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Abstract. Packing a given sequence of items into as few bins as possi-
ble in an online fashion is a widely studied problem. We improve lower
bounds for packing hypercubes into bins in two or more dimensions,
once for general algorithms (in two dimensions) and once for an im-
portant subclass, so-called Harmonic-type algorithms (in two or more
dimensions). Lastly, we show that two adaptions of the ideas from the
best known one-dimensional packing algorithm [9] to square packing also
do not help to break the barrier of 2.

1 Introduction

In this paper, we consider the problem of online hypercube packing. This problem
is defined as follows: We receive a sequence of hypercubes hy,...,h, (called
items) in d-dimensional space, and each item h; has a certain edge length s;.
We furthermore have an infinite number of bins, which are hypercubes of edge
length one. We have to assign each item h; to a bin and a position (z1,...,2z4)
inside this bin, such that 0 < z; <1 —s; for all 1 < j < d and no two items in
the same bin are overlapping. Items must be placed parallel to the axes of the
bins. We call a bin used if at least one item is assigned to it, and our goal is to
minimize the number of used bins. The online setting requires us to assign an
item to a bin immediately when it arrives, without knowledge of future items.
We consider this problem in two or more dimensions.

For measuring the quality of a solution of the algorithm, we use the standard
notion of asymptotic performance ratio. For an input sequence o, let A(o) be the
number of bins algorithm A uses to pack the items in o and let OPT' (o) be the
minimum number of bins in which these items can be packed. The asymptotic
performance ratio for A is defined as

. A(o) ‘ }
RY =limsupsupy ———|OPT(0) =n
5 = i sup J’{ G| OPT()
If O denotes a class of packing algorithms, then the optimal asymptotic per-
formance ratio for class O is defined as RF = inf 4co R%. From now on, we
will only talk about asymptotic performance ratios, although we omit the word
asymptotic.
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1.1 Previous Results

The classic online bin packing problem in one dimension was first considered by
Ullman [17], and he also gave the FIRSTFIT algorithm with performance ratio
17 [11]. The NEXTFIT algorithm was introduced by Johnson [10], who showed
that this algorithm has a performance ratio of 2.

The HARMONIC algorithm was introduced by Lee and Lee [12]. If we de-
fine u1 = 2,u;41 = w;(u; — 1) + 1, then this algorithm has performance ratio
hoo = > ooy ui171 < 1.69104. It uses bounded space (i.e. only a constant number
of bins are open at a time, meaning that items can be added to them) and they
showed that no algorithm with this property can perform better. Later, various
improvements of this approach were given (using unbounded space), including
REFINEDHARMONIC (performance ratio 313 < 1.63597) [12], MODIFIEDHAR-
MONIC (performance ratio < 1.61562) and MODIFIEDHARMONIC2 (performance
ratio < 1.61217) by Ramanan et al. [15], HARMONIC++ (performance ratio
< 1.58889) by Seiden [16], and finally SONOFHARMONIC (performance ratio
< 1.5815) by Heydrich and van Stee [9]. The best general lower bound of 1.54037
for online bin packing in one dimension was given by Balogh et al. [1].

Online bin packing of rectangles was first discussed by Coppersmith and
Raghavan [2]. They gave an algorithm which has in two dimensions a perfor-
mance ratio of % for general rectangles and % for squares. Additionally, they
showed a lower bound of % for square packing in any dimension d > 2. Csirik
and van Vliet improved upon this by giving an algorithm that achieves h?, per-
formance ratio for any dimension d > 2 [3]. They also show that this is a lower
bound for bounded space algorithms, although their algorithm uses unbounded
space. Later, Epstein and van Stee provided a bounded space algorithm that
matches this lower bound [5]. In the same paper, they also give an optimal
online bounded space algorithm for box packing (i.e. items are not hypercubes
anymore but can have different sizes in different dimensions), although they can-
not provide the exact performance ratio. Finally, Han et al. [7] gave an upper
bound of 2.5545 for the special case of d = 2, which is the best bound currently
known.

The best known lower bounds for hypercube packing are 1.6406 for two di-
mensions and 1.6680 for three dimensions [4]. Regarding upper bounds, the best
algorithm for square packing achieves a performance ratio of 2.1187 and the best

algorithm for cube packing achieves 2.6161 [8].

1.2 Our Contribution

We improve the general lower bound for square packing in two dimensions to
1.6707. The previous lower bound [4] was constructed by using an input such
that any item size in this input divides all larger item sizes. In this way, a lower
bound could be proved analytically since it could be proved that only very few
relevant patterns remained. The key idea behind our improvement is that any
given input (with non-divisible item sizes) in a lower bound construction can
be extended in a greedy manner, in such a way that the patterns can be easily



determined using a formula without the need for an exhaustive search. This
exhaustive search is then only needed for the first part of the input sequence,
which makes it feasible. This allows us to use inputs with up to ten different item
sizes, including very small sizes, which were infeasible to determine patterns for
using the known approaches. We also made several algorithmic improvements to
the pattern search, dramatically improving the running time for many important
patterns.

Furthermore, we improve the lower bound for Harmonic-type algorithms in
any dimension d > 2. This uses a generalization of the method of Ramanan et
al. [15]. In particular, we show that such an algorithm cannot break the barrier
of 2 for d = 2, by giving a lower bound of 2.02 for this case. This shows that
substantial new ideas will be needed in order to improve significantly on the
current best upper bound of 2.1187 and get close to the general lower bound.
Our lower bound tends to 3 for large numbers of dimensions.

