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Abstract

A novel graph-based model for aggregating di-
chotomous preferences is introduced. The output
opinion is viewed as a consensual situation, paving
the way of using graph operations to describe prop-
erties of the aggregators. The outputs are also di-
chotomous preferences which could be useful in
some applications. New axiomatic characteriza-
tions of aggregators corresponding to usual major-
ity or approval &disapproval rule are presented.
Integrating and exploiting Dung’s Argumentation
Frameworks and their semantics into our model is
another contribution of the present paper.

1 Introduction

The main objective of this paper is to introduce and study a
new graph-based model for aggregating dichotomous prefer-
ences. Although dichotomous preferences over alternatives
may lack the expressiveness to capture intensity of the pref-
erence, they are natural in many settings, and are studied
in different approaches of decision making systems mainly
related to approval voting (see [Brams and Fishburn, 1978;
Laslier and Sanver, 2010; Vorsatz, 2007], among others) or
in connection to randomized mechanisms ([Bogomolnaia and
Moulin, 2004; Bogomolnaia et al., 2005]).

Let us suggest a new possible application. In peer as-
sessments systems (used in massive open online courses,
or in evaluation of grant applications, see [Walsh, 2014;
Alfaro and Shavlovsky, 2014]) the main objective is to get
a fair grade for each agent based on the grades proposed by
some other agents. Uniform grading is an obvious desider-
atum for the quality of the outcome. An approach to uni-
formize individual grading is to consider each grade given by
an agent as good or bad, depending on how this grade com-
pares to the average grade given by this agent.

In our dichotomous setting, we consider two disjoint non-
empty finite sets F and S. F, referred as the set of facts (is-
sues), is the set of alternatives in a decision making system,
e.g. candidates in an election process, normative judgments,
goods in purchasing systems, time slots in meeting schedul-
ing systems, etc. Note that all facts are "positive", there are
no negative facts. The individuals (persons,agents) in S, the
society, express their opinions (dichotomous preferences) that

are pairs (L, DL) of disjoint subsets of F: L is the set of facts
on which the individual has a positive opinion and DL are
the set of facts on which the individual has a negative opin-
ion. The remaining facts in F — (LU DL) are indifferent or
unknown to the individual. In applications in which F and S
are not disjoint, we can consider disjoint copies of them.

Our focus is how to aggregate the individual opinions into
a collective one. We are not only interested into positive col-
lective position (as is intensively done in social choice the-
ory) but also into the negative collective position (which can
be used also as an explanation of the selected positive facts).

To illustrate our new model let us consider a simple mun-
dane choice situation. Table 1 presents an example with avail-
able aliments, F = {ay, a», a3, a4, as, ag} C F, and the pref-
erences on these aliments of a group of five persons, S = {py,
D2, D3, P4, P5+ C S, who want to have a common lunch.

Liked Disliked
P1 {a1,a3} {as,a4}
p2 {a3,a¢6} {ay,as}
P3 {a3,as} {ai,a4}
P4 {0575117“2} {03}
Ps {as,a1} {as,a2}
Majority {a3 ,ap, a5} {614}

Table 1: Common Lunch Dillema.

As we can see, p; likes (agrees) a; and a3 but dislikes (dis-
agrees) as and a4. Similarly, we can read the opinions of the
other members of S. Note that disliking an aliment may mean
that the individual is allergic to it. The table is entitled Com-
mon Lunch Dillema since if we consider the majority opinion
(include each fact in one of the two sets of liked and disliked
facts using the majority rule) as output of the debate, then this
has the unpleasant property that each individual is allergic
to an aliment in the collective output ({a3,a;,as},{as})!
Note that this happens despite the majority rule gives (always)
a consistent opinion, i.e. a disjoint pair of subsets of F.

The set of individual opinions listed in Table 1 (called "pro-
file" in social choice theory) can be represented using a bi-
partite directed graph, which we call debate, as depicted in
Figure 1. The two parts of a debate are the set of facts and the
set of individuals. Each individual has as out-neighbors its



set of liked facts and as in-neighbors the set of disliked facts.
Since these two sets are disjoint, we have no symmetric pair
of directed edges.

Figure 1: Common Lunch Dilemma — Bipartite Digraph Debate.

The main advantage of this model is its visual capacity and
the symmetric treatment of the facts and individuals. Also
well-established graph theoretical notions (digraph isomor-
phism, in-degree and out-degree of a vertex, induced sub-
digraphs, digraph operations, etc.) can be used in describing
normative conditions on the aggregating rules. The aggregate
opinion (a disjoint pair of collective of agreed and disagreed
facts) can also be viewed as a debate (bipartite digraph) in
which each individual has the same sets of in-neighbors and
out-neighbors (called consensual debate). In this way, axioms
on the aggregating rules gain in expressivity (see Section 3).

