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Summary 
 
Perceiving the geometry of surrounding space is a multisensory process, crucial to 
contextualizing object perception and guiding navigation behavior. Auditory cues are 
informative about the shape and extent of large-scale environments: humans can make 
judgments about surrounding spaces from reverberation cues. However, how the scale of 
space is represented neurally is unknown. Here, by orthogonally varying the spatial 
extent and sound source content of auditory scenes during magnetoencephalography 
(MEG) recording, we report a neural signature of auditory space size perception, starting 
~145 ms after stimulus onset. Importantly, this neuromagnetic response is readily 
dissociable in form and time into representations of the source and its reverberant 
enclosing space: while the source exhibits an early and transient response, the neural 
signature of space is sustained and independent of the original source that produced it. 
Further, the space size response is robust to variations in sound source, and vice versa. 
The MEG decoding signal was distributed primarily across bilateral temporal sensor 
locations, significantly correlated with behavioral responses in a separate experiment. 
Together, our results provide the first neuromagnetic evidence for a robust auditory space 
size representation in the human brain, sensitive to reverberant decay, and reveal the 
temporal dynamics of how such a code emerges over time from the transformation of 
complex naturalistic auditory signals. 
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Introduction 
 
Imagine walking into a cathedral at night: Even in darkness, the passage from the narrow 
entryway to the large nave is immediately apparent. The reverberations produced by 
multiple echoes of footfalls, speech, and other ambient sounds produce a percept of the 
extent, or size, of each space. 
 
Perceiving the properties of surrounding space is crucial for effective interaction with a 
multisensory environment [1]. Visual space representation provides context for object 
perception [2,3] and spatially oriented behavior such as navigation [4,5], and is mediated 
by similar brain structures across species [6–10]. Recent work in spatial scene processing 
indicates that visual environments are represented along separable and complementary 
dimensions of spatial boundary and content [7,11–14]. In this way a scene may be 
characterized by, e.g., its encompassing shape and size, as well as by the number, type, 
and configuration of objects it contains [15,16]. 
 
Much prior work in audition has investigated the spatial localization and perceptual 
organization of sound sources [17–20]. The extent to which the context, i.e. spatial 
environments, of these sounds, has been considered, has tended to be limited to the way 
reverberations from interior surfaces modulate sound-source perception. The auditory 
system typically works to counteract the distorting effects of reverberant environments on 
perception, facilitating perceptual robustness of, e.g, stimulus spatial position [21–23], 
speaker identity [24,25], or estimated loudness [26,27]. Yet beyond being an acoustic 
nuisance to overcome, reverberations themselves provide informative cues about the 
properties of the environment [28], and humans are able to perceive those cues to 
estimate features such as sound source distances [29–32] and room sizes [33–38]. Still, 
the auditory parameters of room size are not well understood, with nonlinear and 
complex relationships between physical and perceptual attributes of the auditory 
environment [33,34,37]. Thus, the fundamental question of how environmental properties 
such as space size are represented by the auditory system is generally not well 
understood, and its neural basis almost totally unexplored. 
 
Here, to investigate the auditory coding of environmental space size in the human brain, 
we recorded magnetoencephalography (MEG) responses to auditory stimuli of sounds in 
different-sized spaces. We operationalized space size as the auditory room impulse 
response (RIR) of real-world spaces of different sizes. Auditory stimuli were constructed 
by convolving brief anechoic impact sounds with the RIRs, allowing us to vary scene 
boundary and content independently. We hypothesized that both the sound source and the 
size of the space could be separably decoded from the neural responses to naturalistic 
reverberant sounds. We found that neuromagnetic responses to spatialized sounds were 
readily dissociable into representations of the source and its reverberant enclosing space, 
and that these representations were robust to environmental variations. Our MEG results 
constitute the first neuromagnetic marker of auditory spatial extent processing, 
dissociable from sound-source discrimination, suggesting that sound sources and auditory 
space are processed discretely in the human brain.  
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Results 
 
To examine the neural representations of space size and auditory source information, we 
recorded MEG data while participants (N = 14) listened to three brief ~176 ms impact 
sounds (hand pat, pole tap, ball bounce), convolved with three room impulse responses 
(RIRs) corresponding to real-world indoor spaces of approximately 50, 130, and 600 m3 
volume. The resulting stimuli were sounds spatialized to be perceived as occurring in a 
small, medium, or large space. Thus, three sound sources and three RIRs produced a total 
of nine different stimulus conditions. Participants performed a vigilance task in which 
occasional deviant sounds (human speech syllables) prompted a button press; these trials 
were excluded from analysis. 
 
