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Abstract

We present an interior point method for the min-cost flow problem that uses arc contrac-
tions and deletions to steer clear from the boundary of the polytope when path-following
methods come too close. We obtain a randomized algorithm running in expected Õ(m3/2)
time that only visits integer lattice points in the vicinity of the central path of the polytope.
This enables us to use integer arithmetic like classical combinatorial algorithms typically do.
We provide explicit bounds on the size of the numbers that appear during all computations.
By presenting an integer arithmetic interior point algorithm we avoid the tediousness of float-
ing point error analysis and achieve a method that is guaranteed to be free of any numerical
issues. We thereby eliminate one of the drawbacks of numerical methods in contrast to combi-
natorial min-cost flow algorithms that still yield the most efficient implementations in practice,
despite their inferior worst-case time complexity.

1 Introduction

The min-cost flow problem is one of the most general network flow problems that can be solved
in polynomial time. It generalizes the max-flow as well as the shortest path problem. Moreover,
it has many applications, since a lot of real-world problems can be modeled as a min-cost flow
problem. Non-surprisingly there is a rich literature concerning the problem. The work can roughly
be split into two major lines. First, there is the line of combinatorial algorithms that starts with
the seminal work of Ford and Fulkerson [11] and continues with Edmonds and Karp [10], who gave
the first polynomial time algorithm for the problem. Further polynomial time algorithms are the
strongly polynomial time algorithm of Orlin [24] and the scaling approaches [16, 15] that peak in
the double scaling technique by Ahuja et al. [2] achieving a bound of O(nm log logU · log(nC)),
where n denotes the number of nodes, m the number of arcs, U the maximal capacity, and C
the maximal cost in the network. The second line of work originates in the results of Vaidya [28]
who was the first to specialize interior point methods to network-flow problems. Lagging behind
the combinatorial methods at that time, this line of research has become extremely fruitful in the
last decade; most prominently with the work of Daitch and Spielman [9] who gave a randomized
Õ(m3/2)-time algorithm.1 They were the first to use nearly-linear time equation solvers [26, 20, 17]
in the context of generalized min-cost flow problems for approximately solving systems of linear
equations in each of Õ(

√
m) iterations, thereby, for the first time, achieving sub-quadratic bounds

in sparse graphs and under the similarity assumption, i.e., when the input data is polynomially
bounded in n. The same running time (up to log factors) was achieved in [6] for the classical
min-cost flow problem with a simple potential reduction algorithm. Even more recently, the
breakthrough result of Lee and Sidford [22] for solving general linear programs in rank-many

1 The tilde indicates that logarithmic factors in n, U,C are hidden.
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iterations yields a very intricate, randomized, interior point method of complexity Õ(
√
nm) for

the min-cost flow problem. Most recently, Cohen et al. developed a new framework to analyze
interior point methods [8]. They obtain a bound of Õ(m3/2) for the case of min-cost flow problems
with the restriction that there are only unit capacities.

Although achieving the currently best-known bounds in theory, the interior point methods lack
behind the combinatorial methods in practice, see for example [13, 12, 5] for efficient implemen-
tations of combinatorial algorithms and [19] for an extensive comparison of implementations. We
are not aware of any interior point method that was reported to be competitive with the combina-
torial approaches on real world problems. The reasons are many. First, combinatorial algorithms
are rather easy to implement and necessary subroutines are readily available in standard libraries,
whereas the ingredients that are required to achieve the better theoretical results are rather in-
volved and use complicated subroutines such as low-stretch spanning trees [1] or spectral vertex
sparsifiers [21] that are already difficult to implement efficiently on their own. Second, interior
point methods are formulated for real arithmetic and implementations require high-precision float-
ing point numbers in order to avoid numerical instabilities, even if all input data is integer. In
contrast to this, the combinatorial algorithms have the advantage that, given an integral input,
they get along with fixed-precision integer arithmetic, which makes them very robust in practice.
Note that, if floating-point-arithmetic is used, even combinatorial algorithms may suffer from nu-
merical instability as was observed by Althaus and Mehlhorn in LEDA [4]. In this paper, we
address the second issue of practical implementations of interior point methods decribed above
by giving an interior point method that uses integer arithmetic on numbers of polynomial length.
We proceed by defining the min-cost flow problem formally.

An instance of the min-cost flow problem is defined by a directed graph G = (V,A) with
|V | = n and |A| = m, node demands b ∈ Z

n with 1
T b = 0, arc costs c ∈ Z

m and arc capacities
u ∈ N

m. We define β := gcd(b, u) and γ := gcd(c), i.e. greatest common divisors of the entries
of the respective vectors. Moreover, we use U := max{‖u‖∞/β, ‖b‖1/(2β)} and C := ‖c‖∞/γ. A
flow x ∈ R

m is called feasible, if 0 ≤ x ≤ u and x(δin(v))− x(δout(v)) = bv for every v ∈ V . 2 The
task is to find the feasible flow x∗ of minimal cost, i.e., cTx∗ ≤ cTx for all feasible flows x, or to
assert that no feasible flow exists. It is well-known, see, e.g., [3, 6], that we can restrict ourselves
to the problem being feasible, having only non-negative costs, and no capacity constraints. We
will also justify the last assumption in Appendix A.

Assuming the problem to be uncapacitated, we will use the notation (G, b, c) for a min-cost flow
instance on the graph G, with demand vector b and costs c, which can be written as a primal-dual
linear programming pair

min{cTx : Ax = b and x ≥ 0} = max{bT y : AT y + s = c and s ≥ 0}, (1)

where A ∈ {−1, 0, 1}n×m denotes the node-arc incidence matrix of G, i.e., A contains a column α
for every arc (v, w) ∈ A with αv = −1, αw = 1 and αi = 0 for all i /∈ {v, w}.

Path following methods maintain a pair of primal/dual feasible solutions x and (y, s) such that
xasa ≈ µ for all a ∈ A for a positive parameter µ, which they drive to zero. They thereby follow
the so-called central path, which is the set of all points satisfying xasa = µ for all a ∈ A. As a
consequence of µ approaching zero, the duality gap cTx − bT y = xT s ≈ µm goes to zero. It may
however happen, that either xa or sa becomes tiny while the other becomes huge. Such behavior
is numerically unpleasant as it requires to simultaneously deal with huge and tiny numbers.

1.1 Our Contribution

In this paper, we resolve the issue of simultaneously having to deal with huge and tiny numbers
in interior point methods for min-cost flow by only considering the arcs with sufficiently large
values of xa and sa. That is, whenever xa becomes too small, we delete the arc a from the
network and whenever sa becomes too small, we contract the arc a. We thereby obtain a reduced

2We write f(S) :=
∑

a∈S fa for S ⊆ A for any vector f ∈ Rm and for a node v ∈ V , we use δin(v) for the

ingoing arcs of v and δout(v) for its outgoing arcs, respectively.
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problem in form of a minor of the original network. We do not revoke any of these operations until
termination of our algorithm and show that a near-optimal solution for the reduced problem can
be lifted efficiently to an optimal solution of the original network. Arc deletion and contraction has
been used in combinatorial optimization before [27, 25], but, to our knowledge, not in combination
with path-following methods for network flow problems.