To each digraph without loops we can associate a bipartite
digraph, hence a debate. On the other hand, to each debate we
can associate two conflict digraphs. These conflict digraphs
are isomorphic to the digraph for which the debate is associ-
ated. This relationship is exploited in Section 4 to describe
and analyze, from computational point of view, new (irreso-
lute) aggregators corresponding to the digraphs representing
Dung’s argumentation framework. These give acceptable so-
lutions to the Common Lunch debate discussed above.

The remainder of the paper is organized as follows. In the
next Section, we introduce notations and basic definitions. In
Section 3, aggregators are defined and characterizations of
majority and approval&disapproval rules are presented. In
Section 4, we propose an entire class of qualitative (irreso-
lute) argumentative aggregators and discuss their properties.
Finally, Section 5 concludes the paper.

2 Graph Based Framework

In this section we introduce our new model for aggregating
dichotomous preferences and present graph theoretical con-
cepts and notations used in the next sections. Recall from the
Introduction the two disjoint finite non-empty sets IF and S of
facts and, respectively, individuals.

Definition 1 A Debate is a bipartite digraph D = (F,S;E),
where 0 £ F CFand 0 #SCS,and ECF XSUSXF
contains no symmetric pair of directed edges (i.e., at most
one of the pairs (f,s) and (s, f) is a directed edge in E, for
every f € F and s € §).

Let G = (V,E) be a digraph and v € V a vertex of G. The
set of out-neighbors of v is denoted by vg, that is vg ={ue

V|(v,u) € E}. Similarly, the set of in-neighbours of v is v; =
{u € V|(u,v) € E}. These notations can be extended to set of

vertices by considering, for every S C V, S = U,esv(; and
Sg = Uyesvg (clearly, 05 = 0; = 0).

If D = (F,S;E) is a debate then, for every s € S, sg is the
set of facts approved by the individual s and s}, is the set of
facts disapproved by the individual s. The pair (sg,sg) is
referred as the opinion of individual s on the facts in F. By
the above definition of a debate , sg Ns,=0.1f f € sg then s
has a "positive" opinion on f, if f € s, then s has a "negative"
opinion on f, and if f ¢ s}, Usj, then s has no opinion on f.

Let D = (F,S;E) be a debate. If F' C F, the sub-debate
induced by F’ is the sub-digraph induced by ' US in D, and
is denoted by DF ' If §' C S, the sub-debate induced by &
is the sub-digraph induced by F U S’ in D, and is denoted by
Dy . For s € S, the sub-debate Dg_ ) is denoted by D — .

If D; = (F;,Si;E;) (i = 1,2) are debates with S; NS, =
0, then their sum is D; + D, = (Fl UF,S1USy Ey UEQ).
Clearly, E; UE; does not contain symmetric edges, that is,
D| + D; is a debate. With this notation, if D = (F,S;E) is
a debate such that |S| > 2 then, for every s € S, we have
D=Dg (w+Din = (D—5) + Dy

Two debates D = (F,S;E) and D' = (F',S'; E’) are isomor-
phic if there are bijections o : F — F’ and 8 : § — S’ such that
forall f€ Fands€ S (f,s) € Eifandonlyif (a(f),B(s)) €
E',and (s, f) € E if and only if (B(s),a(f)) € E'. Two iso-
morphic debates are denoted by D =2 D' or D =, g D' (when
we need to emphasize the isomorphism). '

Definition 2 A debate D = (F,S;E) is a consensual debate if
there are FD+,FD_ C F such that F,;r NF, = 0 and, for every
s € S, we have (s}, sp) = (Fy ,Fyy ). Op = (F5 ,Fyy ) is called
the common opinion of D.

Since Fg (Fp, ) are subsets of F, it is no danger to be con-
sidered as sets neighbors. Note that, in a consensual debate,
each individual has the same opinion.

3 Aggregators

In this section we define opinions aggregation, describe our
versions of well-known majority and approval&disapproval
rules and prove their axiomatic characterization.

Definition 3 Let 2(F,S) be the set of all debates D =
(F,S;E) with F CF and S C S. An aggregator is a function
A:9(F,S) — 2(F,S) such that

e A(D) is a consensual debate for every D € Z(F,S), and
e if D| & D, then A(Dl) = A(Dz).

