b; denotes the random effect of the subjects, gndienotes all

j1
residual noise (due to dynamics, measurement error or conditions/sessions). The random
variablesb; and w; are assumed to be independent and normally distributed with zero mean

and variance,? and g2, respectively. The ICC ofis now defined as

2
r=—2t_ (1)

oi+od,
The ICC ranges between 0 and 1 and quantifies the test-retest reliability of thev.irdiete
that for an index to be reliable, it must vary between subjects (high between-subject variance

abz) and it must be stable across scanning-sessions (low within-subject vajaritiee most
straightforward and commonly used estimator ofvhich is sometimes referred to as the

I \whereBMS andWMS denote the mean
BMS+(k—1)WMS

between- and within-subjects sum of squares, respectively (here we followed the description
given in Atenafu et al[2013). Although there are other estimators foprmost notably, the

analytical estimator, is defined As=



http://dx.doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online Nov. 19, 2016; doi: http://dx.doi.org/10.1101/081976. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

maximum likelihood (ML) and restricted maximum likelihood (ReML) estimators, we found
themto have similar variances and only slightly different biases. Theamgntage of these
other estimators is the absence of negative estimatesbat for simplicity we preferred to
use the analytical estimator.

Statistical hypothesis testing éns done using af-test. Specifically, sincBMS and WMS

are sample estimators d&fo? + o2 and o2, respectively, the random variabje=

BMSZ/WIZS, is F-distributed with parametens - 1 andn(k - 1). UnderH,, f takes the

kJ§+JW oW

BMS 1-1,

following form: f = WMs 1+ (k—1)rg

, which can be used to obtain the null-distributiorf.or

2.5 Sour ces of variability

The issue of finite-sample variance of the Pearson correlation can be assessed by the phase-
randomized surrogate data (see section 2.3). We can model the Fisher-transformed sample
Pearson correlation coefficient for different participanand different scanj, Dij» with a
normaly distributed variable:

pij = p + opb; + oywi; + orfij, (2)
whereb, w, andf are independent, and standard-normally distributed random variables. The
random variablev models the genuine variability of FC in each subject (within-subject), the
random variabld models the FC variability for different subject (between-subject) and the
variablef models the finite-sample error. Assumisgto be independent of(subject) means
that the genuine variability of FC over scans, as measureg,bg equal for all subjects (a

strong assumption).
The three sources of variability can then be separated and the three vad,én(zé,s,andog
can be calculated from the surrogate analysis:
of = (BMS — WMS)/k (3)
o2 = WMS — WMS, (4)
of = WMS, (5)

whereWMS and BMS are the mean square errors within and between subyeMts, is the

mean square error within subjects for the surrogate casek enthe number of sessions.
From this we get the ICC value:

ICC = —2— (6)

optay+af
Since the surrogate data is constructed under the null hypothesis of no genuine FC variability
over scans (that is,, = 0), the ICC constructed from the surrogate datagl€fTials
2
ICC, = C@UTI}; @)
and therefore, ICE> ICC, so that the surrogate data can be used to estimate the uncertainty

in the ICC that is due to the finite-sample size.

2.6 Definition and estimation of functional similarity

Central to the analysis finn etd. [201] (but see alsdueller et al.[2013) are the within-
and between-subjecimilarity indices, here denoted bR, and R,, respectivelyR, can be
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calculated for every subjectand for every pair of scan sessiqiisi’) and is defined as the
sample Pearson correlation coefficient between the respective vectorizeds@méd) FC
matricesX;; and X, with j # j"

~ Xii—HiiemXiji—Hijre
RW — (Xij—Hij m2 ijr—Hijrem) 3 )
JIx=Toemll* Ny ~igreml

where Hij is the average over the links Kfj, e,, € R™*! denotes the vector containing all

ones and where we have suppressed the dependeRgeonf(i, j), and;j’ from the notation.
Similarly, iéb can be calculated for every two subjecedi’ (i # i':) and every pair of scan
sessions:

R\b _ (Xij—BijemXirj—Hirjem) 9

1
e iem” i~ s

NotethatR, andR,, can be used to assess the similarity not only for the vectorized FC matrix,
but for any multivariate biomarker. In the sequel, therefore, Wé(ﬁjedenote an arbitrarg-
dimensional biomarker for subjeicind scan sessign

To assess the properties Rf, andﬁb, we need to consider the respective population
quantities, which we will denote by, andR,, respectively. Below, we denobé;j for the
observed value of the biomarker a>qplfor the corresponding population biomarerj (s a
realization of xij). The definitions oR,, andR,, are obtained by replacing the sample Pearson

correlation coefficients in Equations (8) and (9) by the population Pearson correlation
coefficients and replacing; by x;:

R, = E{Xij—Hijem X, —H;jrem)] (10)

\/IE[”Xij_l_lijemllz] IE[”Xij"I_lij'emHZ]’

forj #j' and
R, = E[(X;j—HijemXirj—Birjem) (11

_ 2 _ 2
\/E[”Xij_ﬂijem” VE[|| X3 j=Hirjeml ]

for i # i’. To assess the properties (bias and uncertainty) of the estirRgtarsl §,, we also
need a statistical model for the population biomavdﬁerThis will be described in the next
section.

2.7 Statistical model for multivariate Gaussian biomarkers

Let x; € R™*1 denote an arbitraryn-dimensional (population) biomarker of subjédi =
1,...,n) on scan sessign(j = 1,...,k). In analogy to the univariate linear model used to asses
local test-retest reliability, we modnqj by the following multivariate linear model:

xij = p+n; + 8, (15)
where u € R™*! denotes the group-wise expectationxgjnc and wherey; € R™*! and &ij
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e R™*! denote within- and between-subject fluctuations, respectively. The random vgctors
andéij are assumed to be independent and have expectation zero (thamsjithensional
zero-vector) and covariance mats X, and X, respectively. Note, that X, and X, are the
generalizations to the multivariate case of the within- and between-subject varigheesl

0,2, respectively.