For the reduced problem, we can show that one can stay sufficiently close to the central path
by hopping over points on an integer lattice in the vicinity of the central path. More precisely, we
show that if the greatest common divisor (gcd) of the demands and capacities and the gcd of the
costs are sufficiently large, we can perform all arithmetic operations on integers as typical for the
practically superior combinatorial algorithms. The requirement on the gcds can be easily achieved
by an initial scaling of the demands, capacities and costs. Such scaling comes at a very low
price because the expected running time of Õ(m3/2) only depends logarithmically on these scaling
factors. We remark that it appears obvious that integer arithmetic can be achieved by scaling
with a huge number that is, say, doubly exponential in m,n. However, we show that scaling
with numbers that are polynomial in n is sufficient. Moreover, we manage to make the exact
numerical requirements of our algorithm explicit by stating absolute bounds on the appearing
numbers, without hiding anything in O-notation.

Theorem 1. Optimal primal and dual solutions for a min-cost flow problem can be computed in
expected Õ(m3/2) time using only integer arithmetic on numbers bounded by 231m10U2C2, where
U and C are bounds on the maximum capacity and cost, respectively.

Note that the running time of our algorithmmatches the time bound of Daitch and Spielman [9],
which dominates the known bounds for combinatorial algorithms in many settings. For a better
comparison, we remark that Daitch and Spielman [9] give a bound on the bit length of the numbers
appearing in their algorithms, as well. They state that the methods work on numbers of bit length
at most O(log(nU/ε)), where ε = (12m2U3)−1 for solving the standard min-cost flow problem
exactly 3. If the hidden constant in the O-notation is known, say, to be k, then their method
could also be used with integer arithmetic on numbers bounded by 12knkm2kU4k. For robust
implementations, it is advantageous to know the exact precision requirements, as an appropriate
scaling can be performed in the beginning without having to worry about numerical issues or
overflows in the course of the algorithm. Alternatively, one can still use adaptive precision, check
the correctness of the output, and repeat the computation with higher precision, if necessary.
However, this approach usually requires changes to the implementation as insufficient precision
may lead to diverging behavior of sub-routines, see for example [18]. Adding a timer is no solution
either as it turns diverging behavior into worst-case behavior. However, such precautions are
mandatory and the only choice, if the bounds are not known explicitly.

For the potential-reduction method from [6], we only gave a bound on the number of arithmetic
operations and a strict bound on the size of the emerging numbers is non-trivial to obtain, if not
even impossible. It is essential for our proof in this paper to exploit graph minors and to use a
path-following method instead. Furthermore, it is interesting to note that our lower bound on the
value of primal variables does not depend on the costs, capacities, or demands in the network, but
only on n and m. This might be interesting in the context of strongly polynomial time algorithms
for the capacitated min-cost flow problem, where the current record bound is Õ(m2), due to
Orlin [24].

We want to remark that we consider this work rather as a first important step in the direction
of making numerical requirements of interior point methods for combinatorial problems apparent,
than as giving the ultimate final answer to practitioners. We feel that our paper, despite the fact
that it treats all numerical details, is still fairly elegant. This is due to the fact that we compute
in integers, and by this, avoid the tediousness of floating point error analysis.

3Note that in the case of generalized min-cost flow, the algorithms of Daitch and Spielman only give ε-
approximate solutions in general and thus the numerical requirements will also depend on the desired ε. For
the standard min-cost flow problem they show that an ε of the size as described above is sufficient.
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Overview At the beginning of Section 2, we describe the high-level idea of the interior point
method and explain how numerical issues come into play. In Subsection 2.1, we present our way of
dealing with this problem, deletion and contraction of arcs, and treat some theoretical observations
that allow us to pursue this way. We end this section with the concept of a so-called proxy. We
then describe our algorithm in more detail and also give a pseudocode implementation of it, see
Subsection 2.2. The interior points that the algorithm maintains are actually interior points of a
slightly perturbed instance, we describe this in Subsection 2.3, where we will see that an optimal
tree solution of the perturbed instance will be sufficient for obtaining an optimal tree solution for
the original problem. Subsection 2.4 describes how to obtain this tree solution, namely using the
crossover algorithm from [6, Section 2], see also [5] for more details on the crossover algorithm.
We treat the centering step and the related numerical issues in Section 3. Finally, we conclude in
Section 4.

2 Integer Interior Point Algorithm

Our method belongs to the class of path-following interior point methods. These methods maintain
a pair of primal/dual feasible solutions x, s ∈ R

m while more or less uniformly approaching the
complementary slackness conditions. That is, the conditions are parameterized uniformly by a
positive µ, i.e., xasa = µ for all a ∈ A, s.t. one obtains a pair of primal/dual optimal solutions in
the limit µ → 0. It can be shown [29] that the points satisfying theses conditions form a curve
called central path, which is contained in the interior of the primal/dual polyhedron. Moreover,
moving along the central path with decreasing µ concurrently decreases the duality gap cTx−bT y =
xT s = µm.

As said above, path-following methods typically only maintain interior points that are suffi-
ciently close to the central path. In this paper, we measure the closeness to the central path w.r.t.
some µ > 0 by the relative deviation in the 1-norm ||σ||1 where σ ∈ R

m and σa := xasa
µ − 1.

A sufficiently small deviation, e.g., ||σ||1 ≤ δ for some constant δ < 1, guarantees that both xa

and sa remain positive because ||σ||1 ≤ δ implies that xasa/µ ≥ 1 − δ is well separated from 0.
However, this does not prohibit that either xa or sa becomes tiny while the other becomes huge.
Such behavior is not only numerically unpleasant, it is also an obstacle for using fixed-precision
integer arithmetic.

2.1 Minors to the Rescue

We deal with the issue mentioned above in a somewhat radical way: We only consider the arcs
with sufficiently large values for xa and sa. That is, whenever xa becomes too small, we delete
the arc from the network and whenever sa becomes too small, we contract the arc a. We thereby
obtain a minor of the original network. This is captured formally by the following definition.

Definition 1. Let G = (V,A) be a directed graph with m arcs. For ε > 0 and x, s ∈ R
m
≥0, we call

the minor H of G obtained by deleting the arcs in D := {a ∈ A : xa < ε
m} and contracting the

arcs in C := {a ∈ A : sa < ε
m} the ε-x-s-minor of G.

This approach might be surprising, but it has its foundation in classical min-cost flow theory [3,
Section 10.6]. We provide a brief reasoning for being self-contained. We first review a well-known
useful fact from general LP duality.

Lemma 1. Let min{cTx : Ax = b, x ≥ 0} be bounded and feasible and let max{bTy : AT y + s =
c, s ≥ 0} denote its dual linear program.

