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Summary

This thesis suggests that induced technological change has potential to reduce the burden

that climate change mitigation puts on the economy. Furthermore, international coop-

eration on climate policy, which may trigger this induced technological change, may be

achieved by linking climate negotiations to other issues. The starting point of the research

presented here are the following two assumptions: first, action to mitigate climate change

is necessary, and second, technologies will play a key role in this effort because technol-

ogy and technological change facilitate the reduction of anthropogenic greenhouse gas

emissions. As a consequence, the way technological change is described in integrated as-

sessment models of climate change is of great importance, and a sound understanding of

such endogenous technological change and its interaction with climate policies is needed.

There is empirical evidence that technological change is induced by policies. How-

ever, previous assessments of such induced technological change (ITC), i.e. technological

progress triggered by policy, have been ambiguous about its responsiveness to climate

policies and its potential to reduce the costs of mitigating climate change. On the other

hand, a clear climate policy is required in order to induce the technological progress that

might facilitate emission abatement at low costs. Ideally, climate policy ought to be global

in order to prevent carbon leakage and to achieve efficiency. However, the literature on

international environmental agreements suggest that the prospect for global climate pol-

icy is not bright. This raises two broad research questions: First, what is the role of ITC

for climate change mitigation? And second, if there is a desirable contribution of ITC to

mitigation, how can we achieve a global policy that triggers this technological change?

The four papers presented in this thesis make contributions to these two questions.

The first paper focuses on the impact of ITC on the costs and strategies of mitigating cli-

mate change within a single integrated assessment model. I find that the impact of ITC

is significant. The analysis reveals two “directions” of technological change. First, there

is technological change that permeates the entire economy—this is reflected in a strong

impact on the overall macro-economic costs of mitigation. Second, there is technological

change whose impact is specific to the energy sector, as evident from strong changes in the

composition of mitigation options. ITC therefore proves to be an influential determinant

of mitigation costs and strategies. Costs may rise or fall due to ITC depending on whether

progress in low carbon energy or progress in the resource sectors prevails. The effect of

ITC on the competitiveness of mitigation options influences their contributions to overall

mitigation. Moreover, this stresses the importance of models that resolve important tech-

nological options, including their potential of ITC, and account for the economy-wide

impact of ITC.

7
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The first paper used a single model with one specific formulation of ITC—but the question

how to incorporate ITC in models is far from trivial. On the contrary, among models that

include ITC there is a wide variety of approaches taken to describe ITC.

The second paper of this thesis compares ten state-of-the-art models that implement ITC.

It explores the resulting differences in their assessment of ITC, identifies the underlying

reasons for the differences, and draws conclusions that are robust across models. At

the heart of this comparison are ceteris paribus scenarios that aim to isolate and expose

the impact of ITC in the various models. The analysis reveals that ITC has potential to

reduce costs, in many models substantially. However, the magnitude of the impact of ITC

differs greatly among the models, ranging from 90 percent reduction of mitigation costs to

almost no effect. Numerous reasons for this were identified, including business-as-usual

emissions, differences in mitigation strategies, and modeling assumptions.

Business-as-usual emissions have a strong impact on mitigation costs because they deter-

mine the necessary emission reductions. Although an effort was made to harmonize the

business-as-usual scenarios of the different models, considerable differences remained

and need to be taken into account.

Mitigation strategies are explored on two levels of aggregation. First, abatement is de-

composed into the contributions of reductions of economic output, energy intensity of

output, and carbon intensity of energy. The analysis reveals that macro-economic models

without explicit representation of the energy sector tend to focus their abatement strategy

on reductions of energy intensity, whereas energy system models and models that fea-

ture an energy sector achieve the majority of their abatement through decarbonization.

Decarbonization becomes particularly important for large reductions of emissions. Sec-

ond, abating emissions through change in the composition of energy supply is considered.

The composition of the energy supply mirrors the trends of the decomposition analysis.

Models that focus their abatement strategy on reducing energy intensity and economic

output are those that lack options to decarbonize the energy system, or that simply did not

resolve the energy sector explicitly. Conversely, large reductions of carbon intensity are

implemented through large shares of carbon free energy.

Three key modeling assumptions were identified that explain some of the major differ-

ences in model results: first, when models include additional market distortions, i.e. they

describe a second-best world, climate policy may remove these distortions causing not

costs but a benefit of climate policy. Second, the choice of the model type is influential

because it often implies an equilibrium concept, which in turn implies different degrees of

flexibility to react to climate policy. Third, different assumptions about foresight of eco-

nomic agents determines their long-term investment behavior, which strongly influences

mitigation strategies and costs.