Assuming in first approximation that X, and X, are diagonal matrices, the expectations of the
similarity indicesR,, andR,, can be expressed in terms of the model parameters as

5 1 llu—pe I2+tr(Zp)
E[Ry] = Il —ﬁemllg+tr(2b+2w)’ (12)
and

51 e =T, |1
ElRo] = e, ey (13)

where tr denotes matrix trace apddenotes the average valueuwofAs a special case, suppose
that =y, and X, are identity matrices multiplied by a factor, thakjs= oZ1,, and 3, = 031,
for certaing, and g,. Then Equationg2 and13 reduce to

~ ol +ot

BIRy] = 5, (14
~ of

]E[Rb] = Gﬁ+0'§+oﬁ,’ (15)

where we defineds; = [lu — fie,,|l/m.

It is possible to derive approximate formulas for the expectation of the similarity indices, for
the more general case

PN —Tie_||2+tr(zp)—elZpe
]E[RW] — _”H u m” ( b) tm bém , (16)
Il —#em||2+tr(2b +Zw)—en(Ep+Iw)em

and

E[R,] = llu —me, I? an

llu —ge, I2+tr(Ep+Ew) e (Ep+Zw)em
The variances of the similarity indices were approximated using Equation Diititeul
etal. [1993:
trace(BX,,pBZ\,p)
trace(B Zy,p)?

Var[R,] =

, (18)

and

trace(BXyBZ)
Var|R, ] = —trace(B ST (19)

whereX,, =%, +2%,, B = (I, —J,,/m)/m, andl,, and/,, denotemby-m identity

matrix and the matrix of ones, respectively.

We checked the feasibility of this approximated formula using simulated data and found that
it is an upper bound for the indices. In the simulations, we generated synthetic connectivity
matricesFCij (i subjectsj sessions), with a multivariate general linear model, and using for
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matrices ;¥ andZ;,? the estimated values obtained from the data. To simulate different
conditions, as the ones analyzed in the experimental data set, egeXfjxfor several

simulations and used different matricgs £ s,, 2., 7, where the parametsy, was used as a
multiplicative factor.

3 Resaults

We present a systematic analysis of the variability and reliability of resting-state fah
connectivity, both at the level of individual ROI pairs and of the entire brain. We used five-
minute resting-state fMRI data from six participants, each of which was scanned 42 times (see
Material and Methods for detailed information on subjects and pre-processing). ROI-level
analyses were conducted using an anatomic parcellation (AAdurio-Mazoyer et al.2002)

and the main results were replicated using a functional parcellsBioan(et al[2013, see
suppkmental information).

3.1 Data set description

Before moving into the details of the analysis, we want to give a descriptive overview of the
data-set to provide the reader with an intuition for how variable and reliable functional
connectivity is. As a first step, we look at the inter-session variability of the average FC over
links, <FC> (see panel A of figur&). For the 5 subjects scanned multiple times, the average
interval of time between the first and the last session spanned approximately 6 months. It is
possible to appreciate that in general the aver&ge><or the 5 subjects scanned multiple

times (blue dots) resembles that computed on the 50 subjects, each of which scanned just once
(gray continuous line). The same effect can be observed in panel B, in which we can compare
the distribution ol FC> for the 5 subjects (blue lines) and the distributiorcBC> for the

50 subjects (gray bar).

In panel C of figurel we can see how the distributions of the FC values for the 5 subjects
saanned multiple timesHC,, blue lines), and of the FC of the 50 subjeE( gray bar) are

very similar, with a similar average; The distributions of all FC values for the 5 subjects and
that of the 50 subjects are in general very similar, even though the latter is narrower with a
standard deviation (SD) of 0.35 compared to the former, whosis 825. Another way of
measuring the similarity between g and FG is through their correlation. In our data set,

the average correlation between any couple of iB@.8 (SD=0.02), and the correlation
between arkC and FGis slightly higher, 0.87 (SD=0.02, see the scatter-plot of panel D).
Therefore, the averageCs, for the 50 subjects scanned just once can be considered as

representative of the FC obtained from single individuals.
To complete this preliminary description, we look at the inter-session variability of the 5
subjects” FC and subject-by-subject variability of the Fg (panel E and F). We note the high

similarity between the distributions of the standard deviation over sessionsg (&Bg;) and
of FC5ps (SDc509. However, we observed rather low values of correlation between the
SDc; of any two of the 5 subjects (0.53, SD=0.02), indicating high variability between
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subjects of spatial distribution are quite different from subject to subject, and variability
between-subject is even less representative.

3.2Link-wise analysis

3.2.1 Within-subject variability

We now present the analysis of reliability and variability of single links. Within-subject mean
and variability of a given link’s correlation were quantified, respectively, by the sample mean

and standard deviation, SD, of the corresponding time-series of correlation coefficients. By
repeating the calculations for each link, two matrices for each subject and for the 50 subjects
were obtained, corresponding to the within-subject average FC and variability (standard
deviation, SD, of FC). In Figurz we show these matrices with heat-maps for the 50 subjects
(panels A-C, blue), and for one of the subjects (panels B-D, cyan). To represent a more
robust measure, we averaged the links over macro-regions (see labels in the panels). The
ROls for this figure were defined with AAL parcellation (see supplementary material for the
corresponding plots witBhen’s parcellation, with very similar results). They show that both

the average FC and standard deviation vary considerably over links. Note also the existence of
relatively high SD values for some links. This suggests that the FC strength between
corresponding ROI’s varies considerably from scan to scan.