• A primal optimal solution x∗ is also an optimal solution of min{s̄Tx : Ax = b, x ≥ 0} for
any dual feasible solution ȳ, s̄.

• A dual optimal solution y∗, s∗ is also an optimal solution of min{x̄T s : AT y + s = c, s ≥ 0}
for any primal feasible solution x̄.
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Proof. Let x∗ and y∗, s∗ be primal and dual feasible solutions, respectively.

• Let ȳ, s̄ be a dual feasible solution. Define y′ := y∗ − ȳ and s′ := s∗ = c − AT y∗, then
AT y′ + s′ = AT y∗ − AT ȳ + s∗ = c − AT ȳ = s̄ and hence y′, s′ are feasible for max{bTy :
AT y+ s = s̄, s ≥ 0}. Moreover, it holds that x∗T s′ = x∗T s∗ = 0. It follows that x∗, y′, s′ are
primal and dual optimal for min{sTx′ : Ax′ = b, x′ ≥ 0} and max{bTy′ : AT y′ + s′ = s, s′ ≥
0}, respectively. This shows the claim.

• Let x̄ be a primal feasible solution, i.e., Ax̄ = b holds. Suppose for contradiction that

x̄T s∗ > min{x̄T s : AT y + s = c, s ≥ 0} = min{x̄T (c−AT y) : AT y + s = c, s ≥ 0}
= cT x̄−max{bT y : AT y + s = c, s ≥ 0} = cT x̄− bT y∗ = x̄T s∗.

The following lemma shows the rationale for deleting arcs with tiny flow x and thus huge
reduced costs s in the vicinity of the central path (respectively, contracting arcs with tiny reduced
costs and huge flow). 4

Lemma 2. Let x, s ∈ R
m be primal/dual feasible solutions of (G, b, c) with b ∈ Z

n and c ∈ Z
m.

• If sa > xT s for some a ∈ A, then x∗
a = 0 for every optimal solution x∗.

• If xa > xT s for some a ∈ A, then s∗a = 0 for every optimal solution s∗.

Proof. Because of the total unimodularity of the node-arc incidence matrix A all basic solutions
are integral. Thus, it suffices to show the claims for optimal integral basic solutions. All other
optimal solutions are convex combinations of these.

• Assume for contradiction that x∗
a > 0 in an optimal integral solution, i.e., x∗

a ≥ 1. Then
x∗T s ≥ x∗

asa > xT s, this shows that x∗ is not optimal for min{sTx : Ax = b, x ≥ 0},
contradicting Lemma 1.

• Assume for contradiction that s∗a > 0 in an optimal integral solution, i.e., s∗a ≥ 1. Then
xT s∗ ≥ xas

∗
a > xT s, this shows that s∗ is not optimal for min{xT s : AT y + s = c, s ≥ 0},

contradicting Lemma 1.

Note that the central path condition
∑

a∈A |xasa
µ −1| ≤ δ implies xasa ∈ [(1− δ)µ, (1+ δ)µ] for

any arc a ∈ A. Now assume that for some arc a ∈ A, the value of xa becomes tiny, i.e., xa < ε
m .

Then sa ≥ (1−δ)µ
xa

> (1−δ)µm
ε ≥ (1 + δ)µm ≥ xT s follows for ε := 1−δ

1+δ < 1. Thus Lemma 2 applies
and we can conclude that x∗

a = 0 in every optimum primal solution x∗. A completely symmetric
approach shows that, if sa < ε

m for an arc a ∈ A, then s∗a = 0 in every optimal dual solution s∗.
The analyses of typical classical combinatorial algorithms that use arc deletion or arc contrac-

tion, respectively, are based on an argument that termination is guaranteed because at least one
arc has to deleted or contracted after a certain amount of iterations and there are only m arcs.
However, we have a different termination criterion that mainly depends on the duality gap. In [6],
we showed that it suffices to compute a pair of primal/dual interior points with duality gap strictly
less than 1 to efficiently perform a crossover to an optimum integral basic feasible solution. In this
paper, we extend this result and show that proximity to the optimum solution w.r.t. the minor
suffices. To this end, we first formally define what proximity means in our context.

Definition 2. A pair of primal and dual feasible solutions x, s of (G, b, c) with b ∈ Z
n and c ∈ Z

m

is called a proxy for the optimum of (G, b, c) if
∑

a∈AH
xasa < (1− ε)2 where AH is the arc-set of

an ε-x-s-minor of G for some ε < 1.

4Note that this result can be extended to general integral linear programs, but we prefer to keep it simple for
the sake of presentation.
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2.2 The Algorithm

In Appendix A, we show how to construct, in linear time, initial interior points for an auxiliary in-
stance with the same optimum that fulfill the central path condition ‖σ‖1 ≤ δ for µ0 = 3mβγUC/δ
and thus can be used as input for Algorithm 1. The idea is to decrease the current µ by roughly
a factor of 1− δ/

√
m, more precisely, we set µ← ⌈(1− τ)µ⌉, where τ = δ/

√
m, as long as we have

not achieved a solution that is a proxy for the optimum of (G, b, c) yet. Then, we restore closeness
to the central path w.r.t. the new µ and the minor in a so-called centering step. Observe that
the centering step and the absence of tiny xa and sa in the minor implies that their respective
counterparts are bounded by (1 + δ)µ/ε. Hence, the magnitude of the initial µ yields an upper
bound on the numbers that have to be considered in this algorithm.

Moreover, let β := gcd(b) and γ := gcd(c). Observe that the instance (G, b/β, c/γ) still has
integral demands and costs and it is combinatorially equivalent to the instance (G, b, c). However,
we do not scale the instance down, but we rather maintain this granularity to restrict the com-
putations to integer arithmetic, i.e., we follow the central path by hopping from one point of the
integer grid to an other one. We show that this is possible for sufficiently large β and γ and that
the running time only scales logarithmically in β and γ so that up-scaling to meet this condition
can be achieved at low cost. More precisely, suppose that a given input instance does not satisfy
our assumption of having sufficiently large gcd’s. Then, the approach is to scale down the instance
by dividing by gcd(b) and gcd(c), respectively, and scaling them up by sufficiently large numbers
that are given by the following theorem.

Theorem 2. Let (G, b, c) be a min-cost flow instance with b ∈ βZn and c ∈ γZm. There is a
randomized algorithm to compute x, s ∈ Z

m s.t. x/β, s/γ is a proxy for the optimum of (G, b/β, c/γ)
in expected Õ(m3/2) time using only integer arithmetic on numbers bounded by 28m3γUC, provided
that β ≥ 28m3 and γ ≥ 215m4βUC.

Algorithm 1: Integer Interior Point Algorithm

Input : (G, b, c) with gcd(b) = β and gcd(c) = γ,
feasible interior x, s ∈ Z

m, and µ > 0 s.t.
‖σ‖1 :=

∑

a∈A |xasa
µ − 1| ≤ δ.