The first two papers looked at climate policies implemented as global policy targets taking

for granted that policies are agreed upon and implemented to achieve the targets, although

this is known to be difficult. The remaining papers look at the potential of issue linking

to help to build such agreements. To address issue linking, I develop a model of coalition

formation, which incorporates international trade and sanctions as well as knowledge

spillovers from research cooperation and international standards.

In the third paper, I show in numerical experiments that introducing trade sanctions pos-

itively affects international cooperation. Participation rises with the tariff rate, up to full
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cooperation. How quickly participation rises depends on the ease with which taxed goods

are substituted with alternatives. Global welfare rises with participation despite the dis-

tortions caused by trade restriction. Tariffs therefore seem to be a feasible means of

increasing participation.

In the forth paper, I apply an extended version of the coalition model to issue linking of

environmental agreements and technology oriented agreements. It turns out that linking

the environmental agreement to cooperative research changes the incentive structure such

that more actors sign the agreement. The type of technological knowledge that spills over

makes a difference for the effectiveness of this type of issue linking: research cooperation

focusing on productivity is unambiguously more effective than cooperation on mitigation

technology in raising participation in the agreement, global welfare, and environmental

quality. International technology standards are also shown to have a positive effect on

coalition formation. While the existence of a separate standards agreement alone has

very little impact on environmental cooperation, it significantly increases participation in

a linked agreement on environmental and technological cooperation.

Overall, the studies reported in this thesis suggest that there is indeed potential that ITC

may reduce the burden that mitigation requirements will put on the economy. And while

there is no final conclusion on the magnitude of the impact of ITC due to the remaining

model uncertainty, this thesis advances the understanding of these uncertainties and the

underlying reasons for the variability in the results. To exploit a large potential of ITC,

a clear carbon price signal is required. This thesis suggests that linking the negotiations

on climate policy to trade sanctions or to research cooperations is a feasible way to create

incentives that make a cooperative global climate policy more likely. More research is

needed to determine the magnitude of the potential of issue linking, but its potential in

general has been shown and different issue linking proposals have been characterized with

respect to their advantages and disadvantages.
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Chapter 1

Introduction

1.1 Motivation

This chapter sets out to motivate the main research questions addressed in this thesis on

the role of technological progress in integrated assessment modeling of greenhouse gas

mitigation.1 The necessity to reduce emissions arises from the science of climate change

and its impacts. Therefore, the current state of knowledge on climate change and its

impacts is briefly summarized in this section before turning to an introduction of the eco-

nomic themes: first, the consequences of including the economic processes that cause

technological progress in models, thus making technological progress susceptible to (cli-

mate) policies. Second, building the international coalitions that are willing to implement

these policies, therefore setting the incentive for the technological change necessary for

mitigating climate change. This chapter closes with the statement of the main research

questions and an outline of the remaining chapters of this thesis.

1.1.1 A Sense of Urgency

The Scientific Basis

When describing the climate of the earth, climatologists distinguish the climate system

consisting of components such as atmosphere, oceans and land surface, and external fac-

tors that drive the dynamics of this system, so-called forcings. The earth’s climate will

change in response to variation in these forcings, which include solar radiation, the earth’s

albedo, and the greenhouse effect. The latter describes how a set of chemicals in the atmo-

sphere (the greenhouse gases, GHG) capture radiation from the earth that would otherwise

diffuse to outer space. The magnitude of this effect depends on the concentrations of the

GHG.

The earth’s climate has always been subject to changes due to variations in the natural

forcings, for example in solar radiation or volcanic eruptions. In recent earth history,

anthropogenic emission of GHG, mainly linked to fossil fuel combustion, have added to

the concentration of GHG in the atmosphere causing a trend of global warming.

1Integrated assessment models address a problem by combining knowledge across more than one disci-

pline to evaluates its whole cause-effect chain (see, for example, van der Sluijs, 2002).

11



12 Chapter 1 Introduction

Figure 1.1: Multi-model global averages of surface warming (relative to 1980-1999) for the SRES

scenarios A2, A1B and B1, shown as continuations of the 20th century simulations. Adapted from

IPCC (2007).

Working Group I of the Intergovernmental Panel on Climate Change (IPCC) has collected

the scientific evidence supporting this theory in their contribution to the IPCC assessment

reports (IPCC WG1, 2001, 2007). The reports show beyond reasonable doubt that we are

witnessing global warming, and that anthropogenic emissions are a major contribution

to it (Rahmstorf, 2008). The Fourth Assessment Report (IPCC WG1, 2007) attests that

0.7 ◦C warming relative to preindustrial levels have already occurred, and that even if

GHG concentration were not to increase any further, we are already committed to an

additional 0.5 ◦C of warming due to the inertia in the climate system (Figure 1.1.1). But

currently projected unmitigated GHG emissions will cause a much steeper increase in

GHG concentrations. If unabated, the projected increase in global mean temperature in

2100 is projected to be in the range of 1.7 ◦C and 7.0 ◦C.