In words, an aggregator is a functional A that maps each
debate D into a consensual output debate A (D), in which ev-
ery individual has the same opinion O p) = (F, g( ) Fa D)).
Also, A satisfies the usual social choice theory conditions of
neutrality and anonymity (renaming the facts or the individu-
als does not change the output modulo this renaming).

We give now two examples of aggregators, corresponding
to well-known social choice theory rules. In both examples,
the first condition in the above definition is satisfied by con-
struction and the second condition is satisfied since the out-
put consensual debate depends only on the in-degree and out-



degree of the fact vertices, and these are invariant under de-
bate isomorphisms. After defining each of these aggregators
we consider normative properties of them and prove that these
offer novel interesting characterizations.

Majority rule. Ay : 2(F,S) — Z(F,S) such that VD €
P(F,S), Op,, () = (FQM(D),F&M(D)), where

S
Fi = 1r e P12 B,

S
o= FeFII > By
Note that, by definition, a fact f is approved (disapproved) by
the collective opinion if the number of individuals that like
(dislike) f is at least (greater than) half of the total number of
individuals. It is not difficult to see that Fg D) NF, D) = 0.
M M

Also, for every f € F we have Ay (D)1} = Ay (D), that
is, the aggregate opinion on f depends only on the opinions
of the individuals in the society on f: to find the aggregate
opinion on f, we apply the aggregator on the debate D} ob-
tained by considering the restriction of D to {f} only. This
is the usual social choice theory Independence (I) condition,
that is, the aggregation is done fact-wise. In order to charac-
terize the majority rule, we consider also the following con-
ditions Unanimity (U), Cancellation (C), and Faithfulness
F):

U If Dis a consensual debate then A(D) = D.
I For every debate D = (F,S;E) and for every f € F

AMD)V = oDV,

C For every debate D = ({f},S;E) with |S| > 3, if s,p €
S are such that f € s, N pp Usp N pp, then A(D) =
A(Ds-(s,p)):

F If D= ({f},{s,p};E) is a debate such that f € s}, p, U
spNph- then Opp) = (F) Fy ) = ({1,0).

In words, Cancellation says that in any debate over a sin-
gle fact, if there are at least three individuals and two of them
have contradictory opinions on this fact, then the output opin-
ion is decided by the remaining individuals. Faithfulness says
that the output opinion of a debate over a single fact with ex-
actly two individuals with contradictory opinions has a posi-
tive position on this fact.

Theorem 1 The Majority rule, Ay, is the only aggregator A
satisfying conditions U, 1, C, and F.

Proof. Obviously, Ay, satisfies U, I, and F. To prove that
Ay fulfills C, let D = ({f},S;E) be a debate with |S| > 3,
and s5,p € S such that f € s}, N p[) (the proof is similar for
f€spnpp). Since fp iy = /p — {5} it follows that

|f5§ {ps}| ‘Sl ~2 if and only if |fD\ > | L, Similarly, since

st o) = = f — {p}, it follows that |st . | > ‘S‘ 2 if and
only if || > ‘%‘ Hence Ay(D) = AM(DS—{s,p})'

Conversely, let A be an aggregator satisfying U,I,C, and F.
We prove that A(D) = Ay (D) for every debate D = (F,S;E),
by induction on |S].

If |S| = 1, then D is consensual and by U we have A(D) =
D and, since Ay satisfies U, A(D) = Ay(D). Also, for |S| =
2, for every f € S, DU/} is either consensual and A(D){/} =
Ay (DU}) by U, or satisfies the hypothesis of F and again
AD)U} = Ay (D). By I, we have A(D) = Ay (D).

In the inductive step, let D = (F,S;E) be a debate with
|S| > 3. By L in order to prove that A(D) = Ay(D) it is
sufficient to prove that A (D)} = Ay (D) for each f € F.
This follows either by U or by applying C and the induction
hypothesis. O

Approval&Disapproval rule. Asgp : Z(F,S) — Z(F,S)
such that VD € Z(F,S), Oy, v (0) = (Fagwn: Fagn)» Where

Frap =1 €FIIfp =151 = Igpl = lspl, Ve € F},

Frap ={f €F=Flepl 115 1=1fp| > Igp]~lsp| Ve € F = Frgp}-

Letus consider the score of f € F as scorep(f) = |fp | — /5 |-
that is the difference between the number of individuals, |f} |,
having a positive position on f, and the number of individu-

maximizing this score are selected in the positive part of the
aggregator’s opinion. From the remaining facts, those having
the minimum score are included in the negative part of the
aggregator’s opinion. Clearly, in this case, the aggregation
is not fact-wise: despite computing the scores is done fact-
wise, the decision of the aggregator on a fact depends on the
scores obtained by the other facts. A characterization of Ap-
proval&Disapproval rule can be obtained by considering the
above Unanimity (U) condition and the following two new
conditions: Summation (S) and Additivity (A).