Output : Vectors x, s s.t. x/β and s/γ yield a proxy
for the optimum of (G, b/β, c/γ).

repeat

H = minor(G, x, s)
µ← ⌈(1− τ)µ⌉, where τ = δ/

√
m

x, s = centering step(H,x, s, µ)

until
∑

a∈AH
xasa < (1− ε)2βγ

return x, s

Algorithm 2: minor(G, x, s)

Let ε := 1−δ
1+δ .

for a ∈ A do

if xa < εβ
m then remove a

from G if sa < εγ
m then

contract a in G
return G

We sketch the algorithm that achieves the above theorem as pseudo-code in Algorithms 1 and 2.
The randomization only happens in the subroutine for the centering step, where fundamental cycles
w.r.t. a low-stretch spanning tree are sampled. We discuss the centering step in detail in Section 3.
For now it is only important that it maintains closeness to the central path w.r.t. the arcs in
the minor. For the sake of presentation, we did not maintain the y-variables that can be used
to restore the reduced costs on the arcs that have been deleted. But this can be easily achieved.
Moreover, one can extend the cycles mentioned above from the minor through the contracted
nodes to cycles in the original graph such that one can also keep track of the updates to maintain
a feasible solution in the original graph. We thereby can obtain a proxy for the optimum of (G, b, c).
However, the variables of the arcs in the minor describe an interior point of a slightly perturbed
instance.
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2.3 Perturbation

Suppose, for example, that we have an ε-x-s-minor H that differs from G just by the deletion of
a single arc â. Hence, the set of nodes of H coincides with the one of G. However, projecting x
to xH , s to sH , and c to cH by removing the entry corresponding to â does not yield a pair of
primal/dual feasible solutions xH , sH for (H, b, cH), but it is rather a feasible solution to (H, b̃, cH)
where b̃ = b − Aeâe

T
â x and we denote with eâ the vector of unity corresponding to the index â.

Note that the two demands vectors b and b̃ are almost identical because xâ is tiny. We first define
formally what we mean by almost identical instances and then draw the connection to minors.

Definition 3. An instance (G, b̃, c̃) is called ε-perturbed instance of (G, b, c), if ‖b− b̃‖1 ≤ 2ε and
‖c− c̃‖1 ≤ ε.

We introduce the following notation to transform instances and solutions:

• Denote with Ib ∈ R
nH×n the linear map that transforms b into bH , where for every node

v ∈ VH , bH(v) =
∑

u∈Cv
b(u) for Cv ⊆ V being all nodes in G that get contracted to u.

• As above for any a ∈ A, we denote with ea ∈ {0, 1}m the vector of unity that has a 1 in its
a’th component and 0 elsewhere, where the arcs are ordered as the columns of the node-arc-
incidence matrix A. Similarly, with ev ∈ {0, 1}n we mean the vector of unity that has a 1 in
its v’th component, 0 elsewhere and the considered ordering is as in the rows of A.

• Denote as MH ∈ {0, 1}mH×m the map with the a’th row being ea for all a ∈ AH .

• Denote as NH ∈ {0, 1}nH×n the map with the v’th row being ev for all v ∈ VH .

• For some S ⊆ A, let IS :=
∑

a∈S eae
T
a .

Lemma 3. Let x, s be a pair of primal/dual feasible solutions of (G, b, c) let C := {a ∈ AG : sa <
ε
m} and D := {a ∈ AG : xa < ε

m} for some 0 < ε < 1. Then (G, b̃, c̃) with b̃ = b − AIDx and
c̃ = c− ICs is an ǫ-perturbed instance of (G, b, c).

Proof. The proof is a simple calculation:

‖b− b̃‖1 = ‖AIDx‖1 ≤ 2‖IDx‖1 ≤ 2ε and ‖c− c̃‖1 = ‖ICc‖1 ≤ ε.

The following Theorem shows the equivalence of the original and the perturbed problem. For
a min-cost flow instance (G, b, c) and a given spanning tree T of G, we call x ∈ R

m a primal tree
solution, if Ax = b and xa = 0 for all a ∈ A \ T and we call y, s ∈ R

n+m a dual tree solution if
AT y + s = c and sa = 0 for all a ∈ T .

Theorem 3. Let (G, b̃, c̃) be an ε-perturbed instance of (G, b, c) for some 0 < ε < 1 and let T be
a spanning tree of G.

a) If the unique tree solution w.r.t. T in (G, b̃, c̃) is primal feasible, then the unique primal tree
solution w.r.t. T in (G, b, c) is feasible.

b) If the unique tree solution w.r.t. T in (G, b̃, c̃) is dual feasible, then the unique dual 5 tree
solution w.r.t. T in (G, b, c) is feasible.

c) If the spanning tree T is optimal for (G, b̃, c̃), then it is optimal for (G, b, c).

Proof. a) Let xT and x̃T denote the unique primal tree solutions corresponding to T in (G, b, c)
and (G, b̃, c̃), respectively, i.e., ATxT = b and AT x̃T = b̃ holds. Similarly let d be the unique
primal tree solution corresponding to T for the right hand side b− b̃, i.e., ATd = b− b̃. Note
that in order to show feasibility of xT , it suffices to show that xT ≥ 0. It follows that

AT d = b− b̃ = AT (xT − x̃T )

5Here unique dual refers only to the reduced costs because AT (y + t1) = AT y for all t ∈ R.
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and thus by the uniqueness of d, we conclude d = xT − x̃T . It follows that ‖xT − x̃T ‖∞ =
‖d‖∞ ≤ ‖b− b̃‖1/2 ≤ ε, using that (G, b̃, c̃) is an ε-perturbed instance. However, since b ∈ Z

n

also xT ∈ Z
m and since ε < 1 it follows that x̃T ≥ 0 implies xT ≥ 0.

b) Let yT , sT and ỹT , s̃T denote the unique dual tree solutions corresponding to T in (G, b, c)
and (G, b̃, c̃), respectively, i.e., AT yT + sT = c, sT (a) = 0 for a ∈ T and AT ỹT + s̃T = c̃,
s̃T (a) = 0 for a ∈ T holds. Similarly let p, d be the unique dual tree solution corresponding
to T for the right hand side c− c̃, i.e., AT p+d = c− c̃. Note that in order to show feasibility
of yT , sT , it suffices to show that sT ≥ 0. It follows that

AT p+ d = c− c̃ = AT (yT − ỹT ) + sT − s̃T

and thus by the uniqueness of d, we conclude d = sT − s̃T . Furthermore for a ∈ T , we
have d(a) = 0 and for a ∈ A \ T , it holds that |da| = |ca − c̃a − (pw − pv)| = |ca − c̃a −
∑

b∈P (v,w) cb− c̃b| ≤ ‖c− c̃‖1. It follows that ‖sT − s̃T ‖∞ = ‖d‖∞ ≤ ‖c− c̃‖1 ≤ ε, using that

(G, b̃, c̃) is an ε-perturbed instance. However, since c ∈ Z
m also sT ∈ Z

m and since ε < 1 it
follows that s̃T ≥ 0 implies sT ≥ 0.

c) Assume the tree T is optimal for (G, b̃, c̃), i.e., the tree is primal and dual feasible (comple-
mentary slackness). Together with part a) and b), we conclude that T is also optimal for
(G, b, c).