Global warming in this order of magnitude is sufficient to disturb the dynamics of the earth

system. Due to its complexity and non-linearity, the earth system contains elements that

may switch to a qualitatively different behavior when climate change surpasses certain

thresholds, so-called tipping elements. Lenton et al. (2008) list 15 such tipping elements,

a prime example being Arctic sea ice. Sea ice cover reflects more solar radiation compared

to the darker ocean surface. Therefore melting sea ice has a positive feedback on warming,

and may be destabilized at low levels of global warming. In fact, the loss of Arctic summer

sea ice may already have been triggered. Other tipping elements are the ice sheets of

Greenland and West Antarctica, the Indian summer monsoon, the Amazon rainforest, and

the Boreal forests.
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Figure 1.2: Examples of impacts associated with global average temperature change. Adapted from

IPCC WG2 (2007).

Impacts

Besides these abrupt changes in the earth system, global warming affects ecosystems and

human societies in a variety of ways. Working Group II of the IPCC studies the impacts

of climate change. In IPCC WG2 (2007), the expected impacts are for the first time

presented scaled against climate change (Figure 1.2). Even at low levels of warming of

up to 2 ◦C relative to 1980-1999, adverse impacts on water availability, ecosystems, food

supply, coastal safety, and human health are expected for 2050, and increasingly so for

2100. When climate change proceeds unmitigated, impacts in 2100 at 4 to 5 ◦C warming

include billions of additional people subjected to increased water stress, extinction of

species around the world, millions additional people at risk of coastal flooding each year,

and increased mortality from heatwaves, floods, and droughts (Parry et al., 2008).

This increased pressure on natural systems and societies may give rise to a list of security

risks. The German Advisory Council on Global Change (WBGU) looked at connections

between climate change and international conflicts (Schubert et al., 2007). They conclude

that the consequences of unmitigated climate change for international conflicts are severe:

[...] climate change will draw ever-deeper lines of division and conflict in

international relations, triggering numerous conflicts between and within coun-

tries over the distribution of resources, especially water and land, over the man-
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agement of migration, or over compensation payments between the countries

mainly responsible for climate change and those countries most affected by its

destructive effects.

1.1.2 Economics of Climate Change

Economists have attempted to monetize the impacts of climate change in so-called dam-

age functions (see, for example, Nordhaus and Boyer, 2000). This is a notoriously difficult

undertaking as it includes estimating the monetary value of ecosystem services, health,

and human life. Stern (2007) estimates the costs of business-as-usual climate change

to equate at least an average reduction of 5 percent global per capita consumption, now

and forever. When non-market impacts, high climate sensitivity, and the disproportionate

burden for poor regions are taken into account, his estimate rises to 20 percent.

A strong case for action against climate change would emerge if the costs of mitigat-

ing climate change are comparatively low—low compared to the impacts of unmitigated

climate change, and also low compared to adapting to changed climate. Therefore, the

economics of climate change need to address mitigation and adaptation.

Mitigation and Adaptation

It is now certain that mitigation and adaptation will have to complement each other. There

will be climate change even under the most stringent mitigation policy, and therefore there

will be need for at least some adaptation (Figure 1.2). On the other hand, the IPCC deems

it very likely that unmitigated climate change would exceed the world’s capacity to adapt

(IPCC, 2007, Topic 6.2). Hence there is need for at least some mitigation. Exactly where

to draw the line between between “avoiding the unmanageable” and “managing the un-

avoidable” is hard to tell. The aforementioned tipping points offer some guidance: the

“short list” of policy-relevant tipping elements in Lenton et al. (2008, Table 1) comprises

eight tipping elements for which a critical temperature range is given. The critical value

for six of them may be avoided by restraining global warming to 2 ◦C. Therefore, a pol-

icy goal like the European Union’s 2 ◦C target (EU Council, 2007) may serve as an ap-

proximation for the division of labor between mitigation and adaptation. The 2 ◦C target

requires an ambitious mitigation effort.

Technology is both part of the problem and part of the solution for the issue of climate

change mitigation. A majority of GHG emissions are of technological origins: 56.6 per-

cent of all GHG emissions are CO2 emissions from fossil fuel combustion. In terms of the

corresponding activities, emissions from energy supply, industry, and transport amount to

58.4 percent of the global total. At the same time technology and technological change in

particular offer the main possibilities for reducing emissions (IPCC WG3, 2007, Ch. 3.4).