S For every consensual debate Dy = (Fy,S;;E;) and for ev-
ery debate D, = (F»,{s}; E>) with s € Sy, having Op, =
(F",F;") and Op, = (F,',F, ), the aggregate debate
of their sum, A(D) + D), is such that Opp,1p,) =
(F*,F~), where

FrnFr ifFNE #0,
Fr=(F" if F;"N(F" UF; ) =0and |S;] > 1,
FrUF"™ ifFPN(F UF, ) =0and |Si]| =1,
and
FTNF, ifF NF, #0,
F~=(F if 7N (F UF, ) =0and |Si]| > 1,
FrUF,  ifF N(F UF, )=0and|S|=1.

A For every debate D = (F,S;E) with |S| > 2, A(D) =
A(A(D—s5)+A(Dyy)). forevery s € S.
In words, Additivity says that in any debate with at least

two individuals the output consensual debate is the aggregate
debate of the sum of the (consensual) sub-debate induced by



any individual and the consensual aggregate debate of the de-
bate obtained by deleting this individual. Summation shows
how to obtain the aggregate debate of the sum between a con-
sensual debate and a debate with a single individual.

Theorem 2 The Approval&Disapproval rule, Asgp, is the

only aggregator A satisfying conditions U, S, and A.

Proof. We show firstly that Axgp satisfies U, S, and A.

U If D = (F,S;E) is a consensual debate with Op =
(FT,F™), then

S| if feFT,

—|8| iffeF, .

0 if feF—(FTUF™)
Since [S| > 1, it follows that Fy = F™ and Fogp =
F—, that is, AA&D(D) =D.

S Let D; = (Fi,S1;E)) be a consensual debate with Op, =
(Fi*,F), and Dy = (F»,{s}; E») be a debate with s € S;
and Op, = (F,",F,"). Then, in the debate D = D + D,
the scorep(f), for f € F{ UF,, is:

scorep(f) =

ISi|+1  if feFRTNE"
ISi|—1  iffeFRNE
IS1] if feF"—(F UF)
—ISi|+1 i feF NE

scorep(f) =< —[Si1|—1 if feF NF,
—18] if feF —(F UF,)
1 if fe(F—(FUF))NE"
-1 if fe(F—(F"UF))NE,
0 if f¢ F,"UF UF," UF; .

Now, it is easy to see that F\e y = F and Fy g = F,
where FT and F~ are defined in condition S.
A LetD = (F,S;E) be a debate with |S] > 2.
For every s € S we have D = (D —s) + Dyy). Using
U and S it is not difficult to verify that Axgp(D) =
Angp (Aagn(D —s) +Anan(Dyyy))-
Conversely, let A be an aggregator satisfying U,S, and A. We
prove that A(D) = Aagp(D) for every debate D = (F,S;E),
by induction on |S§|. If |S| = 1, then D is consensual and by
U we have A(D) = D and, since Aagp satisfies U, A(D) =
Aagp (D). In the inductive step, by S, A(D) = A(A(D—s)+
A(D{S})) for s € S. By the induction hypothesis and since
Dyyy is consensual we have
A(A(D—5)+A(Dyyy)) = A(Aagn(D —5) +Aagn(Dyyy)).
Since Aagp satisfies S, Aagn(D —s) + Aagp(Dyyy) =
Apgp(D) and since A satisfies U and Aagp(D) is consen-
sual, we obtain A(D) = Aagp(D). O

4 Argumentative (Irresolute) Aggregation

4.1 Dung’s Theory of Argumentation

In this subsection we present the basic concepts used for
defining classical semantics in abstract argumentation frame-
works (AF) introduced by Dung in 1995, [Dung, 1995]. We
consider U a fixed countable universe of arguments.

Definition 4 An Argumentation Framework is a digraph
AF = (A,E), where A C U is a finite and nonempty set; the
vertices in A are called arguments, and if (a,b) € E is a di-
rected edge, then argument a defeats (attacks) argument b. A,
the argument set of AF, is referred as Arg(AF) and its attack
set E is referred as Def(AF). The set of all argumentation
frameworks (over U) is denoted by AF.