We extracted peristimulus MEG time series from -200 to +1000 ms relative to stimulus 
onset, and applied a linear support vector machine (SVM) at each time point to decode 
conditions.  Statistical significance of decoding accuracy time courses were computed 
using one-sample t-tests against 50%, and corrected for multiple comparisons across time 
points using a false discovery rate (FDR) of 5% [39]. We report decoding significance 
onset and peak latencies with ± standard error computed by bootstrapping participants. 
 
Auditory representations discriminated scene size and sound source with temporally 
dissociable decoding trajectories. 
We applied SVM to decode every pair of conditions (Fig 1B) [40–42]. The pairwise 
MEG decoding accuracies at each time point were arranged in a 9 x 9 decoding matrix, 
termed representational dissimilarity matrix (RDM), that serves as a higher-order 
distance measure between conditions [43]. We then computed a single-sound decoding 
time course by averaging all RDM elements per time point (Fig 1C, shaded partition). 
The single-condition classification time course increased sharply shortly after stimulus 
onset, reaching significance at 60 ± 23 ms and peaking at 156 ± 20 ms. These results 
indicate that the MEG signal was able to reliably distinguish between individual stimulus 
conditions. 
 
To dissociate the neuronal dynamics of space size and sound source discrimination, we 
repeated this analysis, but pooled trials across the corresponding conditions before 
decoding. This resulted in 3x3 RDM matrices (Fig. 2A), and averaging across the shaded 
regions produced the time courses of space size (red) and source identity (blue) decoding 
(Fig 2B). The transient nature of source discrimination, reaching significance at 59 ± 19 
ms and peaking at 130 ± 10 ms, is in sharp contrast to the slower, sustained response of 
the space size decoding time course, which exhibited a significantly later significance 
onset (145 ±  43 ms) and decoding accuracy peak (386 ± 46 ms; peak latency difference, 
P<.001). This suggests that sound-source information is discriminated early by the 
auditory system, followed by reliable space size discrimination. In a control experiment, 
we found that sources and spaces were still decodable when all stimuli were controlled 
for duration, suggesting that the timing is not solely dependent on stimulus duration (see 
Fig. S1, SUPPLEMENTAL INFORMATION). 
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Space size representations are robust to variation in sound source (scene content) 
Stable source and space representations should be independent of other changing 
properties in a scene. For example, the spatial information in a given source-space 
combination should be recoverable from a different source reverberating in the same 
space. To investigate the robustness of the respective source and space decoding curves 
to environmental variation, we conducted a cross-classification analysis in which we 
assigned space size conditions from two sources to a training set, and the size conditions 
from the remaining source to a testing set. Results from all such train/test combinations 
were averaged to produce a measure of space size information pooled across sound 
sources, with sound sources not overlapping between training and testing sets (Fig 3A). 
We then performed an analogous analysis to cross-classify sound sources. The results 
(Fig. 3B) indicate time courses similar to those in the pooled analysis, demonstrating that 
the neural representations of space size and sound source are robust to variations in an 
orthogonal dimension.  
 
MEG decoding dynamics predict relative timing and accuracy of behavioral judgments 
To extract behavioral parameters that could be compared with the dynamics of the MEG 
signal, we binned all trials into appropriate source or space comparison categories (e.g., 
Space1 vs. Space2; Source1 vs. Source3; etc.). Within each category we computed each 
subject’s mean accuracy and mean response time (mean RT estimated by fitting a gamma 
distribution to the response time data [44]). This yielded mean accuracies and RTs in 
three source-comparison and three space-comparison conditions, analogous to the pooled 
MEG decoding analysis. Behavioral accuracies and RTs were then correlated with MEG 
peak decoding accuracies and peak latencies, respectively. Significance and confidence 
intervals were determined by bootstrapping the behavioral and MEG subject pools 10,000 
times. Behavioral RTs and peak latencies were significantly correlated (r = 0.52, p < 
.0072), as were behavioral accuracies and peak decoding accuracies (r = 0.57, p < .0001) 
(Fig. 4). 
 