According to IPCC WG3 (2007), some of the main technological mitigation options are:

• Improving energy efficiency and energy conservation

• Reducing the carbon intensity of energy, e.g. by switching fuels like substituting gas

for coal
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Figure 1.3: Greenhouse gas (GHG) emissions. Share of different anthropogenic GHGs in total emis-

sions in 2004 in terms of CO2-equivalent (left), and share of different sectors in total anthropogenic

GHG emissions in 2004 in terms of CO2-equivalent (right). Adapted from IPCC (2007).

• Introducing carbon capture and storage technologies

• Energy from renewable energy sources

• Nuclear power

• Develop and diffuse new technologies and practices to reduce GHG from agriculture

and land use

Therefore, there is a strong link between mitigation and technological progress, and any

policy that aims at mitigating emissions will have to induce technological change, most

importantly the decarbonization of the energy sector. Hence, mitigation and technological

change are interwoven in at least two ways: first, technological progress is essential for

mitigation options. In particular, this refers to low carbon energy technology options,

and energy efficiency improvements. Second, mitigation policies need to set incentives

for technological progress, for example by establishing a price on GHG emissions. The

following sections explore these two aspects.

Mitigation Options: Technological Change

Technological progress does not happen automatically although early economic models

resorted to this assumption of so-called exogenous technological change (for example

Nordhaus, 1994; Nordhaus and Boyer, 2000), i.e. technological change is assumed to

happen independently of policy or other economic activities. On the contrary, it is the

result of actions of economic agents. The literature distinguishes three channels through

which endogenous technological change (ETC) occurs (IPCC WG3, 2007, Ch. 2.7):

• Research and Development (R&D), which refers to some entity (for example firms or

the government) spending resources on developing new technologies or improving

existing technology, for example research spent on improving fuel cell technology.
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• Learning by Doing, which refers to advances made through production and use of

technologies. Examples include improving labor productivity in production of tech-

nologies which ultimately brings down production costs. As a result, unit costs of

the technology fall as a function of cumulated capacity.

• Spillovers, referring to the transfer of ideas and knowledge among firms, industries,

or other entities. The gas turbine technology transferred to electricity production

is one example, spillover of knowledge in-between countries due to foreign direct

investment is another.

There is empirical evidence for all three channels of technological change. For exam-

ple, there are econometric studies linking R&D expenditure to productivity increases (for

example Griliches, 1992), as well as statistical analyses on “learning curves” correlat-

ing increasing cumulative production volumes and technological advances (IPCC WG3,

2007, Ch. 3.4). These insights were originally taken up by two separate branches in the

modeling literature, macro-economic endogenous growth theory and the learning (or ex-

perience) curve literature (Köhler et al., 2006).

The endogenous (or “new”) growth theory focuses on R&D and spillover effects. In

these models, knowledge capital is accumulated through R&D investments, externalities

to physical capital accumulation, or other spillovers, leading to productivity improve-

ments (see, for example, Aghion and Howitt, 1998). The empirical evidence of learning

curves of individual technologies has been used by bottom-up energy system models.

As these models resolve technological detail, they can implement “learning curves” for

various energy technologies.

Although present in the literature, ETC was neglected in early policy models of climate

change. Even in 2002, Grubb and colleagues find that “most models of energy, economy,

and environment” use exogenous assumptions to describe technological change (Grubb

et al., 2002). The Third Assessment Report (IPCC WG3, 2001) included some new mod-

els that incorporated ETC, but still ETC was not prevalent. Surveying these existing ETC

models, Grubb and colleagues find “striking discrepancies in their basic conclusions.”

While they can cite several models where induced technological change is very respon-

sive to climate policy and hence has large effects, their survey includes models that show

only a modest response. Their conclusion is that there is neither agreement on how to

model ETC, nor are the results from ETC modeling consistent. Clearly, further research

on the impact of ETC is merited. This view is enforced by a subsequent survey (Sijm,

2004) on ETC in climate policy modeling. By this time, the list of models implementing

ETC had grown, but discrepancies among macro-economic models as well as between

top-down and bottom-up models were still large.

Given the importance of ETC for mitigation scenarios, more research is needed to, first,

identify robust conclusions about the likely effects of induced technological change in

climate policy models, and second, to understand and learn from the differences in model

predictions so far in order to improve this important feature.
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Mitigation Incentives: The Carbon Price

There are two sides to modeling induced technological change. On the one hand, as

discussed in the previous section, an endogenous formulation of technological progress

has to be part of the economic model. The model has to allow for technological change to

be induced. On the other hand, there has to be a policy (here: a climate policy) to induce

this change. In a world without a central authority that can imposes such a policy onto

all nations, achieving an efficient global climate policy requires voluntary cooperation of

sovereign states. In the climate policy models referred to in the previous section this issue

is simply assumed away: most of these models do not specify policies but global policy

goals, assuming their efficient implementations by nations. Furthermore, it is assumed

that all nations agree on the need to take action and on the extent of climate policy. In a

word, there is full cooperation concerning climate protection.