We note that in the non-degenerate case, the reverse statements of a) and b) hold as well. As
our algorithm will output a tree solution to the perturbed problem, the above Theorem is sufficient
to show that the output tree is also an optimal tree for the original problem.

2.4 Crossover

The crossover algorithm from [6, Section 2] takes a min-cost flow instance (G, b̃, c̃) and primal/dual
feasible points x̃, (ỹ, s̃). Given that c̃ is integral, it outputs an integral dual tree solution y∗, s∗

with bT y∗ ≥ bT ỹ. In a nutshell, the crossover algorithm works as follows. It iteratively constructs
nested cuts {s} = S1 ⊂ S2 ⊂ . . . ⊂ Sn = V , starting with an arbitrary node s. During iteration
i, the algorithm modifies the potentials y along the cut Si ensuring that bT y does not decrease.
This is done by incrementing the potentials of all nodes in Si, if b(Si) ≥ 0, and by decrementing
them otherwise. The potentials are increased (decreased) until the reduced cost of at least one arc
a on the cut S, V \ S becomes 0. Then, the node adjacent to Si through a is being added to Si.
We note that the amount by which the potentials inside of Si are changed relatively to the nodes
outside of Si, is exactly equal to the reduced cost of the arc a.

Theorem 4. Let (G, b, c) be a min-cost flow instance with b ∈ βZn and c ∈ γZm. Given x, s ∈ Z
m

s.t. x/β, s/γ is a proxy for the optimum of (G, b/β, c/γ), a pair of primal-dual optimum solutions

x∗, s∗ of (G, b, c) can be computed in O(m3/2 log n2

m logU) time.

Proof. Let x̄ = x/β, s̄ = s/γ as well as b̄ = b/β and c̄ = c/γ. Consider the projection x̃ of
x̄ to the subspace with x̃a = 0 for all a ∈ D and the projection s̃ of s̄ to the subspace with
s̃a = 0 for all a ∈ C. Note that these projections are primal/dual feasible for the ε-perturbation
(G, b̃, c̃) of (G, b, c), where b̃ = b̄ − AIDx and c̃ = c̄ − ICs and their duality gap satisfies x̃T s̃ =
∑

a∈AH
x̄as̄a < (1− ε)2. Given feasible s̄, we can compute corresponding feasible ȳ in linear time

by propagation from the root to the leaves of an arbitrary spanning tree. The same holds for ỹ
and s̃. If we perform the crossover procedure with ỹ, s̃ in (G, b̃, c̃), we obtain a tree solution w.r.t.
some spanning tree T . By Theorem 3, this spanning tree also yields a dual feasible solution for
(G, b, c). Moreover, the two admissible networks are combinatorially the same. If the admissible
network yields a primal feasible solution w.r.t. b, we obtain a pair of primal/dual feasible solutions
satisfying complementary slackness and hence the sought optimum solutions x∗, s∗. Suppose the
contrary for a contradiction. Then, there is a cut S ⊂ V s.t. b(S) > 0 and there are no ingoing
arcs with vanishing reduced costs, i.e., all ingoing arcs have reduced costs of at least 1. Thus, yv
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could be safely increased by 1 for all v ∈ S. Moreover, ỹv could be safely increased by 1− ε. Thus,
the dual objective b̃T ỹ would increase by at least (1 − ε)2 because 1

T
S b̃ = 1

T
S b− 1SAIDx ≥ 1− ε.

But this contradicts x̃T s̃ < (1 − ε)2. The crossover can be computed in O(m + n logn) and the
transshipment problem in the admissible network that needs to be solved in order to obtain the

corresponding primal solution can be solved by a max-flow computation in O(m3/2 log n2

m logU)
using the algorithm of Goldberg and Rao [14].

Note that the additional max-flow computation can be avoided, by using the isolation lemma [23]
in order to make the optimal solution unique [9, Lemma 3.12]. However, the perturbation of the
cost vector yields non-integral values and, hence, an additional scaling would be necessary in
order to make the input integral. Furthermore, this strategy would introduce a new source of
randomization.

3 Centering Step

In this section, we describe how to implement the centering step by using a variant of the electrical
flow solver from [17]. We would like to stress the fact that we do not rely on the numerical stability
analysis of [17] that would involve an additional scaling of the current sources, instead the current
sources that are used here can be directly defined as integer values dependent on the current
iterates x, s. The centering step takes as input the minor H of G, the variables x, s and the
parameter µ′ = ⌈(1− τ)µ⌉, with x and s fulfilling ‖σ‖1 ≤ δ, where σa = xasa/µ− 1 for all a ∈ AH .
For simplicity, we will denote in this subsection the vectors x and s as vectors over AH , instead of
over A. The goal of centering step is to update x and s to x+∆x, s+∆s such that ‖σ′‖1 ≤ δ

holds, where σ′
a =

x′

a
s′
a

µ′ − 1. Note that x, s uniquely defines feasible potentials y whose update we
denote with ∆y. Since we want the new iterates to be interior solutions again, we require

AH∆x = 0, AT
H∆y +∆s = 0 and x+∆x > 0 as well as s+∆s > 0. (2)

The idea is to compute ∆x,∆s such that (x+∆x)(s+∆s) ≈ µ′, more precisely we will guarantee
that ‖η‖1 ≤ δ/4, where η := 1

µ′ [S∆x+X∆s+Xs] − 1, i.e., we omit the quadratic term ∆x∆s

and allow an approximate solution only. Here X = diag(x) and S = diag(s), respectively. It is
easy to see that computing such ∆x,∆s satisfying (2) amounts to approximately solving a linear
equation system. This approximate solution to the equation system in turn can be found by
computing an approximate electrical flow in an electrical network with resistances ra = ⌈sa/xa⌉
and current sources AHϕ0, where ϕ0

a = xa − ⌈µ′/sa⌋ for all a ∈ AH . We will denote R := diag(r).
Note that, due to the assumption on the size of β and γ, it holds that sa/xa ≥ 1, see the proof of
Lemma 5.