Lastly, we also show that when incorporating two central ideas from the
currently best one-dimensional bin packing algorithm [9] into two-dimensional
square packing, similar lower bounds as those for Harmonic-type algorithms can
be achieved.

1.3 Preliminaries

At several points in this paper, we use the notion of anchor points as defined by
Epstein and van Stee [6]. We assign the coordinate (0, ..., 0) to one corner of the
bin, all edges connected to this corner are along a positive axis and have length
1. Placing an item at an anchor point means placing this item parallel to the
axes such that one of its corners coincides with the anchor point and no point
inside the item has a smaller coordinate than the corresponding coordinate of
the anchor point. We call an anchor point blocked for type s items in a certain
packing (i.e. in a bin that contains some items), if we cannot place an item of
type s at that anchor point (without overlapping other items).

2 Lower Bound for General Algorithms in Two
Dimensions

2.1 Van Vldiet’s Method

For deriving a general lower bound on the performance ratio of online hypercube
packing algorithms, we extend an approach by van Vliet [18] based on linear
programming. Problem instances considered in this approach are characterized
by a list of items L = L; ... Ly for some k > 2, where each sublist L; contains
a; - items of side length s; (we will also call such items “items of size s;” or
simply “s;-items”). We assume s1 < ... < sg. The input might stop after some

sublist. An online algorithm A does not know beforehand at which point the
input sequence stops, and hence the asymptotic performance ratio can be lower



bounded by

. . A(Lq,...,Lj)
R =min max, Timsup OPT(Ly,...,L;)

For this approach, we define the notion of a pattern: A pattern is a multiset
of items that fits in one bin. We denote a pattern by a tuple (p1,...,px), where
p; denotes the number of s;-items contained in the pattern (possibly zero). We
call a pattern p dominant if the multiset consisting of the items of p and an
additional item of the smallest item size that is used by p cannot be packed
in one bin. The performance of an online algorithm on the problem instances
we consider can be characterized by the number of bins it packs according to a
certain pattern. Van Vliet denotes the set of all feasible patterns by 7', which is
the union of the disjoint sets T1,...,T} where T} contains patterns whose first
non-zero component is j (i.e., whose smallest item size used is s;). We can then
calculate the cost of an algorithm A by A(L4,...,L;) =>1_, ZPGTi n(p), where
n(p) denotes the number of bins A packs according to pattern p. Note that we
only need to consider dominant patterns in the LP [18]. As the variables n(p)
characterize algorithm A, optimizing over these variables allows us to minimize
the performance ratio over all online algorithms with the following LP:

minimize R

subject to ij-:v(p) > aj 1<5<k
pG‘T
j
OPT(Ly,...,L;
>3 a(p) < lim (L, By) 1<j<k
n—oo n
=1 peT;
z(p) >0 vpeT

In this LP, the variables x(p) replace n(p)/n, as we are only interested in
results for n — oco. Note that item sizes are always given in nondecreasing order
to the algorithm. From now on, however, we will consider item sizes in nonin-
creasing order for constructing the input sequence and generating all patterns.

2.2 Greedy Extension

A common heuristic for generating difficult inputs for online algorithms is to
choose the item sizes s; and the values «; so that a multiset containing exactly
o -n squares with sides s; for all j = 1,...,k can be packed together in a single
bin. Finding these values o; for given sides sq1,..., s, is a challenging problem
in itself, on which more in the next section. This problem becomes much easier
however if we restrict attention to item sizes that divide all previous item sizes.
In this case we can use canonical packings to determine immediately exactly
how many items can be packed into a bin containing also larger items.

We define the notion of canonical packings. Let § be the smallest item size.
In a canonical packing, all items are placed at anchor points, which are defined

as all points having all coordinates equal to i - § for some ¢ € {0, ..., L%J —1}.



In total, we have L%Jd such anchor points. If a multiset of items can be packed,

it can also be packed by a canonical packing, as shown by [6].

For a given input containing j item sizes s1,...,s; with s; > ..., > s;, we can
greedily extend it as follows. Let s’ be the largest value so that s'|s; and s’ < s;
fori =1,...,j. Then the next item size will be s’, and the number of times this
item will appear is given by the following lemma.

Lemma 1. Let (p1,...,p;) be a pattern (not necessarily dominant) for item
sizes si,...,8; with s1 > ... > s;. Let s’ be the largest number such that the
sizes s1,...,8; are integer multiples of 8" and V1 < i < j : s; > s'. Then,
(p1y--.,p5,0) is a dominant pattern for the sizes s1,...,s;j,s where

d J
1 s\ d
/ — i
P= {;J _;pz(s’)

Proof. Let P be a canonical packing for the pattern (p1,...,p;). Every item
. . , \d . .
of size s; for i = 1,...,7j blocks (%) anchor points. Moreover, as s’ divides
all the s; and all items are placed at anchor points, such an item fills exactly
the space between this number of anchor points in every dimension. At every
unoccupied anchor point, we can place one item of size s’. Hence, in total we
can add | % | ¢ > b (%)d items of size s’ to this packing. As we cannot add
more items of type s’, this pattern is dominant. a

We can inductively extend this lemma to obtain the following corollary:

Corollary 1. Let (p1,...,p;) be a pattern for item sizes si,...,s;. We define
additional item sizes Sjq1,...,8k for k> j such that for alli=1,...,k—j, the

sizes s1,. .., Sjri—1 are integer multiples of sj4., and sj4; < min{s1,..., S;j4i—1}.
Moreover, each sji; for 1 < i < k — j is the largest value that satisfies this
condition. Then, (p1,...,pk) is a dominant pattern for the sizes s1, ..., sy where

1 ¢ it s \*
Pj+i = - Di
" LJ‘HJ ; (5j+i)

For any given input with j different item sizes, we can extend it as described
in Corollary 1; we call this a greedy extension. Additionally assume that when
constructing a packing for the extension, we place the items in order of decreasing
size. Let us call the items in the extension small items. Crucially, for every
pattern which includes one or more item sizes of the extension, we can restrict
our attention to dominant small-greedy patterns. A pattern is small-greedy if
the largest small item in it appears as many times as it can fit in a bin together
with all the preceding items, and this also holds for all smaller items.

Definition 1. Letp = (p1,...,Pj,Pj+1,---,Pk) be a pattern for item sizes s1 >
89 > ... > s, where for alli=1,...,k — j, the sizes s1,...,S;j4i—1 are integer
multiples of sj+i and sj4; < min{s1,...,Sjri—1}. p is small-greedy if for all i =
1,...,k—j with p; > 0 we have that the tuple (p1,...,Pj+i—1,Pj+i +1,0,...,0)
is not a feasible pattern.



We can prove analogously to [4, Lemma 4] that any dominant pattern that is
not small-greedy is a convex combination of dominant patterns that are small-
greedy. The only property that is required is that each size of a small item divides
all larger item sizes (including larger small item sizes).

Lemma 2. For item sizes s1,..., S, where Sj41,..., Sk, are the greedy extension
of 51,...,5; as described above, any dominant pattern that is not small-greedy
18 a convex combination of dominant patterns that are small-greedy.

Proof. We define the notion of an anchor point for a small item type i: these are
all points with coordinates equal to [ - s; for some 0 <[ < L—llJ Note that these

anchor points for any small type coincide with the corners of all larger items
that were placed before.

We do induction in order to construct a convex combination of small-greedy
patterns for a given dominant pattern p. The induction hypothesis is as follows:
the vector that describes the numbers of items of the ¢ smallest types which
appear in the pattern is a convex combination of small-greedy vectors for these
types. Call such a pattern t-greedy.

Definition 2. Let p = (p1,...,pk) be a pattern for item sizes si,...,si. Let
i € {1,...,k — j} be the largest index s.t. pj4i, > 0 and there are t — larger
indices iy with pjy4, > 0.

Let iy,...,it € {1,...,k — j} be indices the largest indices with p; > 0 for
I =1,...,t. Let v be the vector that has p;, at index i; for | = 1,...,t and
zero elsewhere. p is called t-greedy if v is a convexr combination of small-greedy
patterns.

The base case is t = 1. We consider the items of the smallest type that occurs
in p. Since p is dominant, for this type we have that as many items as possible
appear in p, given the larger items. Thus p is 1-greedy.

We now prove the induction step. Suppose that in p, small items of type 4
appear fewer times than they could, given the larger items. Moreover, p contains
items of some smaller type. Let i’ be the largest smaller type in p (this is also a
small item type, i.e. one added by the extension). By induction, we only need to
consider patterns in which all the items of type less than ¢ that appear, appear
as many times as possible, starting with items of type i’. (All other patterns are
convex combinations of such patterns.)

We define two patterns p’ and p” such that p is a convex combination of
them. p’ is defined as follows: modify p by removing all items 7 and adding the

d
largest smaller item that appears in p, of type ¢/, (;TZ,) times per each item 1.

When creating p’, we thus add the maximum amount of items of type ¢’ that
can fit for each removed item of type i. p is greedy with respect to all smaller
items, and s; divides s; as it is a small items size (one that was added by the
extension). Therefore the multiset p’ defined in this way is a pattern, and is
(t + 1)-greedy.



p” on the other hand is created by adding items of type i to p and removing
items of type i’. In particular, in the canonical packing for p, at each anchor
point for type ¢ that is not removed due to a higher-type item, we place an item
of size s; and remove all items that overlap with this item. Since all items smaller
than s; appear as many times as possible given the larger items, all the removed
items are of the next smaller type i’ that appear in p. This holds because the
items are packed in order of decreasing size, and all corners of larger items are
anchor points. Hence, if an anchor point is free, an item of type i’ was put there.

In p”, the number of items of type 7 is now maximized given items of higher
types. Only type i’ items are removed, and only enough to make room for type
i, so type ¢’ remains greedy. Thus p” is (¢ + 1)-greedy. Each time that we add

an item ¢, we remove exactly (;—1,) items of type /. So by adding an item 4 in
creating p”’, we remove exactly the same number of items of type i’ as we add
when we remove an item ¢ while creating p’. Therefore, p is a convex combination

of p’ and p”, and we are done. O

It is therefore straightforward to list all the dominant patterns for an input
with a greedy extension, as soon as we have determined the full set of patterns
(including the non-dominant ones!) for the first (non-greedy) part of the input.
This is the topic of the next section.