Space size is encoded in a stepwise progression 
The MEG space size decoding results (Fig. 2B) could be indicative of an encoded size 
scale (i.e., a small-to-large progression), or they could simply reflect a generic category 
difference between the three space size conditions. To evaluate whether MEG responses 
were consistent with ordinal vs. categorical size coding, we devised simple models of 
space representation in the form of RDMs that reflected the hypothesized space size 
representations. That is, each pairwise representational distance in the model 9 x 9 
condition matrix was either 0 or 1, reflecting a within vs. between separation (categorical 
space size model), or 0, 1, or 2 reflecting a pure ordinal separation between space size 
conditions irrespective of sound source identity (ordinal space size model). We then 
correlated (using Spearman rank to capture ordinal relationships) the model RDMs with 
the brain response RDMs at every time point between the first and last time point of 
significant space decoding in the pooled analysis (145–895 ms post-stimulus onset). Fig. 
5 shows that an ordinal size model correlates significantly more strongly with the neural 
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data than a categorical size model (t-test, P << 0.001), suggesting that space sizes have 
ordinal representations. 
 
Source identity and space size were best decoded by bilateral temporal sensors  
To determine the spatial distribution of the decoding response, we repeated the main 
analysis on sensor clusters in 102 separate locations across the scanner helmet (and thus 
across the subject’s head). This analysis revealed that the bulk of significant decoding 
performance (p < .01, FDR corrected across sensors at each time point) was concentrated 
in sensor clusters over bilateral temporal regions (Fig. 6). While the spatial interpretation 
of such an analysis is limited in resolution, this result suggests that bilateral auditory 
cortical regions are performing the computations that distinguish among the sound 
sources and space sizes in the stimuli. 
 
Dynamics of space size representations are slower and more sustained compared to 
sound-source representations 
To examine the temporal dynamics of source and space representations, we conducted a 
temporal generalization analysis [41,45] in which a classifier trained at one time point 
was tested on all other time points. This produced a two-dimensional matrix showing 
generalized decoding profiles for space size and source identity (Fig. 7). The results 
suggest differences in processing dynamics: the narrow “diagonal chain” shown for 
source identity decoding in Fig. 7B indicates that classifiers trained at a time point t only 
generalize well to neighboring time points; by contrast, the space size profile (Fig. 7A) 
exhibits a broader off-diagonal decoding regime, indicating that classifiers were able to 
discriminate between space conditions over many time points other than the one in which 
they were trained. This suggests that space size representations are mediated by more 
stable, sustained underlying neural activity, compared to transient, dynamic activity 
mediating sound-source representations [45].  
 
Discussion 
 
We investigated the neural representation of auditory spatial extent and sound source 
identity using multivariate pattern analysis [41,42] on MEG brain responses to spatialized 
sounds. Our results showed that individual sound conditions were decoded starting at ~60 
ms post-stimulus onset, peaking at 156 ± 20 ms. Next, we characterized the separate 
neural time courses of space- and source-specific discrimination. Source and space 
decoding profiles emerged with markedly different time courses, with the source 
discrimination time course exhibiting a rapid-onset transient response peaking at 130 ± 
10 ms, and the space size discrimination time course ramping up more gradually to peak 
at 386 ± 46 ms. Further, a cross-classification analysis, in which training and testing trials 
contained different experimental factors, showed that the space size representation 
remained robust across different sounds in each space, and that the sound-source 
representation remained robust across different space sizes. This suggests that these 
representations are independent of low-level variations, such as differences in amplitude 
envelope and spectral distribution, that accompany environmental changes commonly 
encountered in real-world situations. A sensorwise decoding analysis showed that 
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bilateral temporal cortical areas contributed most heavily to the decoding performance. 
Finally, the MEG decoding signal did not share the temporal profile of interstimulus 
correlations (Fig. S2) but was significantly correlated with behavioral responses, 
suggesting that the neural signal time course is (a) separate from the stimulus time course 
and (b) likely to reflect processing that drives perception. Taken together, the MEG 
decoding time courses suggest that the human auditory system extracts space size from a 
naturalistic stimulus. 
 