Panels E-G display the same average FC and its standard deviation with scatter-plot and
histograms. Average and standard deviation are calculated over scans (this means over
sessions for the single subject and over subjects for the 50 subjeatd)oth single subjects

with multiple scans (cyan) and 50 subjects (hlB€)'s standard deviation ranges between 0.1

and 0.3, with an average value of about ~0.2and a SD of about ~0.038 (for the single subject

with multiple scans the range the SD is slightly inferid¥38). We can see that the value of

the average FC is a factor influencing the variability of the FC itself: the correlation between
average FC and its SD is =0.56 (=0.4 for the single subject).

Testing the null-hypothesis of static FC. Does the observed variability of the FC reflect
genuine variability of spontaneous inter-areal co-activations, or does it arise from mere
statistical uncertainty of estimates? It should be remembered that Pearson correlation
coefficients are sample estimates of the population values (see Materials and Methods), and as
such, finite-sample variability should not be confounded with the variability due to real
underlying dynamics of the FC (see for examgdlendquist et al[2014; Hindriks

etal. [2013).

With this in mind, we tested the null-hypothesis that the observed fluctuations of FC can be
fully explained by statistical uncertainty of the correlation estimates: to this aim, we first
constructed appropriately randomized dBté&chard and Theildil994 (see also Materials

and methods). This randomization method yields data with the same statistical structure and
the same mean FC as the empirical data, but introduce no dynamics (see Materials and
Methods for more details); from now on, we will refer to these randomized data as surrogates.
In panels E-G of Figur@, one realization of the surrogates is plotted (black and gray lines
and circles). From see panel G, it is evident that the distribution of the SD of the correlation
for the surrogates (black and gray) are qualitatively different from the observed data (blue and



http://dx.doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online Nov. 19, 2016; doi: http://dx.doi.org/10.1101/081976. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

cyan). By construction, the distributions of the mean correlation of the surrogates (blue) and
of observed data (black) are identical (panel D). Using this method, and by repeatedly
randomizing the data multiple times, we can approximate the distribution of the variability for
each functional connection under the null-hypothesis of constant FC variability of each link,
and hencg-values can be calculated. Applying the Benjamini-Hochberg method for multiple
comparisonwith a false-discovery rate (FDR) of 5% we found that the approximate number
of functional links whose variability can be explained by the null-hypothesis of no genuine
variability is around 1%. This means that, for each of the five participants, practically every
functional connection varies over different scanning sessions: in other words, thg dizy-
co-variation between different brain regions appears to be dynamic.

3.2.2 Test-retest reliability

In statistics, the reliability of a measure indicates its consistency under similar conditions in
contrast to dissimilar conditions: therefore, a measure is highly reliable and amenable to be a
good biomarker, if it yields similar results under consistent conditions, but not under
dissimilar conditions. An example of a reliable measure is people’s height, which tends to be

stable for a given individual, but exhibit large variability across individuals. How reliable are
the pairwise functional indices obtained in typical resting-state studies? To address this
qguestion, we measured how stable the FC estimates of the same participant were over
different scan sessions (within-subject variability) compared to those obtained from different
participants (betweestbject variability). For the functional connectivity estimates to be
considered reliable, according to the definition of reliability mentioned above, they should
therefore exhibit small within-subject variability while at the same time large between-subject
variability.

Following previous studiesShehzad et a[2009; Zuo and Xing[2014), test-retest reliability

of the functional indices was quantified by the intraclass correlation coefficient, ICC (see
details in Materials and Methods). Estimated ICC’s for all links are plotted in panel A of
Figure3 against the subpt-averaged FC (gray asterisks), while panel B shows the histogram
of the estimated ICC values. In the legend we indicated the gray histogram as ‘observed’ in
contrast to the values obtained with the simulation and the theoretical analysis (see below).
The heat-map in panel C shows ICC values averaged over the regions indicated in the labels.

Note that the estimated ICC values vary from link to link, ranging from approximately O to
about 0.7. With the estimator we used, negative values of ICC can be obtained. Estimators of
ICC based on the likelihood estimation can circumvent this problem, but as the two estimators
showed no qualitative differences, we used the simple estimator. The average value of the
ICC is =0.22 £0.16, which is commonly considered rather low and indicates that link-wise FC

for 5 mins scan performs poorly as a biomarker for individual subdatsally[1994.

Despite the current absence of common consensus about what should be considered an
acceptable level of reliability (Nunnally [1994]; Lance et al. [2006]), it is not debatable that
ICC around 0.2 is a poor value. Indeed to observe such low ICCs, the within-subject variance
has to be twice as large as the between-subject variance. Such a low ICC mirrors the fact that
the within-subject variance is twice as large as the between-subject variance: low within-
subject variability compared to between-subject variability.
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Earlier studies have reported similar values for the I8l&hzad et aj2009; Zuo and

Xing [2014, but with substantial differences in their interpretation (see below). Similar
results have been observed alsoBisn et al.[2013, even though these data is more difficult

as they were obtained by combining different sessions, and with three different conditions
(eyes-open, eyedosed and fixation).

The variability of ICC estimates across links is also in line with previous reports with similar
duration scan§hehzad et a[2009; Zuo and Xing[2014. In those studies, this variation was
interpreted as evidence for heterogeneity of test-retest link-wise reliability of functional
connectivity (among other biomarkers), but the statistical variability of the ICC estimates was
not explicitly considered. It remains therefore possible that the observed variability in ICC
values reflects statistical uncertainty, rather than true variation of the ICC across links. Indeed,
even with 42 scan sessions and 5 subjects, the variance of the ICC estimators is considerable.
We therefore tested the null-hypothesis of all links having the same population ICC. The
population ICG, under the null-hypothesis was thus considered to be the estimated link-wise

average ICC.