2.3 Finding Patterns

The main obstacle in executing van Vliet’s method in more than one dimension
is to find all the dominant patterns for a given input sequence. In general, it is
NP-hard to determine whether a given set of squares can be packed into a single
bin [13]. Recently, this was shown to be true for packing cubes as well [14]; we
expect this to be true for higher dimensions as well.

Epstein and van Stee [6] describe a computer program called F' that checks
for a particular set of items whether they can be packed in a bin. They make the
observation that in any feasible packing, we can shift all items to the left and
to the bottom as far as possible, maintaining a feasible packing. This program
F' uses so-called awailable positions. Initially, there is only one such position,
namely (0,0). Every time that we place an item at an available position, this
position is removed and two new available positions are created: the top left
corner and the lower right corner of the newly placed item. However, we do not
necessarily place an item exactly at a given available position: if possible, we
shift the item to the left and to the bottom as far as possible. This shifting must
be performed for every item, as the distance that we can shift it might depend
on the item size. The program follows essentially these steps for every available
position and every item size that needs to be packed:

— Calculate the shifted position from an available position A and item size s;

— Place the current item ¢ at that shifted position

— If i is not completely inside the bin, overlaps with another item, or the
item can be shifted further left or down (this depends on its size), skip this
position



— Remove the available position A and create two new ones (on the top left
corner and the bottom right corner of )

— Decrease p; by one (i.e., p always contains the number of items that still
need to be packed, ignoring already packed items)

— Try recursively to pack the rest of the pattern

— If this is successful, return the packing found; otherwise, remove the item 4,
restore the old available positions, and add one to p;

We extended and speeded up this computer program. Our modifications are
listed below. The program finally outputs a matlab and/or maple file that con-
tains the LP for all computed dominant patterns.

Parallelization The program was parallelized to give a speed up on multicore
computers. Different patterns are now tested by different threads. We imple-
mented a monitor, that computes which patterns have to be tested (i.e. which
could be feasible due to simple constraints like total area), and a set of workers
that get one such pattern at a time and try to pack it. Of course, one has to
carefully avoid race conditions.

We had to be careful how to schedule the processing of different patterns.
For example, in order to calculate how many items of a certain item type can
be added to a pattern that does not contain this type, we use information from
other patterns. To be precise, if we want to add items of size s4 to a pattern
(p1, p2,p3,0) with p1,p2,ps > 0, and we have a pattern (p1,pe,0,p}), then we
know that we can add at most p} — ps items of the smallest size to (p1, p2, ps3,0).
Furthermore, if we also have a pattern (p1,p2,p3 — 1,p}), we can reduce this
bound to pj — |s3/s4]%. That means, a worker might have to wait until the
workers that test these other patterns are done, in order to avoid unnecessary
work. The same is true when reusing packings from other workers (see below).

Special Patterns Patterns with only two non-zero components (i.e. patterns
that use only items of two sizes; we call them special patterns) are packed dif-
ferently. Say we have p; items of size s; and p; items of size s; that should be
packed in one bin, and say w.l.o.g. p; < p;.

The order in which available positions are considered changes what the final
packing looks like. Our program uses the following approach: The list of available
positions initially contains only the point (0,0), and if we place an item of side
length s at position (z/,y') which is obtained by shifting an available position
(x,y), we replace (x,y) by (¢/,y' + s) and add (z' + s,y’) at the end of the list
of available positions.

Any feasible pattern can be packed in the order in which our program does
it, using the list of available positions. From now on, we only consider this fixed
order. This only leaves the question of what to pack in every step. There are three
options in every step: pack an item of size s;, pack an item of size s;, or pack
nothing at all and move to the next available position. Obviously, sometimes an
available position is too close to an edge of the bin and we see that no item can fit
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(a) Situation after packing (b) Continuing with the (c) Leaving out the next
the first 11 items next available position available position

Fig. 1: An example where an available position needs to be left out even though
an item could be placed there. We want to pack 3 items of size 1/3 and 13
items of size 1/5. The leftmost image depicts the situation after packing the first
eleven items. Available positions are marked by gray circles. The next available
position is the one labeled a. If we pack the next item (size 1/5) there, we see
quite easily that we cannot add the third item of size 1/3 (middle). However,
if we leave out this available position and instead continue with the next one
(labeled b), we can pack all items (right).

there. However, see Fig. 1 for an illustration of an instance where it is necessary
to skip an available position even though an item could be packed there.

For a feasible pattern, we can now specify its packing very succinctly, by
only writing down when to use the least common item. That means, we can
write down an ordered sequence r = (71,...,7p,) containing all ¢ such that the
t-th item packed is an s;-item. Such a sequence is called a position set for this
pattern. For example, if we want to pack p; = 2 items of size sy = 1/3and p, =7
items of size s; = 1/4, the packing in Fig. 2a has the position set r = (1, 2).
Note that such a position set does not describe one unique packing, as it does
not specify which available positions to leave out. In Fig. 2b and 2¢, r = (2, 5),
although the packings are different (in Fig. 2b, an item is packed whenever it is
possible; in Fig. 2¢, we leave out the available position (1/3,1/4), which is the
lower right corner of item 2).

We can now try to actually pack the items by using all specifications of
this form. Here we also need to do backtracking since we still have two options
for every available position: pack the next item or pack nothing. We use the
analogous approach for patterns with three different item types, where we have
to maintain two position sets for the two types with fewer items.