Dissociable and independent decoding time courses. The pooled and cross-classified 
source and space decoding time courses (Figs. 2, 3) indicate that space size and sound-
source representation are dissociable and independent in the brain. The decoding offset 
for sound source decoding suggests that source or object identity information is primarily 
carried by the direct sound and accompanying early reflections (the first, most nearby 
surface echoes [34]). By contrast, the later space size decoding peak and concurrent 
falloff in source decoding suggest that reverberant decay primarily carries spatial extent 
information. This is consistent with physical properties of large spaces, i.e. the longer 
propagation time for reflections to reach the listener, as well as longer RT60 reverberant 
decay times, in large spaces. 
 
Bilateral temporal decoding  
We observed a bilateral temporal decoding response to the stimulus conditions for space 
sizes as well as sound source identities. While the spatial resolution of the sensorwise 
analysis cannot determine the exact loci of the signal sources, our results are consistent 
with a bilateral [46,47] account of space size processing, involving primary and 
nonprimary auditory cortical regions such as the planum temporale [48]. Specifically, the 
spatial distribution of the sensor decoding analysis argues against the interpretation that 
subjects were processing a related reverberation-mediated parameter such as auditory 
egocentric distance [49]; a previous MEG study of auditory distance reported right-
lateralized sensitivity to distance in the supratemporal plane [50]. One possibility is that 
the spatial auditory scenes were processed by brain regions known to be selectively 
sensitive to visual scene size, such as the retrosplenial complex (RSC) and 
parahippocampal place area (PPA) [11]. However, our focus in the present study was on 
the dynamics of the neuromagnetic response. Localizing the exact source(s) of the space 
size signal is thus a target for future research. 
 
Relation to previous electrophysiological auditory studies. As virtually all prior 
neuroimaging work on spatial auditory perception, including studies that used reverberant 
stimuli, measured brain responses to sound source properties, rather than properties of an 
enclosing space, direct comparison with previous neurophysiological results in audition is 
difficult. The latency of the individual- and source-decoding peaks are similar to that of 
numerous evoked neuromagnetic responses such as the mismatch negativity [51,50] and 
N1m response [52]. This generally suggests that low-level, pre-attentive evoked 
responses such as the P50 [50] are not strongly informative for distinguishing among the 
spatial conditions, but that the neural activity underlying these evoked components may 
be driving the general or source-specific MEG decoding performance. Later responses to 
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naturalistic spatial stimuli include elevation-related processing starting at 200 ms [53] 
and a component indexing “spatiality” of sound sources, i.e. the difference between 
simple binaural cue manipulation and realistic 3D spatialization [54]. By contrast, the 
later rise of space size decoding performance in our results suggests that a different 
underlying mechanism is operating to code space size. 
 
The most closely related neuroimaging investigations of auditory spatial parameters are 
likely those that probe the representation of egocentric distance of a sound source 
[31,50]. The distance to a sound source implies the minimum extent of the enclosing 
space, and its perception is mediated by a reverberant cue (the direct-to-reverberant 
energy ratio, D/R, rather than RT60 [29,31]). An MEG study of sound source distance 
found significant mismatch responses to auditory and duration deviants for reverberant 
virtual stimuli in data analyzed between 140 and 220 ms [50], which overlaps with the 
onset of the space size decoding response in the present study. If the same mechanism 
underlies both sets of results, the common parameter would be closer to a space size 
representation, as the sound sources in our stimulus set were all at the same virtual 
egocentric distance from the listener. 
 
Taken together, comparison with previous work suggests that while the same substrates 
processing 2-D sound source location (azimuth and elevation) are unlikely to also process 
spatial extent of auditory scenes, the temporal dynamics of brain responses to distance 
may involve space size rather than object distance per se. 
 
The metric of space size representation. Finally, while behavioral room size judgments 
have been previously shown to be driven by reverberant information, the precise 
relationship between volumetric spatial extent, reverberation time, and perceived size is 
nonlinear and not fully understood [33,34,29]. We used a well discriminable sequence of 
space sizes to establish an ordinal representation, but future work with condition-rich 
designs can more precisely characterize the metric of neural representation of auditory 
spatial extent. Further, given the parallels with the dissociable encoding of properties of 
visual scenes [12], future work may elucidate whether spatial extent coding shares a 
neural mechanism across visual and auditory sensory modalities. 
 