We first calculated the probability of each link to have saighlue of ICC, or higher, given
the assumption of being an estimate of JCThus, this probability corresponds to aghue.

Then we calculated how many links had an ICC statistically different from I1&f@r a false
discovery rate correction (using Benjamini-Hochberg method with FDR=5%).

In panel B of figure3 the distribution of observed ICC (gray bars) and the theoretical
distribution of ICC (light blue line) can be found, estimated from a general linear model
(GLM) with a constant theoretical ICC (see secttosfor details). As mentioned above, the
average theoretical ICC value chosen was JC@e can see that the three distributions are

practically identical, demonstrating that there is no link having an ICC different frory,.ICC

The used statistical framework suggests that, as a first approximation, the ICC of each
individual link can be drawn from a unique distribution, hence proving strong evidence that
FC test-retest reliability is homogeneous over links.

To further test this hypothesis, we simulated the links correlation variability with Gaussian
stochasic variables having two sources of variability, ‘within-subject’ and ‘between-subjett

Each simulated correlation was generated as a Gaussian variable, whose average value is
equal to the observed mean correlation of one real Hak;, = FC + 02¢,, + 02&,; Where

the variancesg, > ands,,?, were maintained constant for all the simulated correlations. The
ratio between the two variances was chosen equal to the averaged@@for simplicity we

seto,“=1 (the actual value does not influence the results of the simulation). We extracted

these variables one time per each simulated subject, and 50 times per each simulated scan
session. Finally, we calculated the ICC values for each simulated correlafigp, The

results of this simulation are reported in panel A as blue circles, and their distribution in panel
B with a dark blue line. Even in this case, it is possible to appreciate that the simulated
distributions very well approximates the empirical one.

It should be stressed that one possible explanation for the lack of heterogeneity in the ICC
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values of the links might be the lack of statistical power: few subjects, limited number of scan
sessions, correction for multiple comparisons, etc. To circumvent the issue of having to
perform a too restrictive multiple-comparison correction, we tdakaverage ICC’s of
different macro-regions (the names of these regions are indicated in the labels). Here, we use
the term macro-region to indicate a brain region composed of several ROIs. The idea is based
on the hypothesis that different macro-regions might have different reliabilities. This
approach closely follows that taken Zmo and Xing[2014 in which systematic differences

were reported of ICC’s averaged over the different resting-state networks (RNSs) for several
functional biomarkers, including (intrinsic) FC.

The heat-map in panel C of figu@ shows a synthetic picture of ICC of the average
correlation between pairs of macro-regions. The differences are small: all the average ICCs
range between 0.1 and 0.3. We compared the ICC distribution between pairs of macro-regions
with a non-parametric test (see Methods for details), and we did find most of them to be
statistically different. Therefore we can sort the macro-regions according to average ICC
value, and isolate the least reliable region (parietal region, wiveseze ICC~0.15) and the

most reliable one (cerebellum, whose average ICC~0.24). The least reliable macro region
outside itself is the pre-frontal one (whose average ICC=0.18) and the most reliable one is
cerebellum, whose average ICC=0.27.

3.2.3 Sources of variability

We now analyze the different sources of variability of the FC, and how they teekhie ICC
reliability. We can indeed disentangle the contribution of three different sources of variability:
1. the genuine variability of FC in each subject, within-subject variability; 2. the FC
variability for different subjects, between-subject variability; 3. the variability due to the
statistical uncertainty associated with computing the correlation from a finite number of
samples, finite-sample variability. We note that, while the first two sources have already been
partially accounted for in the literature, the finite-sample variability has not been explicitly
addressed beforeSliehzad et a]2009; Birn et al.[2013; Zuo and Xing[2014; Laumann

etal. [2019). Note that the description in terms of these variability sources is slightly
different from what has been reported in literature (seeZue.,and Xing[2014; Laumann

etal. [2015; Mueller et al[2013). For exampleabz, defined as the between-subject variance

is not obtained calculating the variances between the sessions of different subjects, that
instead should be approximated by the sumb6f+ aW2 (Laumann et alf2015). As we are

describing the correlations as Gaussian variables, each source of variability is associated with
a corresponding variance: between-subject variaa'g,ée finite-sample variances?, and

within-subject variance,, .

Note that for each subject, the inter-session variability of the correlations can be divided into
within-subject variability and finite-sample variability. To calculate the contribution of the
finite-sample variability, we used the surrogate data described before, as they possess finite-
sample variability, but not, by construction, within-subject variability (see Materials and

Methods). Therefore, to obtairy, for each link, we subtracted the value of the inter-session
variability obtained from the observed data to the one obtained for the surrogate data. For the
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observed data, both the finite-sample variability and the between-subject variability resulted
on average approximately half of the within-subject variability; see the complete distribution

of the three variances in panel D of figlBeThis strong difference betweea:rl;2 and aWZ,

evident from their distributions, is the main reason for the low reliability of the links,
described in the previous section.

The values of the three variances averaged over regions are reported inShgufréhe
suppkementary material. Although the variances present homogeneous values for all the
regions and it is not clear a pattern, we note that both the ICC and the three variances form a
characteristic structure, with some macro-regions exhibiting different patterns of behavior
with respect to the others (see e.g., the occipital).