We need some additional notation concerning electrical flows.6 Let ϕ be a given flow and let T
be a spanning tree of H . For any a = (v, w) ∈ AH \T , we define Ca := {a}∪P (w, v), where P (w, v)

is the unique path in T between w and v, and r(Ca) :=
∑

a′∈Ca
ra′ and tcn(T ) :=

∑

AH\T
r(Ca)
ra

as the tree condition number of T . The tree induced voltages are defined as πv :=
∑

a∈P (v0,v)
ϕara,

where v0 is an arbitrary root of the spanning tree T .
As previously mentioned, our method can be seen as an adaption of the electrical flow solver

of Kelner et al. that was introduced in [17]. Kelner et al. showed how to compute an approximate
electrical flow ϕ and corresponding node voltages π in nearly linear time. Up to the choice of the
termination criterion and the choice of the initial current our algorithm is identical, see the pseudo-
code implementation for further details. In the algorithm, we need to compute a spanning tree and
in order to gurantee fast convergence this spanning tree needs to be of low stretch. The current
record bounds concerning low stretch spanning trees is achieved by the algorithm of Abraham and
Neiman [1]. They show how to compute a tree of stretch O(m log n log logn) in O(m log n log logn)

6For a more detailed depiction of electrical flows see for example [7, 17].
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time.

Algorithm 3: centering step(H,x, s, µ)

Define ra := ⌈ saxa
⌉, ϕ0

a := xa − ⌈ (1−τ)µ
sa
⌋ for a ∈ AH .

Let T :=spanning tree and pa := r(Ca)
tcn(T )ra

∀a ∈ AH \ T
ϕ := ϕ0, s′ = s and x′ = x
while

∑

a∈AH
|x′

as
′
a − µ| ≥ δµ do

Sample a ∈ AH \ T according to p

α := ⌈−
∑

a′∈Ca
ra′ϕa′

r(Ca)
⌋, x′ ← x′ + αca, ϕ← ϕ+ αca

occasionally: compute tree induced voltages π for ϕ, s′ := s−AT
Hπ

return x′, s′

Note that for our purposes here, we will assume the parameter δ to be set to 1/8 and we will
denote with x, s, µ the values of the variables at the beginning of the centering step and the
update values we define by ∆x := ϕ − ϕ0 and ∆s := −AT

Hπ. We remark that, for our choice of
δ = 1/8, evaluating the condition of the while-loop can be done easily with integer arithmetic (by
comparing the two integral values resulting from multiplying the inequality by 8).

Moreover, define τ ′ by (1− τ ′)µ = ⌈(1 − τ)µ⌉ = µ′ and recall that we set ε := 1−δ
1+δ . Note that

from the minorization and closeness to the central path, we obtain lower and upper bounds on x
and s for arcs in the minor, respectively:

xa ∈
[

εβ

m
,
(1 + δ)µm

εγ

]

and sa ∈
[

εγ

m
,
(1 + δ)µm

εβ

]

for all a ∈ AH . (3)

We first of all show that the updates are feasible moves. The constraints AHx′ = b follow since
∆x is a circulation. The update for potentials can be computed in such a way that the dual
constraints, except non-negativity of s, are fulfilled as well. For non-negativity of x and s, consider
the following lemma - in fact the closeness to the central path already implies non-negativity for
x and s, respectively.

Lemma 4. If ‖σ′‖1 < δ, then xa +∆xa > 0 and sa +∆sa > 0 for all a ∈ AH .

Proof. If ‖σ′‖1 < δ, we must have |(xa + ∆xa)(sa + ∆sa)/µ
′ − 1| < δ for all a ∈ AH . Thus

(xa + ∆xa)(sa + ∆sa) > 0 for all a ∈ AH . Assume xa + ∆xa ≤ 0 and sa + ∆sa ≤ 0 for some
a ∈ AH . Then

0 ≥ sa(xa +∆xa) + xa(sa +∆sa) = µ′ + saxa > 0, a contradiction.

In the following lemma we show that, assuming sufficiently large β and γ, a small gap(ϕ, π) :=
ϕTRϕ− 2πTAHϕ0 + πTAHR−1AT

Hπ of the electrical flow and voltages yields small one-norm of
η.

Lemma 5. Assume β ≥ 24m2

δ and γ ≥ 217m5βUC
δ . Let δ ≤ 1/8 and ϕ ∈ R

mH and π ∈ R
nH such

that gap(ϕ, π) < 2−8δ2µ
mH

. Then it holds that ‖η‖1 ≤ δ
4 , where η := 1

µ′ [S∆x+X∆s+Xs]− 1.

Proof. In order to simplify notation, we will use x and s for MHx and MHs, respectively in this

proof, since all consideration are concerned with the minor H . Let us denote with Da := ⌈ µ′

sa
⌋− µ′

sa
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and Ea := ⌈ saxa
⌉ − sa

xa
the errors introduced by the rounding in the algorithm. Then,

‖η‖1 =
∑

a∈AH

xa

µ′

∣

∣

∣

∣

sa
xa

∆xa +∆sa + sa −
µ′

xa

∣

∣

∣

∣

=
∑

a∈AH

xa

µ′

∣

∣

∣

∣

sa
xa

(ϕa − ϕ0
a)− (πw − πv) + sa −

µ′

xa

∣

∣

∣

∣

=
∑

a∈AH

xa

µ′

∣

∣

∣

∣

raϕa − (πw − πv) +
sa
xa

Da − Eaϕa

∣

∣

∣

∣

≤ ‖X(Rϕ−ATπ)‖1
µ′ +

‖s‖1
2µ′ +

∑

a∈AH

xa|ϕa|
µ′ ,

(4)

since |Ea| < 1 and |Da| ≤ 1/2. Moreover, note that using the upper and lower bounds on x and
s in (3) and the fact that τ ′ ≤ τ ≤ δ yields the following multiplicative errors introduced by the
rounding:

ra =

⌈

sa
xa

⌉

∈
[

sa
xa

, 2
sa
xa

]

and

⌈

µ′

sa

⌋

∈
[

µ′

2sa
,
2µ′

sa

]

, (5)

where we need that sa/xa ≥ 1, which is guaranteed by γ ≥ 26m3βUC and β ≥ 4m. Let us now
first show how to bound the last summand in (4): Note that

∑

a∈AH

xa|ϕa|
µ′ ≤ 1

µ′

∑

a∈AH

xa

√

xa

sa
·
√

sa
xa
|ϕa| ≤

1

µ′

√

∑

a∈AH

x3
a

sa

√

∑

a∈AH

sa
xa
|ϕ2

a|

≤ 1

µ′

√

∑

a∈AH

x3
a

sa
‖ϕ‖R.