Two argumentation frameworks AF| and AF, are iso-
morphic (denoted AFy = AF;) if there is a bijection h :
Arg(AF) — Arg(AF,) such that (a,b) € Def(AF;) if and
only if (h(a),h(b)) € Def(AF,). h is called an argumen-
tation framework isomorphism, and it is emphasized by the
notation AF] &, AF,. If S C Arg(AF)) and h is an iso-
morphism between AF] and AF,, then h(S) C Arg(AF) is

h(S) = {h(a)|a € Arg(AF;)}. Similarly, if M C 247¢(4F1) then
h(M) C 2478 AR) is (M) = {h(S)|S € M}.

We define now the Dung’s extension-based acceptability

semantics as follows (see also [Baroni and Giacomin, 2007]).

Definition 5 An extension-based acceptability semantics is
a function o that assigns to every AF € AF a set 6(AF) C
2478(AF) " guch that for every two argumentation frameworks
AF|,AF, € AF, if h is an isomorphism between AF; and
AF, (AF) =, AR,) then 6(AF:) = h(c(AF1)). A member
E € 6(AF) is called a G-extension in AF.

If AF = (A,D) is an AF, ¢ a semantics and a € A, then
a is o-credulously accepted if a € USEG r)S and a is o-
sceptically accepted if a € seg(ar

The set S of arguments defenc}s an argument a € A if
a~ C ST. The set of all arguments defended by a set S of ar-
guments is denoted by F(S). For Ml C 24, max(M) denotes
the set of maximal (w.r.t. set-inclusion) members of M and
min(M) denotes the set of its minimal members. The main
admissibility extension-based acceptability semantics are:

Definition 6 Let AF = (A,E) be an AF.

o A conflict-free set in AF is a set S C A with property
SNSt =0 (i.e. there are no attacking arguments in S). We
will denote cf(AF) = {S C A|S is conflict-free set }.

e An admissible set in AF is a set S € cf(AF) with prop-
erty S~ C St (i.e. defends its elements). We will denote
adm(AF) = {S C A|S is admissible set }.

o A complete extension in AF is a set S € cf(AF) with
property S = F(S). We will denote comp(AF) = {S C
AlS is complete extension }.

o A preferred extension in AF is a set S € max(comp(AF)).
pref(AF) := max(comp(AF)).

e A grounded extension in AF is a set S € min(comp(AF)).
gr(AF) := min(comp(AF)).

o A stable extension in AF is a set S € cf(AF) with the
property ST = A —S. We will denote stab(AF) = {S C
A|S is stable extension }.

4.2 Debates vs Argumentation Frameworks

The conflicts between individual opinions in a debate can be
naturally viewed as argumentation frameworks in order to use
the collective acceptance of Dung’s semantics in aggregation.
On the other hand, every argumentation framework can be
seen as a debate as explained below.



Definition 7 (i) If D = (F, S;E) is a debate, then

its facts argumentation framework is f-AFp = (F,C), where
C CF xF and (f,g) € Fiff f, Ng}, #0, and

its opinions argumentation framework is o-AFp = (S,C’),
where C’ C S x S and (s,1) € C' iff s, N1y # 0.

(ii) If AF = (A,E) is an AF without loops, then

the debate associated to AF is D(AF) = (Fy,Sa;E’), where

Fy = {fa|la € A} (f, is the fact associated to a), S4 = {sq]a €

A} (sq is the individual associated to a), and E' = { (s, fa)|a €

AYU{(fa;s)|(b,a) € E}.

In words: (f,g) is an attack in f-AFp = (F,C) if there is an

individual s which approves f and disapproves g; (s,?) is an

attack in 0-AFp = (S,C") if s disapproves a fact approved by

t; the individual s, agrees f, in D(AF) and disagrees all f}

for the arguments b attacked by a.

Note that (f,g) € F X F is an attack in f-AFp = (F,C) if
and only if the digraph D + (f,g), obtained by adding the
edge (f,g) to D, contains at least one C3. Similarly, (s,7) €
S x S is an attack in 0-AFp = (S,C’) if and only if the digraph
D+ (s,t), obtained by adding the edge (s,7) to D, contains at
least one 6‘3.

These constructions are exemplified in Figure 2. The
isomorphisms are not incidentally as the following theorem
shows.

f_AFD(AF) > AF D(AF) O'AFD(AF) =AF
Figure 2: An AF AF, its associated debate D(AF), with both
(facts and opinions) AFs isomorphic to AF.