We also analyze how the three variances correlate with the ICC (see panel E oBfithee
correlation of the ICC with theb2 is very high (=0.86), while the correlations with other two

variances is almost zerg, 2 (-0.07,p-value> 0.05) ands¢? (-0.05,p-values< 10°). These

results have a straightforward interpretation: the between-subject variabgitysentsa
structure similar to the one of the ICC, while the differences between the regions in the
within-subject variability are not strongly related to the region differences in the ICC.

Recently, different studies have warned against the influence of head-motion and micro-
movements (i.e. head displacements <1mm), in the observed variability and reliability of FC
estimatesPower et al[2013; Laumann et al[2014). Taking into account this possibility is
indea very relevant for our analyses, as it indicates one of the different plausible causes
behind within-subject variability, namely unavoidable head movements during the scan
session, which should in principle being independent from scan to scan. To assess this
possibility, we calculate the correlation between the inter-session variability of the average
framedisplacement (FD) and that of each link’s correlation (see Methods for the calculus of

FD). We found that head-motion explaimst of the variance of the correlation (= 5%), even

though the effect is not homogeneous over different regions, see panel A ofSkgofe
suppkementary material. Moreover, the FD-effect correlates positively with within-subject
variability (= 0.35), but not with between-subject variability.

3.2.4 Relevance of sample points: scan duration and multiple scans

Different studies have analyzed the effect of scan duration on the reproducibility of FC
(Anderson et alj2017; Birn et al.[2013; Hacker et al[2013; Laumann et al[2015; Finn

etal. [2019), and on the reliability $hehzad et aj2009; Birn et al.[2013) demonstrating
thatlong scan sessions increased both the reliability of FC and its reproducibility. We note
that the former is not an obvious consequence of the latter, in that having highly reproducible
FC within-subject could also mean highieproducible FC between-subject] therefore low
reliability. For example, Birn and colleagues demonstrated that reliability slowly increased
with scan duration: on average, the maximal ICC value for very long scans (30 mins) is very
low, ICC= 0.4 (Birn et al.[201]3).

As such, we systematically studied the influence of scan duration on the reliability of FC
indices. Moreover, we analyzed the behavior of the ICC as a function of the different sources
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of variability (within-subject, between-subject and finite-sample). Panel A of figjysieows
the behavior of the three variances and that of the ICC for different scan durations, as
guantified by minutes.

For very small scan duration (below 1 min), finite-samﬂl%(green line) is the most relevant

source of variability of the FC indices, even though its contribution rapidly decreases with
increasing scan duration. We observed that the behavior of finite-sample variability can be
approximated by a power law df N¢, where N is the number of time points, anid about

1.3 (£ = 0.98). This is not surprising, as the finite-sample variance of the correlation between
any twotime-series having zero auto-correlation is equal to one. Within-subject variability
(blue line) also tends to decrease with increasing scan duration, even though at a much slower
rate, whereas between-subject variability (black line) remains approximately constant.

Having many scan repetitions obtained from the same subject, we could also measure both the
three variances and the ICC obtained using the average FC over several sessions (details can
be found in the Materials and Methods). Results from this analysis are depicted in panel B of
figure 4, in order to directly compare them to the evolution of the variances for different scan

duraion. We note that the between-subject variabid:iﬁ again tends to remain constant,
whereas the finite-sample variability? continues to decrease with no evident changes in

slope. On the other hand, within-subject variability> seems to exhibit discontinuous

changes that are mirrored by abrupt changes in the slope of ICC. These abrupt changes are
expected given the previous results reported in literat@ieel{zad et aj2009; Birn

etal. [2013) on the difference between the reliability within-scan session (less than one hour)
and between-scan sessions (more than one month), with higher values of reliability for the
case within-scan session. This result indicates that to obtain intermediate or high level of
reliability, we should average FC over multiple sessions. Indeed, according to the results of
Birn et al.[2013, there seems to be a plateau for the ICC between-scan sessions above 18
minutes (see figure 3a @&irn eta. [2013). Evidence for this slope change can be found in

the high value of ICC (=0.7) obtained for FCs extracted from an average of 6 sessions
(summing up to approximately 30 mins).

We underline the relevance of this analysis: First, we can describe how reliability of the FC
changes as a function of scan durations or using several scan sessions for the three different
types of variance, and second, we conclude that the use of multiple sessions seems to be a
potentialway to overcome the low reliability upper limit indicated Byn et al.[2013).

The relevance of the finite-sample variability is conspicuous, but it will shade out for
increasing scan duration. The influence of scan duration on the sources of variability will be
the subject of the next section.

3.3 Global FC analysis

After having analyzed reliability from a local, link-wise perspective (Se@&idyn we focused
on studying the inter-scan variability of the whole-brain, global FC structure. This means that
instead of considering the variability of the different pair-wise functional correlations, we
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consider the within- and between-subject variability of the vectorized FC matrices in their
entirety. As in the local analysis (see Secti®), and following earlier studieMueller

etal. [2013; Laumann et al[2015; Finn et al.[2015, functional connectivity was quantified
using Pearson correlation coefficient. The richness of information contained in the
multivariate structure of whole-brain resting-state FC matrices has recently been
demonstrate&inn et al.[201]. In that study, it was shown that the FC matrix can be used as
a “functional fingerprint” in that it allows identification of individual subjects from a 30-
minute resting-state scan. The findingsHnn et al[201] appeared to be in stark contrast
with the low test-retest reliability of local FC indices. For exampie et al.[2013 reported

low ICC’s (< 0.4) for pair-wise Pearson correlations even for long scan sessions (30 min) and
we reported similar values (see Sectiod.

