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Abstract

We propose models for long-term prediction of boundaries that are learned from
observations without making any strong model assumptions on objects or scene. We
evaluate our approach in a billiard scenario that is only governed by the Newtonian
laws of physics and is therefore fully deterministic. We argue that any model that
succeeds in this task must have derived some notion of “intuitive physics”. Our
Recursive Convolutional Multi-Scale architecture turns out to be most effective.

1 Introduction

The ability of artificial neural networks to develop an intuitive understanding of physics from raw
visual input has only been recently explored in [1, 2, 3]. Fragkiadaki et al. [1] has developed a model
which predicts futures states of balls moving on a billiard table. Whereas, Lerer et al. [2] and Li
et al. [3] have developed a model which predicts the stability and future states of towers made out of
blocks. These models typically are parametric of some sort or only predict a qualitative outcome of
the scene. Moreover, both Fragkiadaki et al. [1] and Lerer et al. [2] have an “object notion”, meaning
that the model knows a priori the location or type of the objects it is supposed to model.

Concurrently, full future frame predication has been studied that is agnostic to the underlying cause
of the change depicted in the sequence [4]. In contrast to the physical models, only very short range
predictions have been shown and and blurry artifacts occur in the predicted future frames. Recently a
lot of progress has been made in the field of video segmentation. Segmented videos not only discard
many details of natural videos like color, texture etc which are hard for a model to extrapolate into
the future, but also capture the important objects as boundaries. The boundaries between segments
gives rise to boundary images.

Our main contributions are the first models to extrapolate image boundaries and to explore the
performance of these models under deterministic motion. We show that our models develop an
intuitive understanding of physics from raw visual input without any strong parametric model of
the motion or “object notion" and is capable of making long term predictions in such deterministic
settings. For an extended exposition of our methods and experiments, please refer to [5].

2 Models

We base our models on the recent success of Deep Learning. We approach long-term extrapolation by
recursive schemes. However, this means that errors are potentially propagated and accumulated over
time. In order to mitigate such effects, we need very accurate models that consolidate information. By
analyzing prior work on frame prediction, we identify several key properties models have to fulfill,

Large Spatio-Temporal Context. The models should have a wide receptive field to preserve long
range spatial and temporal dependencies and learn about interaction with other boundaries.
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Figure 1: Our model architectures.

Preserve Resolution and Prevent Blurred Output. The models must maintain resolution in
order to derive a high fidelity output boundary map. Excessive pooling or tight bottlenecks with fully
connected layers have shown to induce image degradations for image synthesis tasks [4].

Globally Consistent Predictions from Local Models. In order to generalize across diverse input
sequences while maintaining a tractable number of parameters, the models should observe and
extrapolate on patches rather than the complete input image. Global consistency can still be achieved
by facilitating “communication” between neighboring patches. We achieve this through the inclusion
of a context i.e. the neighboring eight patches. This constitutes a read-write architecture, where the
past frames serve as a kind of shared memory.

2.1 Model architectures

We propose the following model architectures for boundary extrapolation based on the key properties
described above.

Convolutional-RNN (C-RNN) Encoder-Decoder Architecture. This model architecture is based
on Srivastava et al. [6]. This architecture consists of an convolutional-encoder GRU unit which reads
in the input frame sequence one time step at a time and produces a single vector as output. This
vector is read by a convolutional-decoder unit to produce the final output frame (see Figure 1a). This
creates a wide receptive field and fulfills the first key property. However, as the encoder produces a
single vector as output, this acts a bottleneck layer.

Convolutional Multi-Scale (CMS) Architecture. Multi-scale architectures akin to a Laplacian
pyramid has been used successfully for generating natural images [7] and predicting future natural
frames [8]. We achieve long-term extrapolation by proposing a recursive scheme that samples from
the output of a one frame CNN extrapolator, appending the frame and applying the extrapolator again.
This results in a recursive convolutional extrapolator for arbitrarily long sequences. In detail, we use
four scales, each downsampled by a factor of two from the one before. Each each level captures image
structure present at a particular scale. This creates a wide receptive field for the output layer neurons.
We use a fully convolutional network at each scale with moderate pooling (no tight bottleneck layer).
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Figure 2: Trails produced by super-imposing extrapolated boundaries.

The output at a certain scale is upsampled and used as input at the next larger scale as a candidate
future frame (see Figure 1b). This architecture fulfills both key properties.

Details Common to Both Architectures. As input we consider nine patches (eight neighbours as
context) each of size 32x32 pixels. The models observe the patches at the current and previous three
time-steps. The network are trained to locally predict the 3x3 patch neighborhood at the next time
step, but at test time we only use the middle patch for prediction. We use a tanh non-linearity in order
to produce binarized output in the range [0,1] and optimize for the L2 loss during training.