Reusing Packings We try to reuse packings of other patterns as much as
possible. When we successfully pack a pattern, we store this packing so that we
can start from it if we later try to pack a pattern which contains one additional
item. We also output all packings as a human-readable text document, so that



(b) A packing for position (c¢) Another packing for
set (2,5) position set (2, 5)

Fig. 2: llustration of position sets for special patterns. Grey items have size 1/3,
white items have size 1/4. Ttems are packed in the denoted order.

the packings can be verified by humans as well. Similarly, for special patterns
as described above, we try to test promising position sets first, i.e. position sets
that were used successfully for similar patterns earlier.

2.4 Results

We ran this program with different item sizes as input. The best bound was
achieved for the input sequence 1/2,1/4,1/5,1/10 that was then extended greed-
ily to 1/2,1/4,1/5,1/10,1/20,1/40,1/80,1/160,1/320,1/640 (each item size ac-
tually misses a +e€ that we omitted for readability). Choosing a-values 1, 5, 7, 4,
8, 77, 157, 317, 637, 1277, we obtained the lower bound 1.6707. Note that these
« values correspond to the pattern that contains for each size in decreasing order
as many items as can be added to all larger items (i.e. start with one 1/2-item,
add as many 1/4-items as possible (five), then add as many 1/5-items as possible
(seven), and so on).

Theorem 1. For two dimensional hypercube packing, no online algorithm can
achieve an asymptotic performance ratio better than 1.6707.

Table 1 gives an overview over some lower bounds we obtained with other
inputs.

3 Lower Bound for Harmonic-Type Algorithms

Now, we consider the hypercube packing problem in d dimensions, for any d > 2.
We define the class C® of Harmonic-type algorithms analogous to [15]. An
algorithm A in C" for any h > 1 distinguishes, possibly among others, the
following disjoint subintervals



Input sequence Alpha values Lower bound
1/2,1/3,1/4,1/5,1/60, 1/120, ..., 1/960(1, 3, 2, 2, 643, 237, ...|1.5839
1/2,1/3,1/4, 1/12, 1/24, ..., 1/768 1, 3,2,19,45, ... 1.6277
1/2,1/3,1/6,1/7,1/42,1/84, ..., 1/672 |1, 3, 4, 11, 60, ... 1.6642
1/2,1/3,1/6,1/12, ..., 1/1536 1, 3, 4, 21, 45, ... 1.6443
1/2,1/4, 1/5, 1/20, 1/40 , 1/1280 1,5,7,24, 77, 1.6593

Table 1: Other inputs tr1ed with our program from sect1on 2.3 and resulting
lower bounds.

- Il (1_y171]

— L j=(1~yj41,1 —y;], forevery j € {1,...,h}
= Iy = (yn,1/2]

— Inj = (Yn—j, Yn—j+1), for every j € {1,...,h}

— I, =(0,}]

for some parameters y; and A, where 1/3 = yo < y1 < ... < yp < Yp41 = 1/2
and 0 < A < 1/3. For convenience, we assume that all y; are rational.
Algorithm A has to follow the following rules:

1. For each j € {1,...,h}, there is a constant m; s.t. a 1/m,-fraction of the
items of side length in I ; is packed 2¢ — 1 per bin (“red items”), the rest
are packed 2¢ per bin (“blue items”).

2. No bin contains an item of side length in I; ; and an item of side length in
I;ifi+3 <h 3

3. No bin contains an item of side length in I; and an item of side length in
Iz

4. No bin contains an item of side length in /; ; and an item of side length in
I,.

5. No bin that contains an item of side length in I contains an item of side
1ength in Il,j7 12_“7', Il or 12.

We will now define 2k 4 1 input instances for the hypercube packing problem
in d dimensions, and for each instance we derive a lower bound on the number
of bins any C'™-algorithm must use to pack this input.

Every such input instance consists of three types of items. The input will
contain N items of side length u, followed by (2¢ — 1)V items of side length v
and finally followed by M N items of side length ¢, where w,v,t and M will be
defined for each instance differently. We will then show, for every instance, that
one u-item, 2% — 1 v-items and M t-items can be packed together in one bin,
thus the optimal packing for this input uses at most N bins.

3.1 Instances 1,...,h

Let € > 0 be arbitrarily small. For every j € {1,...,h}, we define the following

instance of the problem: Let u = 43¢, v = (1+€)y,_; and t = (H;)% for some

large integer K such that ¢ € I, and % € N. Clearly, u € I, and v € Iy ;.




In order to show that one u-item, 2¢ — 1 v-items and M t-items can be packed
in one bin, we will define anchor points for each size and then place items at
some of these such that no two items are overlapping.

There is only one anchor point for u-items, namely (0, ..., 0), i.e. the origin of
the bin. We place one w item there. For items of side length v, we define anchor
points as all points having all coordinates equal to (1+¢€)/2 or (1+¢€)/2—(1+
€)yn—;. This defines 2¢ anchor points, but an anchor point can only be used for
a v-item if at least one coordinate is (1+¢)/2. Hence, we can pack 2¢ — 1 v-items
together with the u-item placed before.