The following section sets the stage for investigating these assumptions. First, the theory

of externalities is introduced. In light of this theory, the fact that GHG emissions cause

climate change as an externality justifies policy intervention on the global level. More

specifically the realization of a global price on GHG emissions is justified—either by

means of a price policy such as a tax, or a quantity policy such as emission caps. Second,

the theory of international environmental agreements explores which incentive structures

qualify to foster international cooperation on such environmental policies.

Theory of externalities The emission of greenhouse gases poses an externality prob-

lem. Intuitively, these are situations where the economic decision of one actor directly or

indirectly affects a second actor who had no part in this decision. In the case of climate

change, GHG emissions are linked to economic decisions of the emitter, for example the

decision to burn fossil fuel to generate electricity. Other actors are then affected by cli-

mate change damages. Mathematically this means that a variable describing the economic

decision (emissions) is part of the utility functions of both players.

The theory of externalities investigates whether the existence of externalities has an ad-

verse effect on economic efficiency, i.e. whether the economy allocates goods and services

in a (Pareto-) efficient manner. In the institutional set-up of a competitive equilibrium,

achieving efficiency boils down to the existence markets. For example, if all externalities

are treated just like other commodities, i.e. there are markets for them, then according

to the first fundamental theorem of welfare, the resulting competitive equilibrium will be

efficient (see Cornes and Sandler, 1996, Chapter 3).

On the other hand, a rationale for policy intervention arises in the absence of such markets.

Then, the emerging allocation can be shown to be inefficient because social and private

costs of the externality diverge. In the case of climate change, the private costs of the

emitter are only the climate change impacts affecting the emitter herself, while the social

cost is the total of all climate change impacts.

An efficient equilibrium may be restored by adjusting the private costs to match the social

costs. One way of doing this is to impose a price on the externality, thus internalizing the

external costs—a tax in case the externality has a negative effect, or a subsidy in case of

a positive externality (Pigou, 1946, as cited in Cornes and Sandler, 1996, Chapter 4).

Alternatively, the conflicting interest of the emitting party and the damaged party could
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be resolved by bargaining among them. The outcome of such a bargaining process would

depend on the initial property rights, but can be shown to be (Pareto-) efficient regardless

of the latter (Coase, 1960, as cited in Cornes and Sandler, 1996, Chapter 4). Suppose, for

example, that emission of GHG was completely unregulated. Implicitly, this amounts for

potential emitters to have the right for unlimited emissions granted to them. Any actors

who preferred lower GHG concentration level has an incentive to offer payment to the

emitters such that these reduce their emissions, and emitters would have an incentive to

accept payment. If, on the contrary, all parties had the right to a clean atmosphere, it

would be up to the emitters to offer payment for permission to emit. Coase argued that, if

transaction costs were low, such bargaining would take place due to the best interest of all

parties, and that this makes policy intervention such as Pigouvian taxes unnecessary. In

case of climate change, the considerable transaction costs for bilateral bargaining between

all affected parties may be reduced by establishing markets for emission permits.

In an undistorted competitive equilibrium, the price signals from either the emission tax

or the permit price will suffice to attain an allocation that is Pareto-efficient. And while

introducing additional features (for example uncertainty or an oligopolistic market struc-

ture) poses the question of “prices versus quantities” anew (see Hepburn, 2006 for an

overview of the extensive literature), it is undisputed that global cooperation to put a price

signal on GHG emissions is an approach to mitigating climate change that is, at least

potentially, Pareto-efficient.

International Environmental Agreements This is where the literature on international

environmental agreements picks up. This branch of the literature shifts the focus from the

question which policy instrument is preferable to the issue of how to build self-enforcing

coalitions of players that jointly implement a single environmental policy. Often, this

includes the application of game theoretic concepts to the question. Applied to climate

change, cooperation or non-cooperative behavior translates to abating GHG emissions or

not. In a world without central authority, such cooperation can only be voluntary, i.e. by

agreement.

A stable climate or a clean atmosphere has the properties of a public good: it is non-rival

and non-excludable in its use. When a good is non-rival, its provision has an externality:

once provided, it is available to others who were not part of the decision to create this

good. Therefore, as discussed previously in the section on externalities, provision of a

non-rival good constitutes a positive externality and is prone to undersupply and merits

policy intervention.

Non-excludability gives rise to a free-riding incentive. Since nobody can be excluded

from consumption of the good regardless of whether one contributed to its provision,

there is an incentive to let others provide the good and to enjoy its benefits for free.