3 Experiments

We use boundary precision recall (BPR) [9] as the evaluation metric. This metric can be defined for a
set P of predicted boundary images and G of corresponding ground truth boundary images as:

P =

∑
Bp∈P,Bg∈G | Bp ∩Bg |∑

Bp∈P | Bp |
R =

∑
Bp∈P,Bg∈G | Bp ∩Bg |∑

Bg∈G | Bg |
F =

2PR

P +R

where P is boundary precision, R is boundary recall and F is the combined F-measure.

3.1 Datasets

We sample synthetic sequences from worlds which consists of balls moving on a frictionless surface
with a boundary, akin to a billiard table. We used the pygame module of python to create such worlds
and sample binary boundary images from them. The table sizes were randomly sampled from
{96,128,160,192,256} pixels.The ball velocities were randomly sampled from [{-3,..,3},{-3,..,3}]
pixels. The ball sizes were constant, with a radius of 13 pixels.The initial positions were uniformly
distributed over the table surface. For evaluation, we report the best F-measure obtained by varying
the output threshold parameter.

Single ball worlds. We train the models by sampling 500 sequences from worlds having one ball.
To keep our training set as diverse as possible we sample short sequences with collisions. We then
test the models on 30 independent test sequences and report the results in Table 1. We include the last
input image (image at the current time-step t) as a baseline. We include a Convolutional Multi-scale
model without a context (CMS-WC). This model can only observe the central 32x32 patch as input.
We also include a “blind” Convolutional Multi-scale model with context (CMC-BL), which cannot
see the table borders. To beat this setup, our models need to learn the physics of ball-wall collisions.

Table 1: Evaluation of models on single ball billiard table worlds
Step Last Input C-RNN CMC-BL CMS-WC CMS
t + 1 0.141 0.013 0.957 0.282 0.987
t + 5 0.038 0.006 0.841 0.035 0.900
t + 20 0.002 0.005 0.347 0.009 0.632

The Convolutional Multi-Scale architecture (with a context) performs the best with accurate predic-
tions 20 time-steps into the future. The Conv-RNN architecture (with its bottleneck layer) is unable to
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learn the physics of the world and produces very blurred output. Without a context, the Convolutional
Multi-scale architecture suffers heavily especially at larger time-steps.

Two and three ball worlds. Worlds with more than one ball also involve ball-ball collisions, which
make the physics of such worlds much more complex. To test the models on such worlds we sample
100 and 50 training sequences with two and three balls respectively with a maximum length of 200
frames. We use a curriculum learning approach, that is, we initialize the models with the weights
learned on single and two ball worlds respectively. We test the models on 30 independent sequences
containing two and three balls respectively. We report the results in Table 2. We also include
Convolutional Multi-Scale models (with a context) trained on single ball worlds (RCMS-1B) and
two ball worlds (RCMS-2B) in the two and three ball world case respectively. To beat these models
learning the physics of ball-ball collisions is necessary. Again, we see accurate extrapolation by the
Convolutional Multi-Scale model (with a context) even at 20 time-steps in the future. The Conv-RNN
architecture performs just as badly as in one ball worlds.

Table 2: Evaluation of models on complex billiard table worlds
Evaluation on two ball worlds Evaluation on three ball worlds

Step Last Input C-RNN CMS-1B CMS Last Input C-RNN CMS-2B CMS
t + 1 0.246 0.013 0.966 0.969 0.246 0.023 0.967 0.968
t + 5 0.114 0.008 0.848 0.896 0.118 0.012 0.890 0.892
t + 20 0.101 0.007 0.612 0.681 0.090 0.011 0.664 0.700

Extrapolation over very long time scales. Although we evaluate only 20 time-steps into the
future, the Convolutional Multi-Scale model (with a context) is stable over longer time-horizons. In
Figure 2 we extrapolate 100 frames into the future. We superimpose the frames to produce the trails
in Figure 2. However, we noticed that sometimes the balls reverse direction mid table and the ball(s)
get deformed or disappear altogether.

4 Conclusion
We demonstrate long-term boundary extrapolation that yields accurate and sharp results. Our proposed
Convolutional Multi-Scale architecture performs best in the quantitative evaluation. Moreover, the
accurate results on varied scenarios involving billiard balls show that this models can develop an
intuitive notion of physics. The key ingredients that made long term prediction possible are, i)
Accurate prediction at each time-step with a fully convolutional setup without any bottleneck layers
and wide receptive field. ii) Overlapping receptive fields which allow for the sharing of information
thus leading to global consistency.
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