In sum, the current study presents the first neuromagnetic evidence for an auditory scene 
size representation in the brain. The neurodynamic profile of the processing stream is 
dissociable from that of sound sources in the scene, robust to variations in those sound 
sources, and predicts both timing and accuracy of corresponding behavioral judgments. 
Our results establish an auditory basis for investigations of scene processing, suggest the 
spatial importance of the reverberant decay in perceived scene properties, and lay the 
groundwork for future auditory and multisensory studies of perceptual and neural 
correlates of environmental geometry. 
 
Materials and Methods 
 
Participants 
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We recruited 14 healthy volunteers (9 females, age mean ± s.d. = 27.9 ±5.2 y) with self-
reported normal hearing and no history of neurological or psychiatric disease. 
Participants were compensated for their time and provided informed consent in 
accordance with guidelines of the MIT Committee on the Use of Humans as 
Experimental Subjects (COUHES). 
 
Stimuli 
Stimuli were recordings of three different brief monaural anechoic impact sounds (hand 
pat, pole tap, and ball bounce), averaging 176 ms in duration. Each sound was convolved 
with three different monaural room impulse responses (RIRs) corresponding to real-
world spaces of three different sizes, yielding a total of nine spatialized sound conditions. 
The RIRs were measured by recording repeated Golay sequences broadcast from a 
portable speaker and computing the impulse response from the averaged result. The 
speaker-recorder separation was constant at ~1.5 m. Room sizes corresponded to 
everyday spaces, with estimated volumes (based on room boundary dimensions) of 
approximately 50, 130, and 600 m3. Reverberation times (RT60, the time for an acoustic 
signal to drop by 60 dB) of the small, medium, and large-space RIRs were 0.25 s, 0.51 s, 
and 0.68 s, respectively. RT60 estimates given in Fig. 1 were averaged across all 
frequencies from 20 Hz to 16 kHz, logarithmically weighted. Auditory stimuli are 
available as supplemental material (see Table S1).  
 
MEG testing protocol 
We presented stimuli to subjects diotically through tubal-insert earphones (Etymotic  
Research, Elk Grove Village, IL, US) at a comfortable volume, approximately 70 dB 
SPL. Stimulus conditions were presented in random order with stimulus onset 
asynchronies (SOAs) jittered between 2000–2200 ms. Every 3 to 5 trials (4 on average), a 
deviant vigilance target (brief speech sound) was presented, prompting participants to 
press a button and blink. SOAs between vigilance target and the following stimulus were 
2500 ms. Target trials were excluded from analysis. Each experimental session lasted 
approximately 65 min and was divided into 15 runs containing 10 trials from each 
condition, for a total of 150 trials per condition in the entire session. 
 
Behavioral testing protocol 
In our MEG scanning protocol, we used a passive-listening paradigm to avoid 
contamination of the brain signal with motor-response artifacts. Thus, to test explicit 
perceptual judgments of the auditory scene stimuli, we conducted separate behavioral 
tests of space size and sound source discrimination. Participants (N=14) listened to 
sequential pairs of the stimuli described above, separated by 1500 ms SOA. In separate 
blocks, participants made speeded same-different judgments on the sound sources or 
space sizes in the stimulus pairs. Condition pairs and sequences were counterbalanced for 
each subject, and the order of source- and space-discrimination blocks was 
counterbalanced across subjects. Over the course of four blocks lasting a total of ~40 
min, participants completed a total of 36 trials per category. We collected reaction time 
and accuracy data from participants’ responses. 
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MEG data acquisition 
MEG recordings were obtained with an Elekta Neuromag TRIUX system (Elekta, 
Stockholm, Sweden), with continuous whole-brain data acquisition at 1 kHz from 306 
sensors (204 planar gradiometers; 102 magnetometers), filtered between 0.3 and 330 Hz. 
Head motion was continuously tracked through a set of five head-position indicator coils 
affixed to the subject’s head. 
 