Since the energy of the initial flow ϕ0 is at least the energy of ϕ, we obtain

‖ϕ‖2R ≤ ‖ϕ0‖2R ≤
∑

a∈AH

2sa
xa

[

x2
a − 2xa

⌈

µ′

sa

⌋

+

⌈

µ′

sa

⌋2
]

≤
∑

a∈AH

2xasa − 2µ′ +
8µ′2

xasa

≤ mH

[

2(1 + δ)µ− 2(1− τ ′)µ+
8µ(1− τ ′)2

(1− δ)

]

≤ 1

2
µ+

8µ(1− τ ′)2

(1− δ)
≤ 10µmH ,

(6)

where we used xasa/µ ≥ 1−δ, δ ≤ 1
8 and τ ′ ≤ τ = δ/

√
m ≤ δ. The upper bound for x and the lower

bound for s in (4) yield
√

∑

a∈AH
x3
a/sa/µ

′ ≤
√

(1 + δ)µm5/(ε3γ2), again using τ ′ ≤ δ. Putting

the two bounds together, we obtain
√

10(1 + δ)µm3/(ε3γ2) as a bound on the third summand
in (4). Now, for the first summand in (4), note that gap(ϕ, π) =

∑

a∈AH\T [raϕa− (πw − πv)]
2/ra,

as shown in [17, Lemma 4.4]. Hence,

‖X(Rϕ−ATπ)‖1
µ′ =

∑

a∈AH\T

|raϕa − (πw − πv)|√
ra

√
raxa

µ′ ≤
√

gap ‖X2r‖1
µ′ ≤ 2

√
gapmH√

µ

using the Cauchy-Schwarz-Inequality, xasa/µ ≤ 1 + δ and again τ ′ ≤ δ. Finally, for the second

summand in (4), note that ‖s‖1

2µ′ ≤ (1+δ)µm2

2µ′εβ ≤ m2

2ε2β . Hence, plugging all bounds together into (4)
yields

‖η‖1 ≤
2
√
gapm
√
µ

+
m2

2ε2β
+

√

10(1 + δ)µm3

ε3γ2
≤ δ

8
+

δ

16
+

δ

16
≤ δ

4
,

with β ≥ 24m2

δ , γ ≥ 212m4βUC
δ , gap ≤ 2−8δ2µ

mH
and the upper bound on µ ≤ µ0 ≤ 24mβγUC.
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We next show that a small one-norm of η actually implies the closeness to the central path of
the new iterates x′ and s′, again assuming sufficiently large β and γ.

Lemma 6. Let δ ≤ 1/8. If ‖η‖1 ≤ δ
4 , then ‖σ′‖1 ≤ δ where σ′

a :=
x′

a
s′
a

µ′ − 1 for a ∈ AH .

Proof. By definition of η, it holds that (1 + ηa)µ
′ = ∆xasa + xa∆sa + xasa, which yields

∆xa∆sa = 1
2xasa

[

((1 + ηa)µ
′ − xasa)

2 − (∆xasa)
2 − (xa∆sa)

2
]

for a ∈ AH . (7)

For the one-norm of σ′, we get the following estimate

‖σ′‖1 =
∑

a∈AH

∣

∣

∣

∣

x′
as

′
a

µ′ − 1

∣

∣

∣

∣

=
∑

a∈AH

∣

∣

∣

∣

∆xa∆sa
µ′ + ηa

∣

∣

∣

∣

≤
∑

a∈AH

∣

∣

∣

∣

∆xa∆sa
µ′

∣

∣

∣

∣

+ ‖η‖1.

Using (7) and the triangle inequality, we obtain for the first summand that

∑

a∈AH

∣

∣

∣

∣

∆xa∆sa
µ′

∣

∣

∣

∣

≤
∑

a∈AH

[(1 + ηa)µ
′ − xasa]

2

2xasaµ′ +
(∆xasa)

2 + (xa∆sa)
2

2xasaµ′

=
∑

a∈AH

[(1 + ηa)µ
′ − xasa]

2

xasaµ′ ,

because ∆x and ∆s are orthogonal and thus the sum over all arcs in (7) yields the last equality.
Now let τ ′ be such that µ′ = (1 − τ ′)µ. Factoring out µ, plugging in the definition of µ′ and σa

and using the lower bound on xasa
µ yields

∑

a∈AH

∣

∣

∣

∣

∆xa∆sa
µ′

∣

∣

∣

∣

≤
∑

a∈AH

µ2
( (1+ηa)µ

′

µ − xasa
µ

)2

xasaµ′ ≤
∑

a∈AH

[(1− τ ′)(1 + ηa)− 1− σa]
2

(1− τ ′)(1 − δ)
.

Expanding the square, re-grouping the terms and using 1
Tσ ≤ ‖σ‖1 ≤ δ, −1T η ≤ ‖η‖1, the

equivalence of norms and the Cauchy-Schwarz-Inequality for −ηTσ ≤ ‖η‖2‖σ‖2, yields

∑

a∈AH

∣

∣

∣

∣

∆xa∆sa
µ′

∣

∣

∣

∣

≤ (1 − τ ′)2‖η‖21 + [2(1− τ ′)τ ′ + 2δ(1− τ ′)]‖η‖1 + δ2 + 2δτ ′ + τ ′2m

(1 − τ ′)(1− δ)
.

Using τ ′ ≤ τ = δ√
m
≤ δ and 1− τ ′ ≤ 1 yields

‖σ′‖1 ≤
‖η‖21 + 4δ‖η‖1 + 4δ2 + (1− τ ′)(1 − δ)‖η‖1

(1− τ ′)(1− δ)
≤ ‖η‖

2
1 + (4δ + 1)‖η‖1 + 4δ2

(1− δ)2

and ‖η‖1 ≤ δ
4 gives the result for any δ ≤ 1

8 .

It remains to argue the convergence behavior of centering step. The following lemma can
be seen as the equivalence of [17, Lemma 4.5]. We obtain an additional factor of 3/4 due to the
rounding to the nearest integer of α. We can show that assuming large enough β and γ, the
rounding does not impede the convergence speed significantly.

Lemma 7. The expected decrease in primal energy ‖ϕ‖2R for every cycle-update in the inner
while-loop of Algorithm 1 is at least 3 gap

4 tcn(T ) , provided that β ≥ 25m3/δ, γ ≥ 26m3βUC and

gap ≥ 2−8δ2µ/mH .

Proof. Let Λa :=
∑

a′∈Ca
ra′ϕa′ = raϕa − (πw − πv). In every iteration of the inner while-loop an

arc a is sampled and ϕ is updated to ϕ′ = ϕ− αaθa, denoting αa := ⌈ Λa

r(Ca)
⌋ and θa the indicator

vector corresponding to Ca. The change in energy due to this update is ‖ϕ − αaθa‖2R − ‖ϕ‖2R =

12



−2αaΛa + α2r(Ca). Thus, using the definition of the probabilities pa = r(Ca)
tcn(T )ra

for a ∈ AH \ T ,
the expected decrease in energy is

E
[

‖ϕ′‖2R − ‖ϕ‖2R
]

=
∑

AH\T

r(Ca)
2α2

a

tcn(T )ra
− 2r(Ca)αaΛa

tcn(T )ra
=

∑

AH\T

[

Λa − αar(Ca)
]2 − Λa

2

tcn(T )ra
.

Now, using gap =
∑

AH\T Λa
2/ra and r(Ca) ≤ ‖r‖1 for all a ∈ AH \ T for the right term in the

enumerator and |Λa − αar(Ca)| ≤ r(Ca)/2 as the rounding error for the left term, yields

E
[

‖ϕ′‖2R − ‖ϕ‖2R
]

≤ 1

4 tcn(T )
‖r‖1 tcn(T )−

gap

tcn(T )
≤ 1

4 tcn(T )
‖r‖1m2 − gap

tcn(T )
.