This gives rise to a situation similar to the well known prisoners’ dilemma where two

prisoners are charged with a common crime (Table 1.1). Ideally, they would both deny

these charges and, in the absence of better evidence, be convicted for lesser crimes. For

if both confessed, they would face a more severe punishment. However, if only one

remained silent while the other confessed, the former will be incriminated while the latter

escapes punishment as a principal witness. The game theoretic analysis reveals that when

rational actors face this situation, both will try to incriminate the other. Therefore, in the
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Table 1.1: Prisoners’ Dilemma. The payoff structure of the Prisoners’ Dilemma.

Deny Confess

Deny probation, probation acquittal, jail

Confess jail, acquittal jail, jail

Deny Confess

Deny -2, -2 0, -6

Confess -6, 0 -4, -4

Table 1.2: Chicken Game. The payoff structure of the Chicken Game.

Swerve Straight

Swerve tie, tie coward, brave

Straight brave, coward crash, crash

Swerve Straight

Swerve 0, 0 -2, 1

Straight 1, -2 -10, -10

end, both will lose compared to the socially optimal outcome they could attain if they

cooperated.

The good news from early research in international environmental agreements is that

transboundary pollution problems do not fall into the category of prisoners’ dilemma

games (Carraro and Siniscalco, 1993). While players in a prisoners’ dilemma will al-

ways benefit from non-cooperative behavior, in transboundary pollution players may be

better off to abate their emissions even though other players do not. This game struc-

ture is known as a chicken game (Table 1.2). It refers to the situation of two cars racing

towards each other on a narrow lane. The drivers have a choice of avoiding a crash by

swerving but at the price of being a “chicken”, or coward. By not swerving, players show

bravery and win. But if neither driver swerves and the cars crash, the loss is far greater

than being ridiculed as a coward. Unlike in the prisoners’ dilemma, partial cooperation

is therefore preferable to no cooperation—however, both players prefer their opponent

plays “cooperatively.” Similarly in climate change, it may be rational to abate emissions

and thus prevent the worst from happening even though some nations do not cooperate,

i.e. participate in the abatement effort. Nevertheless, the situation where the others coop-

erate on abatement and oneself belongs to those enjoying the stable climate for free is still

preferable. Therefore, a strong incentive to free-ride remains.

Consequently, the bad news from the literature on international environmental agreements

is that stable coalitions tend to be small, in particular in cases where cooperation is needed

the most. That is, cooperation fails when the difference between cooperative and non-

cooperative behavior is large, and therefore much is to be gained by cooperating (for

example Barrett, 1994).

The above situation describes the incentives to sign an international environmental agree-

ment that restricts action to abatement or no abatement. But the “rules of the game” (or

the incentive structure of the treaty) change with the design of the agreement. Since the

early 1990s numerous suggestions have been made how to design international environ-

ment agreements in order to set the right incentives for voluntary participation if not by all

then at least by as many as possible. Suggestions include side payments or transfers, the

introduction of minimum participation clauses, financial penalties for non-participants,

trade sanctions, and linking the issue of environmental protection to other issues within
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one agreement (see, for example, Wagner, 2001; Barrett and Stavins, 2003; Perez, 2005).

From the perspective of endogenous technological change modeling, this literature on

international environment agreements raises two fundamental questions. First, as men-

tioned above, there is no induced technological change without a corresponding policy.

For induced technological change to play a key role in mitigating GHG emissions, there

needs to be a price on carbon. Thus, the question of how to raise participation in inter-

national environmental agreements is an essential prerequisite to induced technological

change.

Second, technology itself is a potential incentive to broaden international environmental

agreements. Development and diffusion of technology as well as technology transfers

work on the international level. Linking technology oriented agreements to international

environmental agreements therefore has the potential to raise participation in international

environmental agreements (de Coninck et al., 2007).

1.2 Thesis Objective

The objective of this thesis is to explore the role of endogenous technological change

(ETC) for strategies to mitigate climate change. I address (a) the role of ETC for miti-

gation costs and options and (b) international cooperation as a necessary assumption for

inducing global technological change and the role of ETC in fostering this international

cooperation.

The following chapters of this thesis are guided by two sets of research questions corre-

sponding to these two broad topics. First, existing integrated assessment models of global

mitigation options are employed to address the following questions:

• What is the impact of ETC on mitigation policy scenarios? What is the role of

economy wide feedbacks concerning ETC? What are the implications of ETC in

particular for mitigation costs and mitigation strategies, i.e. the optimal composition

of mitigation options?

• How much do integrated assessment models differ in their analysis of ETC? What

are the underlying reasons for the differences? What conclusions are robust across

models despite the model uncertainty?