MEG preprocessing and analysis 
Data were motion-compensated and spatiotemporally filtered offline [55,56] using 
Maxfilter software (Elekta, Stockholm, Sweden). All further analysis was conducted 
using a combination of Brainstorm software [57] and Matlab (Natick, MA, US) in-house 
analysis scripts. We extracted epochs for each stimulus presentation with a prestimulus 
baseline of 200 ms, and 1000 ms post-stimulus onset, removed the baseline mean from 
each sensor, and applied a 30-Hz low-pass filter. 
 
MEG multivariate analysis 
To determine the time course of auditory space size and object identity discrimination, 
we analyzed MEG data using a linear support vector machine (SVM) classifier ([58]; 
libsvm: http://www.csie.ntu.edu.tw/~cjlin/libsvm/). For each time point t, the MEG 
sensor data were arranged in a 306-dimensional pattern vector for each of the M=150 
trials per condition (Fig. 1B). To increase SNR and reduce computational load, the M 
single-trial pattern vectors per condition were randomly subaveraged in groups of k=10 to 
yield M/k subaveraged pattern vectors per condition. We then used a leave-one-out cross-
validation approach to compute the SVM classifier performance in discriminating 
between every pair of conditions. The whole process was repeated K=100 times, yielding 
an overall classifier decoding accuracy between every pair of conditions for every time 
point t (Fig. 1B). 
 
The decoding accuracies were then arranged into 9x9 representational dissimilarity 
matrices (RDMs; [43]), one per time point t, indexed by condition and with the diagonal 
undefined. To generate the single-sound decoding time course (Fig. 1C), a mean accuracy 
was computed from the individual pairwise accuracies of the RDM for each time point. 
 
For space size decoding (Fig. 2B), conditions were pooled across the three sound-
sources, resulting in 3M trials for each space size. An SVM classifier was trained to 
discriminate between every pair of space sizes and results were averaged across all pairs. 
Decoding procedures were similar as above, but subaveraging was increased to k=30 and 
repetitions to K=300. For sound-source decoding (Fig. 2B), we pooled across the three 
space sizes and performed the corresponding analyses. 
 
Statistically significant time points were determined via random-effects analysis (one-
sample t-test against 50%, p < 0.05, false discovery rate (FDR) corrected across time 
points [39]). Latency error bars for significance onset and peak decoding were 
determined by bootstrapping participants 1000 times, computing onset and peak latencies 
for each bootstrap sample, and estimating the standard deviation of the resulting 
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distribution. The standard errors of the mean latencies are depicted graphically in the 
figures and described in the text using the ± notation. 
 
MEG spatial (sensorwise) analysis 
To characterize the spatial distribution of the decoding time course, we conducted a 
sensorwise analysis of the MEG response patterns. Specifically, the 306 MEG sensors are 
physically arranged in 102 clusters of three sensors each on the scanner. Thus, we 
performed the multivariate analysis described above at each of the 102 sensor location, 
using a three- (rather than 306-) dimensional pattern vector for each location. The same 
subaveraging and crossvalidation approach as in the main analysis was used to produce 9 
x 9 RDMs of pairwise classification accuracies at each sensor position and at each time 
point. Thus, rather than the single whole-brain decoding time course shown in Figs. 1–3, 
this analysis generated 102 decoding time courses, one for each sensor cluster position. 
Statistically significant decoding accuracies were determined via random-effects analysis, 
p < 0.01, FDR-corrected across sensor positions at each time point. 
 
MEG temporal generalization analysis 
To further interrogate the temporal dynamics of space size and source identity 
processing, we extended the above analysis to time-time decoding, i.e. training each 
classifier at a given time point t and testing decoding accuracy against all other time 
points. This yielded a 2-dimensional temporal generalization (time-time) matrix (Fig. 7) 
[45]. Statistical significance maps for each matrix were generated similarly to the 1-
dimensional analysis (t-test across participants for each time-time coordinate, p<0.05, 
FDR corrected). 
 