Theorem 3 Let AF be an argumentation framework without
loops and D(AF ) the debate associated to AF. Then the facts
and opinions argumentation frameworks of the debate D(AF)
are isomorphic to AF: £-AFpap) = AF = 0-AFp(ar).
Proof. To prove that f-AFp4r) = AF, consider bijection
@ : Fy — A given by ¢(f,) = a for every a € A. Then,
(fas fb) € Def(f-AFp(a)) if and only if there is s € S5 such
that (s, fu, f») is an induced C3 in D(AF) + (fu, f,). By the
definition of the debate D(AF) it follows that s = s,, and,
since (fp,s,) is an edge in D(AF), it follows that (a,b) €
Def(AF). Conversely, if (a,b) € Def(AF) then, by the defi-
nition of the debate D(AF ), we have (s4, f,) € E(D(AF)) and
(fb,54) € E(D(AF)). Hence adding (f,, f) to D(AF) we ob-
tain an induced C3, (4, fa, /), in D(AF) + (fa, ). But this
means that (fg, fp) is an attack in f-AFps ).

To prove that AF = 0-AFp 4, consider bijection y : S4 —
A given by y(s,) = a for every a € A. Then, (s4,sp) €

Def(0-AFp(ar)) if and only if there is f € Fy such that
(f,Sa4,5p) is an induced Cs in D(AF) + (84,55). By the def-
inition of the debate D(AF) it follows that f = f}, and, since
(fp,Sq4) is an edge in D(AF), it follows that (a,b) € Def(AF).
Conversely, if (a,b) € Def(AF) then, by the definition of
the debate D(AF) it follows that (sp, f,) € E(D(AF)) and
(fp,54) € E(D(AF)). Hence adding (s,,sp) to D(AF) we ob-
tain an induced Cs, (fbySa,Sp), in D(AF) + (sq,sp). But this
means that (sq, ) is an attack in 0-AFp4p). O

4.3 Irresolute Argumentative Aggregation

In this subsection we exploit the relationship between debates
and argumentation frameworks developed in the above sub-
section in order to introduce new principles in doing debate
aggregation.

More precisely we consider aggregation correspondences,
AC, which maps every debate D € Z(IF,S) into a set of con-
sensual debates, AC(D), such that by specifying a rule of
selecting a member of AC(D) we obtain an aggregator (that
is, satisfying the second condition in Definition 3).

Let D = (F,S;E) € Z(F,S) be a debate. An individual
s € S is called a strong eristic if s;, N tg # Q for every t €
S —{s}. In words, an individual s is a strong eristic if it has a
negative position on at least one of the facts agreed by every
other individual #. An individual s € S is called a weak eristic
if s, Nty # 0 for every t € S — {s} such that t;, N5}, # 0. In
words, s is a weak eristic if it has a negative position on at
least one of the facts agreed by every other individual # which
has a negative position on a fact agreed by s. We can verify
that p4 is a strong eristic in the debate in Figure 1 and s;, is a
strong eristic in the debate D(AF) in Figure 2. Also, in this
last debate, s, is a weak eristic.

A codlition in D = (F,S;E) is any subset € C S with
€ # 0. € is a legal coalition if the digraph obtained from
D by contracting € is a debate, that is has no symmetric
edges. Formally, € is a legal coalition if D|¢ = (F, (S —
%) U {s¢};E') is a debate, where sy is a new "individ-
ual" (s¢ €S—2S) and (f,s) € E' ((s,f) € E’) if and only if
(f,s) €E((s,f) €E)and s € € or s = s¢ and there is t € €
such that (f,t) € E ((¢,f) € E). Hence a legal coalition is
any non-empty set of individuals with the property that by
merging them into a new single individual together with their
incident edges, no symmetric edges are created. Note that
(ng)gl(g = Useqs], and (Sg)l_)‘%, = Useysp. We can verify
that {pa, p3} is a legal coalition in the debate in Figure 1 and
{s4,5} is a legal coalition in the debate D(AF) in Figure 2.

Let & be a legal coalition in D = (F,S;E). Then € is: an
oligarchy if s4 is a strong eristic in D|%’; an autarky if s¢ is
a weak eristic in D|@; a strong autarky if s¢ is a weak eristic

in D|¢ and for every t € S— % such that 1, N (&g)a% =0

there is u € S— %, u # t such that MBM N tg‘% = 0; a maximal

(minimal) strong autarky if € is a strong autarky not strictly
contained in (not strictly containing) a strong autarky. We
can see that {p,, p3} and {ps} are oligarchies in the debate in
Figure 1, and {s,,s.} and {s,} are oligarchies in the debate
D(AF) in Figure 2. These definitions are motivated by the
next theorem that can be checked using Definitions 6 and 7.