Second, a newly developed dynamic model of coalition stability is used to explore some

strong assumptions made in the previous chapters. These assumptions include global

agreement to take action in mitigating climate change, and to do so in a globally coordi-

nated, cooperative way, such as to yield prices on GHG emissions globally. The following

questions guide the research in these chapters:

• What is the prospect for international cooperation on climate change mitigation?

How can it be increased by the design of international environmental agreement?

What is the potential of trade sanctions to increase participation in international en-

vironmental agreements? What are the effects on environmental and global welfare

of trade sanctions on the one hand and increased cooperation on the other hand?
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How can competitive equilibria be computed in models with emission externality,

international trade, and tariffs?

• How can ETC help to promote international cooperation on emission abatement?

What are the roles of different technology oriented agreements (TOA)? What is the

role of cooperative research and development and technological spillovers? In which

ways does the type of technology that spills over matter? What is the role of interna-

tional technology standards?

1.3 Thesis Outline

The research questions are addressed in four journal publications, which are reproduced

as Chapters 2 to 5. Chapter 6 summarizes and draws conclusions.

Chapter 2 explores the impact of endogenous technological change on the costs of climate

protection and on mitigation strategies in terms of the optimal mix of mitigation options. I

apply the integrated assessment model MIND in a numerical sensitivity analysis to assess

the implication of parameter uncertainty for conclusions concerning endogenous techno-

logical change. In extensive parameter studies of economic and technological parameters

these uncertainties are explored further, and insights are gained into feedbacks between

technological progress and macro-economic dynamics. This chapter has been published

in the Energy Journal.2

Chapter 3 compares ten state of the art integrated assessment models incorporating fea-

tures of endogenous technological change. The aim is to learn from the differences in the

effects of endogenous technological change in these models, and to identify conclusions

that are robust across models. In preparation of the model comparison exercise, all mod-

eling teams were invited to two workshops on the implementation of endogenous tech-

nological change within each model, and the implementation of the numerical scenarios

specific to this comparison. In particular, two sets of policy scenarios were run to analyse

the impact of technological change being endogenous under ceteris paribus conditions,

namely CO2 concentration stabilization in presence and absence of endogenous techno-

logical change. The models’ business-as-usual projections were harmonized to minimize

so-called “baseline effects.” The analysis of model results focused on aggregated indices

of mitigation costs and strategies that could be obtained from all models despite the large

divergence in model design. Costs are evaluated as reductions in gross world product.

Mitigation strategies were analysed in two ways: first, by applying a decomposition anal-

ysis to carbon dioxide reductions along Kaya’s identity using the refined Laspeyres index

method, and second, by comparing mitigation strategies in terms of the mix of techno-

logical options in the energy sector. Furthermore, the carbon price and usage of carbon

sequestration and storage are assessed as indicators of the economies’ dependency on fos-

sil fuels and the importance of an end-of-pipe technology for carbon free energy. Close

cooperation with the participating modeling teams was necessary to ensure the accurate

interpretation of the numerical results. This chapter has been published in the Energy

2Edenhofer, O., K. Lessmann, N. Bauer (2006): Mitigation Strategies and Costs of Climate Protection:

The Effects of ETC in the Hybrid Model MIND. Energy Journal Special Issue Endogenous Technological

Change and the Economics of Atmospheric Stabilisation, 207–222.
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Journal.3

In Chapter 4 I explore incentives to foster participation in an international environmen-

tal agreement that aims to mitigate GHG emissions. In particular, the prospect of trade

sanctions to stabilize coalitions are addressed. For this purpose, I develop an integrated

assessment model in the economic framework of multi-actor optimal growth models. The

model accounts for climate change as a stock pollutant (CO2 concentration and global

mean temperature), damages from climate change, and international trade and tariffs.

The implementation includes an algorithm to solve for a competitive equilibrium despite

multiple externalities in the economy. In addition to the effect of tariffs on participation,

I analyse the impact on environmental effectiveness, global welfare, and credibility of

imposing the sanctions. This chapter is accepted for publication in Economic Modelling.4

Chapter 5 considers the scope of technology oriented agreements for fostering interna-

tional cooperation by examining the impact of cooperative research and development

(R & D) on the one hand and international technology standards on the other hand. The

basic model from Chapter 4 is extended for this paper to allow for knowledge spillovers

in two sectors: R & D aimed at augmenting labor productivity, and R & D targeting mit-

igation technology. In the analysis, R & D cooperations are compared in terms of their

effectiveness to raise participation, sustain environmental protection, and their effect on

global welfare. International technology standard are assessed as a complement to re-

search cooperation as well as by themselves. This chapter is submitted to Resource and
Energy Economics.5

Chapter 6 concludes.