MEG cross-classification analysis 
To determine the robustness of space size and sound source representations to 
environmental variation, we performed a cross-classification analysis in which different 
orthogonal experimental factors were assigned to training and testing sets. For example, 
the cross-classification of space size (Fig. 3Ai) was conducted by training the SVM 
classifier to discriminate space size on two sound sources and testing it on the third sound 
source. This analysis was repeated for all such train-test combinations and the results 
were averaged to produce the final cross-classification accuracy plots. SVM decoding 
was performed similarly to the single-condition analyses, but the training set had 2M 
trials, subaveraging was set to k=20, and repetitions to K=150. Cross-classification of 
sound source identity across space sizes was performed with corresponding analyses. 
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Figure Legends 
 
Figure 1. Stimulus conditions, MEG classification scheme, and single-sound 
decoding time course. A. Stimulus design. Three brief sounds were convolved with 
three different room impulse responses to produce nine sound sources spatialized in 
reverberant environments. B. MEG pattern vectors were used to train an SVM classifier 
to discriminate every pair of stimulus conditions (3 sound sources in 3 different space 
sizes each). Decoding accuracies across every pair of conditions were arranged in 9x9 
decoding matrices, one per time point t. C. Averaging across all condition pairs (shaded 
matrix partition) for each time point t resulted in a single-sound decoding time course. 
Lines above time course indicates significant time points (N=14, one-sample t-test 
against 50%, p<0.05, false discovery rate corrected). Decoding peaked at 156 ms, with 
latency error bars indicating standard deviation computed by bootstrapping participants. 
 
Figure 2. Auditory space size and source identity decoding. Individual conditions 
were pooled across source identity (Ai) or space size (Aii) in separate analyses. We then 
performed classification analysis on the orthogonal stimulus dimension to establish the 
time course (B) with which the brain discriminated between space size (red) and source 
identity (blue). Sound-source classification peaked at 130±10 ms, while space size 
classification peaked at 386 ±46 ms. Lines above time courses and latency error bars 
same as in Fig. 1. See also Fig. S1 and main text. 
 
Figure 3. Cross-classification of space size and source identity. Space size was 
classified across sound sources, and sound source identity across space sizes. Ai. Space-
size classification example in which a classifier was trained to discriminate between 
space sizes on sound sources 1 and 2, then tested on space discrimination on source 3. 
Aii. Example in which a classifier was trained to discriminate between sound sources on 
space sizes 1 and 2, then tested on sound-source discrimination on space 3. B. Results 
from all nine such pairwise train-test combinations were averaged to produce a 
classification time course (B) in which the train and test conditions contained different 
experimental factors. Lines above time courses and latency error bars same as in Fig. 1. 
 
Figure 4. Behavioral comparison to peak decoding latency and decoding accuracy. 
We assessed linear relationships between response times and MEG peak decoding 
latencies (A), as well as behavioral and decoding accuracies (B). Bootstrapping the 
participant sample (N=14, p < .05) 10,000 times revealed significant correlations between 
RT and latency (r = 0.52, p<.0072) and behavioral and decoding accuracy (r = 0.57, 
p<.0001).  

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/061762doi: bioRxiv preprint first posted online Jul. 2, 2016; 

http://dx.doi.org/10.1101/061762
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

17	
  

Figure 5. Comparison of MEG neural representations to a categorical versus an 
ordinal scene size model. Representational dissimilarity matrices (RDMs) of a 
categorical and an ordinal model (A) were correlated with the MEG data from 145–895 
ms (the temporal window of significant space size decoding) to assess the nature of MEG 
scene size representations. B: Results indicate a significantly higher correlation between 
MEG representations and the ordinal size model. Spearman correlation coefficients ρ 
were averaged across time points in the temporal window. Error bars = ±SEM.  
 
Figure 6. Sensorwise decoding of source identity and space size. Classification time 
courses were computed for each of 102 sensor triplets at each time point, corrected across 
sensors (and time) for a 1% FDR. Significant decoding at a given time point is indicated 
with a black circle over that sensor position. Times displayed are for pooled analysis 
decoding peaks for source identity (A) and space size (B). Orientation of sensor map is 
top-down, with the face pointing up. 
 
Figure 7. Temporal generalization matrix of auditory source and space decoding 
time courses. Left column plots indicate generalized decoding profiles of space (A) and 
source (B) decoding. Right column plots indicate statistically significant train-test 
decoding coordinates (t-test against 50%, p<0.05, FDR corrected). 
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