For items of side length ¢, the anchor points are all points with coordinates
equal to z% fori=0,..., thKV — 2, i.e. we have (yi—K —1)? anchor points
for these items. These anchor points %orm a superset of all pljrevious anchor points
for u- and v-items. Together with the fact that ¢ divides u and v, we can conclude
that all larger items take away an integer amount of anchor points for the ¢-items.
To be precise, the u-item blocks (u/t)? = (K/yh,j)d anchor points for t-items

and each v-item blocks (%)d = (2K)? anchor points for t-items. Hence, we can

d d
add M := (M) - ( K ) — (2% — 1)(2K)? t-items to the items packed

Yh—j Yh—j
before.
A Harmonic-type algorithm A packs a 1/m-fraction of the N (2¢—1) v-items
2¢ — 1 per bin, using (Qd;# = 2L bins in total. The remaining N(2¢ —

1)(1 —1/m;) v-items are packed 2% per bin, adding another N(1 — 1/mj)% =
N(1—1/m;) (1 - 5%) bins.

N/m; of the u-items are added to bins with red v-items, the remaining
N(1—1/m;) items of side length v must be packed one per bin.

d
Finally, an algorithm in the class C®) needs at least N M/ (%) bins

to pack the t-items, giving

- (Ss) e ()

bins for these items. If we let K — oo, this tends to N (1 —1/2¢ — (24 — 1)yg7j).

So, the total number of bins needed is at least
1 1 1 1 1
N{—4+(1-—)(1-=)+1-—+1———(27—1)y .
(mj " ( mj) ( 2d> LR ( Mh])

o (-2) o3 o)

As the optimal solution uses at most N bins, the performance ratio of any
such algorithm .4 must be at least

Ryu>2+(1—-1/my)(1—1/2%) —1/2¢— (29 = )y;l_; j=1,....,h (1)



3.2 Instances h+1,...,2h

Another set of instances is given for any j € {1,...,h}, if weuse u = (14¢)(1—
Yh—j+1),v = (1 + €)yp—; and t = (Hé)y’“ff((l*y’“”l) for some large enough

integer K such that w € I, ,—j,v € I;,t € I\ and ﬁ,ﬁ € N. For
these item sizes, the algorithm is not allowed to combine u-items with v-items
in the same bin, although space for items in I; ; with ¢ > h — j is reserved in red
bins containing v-items. We define the following anchor points: the point (0,0)
for type u; all points with all coordinates equal to (1 + €)(1 — yp—j41) or (1 +
€)(1—yn—j+1)— (1+€)yn—; for type v; and all points with all coordinates equal to

1 0—yn; . .
3 dreun JI(( Yn=i+1) for some i € {0,..., m —2} for type t. Again the

anchor points for u- and v-items are a subset of the anchor points for ¢-items, and
hence with the same argumentation as before we can pack one u-item together

d
with 2¢ — 1 v-items and M t-items if we choose M = (Kfyh_’j(jfy”f”l)) -
yh—j(l yh,—]+1)

d d d
( K ) — (24 -1) (L) , as the u-item takes up ( K ) anchor points

Yh—j 1—ynh—j+1 Yh—j

K

d
17) of these anchor points.
—Yh—j+1

of the t-items and each v-item takes up (

A similar calculation to before can be done: An algorithm in class C(* needs
N/mj+ N(1 —1/m;)(1 — 1/2%) bins for red and blue items of type v. It needs
N bins for u-items, as they are packed one per bin, and finally

NM
(K—yh—j (A—yn—j+1) ) d

Yn—j (1=Yn—j41)

_ _ K(1 = yn—jt1) v Kyn—; !
- (1 <K —yn—j(1 = yh—j+1)> =0 (K —yn—j(1— yh—j+1)) )

120 N (1 — (1= yhogyr)” — (24— 1)yg—j)

bins are required to pack the ¢-items. Hence, we need at least
1 1 1 d d d
N|— 1—— ) 1-= 1+1—(1—yp_y —(2-1 -
<mj + < mj) ( 2d> +1+1—= (1= yn—jt1)" —( Vh—;

- N (2 + m% + <1 - mij) (1 — %) —(L=ynjr)" = (2" = 1)yi‘f_j)

bins in total. This gives the following lower bound for the performance ratio:

Ra>2+1/mj+(1—1/my) (1-1/2%) = (1 = ypjp1) = 24 = )y, (2)
j=1,....h

3.3 Instance 2h +1

Let u = 1'2"5 ,v=(14¢€)yp and t = % for some large enough integer K such

that v € Iy p,v € Is,t € I, and yﬁh € N. For these item sizes, the algorithm is



not allowed to combine u-items with v-items in the same bin. We define anchor
1+e

points as follows: (0,0) for type w; all points with coordinates equal to ~5< or
% — (1 + €)yp, for type v; all points with coordinates equal to z% for type

t. As before, the anchor points for u and v-items are a subset of the t-items’
anchor points, and so we can pack one u-item together with 2¢ — 1 v-items and

d d
M t-items if we choose M = (21{—_%) - (K) — (27— 1) (2K)"

Yh E
For this input, any Harmonic-type algorithm uses at least IV bins for u-items,
N 22;1 = N(1 — 57) bins for v-items and ——22L—; bins for t-items. This gives

2K—yp
Yh

1 K \* 2Ky, \*
N(2‘W1‘<m) -en ()

K—o0 1
;N<3—F—(2d—1)yg)

in total

bins. We therefore can derive the following lower bound on the performance
ratio:

Ry>3—1/2"— (27— 1)y (3)

3.4 Combined Lower Bound

Given a certain set of parameters (y; and m;), the maximum of the three right
sides of inequalities (1), (2) and (3) give us a bound on the competitive ratio
of any Harmonic-type algorithm with this set of parameters. In order to get a
general (worst-case) lower bound on R4, we need to find the minimum of this
maximum over all possible sets of parameters.