In this section we reproduce the findingshmn et al.[2013 (Section3.3.1), providing a
statigical framework that can be used to assess the factors influencing functional
fingerprinting (Sectior8.3.2. Taken together, our results confirm the strength of whole-brain
FC analysis over local measures.

3.3.1 Subject identification from resting-state FC

In this section, we reproduce the observationSioh et al.[2015 and again assess the effect

of scanning duration. The analysis carried oufEinn et al[201] is based on the sample
Pearson correlation coefficients between different pairs of vectorized FC matrices, to which
they referred to asimilarity indices. These similarity indices can be calculated between
(vectorized) FC matrices of different scans of the same subject (within-subject) or between
FC matrices obtained from different subjects (lesmsubject). The within- and between-
subject similarity indices are denoted hereRgyandR,, respectively. Details are provided in

Section2.7. Finn and colleagues demonstrated that for 30-minute resting-stateRggang,,

for practically all values oR, and R, (calculated from all possible pairs of scan), which
implies thatR,, andR,, can be used as “functional fingerprints” to identify individual subjects.

We repeat the analysis of F2015, calculating the distributidt), @ndR,, collapsing together

different sessions. In figur®, panel A,CE show the observed distributions of (Fisher
transformed)R,, (gray) andR, (black) for a different numbers of samples (number of

sessions). It is possible to appreciate that the separation between the distributions of the two
similarity indices R, andR,, increases rapidly when increasing the number of sessions: from

panelA (1 session) to panel E (6 sessions). This separation is almost complete (zero overlap
between the distributions) even with 4 sessions. This is noteworthy as with 4 sessions the
average ICC of single link is still around 0.4 (similar value is reportelitoyet al.[2013),

and however on the whole-brain level they allow for complete identifiable HGn (

etal. [2019).

To explain why functional fingerprinting is possible and how its quality depends on different
factors (scanning length, for example), we consédiet statistical model for the vectorized
(andztransformed) FC mates Specifically, the vectorized FC matrix of subjeet scar,
denoted byx; is modeled as a normally distributed random vector having the following

structure:
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xij =k +n; + 35, (20)
whereu € R™*1 denotes the group-wise expectationng and wherep; € R™*! and gij
e R™*! denote within- and between-subject fluctuations, respectively. The random vgctors
and¢ j are assumed to be independent and have expectation zero and covariance matrices X,
and X, respectively (see Secti@a7 for more details). As we will see below, we can express
all properties of the similarity indiceR,, andR,, and their estimator8,, and R, in terms of
the model parameters X, and X,
Instead of consideringR, and R,, it will be convenient to consider their Fisher-
transformations, denoted lzy, and z, respectively, and similarly for their estimators. We
first consider the special case in which X, and X, are diagonal matrices (but see panel B of
figure 5 to see the observed valuesgfand ¥,,), that is £, = 0,2l ,, and %, = 6,2l -, for certain
o, andg,,. In Section2.6 it is shown that in this case, the similarity indices can be expressed
in terms of the model parameters as follows:

o2+0?
R =—#*"b (21
w oﬁ+a§+a&,'( )

and

2

o
R, = ——~—— (22
b aﬁ+o§+o‘f/( )

where we have definent;l2 = |lu — ue,,ll/m. Note thata#2 is the variance of FC over links

that is common to all subjects. These formulas allow interpreting the similarity indices and
relating them to the link-wise ICCs, or more exactly to the parameters determining it.

3.3.2 Quality of functional fingerprints

With respect to the number of sample points (or number of sessjp%]a)jdabz (= 0.05 and

~ 0.008, respectively) are constants, biﬁ and 0W2 decreases rapidly (the exact speed is
irrelevant for now) toward zero, as we showed in figur&o, the asymptotic value gf =
arctanh@) is a limited value (arctanh is the inverse hyperbolic tangent), Ry} ssnds to 1,

z,, = arctanhR,) tends to infinity. Moreover, the varianceszgfandz, are bounded (by one

over the number of links), as the links are correlated between them and the correlations are
increasing tending to one. The result is mainly based on the behavior of the sources of
variability shown in figuret, in particular the fact that for every brajrexists a constant FC

and that the genuine variability rapidly fade out for increasing number of sample.

To conclude, the model proposed to describe the whole FC is qualitatively in agreement with
the experimental results, and it has the advantage of being simple: Few parameters and
marginal assumptions determine it completely. In a nutshell: the distributions of (Fisher
transformed)R,, andR,, are two Gaussian distributions, whose variances are approximately

constant and whose expected values are moving away from one another tending toward
infinite values, and with a speed that follows approximately the number of samples.
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4 Discussion

In this study, we assessed the variability and test-retest reliability of the human functional

connectome taking advantage of a unique data set comprising multiple (42) fMRI scans of 5

minutes each for 5 subjects during a classical resting-state paradigm, together with another
sets of single-scans obtained from 50 different subjects.

Singlelink reliability

From this analysis we obtained the reliability of the functional links between ROIs, as
guantified by the ICC. In order to avoid potential biases due to the parcellation, ROIs were
obtained both using an anatomical (AAL) as well as a functional parcellation recently
proposed byShen et al[2013. From our results we conclude that the average reliability of
single link FC is quite low (=0.2) (figure 3), which is in agreement with the literature
(Shehzad et a[2009; Birn et al.[2013). These results, as well as all other results, are
guditatively equal for the two parcellations. Interestingly, we found that the correlation
values of all links have an ICC drawn from the same distribution. In other words, our data
contains no evidence for heterogeneity of test-retest reliability over links. Indeed, this result
suggests an overall homogeneity in the reliability of links in the whole brain, in contrast to
what is claimed in the literatur8liiehzad et aj2009; Zuo and Xing[2014).