Theorem 4 A coalition € in D = (F,S;E) is a legal coali-
tion (respectively autarky, strong autarky, maximal strong au-
tarky, minimal strong autarky, oligarchy) if and only if € is a
conflict-free set (respectively admissible set, complete exten-
sion, preferred extension, grounded extension, stable exten-
sion) in the argumentation framework o-AFp.

By Theorem 3, for the debate D(AF') associated to an argu-
mentation framework AF, the above different type of coali-
tions translate to the corresponding admissible based exten-
sions in AF. Hence the decision problems on argumentation
frameworks can be polynomially transformed into instances
on debates. Using the time complexity results on the cor-
responding decision problems for argumentation frameworks
[Dunne and Bench-Capon, 2002] it follows that deciding if
there is a maximal strong autarky with a positive position on
a given fact in a given debate is an NP-complete problem and
that deciding if a given fact belongs to the positive part of the
opinions of every maximal strong autarky in a given debate is
a Hg -complete problem (see [Croitoru, 2014]).

Inspired by political practice, we consider a strategical
way of coalition formation: some members of a coalition re-
nounces at some liked facts in order to make the coalition
legal. In this way the coalition has the same negative part of
its merged opinion (which it is used to "attack" opinions of
individuals not in coalition) despite of weakening the posi-
tive part. More precisely, if € is a coalition in D = (F,S;E),
a €’-compromise is the pair (¢',E’), where E' C E is a set of
edges (s, f) with s € ¢ such that in the debate D’ = D — E’
(obtained from D by removing the edges from E’) sg, #0
and % is a legal coalition. (%,E') is called a 6-compromise
if coalition % is ¢ in D’, for ¢ € { autarky, strong autarky,
minimal strong autarky, maximal strong autarky, oligarchy}.
If (¢,E') is a 6-compromise in D = (F,S; E), then Dy pr) is
the consensual debate in which each individual opinion is the
union of opinions of the members of 4 in D — E’. Note that
in debates D with sg #£0,¥p €8S, if € is o then ¥ is also
a o-compromise (by taking E’ = 0). Also, in the debates D
with |s})| = 1,Vp € S, a coalition ¢ is o-compromise if and
only if ¢ is 0. We define now our argumentative aggregation
correspondences.

Definition 8 An argumentative aggregation correspondence
is a function AC, which maps every debate D € Z(F,S) into
the following set of consensual debates
ACs(D) ={Ds g |(€,E') is a 6-compromise }.

Example. Let us consider again the debate in Figure 1,
and o = oligarchy. We observed that 4| = {p»,p3} and
%> = {ps} are oligarchies. Clearly €3 = {p1, p4} is not legal.
But, (¢3,E") with E' = {(p1,a3),(pa,as)} is an oligarchy-
compromise. Fy ={aj,ax} and F;, = {as,as,a3}.
(¢3.E") (€3,E")
Note that if we choose as output the merged opinion of an
oligarchy (or oligarchy-compromise), each individual outside
this coalition likes a fact which is disliked by some member
of the oligarchy. Similar (argumentative) explanations can be
made for other choices of ¢, depending on the application for
which the aggregation is considered.

Each argumentative aggregation correspondence ACgs
gives rise to an argumentative aggregator Ay, by specifying a
rule to select one of the consensual debates in AC4 (D). Ag

satisfies the second condition in Definition 3, by Theorem 4
and the invariance of the admissibility based semantics to the
AFs isomorphism. Since the operators A are not "fact wise"
and are strongly dependent on the context of the debate to
which they are applied, we have the following theorem.

Theorem 5 Argumentative aggregation operators Ag do not
satisfy independence.

Proof. Consider the debates D and DU/} in Figure 3 below.

@
Ry Y

D O-AFD D{f} O—AFD{f}

Figure 3: Debates D and D/} and their opinion AFs.

Since |(s;)5] < 1, a coalition ¢ in these debates is o-
compromise if and only if it is o. The only autarky in
D is {s1,s3} hence each individual opinion in As(D) is
({f},{g}). The only autarky in DU/} is {s5,53} hence
each individual opinion in Ay (DU}) is (0,{f}). Therefore
Ag(D)VH £ A(DUY). O