This lower bound for R4 is obtained when equality holds in all of the in-
equalities (1), (2) and (3). To see this, consider the following: We have 2h + 1
variables and 2h + 1 constraints. For j € {1,...,h}, we see that (1) is increasing
in m; and (2) is decreasing in m;. Next, let ¢ € {1,...,h—1}. We see that (1) for
j=h—ce{l,...,h—1}is decreasing in y., and (2) for j = h—c+1 € {2,...,h}
is increasing in y.. Finally, we have that (2) for j = 1 is increasing in y; and (3)
is decreasing in yp,. This means, given certain parameters y; and my, if e.g. (3)
gives a smaller lower bound on R 4 than (2) with j = 1 does, we can decrease the
value of y, such that the maximum of the three lower bounds becomes smaller.

Setting the right hand side of (1) equal to the right hand side of (2), gives
us = = (1 —yp_j+1)? — 55 or alternatively —— = (1 — y;)% — 2% Plugging

mg 2d Mh—j5+1

this into (1) (replacing j by h — j + 1), we find that

1/d
~29R 4 20yt | —adyd 14324 —1/24\"



Recall that we require 1/3 = yo < y1. From this, combined with (4) for j = 1,
we obtain that

2¢ 1 2d41

We list some values of the lower bound for several values of d in Table 2.

d= 1 2 3 4 5 6 00

Ra > | 1.58333 | 2.02083 | 2.34085 | 2.56322 | 2.71262 | 2.81129 | 3
Table 2: Lower bounds for Harmonic-type algorithms in dimensions 1 to 6 and
limit for d — oo.

Note that for d = 1, our formula yields the bound of Ramanan et al. [15]. Sur-
prisingly, it does not seem to help to analyze the values of yo, ..., y;. Especially,
equations involving y; for 7 > 1 become quite messy due to the recursive nature
of (4). If h is a very small constant like 1 or 2, we can derive better lower bounds
for R4. For larger h, we can use the inequalities y1 < yp,y2 < yn,ys < yn (i.e.
assuming that h > 3) to derive upper bounds on the best value R4 that could
possibly be proven using this technique. These upper bounds are very close to
2.02 and suggest that for larger h, an algorithm in the class C") could come very
close to achieving a ratio of 2.02 for these inputs. However, since the inequalities
become very unwieldy, we do not prove this formally.

Theorem 2. No Harmonic-type algorithm for two-dimensional online hyper-
cube packing can achieve an asymptotic performance ratio better than 2.0208.

4 Further Lower Bounds

Inspired by [9], one could try to improve online algorithms for packing 2-di-
mensional squares by incorporating two ideas from the one-dimensional case:
combining large items (i.e. items larger than 1/2) and medium items (i.e. items
with size in (1/3,1/2]) whenever they fit together (ignoring their type), and
postponing the coloring decision. The former is intuitive, while the idea of the
latter would be the following: When items of a certain type arrive, we first give
them provisional colors and pack them into separate bins (i.e. one item per bin).
After several items of this type arrived, we choose the smallest of them to be
red and all others are colored blue. With following items of this type, we fill up
the bins with additional items. However, simply adding two more red items to
the bin with a single red item might be problematic: When filling up the red
bins with two more red items, it could happen that these later red items are
larger than the first one - negating the advantage of having the first red item be
relatively small. Alternatively, we could leave the red item alone in its bin. This



way, we make sure that at most 3/4 of the blue items of a certain medium type
are smaller than the smallest red item of this type, but we have more wasted
space in this bin.

For both approaches discussed above we will show lower bounds on the com-
petitive ratio that are even higher than the lower bound established in Section
3 for Harmonic-type algorithms.

4.1 Always combining large and medium items

First, we consider algorithms that combine small and large items whenever they
fit together. We define a class of algorithms B; that distinguish, possibly among
others, the following disjoint subintervals (types):

— I, = (1/3,y] for some y € (1/3,1/2]
- I\ = (07)‘]

These algorithms satisfy the following rules:

1. There is a parameter « s.t. an a-fraction of the items of side length in I,,, are
packed 3 per bin (“red items”), the rest are packed 4 per bin (“blue items”).

2. No bin that contains an item of side length in I contains an item of side
length larger than 1/2 or an item of side length in T,,.

3. Items of type I, are packed without regard to their size.

Let a,b € I),,,a < b. We consider two different inputs, both starting with the
same set of items: §N items of size b and (1 — a/3)N items of size a (i.e. in
total N items of size a and b). By rule 3, the adversary knows beforehand which
item will be packed in which bin, as they belong to the same type. Hence, the
adversary can order these items in such a way that the items colored blue by
the algorithm are all a-items, and in each bin with red items, there are two a-
and one b-item. By rule 1, the online algorithm uses (§ + 152)N = 22N bins
for items of this type.

The sizes a and b will tend towards 1/3, as this way the adversary can
maximize the total volume of sand (infinitesimally small items) that can be added
to any bin in the optimal solution while not changing the way the algorithm packs
these items and increasing the number of bins the algorithm needs for packing
the sand items. Therefore, we will assume that a and b are arbitrarily close to
1/3.