A small ICC variance is crucial to distinguish between reliable and unreliable links. To obtain
a small ICC variance, a very large number of the product of subjects and scan sessions is
needed (a large number of sessions for few subjects, or vice-versa are equivalent in this sense).
To date, analyses of resting-state fMRI test-retest reliability typically used a large number of
subjects performing two or three scans; we adopted the opposite strategy, but still did not
reach a better power resolution for the ICC. To be more specific, in our data-set we have 42
scans for 5 subjects, and the SD of the estimated ICC was approximately 0.2; similar SD
resulted for the data-set analyzed Zyo and Xing2014, with 75 subjects and 3 scans.
Therefore, to substantially decrease ICC variaitesuccessive studies, we have to use a
much higher number of subjects or scans. For example, a fifth of the SD can be achieved with
more than 100 participants instead of 6, and 42 scans. These numbers point out the
experimental difficulty in differentiating between the reliability of each link of the FC matrix.

Sour ces of variability

Thanks to our analysis based on surrogate data, we were able to characterize and quantify
different sources of inter-session variability of the correlations between distinct brain.regions
As a first approximation, we identify two sources: 1. the statistical uncertainty produced by
calculating correlations froma finite number of samples (finite-sample variability), 2. the
genuine session-dependent fluctuation of the correlations between different brain regions
(within-subjects variability). In order to describe the subjeetubject variability
appropriately, we further identified a third source of variability next to these two sources of
variability, that we called simply between-subject variability.

The importance of being able to separate these different sources of FC variability is that it
allows us to understand more in depth the temporal dynamics as well as thelilkk-
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differences in reliability itself. For example, our between-subject variability shows time-
consistency, in contrast to the behavior of the finite-sample and within-subject variances, as
both decrease for increasing number of sample points. While the decrease of the finite-sample
variance with the number of samples is trivial, neither the between- nor the within- subject
variances behavior can be foreseen from previous analyses.

Moreover, from this result, and the resultsBafn et al.[2013, we can predict that within-
subject variance reaches a plateauz@t012. Indeed, Birn and colleagues showed that the
link reliability reaches a maximum value (0.4) for scan duration of approximately 20 minutes.
Sucha low ICC valuelimits the use of singléink FC asa potential biomarker. Here, we
showed that a possible solution can be that of using joining multiple sessions: Our results
indicate that in order to obtaan intermediate to high ICC, 6-8 of 5 minutes each sessions are
required. Clearly, it would be convenient to use longer scan sessions to diminish the number
of scan sessions.

As we showed, the variability of the FC is in part due to the finite sample. Thanks to our
surrogate-based analysis, we could quantify how large the relative contributions of the finite
sample and genuine variability are. We stress that this genuine (within-subject) variability is
much higher than the one reportedLemumann et al[2015 2014. Even though we are not
surewhat causes this discrepancy, our result seems in quantitative agreement with what has
been reported in other reliability studi€&héhzad et a[2009; Birn et al.[2013).

Note that even though the macro-regions do have approximately the same low values of ICC,
there is a small regioto-region variability. In principle, these differences can be caused by
the three variances; however we showed that the between-subject variance is mainly
responsible of the observed structure in ICC. For example, we have described higher values of
ICC in cerebellum compared to the lower values of ICC in the pre-frontal region. Similar
analysis were carried out itaumann et al[2015; Mueller etd. [2013, however, in those
studies the three sources of variability were not completely separated, which makes the results
more difficult to interpret.

From from link-wise unreliability to whole brain stability

We analyzed the similarity between entire FC between subjects and between sessions,
describing the consistency of the entire correlation structure within a general linear model (for
similar approaches seédueller et al[2013; Finn et al.[2015). With this statistical model,

we provide theoretical ground to understand and solve an apparent paradoxithmssible

that very low link-wise reliability Birn et al.[2013) can generate such high stability at the
global level (whole FC), as has recently been shdwm(et al.[2015)?

In particular, we studied the distribution of two similarity indidgsandR,,, that measure the

distance (in terms of correlation) between FC of two sessions of the same subject and of two

subjects, respectively. Taking advantage of the multiple sessions of our data set, we calculated
the distribution of these indices for an increasing number of concatenated sessions. In addition,
we obtained an approximate expression for the average and the variance of the estimators of
the distributions oR,, andR,, (see eqd8 and19). These estimators are simple functions of
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the between- and within-subject variances. In this context, it is straightforward to show that
for an increasing number of sessions, the aveRyggoes to infinity, while the averadg,

remains finite; while their variances are limited. Therefore, if the two distributions do not
overlap, the identification is perfect.

Finn et al.[2013 analyzed the identification, without directly adopting these similarity
indices. Moreover, they used an increasing number of data-points within the same scan
session instead of multiple sessions. The latter is a considerable difference, and as we
mentioned before, based on the analysis of Birn and colleagues, we predict a lower
asymptotic value for the variance within-subject for scan sessions longer than 20 minutes.
This implies, following our analysis, th&, has an asymptotic limit (upper bound) for scan

duration greater than 20 minutes. This prediction is confirmed by the results shown in figure
3B inFinn et al[2015.

We believe that the relevance of this analysis goes beyond this result: Indeed, we hope that
this simple statistical framework can be used as an ordinary tool for further analyzing the FC,
and to generate a link between the analysis of the single link and the analysis of the whole FC,
or even macro-regions.

Limitations

The resting-state literature has proposed several measures to characterize spontaneous fMRI
fluctuations (see for example the reviéy Zuo and Xing[2014). These measures can be
related to single voxelZuo and Xing[2014), to larger functional networks (based, for
example, on independent component analysis), or to the statistical interdependencies between
the time-courses of different voxels or regions.