Using ra ≤ 2sa/xa, which follows from γ ≥ 26m3βUC, see (5) and the upper and lower bounds
on x, s in (3), yields

‖r‖1m2 ≤ 2(1 + δ)m5µ

ε2β2
≤ 2(1 + δ)m5µ

ε2
δ2

210m6
≤ (1 + δ)

2ε2
δ2µ

28m
≤ δ2µ

28m
≤ gap,

where we used β ≥ 25m3/δ. This yields E
[

‖ϕ′‖2R − ‖ϕ‖2R
]

≤ −3 gap
4 tcn(T ) .

The above lemma yields a corresponding result to [17, Theorem 3.2], that is an expected
guarantee on the approximation of the primal and dual energy. However, as Kelner et al. state
“one can use Markov bound or Chernoff bound to prove a probabilistic but exact guarantee”. In
fact, the near-linear run-time of the centering step follows as in the proof of Theorem 2 in [6].

4 Conclusion

We conclude by deducing the precise bound on the size of the numbers that the algorithm has
to deal with: Note that the voltages, the values of the α, as well as the currents ϕ are each
bounded in absolute value by ‖Rϕ‖1. By using the Cauchy-Schwarz-Inequality, we obtain ‖Rϕ‖1 ≤
√

‖r‖1 · ‖ϕ‖R. The first factor can be bounded by
√

2(1 + δ)µ0m3/εβ using the bounds from (5)
and (3). The second, analogously to the estimation in (6), can be bounded by

√
10µm. Together

with µ ≤ µ0 = 3mβγUC/δ, which is shown in Appendix A and using δ = 1/8, we obtain
28m3γUC as the final bound on all numbers appearing in the centering step. The values of x
and s are bounded by (1 + δ)µm/(εγ) and (1 + δ)µm/(εβ), respectively, which yields the bounds
of 26m2βUC and 26m2γUC. This shows Theorem 2. Finally, an arbitary given min-cost flow
instance can first be scaled down, i.e., divided by its gcd, and then scaled up again with β and γ
of size as described in Theorem 2. It follows that we can always guarantee the bound on the size
of numbers in Theorem 1.
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A Appendix: Finding Arbitrarily Central Points

In this section, we show how to construct an auxiliary instance and corresponding feasible interior
solutions that are arbitrarily close to the central path. In fact, we can use the same technique
as used in [6] for a potential reduction method. Let us denote with (G0, b0, u, c0) the given input
instance. Let V 0 denote the node set of G0 and let A0 denote its arc set. The method constructs
an auxiliary instance (G, b, c) that is an un-capacitated min-cost flow problem and corresponding
primal and dual interior solutions for it. We denote with V and A the node and arc set of G,
respectively, and with n = |V | and m = |A| their respective cardinalities. The first part of the
construction is illustrated in Figure 1 from left to middle. For each a = (v, w) ∈ A0, insert the two
nodes v, w into G as well as a new node vw together with arcs á = (v, vw) and à = (w, vw), read
“a up” and “a down”. Define the new costs by cá := ca and cà := 0. The new demand vector is
given by bv := b0v − u(δin(v)) for nodes v ∈ V 0 and bvw := u(v,w) for the newly inserted nodes. A
flow of f on a ∈ G0 corresponds to a flow of f on á = (v, vw) and a flow of ua − f on à = (w, vw)
in G. This is a well-known construction and it is known that the new instance is equivalent to the
old instance, see for example [3, Section 2.4].
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Figure 1: The transition from the left to the middle, which is done for each arc, removes the
capacity constraint. From the middle to the right: In order to balance the xasa, we introduce the
arc â = (v, w) with high cost câ and reroute flow along it. The direction of â depends on a tree
solution z in the original graph. It is flipped if za ≤ ua/2. All arcs in the middle and the right
graph have infinite capacity. Only the costs are shown.

The goal is to find values x, y, s that are primal and dual feasible, integral, as well as close to
the central path. The latter means that we want that

∑

a∈A |xasa
µ0
− 1| ≤ δ for some parameters

µ0 > 0 and δ ≥ 0. We show that the technique from [6] can actually achieve this. With a different
choice of parameters, the technique yields closeness to the central path for arbitrary δ.

The second part of the construction starts by computing an integral (not necessarily feasible)
tree solution z in G0 for an arbitrary spanning tree T , set xà = xá = ua/2 and introduce the
additional arc â = sign(za − ua/2)(v, w). If za − ua/2 = 0, do not introduce the arc â. Set the
flow on â to xâ = |za − ua/2| and the cost to câ = ⌈t/|za − ua/2|⌉. A sufficiently large choice of t
guarantees that no flow is routed across â in an optimal solution. More precisely, for t ≥ 2βγmUC,
we obtain câ ≥ t/(2βU) ≥ mγC ≥ 1

T c0, where we used that za ≤ ‖b0‖1/2. It follows that the cost
of â is at least the cost of any path in G0 and thus introducing â does not change the optimum
of the problem. The dual variables are set as yv, yw = 0 and yvw = −2t/ua, which determines
sá = ca + 2t/ua, sà = 2t/ua and sâ = câ = ⌈t/|za − ua/2|⌉. We can now show that x, y, s are
arbitrarily close to the central path.

Lemma 8. Let x, y, s as described above.

1. For any t > 0, it holds that xasa ∈ [t, t+ βγUC] for all a ∈ A.

2. Let t ≥ βγUC(mδ − 1) and µ0 := t+ βγUC, then ‖σ‖1 ≤ δ, where σa = xasa
µ0

− 1.
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Proof. 1. Let a ∈ A0 be any arc in G0, then xá = xà = ua/2. It follows that,

xásá =
ua

2

(

cá +
2t

ua

)

= t+
uaca
2
≤ t+

βγUC

2
, xàsà =

ua

2

(

cà +
2t

ua

)

= t and

xâsâ ≥
∣

∣

∣
za −

ua

2

∣

∣

∣

t

|za − ua

2 |
= t and xâsâ ≤

∣

∣

∣
za −

ua

2

∣

∣

∣

(

t

|za − ua

2 |
+ 1

)

≤ t+ βU.

2. From the first part, it follows that xasa ∈ [t, t + βγUC] for a ∈ A or equivalently xasa
µ0
∈

[t/(t+ βγUC), 1] = [1 − βγUC/(t+ βγUC), 1]. This yields xasa
µ0

≥ 1 − δ/m with the lower
bound on t and hence

‖σ‖1 =
∑

a∈A

∣

∣

∣

∣

xasa
µ0
− 1

∣

∣

∣

∣

≤
∑

a∈A

δ

m
= δ.

From the above lemma and the lower bound on t that ensures that the optimum is not changed
due to the introduction of the new arcs â, we obtain that choosing µ0 = 3m0βγUC/δ is sufficient.
Choosing δ = 1/8 implies that setting µ0 = 24mβγUC is sufficient.
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