In the first input, after these medium items, items of size 1 — a
arrive, followed by sand of total volume 243"2’10‘N . In the optimal solution, we
can pack 15N bins with four b-items and sand of volume 5/9 each, and w
bins with three a-items, one (1—a)-item and sand of volume % N -2 each. Hence,
the optimal solution uses 5N + w = %—EO‘N bins.

The algorithm, however, cannot pack a large item into any of the bins with
red medium items, as these always contain a b-item. Hence, in addition to the
352 N bins for medium items, the algorithm needs w

(1—a/3)N

bins for large items



and at least %N bins for sand. This gives in total at least %N bins,

and a competitive ratio of at least

2132«

123%0[ - 9(12 _ a) (5)

In the second input, after the medium items, N/3 items of size 1/2 + ¢
will arrive, followed by sand of total volume %N . The optimal solution packs
all medium items three per bin, using N/3 bins, and adds one large item and
sand of volume 15/36 in each such bin. In the algorithm’s solution, large items
can only be added to the aN/3 bins containing three red items, i.e. it needs
additional N/3 — aN/3 bins for the remaining N/3 — aN/3 large items. Finally,
the algorithm uses at least 5/36/N bins for sand. The algorithm therefore uses
in total at least 3E*N + (1 — a)N/3 + 5/36N = 25222 N bins. This gives a
competitive ratio of at least

3(26 —9a) 26 — 9«
36 12 (6)

Observe that (5) is increasing in «, while (6) is decreasing in «. Hence, the
minimum over the maximum of the two bounds is obtained for the a-value that
makes both bounds equal, which is a@ = 197*27 V736541 =~ 0.2164. For this «, both
bounds become larger than 2.0043.

Theorem 3. No algorithm in class By for two-dimensional online hypercube
packing can achieve a competitive ratio of less than 2.0043.

4.2 Packing red medium items one per bin, postponing the coloring

Now, consider the algorithm that packs red items alone into bins and makes sure
that at most 3/4 of the blue items of a certain type are smaller than the smallest
red item of this type. We define a new class of algorithms By that distinguish,
possibly among others, the following disjoint subintervals (types):

- I, = (1/37y]
- Ih= (07>‘]

Furthermore, algorithms in Bs satisfy the following rules:

1. There is a parameter « s.t. an a-fraction of the items of side length in I,,, are
packed 1 per bin (“red items”), the rest are packed 4 per bin (“blue items”).

2. No bin that contains an item of side length in I contains an item of side
length larger than 1/2 or an item of side length in T,,,.

3. Items of side length in I, are initially packed one per bin. At some regular
intervals, the algorithm fixes some of these items to be red, and does not
pack additional items of the same type witht them.



From rule 3 we can conclude that the algorithm gives the following guarantee:
3/4 of the blue items with size in I,,, are not smaller than the smallest red item
with size in I,,,.

Let a,b € I,,,a < b as before. We again consider two different inputs, both
starting with the same set of items: alN + 1fTO‘N items of size b, and @N
items of size a. They arrive in such an order that all red items are b-items, and
all bins with blue items contain one b- and three a-items. We require the b-item
in the blue bins because of the postponement of the coloring: If the first blue
item in a bin was an a-item, the algorithm would choose this item to become red
and not one of the b-items. By rule 1, the algorithm needs 1TTO‘N—|—04N = #N
bins for these N items.

In the first input, after the medium items arrived, we get 1TT°‘N large items
of size 1 — a, followed by sand of total volume %N . The optimal solution can
pack the a-items three per bin together with one (1 — a)-item, using 1TT°‘N bins
for these items. The b-items are packed four per bin, using (§ + 11_—60‘)]\] bins. Note
that the empty volume in all bins of these two types is 152N %—i—(%—i—ll_—ﬁo‘)N-% =
131JZZO‘N , i.e. it equals exactly the volume of the sand, so the sand can be filled
in these holes without using further bins. Hence, the optimal number of bins is
LN + (¢ 4+ 452)N = &N,

The algorithm uses, as discussed before, 1'23°‘N bins for the medium items
of size a and b. The large items cannot be added to red medium items, as they
do not fit together, thus the algorithm uses =2 N additional bins for the large
items. Finally, according to rule 2, at least %N additional bins are needed to
pack the sand. This gives in total at least 1JCTO‘N—F 1fT°‘N+ 1347 v — 854 79a v

144 144
bins. We find that the competitive ratio is at least

85479«

BTN g5 4 704
5—a -
1—6[\( 9(5 — a)

(7)

In the second input, N/3 items of size 1/2 + € arrive after the medium items,
followed by sand of total volume 5/36N. The algorithm packs this input the
same way as a Bj algorithm, so the analysis carries over. We get a competitive
ratio of at least

36 8
N/3 12 ()
It can be seen that (7) is a function increasing in «, while (8) is decreasing in
«, hence the minimum over the maximum of two bounds is reached when they
are equal. In that case, o = 229—v274441 Ef“‘“ ~ 0.0950, and the lower bound for the
competitive ratio becomes larger than 2.0954.

BHAN 26— 9a

Theorem 4. No algorithm in class By for two-dimensional online hypercube
packing can achieve a competitive ratio of less than 2.0954.

Note here that this is an even higher lower bound than the one shown in
the previous Subsection 4.1, although we use postponement of the coloring here.
This indicates that the space we waste by packing red medium items separately



outweighs the advantage we get by having a guarantee about the size of the red
item.
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