5 Discussion

The main contribution of this paper is to present a novel
graph based framework for aggregating individual dichoto-
mous preferences ("opinions") expressed as pairs of disjoint
sets of positive and negative positions on a given finite set
of "facts". These informations are represented as a bipar-
tite digraph (with the two parts corresponding to the set of
facts and the set of individuals) in which each individual’s
out-neighbors are its agreed facts, while the in-neighbors are
its disagreed facts. This structure, called debate, is actually
quite beautiful since we can formulate the aggregation as the
task of associating to each debate a consensual one, in which
each individual has the same in- and out-neighborhood. In
this way, we have access to definable properties of aggrega-
tors in terms of simple graph operations. This is illustrated by
our new axiomatizations of majority rule (a subject started by
[May, 1952] and followed by several papers, e.g. [Maskin,
19951, [Woeginger, 2003], [Miroiu, 20041, etc.) or of ap-
proval&disapproval rule (a subject starting with [Brams and
Fishburn, 1978], followed by several papers, see [Xu, 2010])
which is different from that given in [Alcantud and Laru-
elle, 2013]. The rich combinatorial structure of debates is
exploited by the use of two argumentation frameworks associ-
ated, giving the possibility of devising qualitative aggregators
in which the output can be "justified" in terms of argumenta-
tion semantics. The framework has an important intuitive and
visual flavor, being simple and effective as the proof of The-
orem 5 shows. As future work, we intend to provide the parts
F, S with combinatorial/ logical structure such that our bipar-
tite model extends to other social choice theory [Arrow, 1963]
and Judgment Aggregation [Lang ef al., 2011] subjects.



References
[Alcantud and Laruelle, 2013] J.C. Alcantud and A. Laru-

elle. Dis&approval voting: a characterization. Social
Choice and Welfare, pages 1-10, 2013.
[Alfaro and Shavlovsky, 2014] L. de. Alfaro and

M. Shavlovsky. CrowdGrader: a tool for crowd-
sourcing the evaluation of homework assignments. In
SIGCSE 2014, number 1308.5273, 2014.

[Arrow, 1963] K. Arrow. Social Choice and Individual Val-
ues. Wiley, 1963.

[Baroni and Giacomin, 2007] P. Baroni and M. Giacomin.
On principle-based evaluation of extension-based argu-
mentation semantics. Artificial Intelligence, 171:675-700,
2007.

[Bogomolnaia and Moulin, 2004] A. Bogomolnaia and
H. Moulin. Random matching under dichotomous
preferences. Econometrica, 72:257-279, 2004.

[Bogomolnaia et al., 2005] A. Bogomolnaia, H. Moulin, and
R. Stong. Collective choice under dichotomous prefer-
ences. Journal of Economic Theory, 122:165-184, 2005.

[Brams and Fishburn, 1978] S. J. Brams and P. C. Fishburn.
Approval voting. American Political Science Review,
72:8310-847, 1978.

[Croitoru, 2014] C. Croitoru. Argumentative aggregation of
individual opinions. In JELIA 2014, pages 600-608, 2014.

[Dung, 1995] P. M. Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence,
77:321-357, 1995.

[Dunne and Bench-Capon, 2002] P. Dunne and T. Bench-
Capon. Coherence in finite argument systems. Artificial
Intelligence, 141:187-203, 2002.

[Lang et al., 2011] J. Lang, G. Pigozzi, M. Slavkovik, and
L. van der Torre. Judgment aggregation rules based on
minimization. In Proc. of TARK 2011, pages 238-246,
2011.

[Laslier and Sanver, 2010] J.-F. Laslier and M. R. Sanver,
editors. Handbook on Approval Voting. Springer, 2010.
Surveys all major developments in Approval Voting since

the publication of the seminal book by Brams/Fishburn
(1983).

[Maskin, 1995] E.S. Maskin. Majority rule, social welfare
functions, and game forms. In K. Basu, P.K. Pattanaik, and
L. Suzumura, editors, Choice, Welfare, and Development,
pages 100-109. The Clarendon Press, 1995.

[May, 1952] K.O. May. A set of independent, necessary and
sufficient conditions for simple majority decisions. Econo-
metrica, 20:680-684, 1952.

[Miroiu, 2004] A. Miroiu. Characterizing majority rule:
from profiles to societies. Economics Letters, 85:359-363,
2004.

[Vorsatz, 2007] M. Vorsatz. Approval voting on dichoto-
mous preferences. Social Choice and Welfare, 28:127—
141, 2007.

[Walsh, 2014] T. Walsh. The PeerRank method for peer as-
sessment. In ECAI 2014, pages 909-914, 2014.

[Woeginger, 2003] G.J. Woeginger. A new characterization
of majority rule. Economics Letters, 81:89-94, 2003.

[Xu, 2010] Y Xu. Axiomatizations of approval voting. In
J.-F. Laslier and M. R. Sanver, editors, Handbook on Ap-
proval Voting, pages 91-102. Springer, 2010.