In this study we only focused on one measure, hamely the Pearson correlation coefficient
obtained from the BOLD signals of different pairs of ROls. We considered this measure as a
starting point, and indeed all analyses performed here can be in principle applied to the
measures mentioned above. This choice is motivated essentially by two factors: its simplicity,
a linear measure of the relationships between activities, and its widespread use, probably the
most commonly used. However, in the recent past different measures of BOLD activides hav
been presented (see the ones analyz&diitnand Xing[2014) increasing the potentiality of

fMRI studies. Here, we choose to study thoroughly the FC generated from the Pearson
correlation measure, at the cost of neglecting these other measures.

In our study, we used two parcellations: one anatomical, the AAL, and one based on
functional parcellation, proposed 8hen et al[2013. In our study, we did not found strong
quantitative differences in the results of the two parcellations. However, different studies (e.qg.,
the graph stud¥fornito et al[201Q), illustrated the relevance of the parcellation and then we
hopeto see in future studies an analysis applied to multiple and different kind of parcellations.

In this study, we assessed FC variability without directly analyzing its origin (apart from
head-motion). Other studies already started to focus on this important aspect, that can have a
very broad application, going from physiological (body heat, cardiac and respiration artifacts,
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head motion) to technical (machine noise, scanner type, experimental instructions, data
standadization, data pre-/post-processing strategies) to brain statusBerg[2017; Yan

etal. [2013; Hurlburt et al[2013; Yan et al[2013; Power et al[20173; Laumann

etal. [2014). It would be useful to capitalize the description developed in this work, and to
usethese insight when planning future studies, therefore to improve our understanding of the
sources of variability in the human functional connectome.

The potential of resting-state functional connectivity is well illustrated by its ability to
characterize both healthy and abnormal cognitive processes and to predict perception and
performance. Further drawing from its potential, however, requires a systematic assessment of
its variability and test-retest reliability. Our study has demonstrated how such an assessment,
together with the application of appropriate statistical concepts, helps to explain the apparent
contradiction between local unreliability and global stability of resting-state fluctuations in the
human brain.
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Figures caption

Figure 1:Variability of FC. Panel A: Average FC over links FC>, of the 5 subjects for all

42 sessions (blue dots), and for the 50 subjects (gray line). Panel B: distributie@obf

the 5 subjects (blue lines) and the distributiorr BC> for the 50 subjects (gray bar). Panel C:
the distributions of the FC values (blue lines for the 5 subjects, and gray bar for the 50
subjects). Panel D: the FC values of a participanf)(&gainst FC values of another

participant (Fq; blue circles), and against the FC values of the average of the 50 subjects
(FCspg gray asterisks). In the same panel, we reported the correlation between two
participants’ FC (corr(FC; ,FQ) =0.8), and the correlation between a subject’s FC and FCg
(Corr(Fq,FQ) ~0.87). Panel E: the distributions of the standard deviation over sessions of the

FC (SD:¢). Same color conventions as panel C. Panel F: one paitisiSDg against the
SDc¢ of another participant (blue circles), and againstSQ- of the 50 subjects (gray
asterisks). In tis panel,we reported the correlation between two participants’ SDgc

(averaged over 42 sessions), and the Sof a subject against the ones of the 50 subjects.

Figure 2:Between- and within-subject FC variability. Panels A-B show the heat-maps of
the average FC for a single subject and for 50 subjects, respectively. Panels C-D show the FC
standard deviation (SD) for a single subject and for 50 subjects, respectively. The average FC

is Fisher-transformed (inverse hyperbolic tangent), and the SD is calculated from these
transformed values. Color convention is cyan and blue indicate 50 subjects and single subject,
respectively; black and gray dots indicate surrogate data for the 50 subjects and the single
subject, respectively. Panel E shows the scatter-plot of the average FC against the FC standard
deviation. Panels F and G plot the distributions for average FC and SD with the same color
conventions. All the plots of this figure refer to one exemplary participant. The figures for the
other four participants are qualitatively similar, but not reported

Figure 3:Reliability of the correlation strength. Panel A shows the scatter-plot for the
correlation strength against ICC value, panel B shows the histogram for the distribution of the
ICC values, and panel C is the heat-map of the average ICC values for the different macro-
regions. For the panels on the left and on the center, the colors light blue, dark blue and gray
refer to the theoretical, simulated and observed values, respectively (see main text). Panel D

shows the distribution of the three varianczqé @bz, andawz). Panel E shows the scatter plot

of the three variances against the ICC, with the values of the correlations between the three
variances and the ICC; the colors follow the same convention of panel D.

Figure 4:Effect of scan duration on the FC reliability. The graph shows the behavior of the
average reliability, ICC, and the behavior of the three variances related to the three sources of
variability of FC for different scan duration (panel A) and using multiple scan sessions (panel

B). The empty circles refer to the three sources of variability: Within-subm%ttﬁlue),
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finite-sample (rfz, green) and between-subjeagz(, black). The red asterisks refer to ICC. To

plot ICC we used a second y-axis (in red, on the right). In gray the SD of each measure are
reported. The points are slightly misaligned to improve the plot readability.

Figure 5:Analysisof FC at global level. The two panels on the left refer to the analysis done
using the single session. Panel B shows the distributions of the estirmatadtgs’ values
with the general linear model. Panels AE@ot the distribution of,, (gray) andz, (black)

for FC averaged over 1, 2, 4, and 6 sessions, respectively. The observed data are represented
with dots, and the theoretical approximated values with continuous lines. The separation
between the distributions af, and g increases rapidly when increasing the number of

sessions.
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