3Edenhofer, O., Lessmann, K., Kemfert, C., Grubb, M., and Koehler, J. (2006): Induced Technological

Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from

the Innovation Modeling Comparison Project. Energy Journal Special Issue Endogenous Technological

Change and the Economics of Atmospheric Stabilisation, 57–107.
4Lessmann, K., R. Marschinski, and O. Edenhofer: The Effects of Tariffs on Coalition Formation in a

Dynamic Global Warming Game. Economic Modelling (2009), doi:10.1016/j.econmod.2009.01.005.
5Lessmann, K. and O. Edenhofer: Research cooperation and international standards in a model of coali-

tion stability. Resource and Energy Economics, submitted.
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Mitigation Strategies and Costs of Climate Protection:  
The Effects of ETC in the Hybrid Model MIND

Ottmar Edenhofer*, Kai Lessmann*, Nico Bauer**ttmar Edenhofer*, Kai Lessmann*, Nico Bauer**

MIND is a hybrid model incorporating several energy related sectors 
in an endogenous growth model of the world economy. This model structure 
allows a better understanding of the linkages between the energy sectors and the 
macro-economic environment. We perform a sensitivity analysis and parameter 
studies to improve the understanding of the economic mechanisms underlying 
opportunity costs and the optimal mix of mitigation options. Parameters 
representing technological change that permeates the entire economy have a 
strong impact on both the opportunity costs of climate protection and on the 
optimal mitigation strategies e.g. parameters in the macro-economic environment 
and in the extraction sector. Sector-specific energy technology parameters change 
the portfolio of mitigation options but have only modest effects on opportunity 
costs e.g. learning rate of the renewable energy technologies. We conclude that 
feedback loops between the macro-economy and the energy sectors are crucial 
for the determination of opportunity costs and mitigation strategies.

1. SETTING THE SCENE

The Innovation Modeling Comparison Project (IMCP) explores the 
consequences of endogenous technological change (ETC) for the economics of 
stabilizing atmospheric carbon dioxide (CO

2
) concentration. This paper contributes 

to the IMCP by presenting an analysis of technological change, both at different 
levels and in different sectors of the Model of Investment and technological 
Development (MIND). MIND combines an intertemporal endogenous growth 
model of the macro-economy with sector-specific and technological details taken 

The Energy Journal, Endogenous Technological Change and the Economics of Atmospheric 
Stabilisation Special Issue. Copyright ©2006 by the IAEE. All rights reserved.

* Potsdam Institute for Climate Impact Research (PIK), P.O. Box 60 12 03, Germany, E-mail: 
edenhofer@pik-potsdam.de

** Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland.
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from the field of energy system modeling. In particular, we explore the impact of 
endogenous technological change on opportunity costs and mitigation strategies 
within the framework of a social cost-effectiveness analysis.

We explore the impact of ETC in a social cost-effectiveness framework 
because we want to understand how technological change is induced by climate 
policy. Several studies have already incorporated aspects of ETC in this 
framework (Buonanno et al, 2003; Chakravorty et al, 1997; Goulder and Mathai, 
2002; Kypreos and Barreto, 2000; Nordhaus and Boyer, 2000; Nordhaus, 2002; 
Popp, 2004a; 2004b). The added value of MIND arises mainly from two features. 
First, we incorporate a wide spectrum of relevant mitigation options, including 
improvement of energy efficiency, carbon capture and sequestration (CCS), 
renewable energy technologies, and traditional non-fossil fuels (exogenous time 
series for large hydropower and nuclear). Second, technological change in MIND 
has an endogenous formulation with R&D investments in labor and energy 
productivity, learning-by-doing, and vintage capital in the different energy sectors. 
We believe that including these features of ETC is essential for the assessment of 
macro-economic mitigation costs and the portfolio of mitigation options. MIND 
is a hybrid model merging features from bottom-up and top-down models. It 
resembles a bottom-up model because it comprises several energy sectors. However, 
compared to energy system models, the technologies are represented at a more 
aggregated level. In MIND, these sectors are embedded within a macro-economic 
environment, in order to evaluate the feedbacks between the macro-economy and 
the energy sector (see Manne et. al. 1995 for an example of a similar exercise). 
We will show that these feedbacks are crucial for an understanding of opportunity 
costs and mitigation strategies in an economy faced with climate policy. 

The next section briefly introduces the model and its calibration, 
highlighting the improved treatment of CCS in MIND 1.1. Section 3 discusses 
technological change within MIND, forming the main part of this paper. Section 
4 draws conclusions.

2. THE MODEL STRUCTURE OF MIND 1.1

The model equations of MIND are introduced and discussed in 
Edenhofer, Bauer and Kriegler (2005). The model version 1.0 presented therein 
has been extended by Bauer (2005), to replace exogenous scenarios of Carbon 
Capture and Sequestration (CCS) with a technologically detailed, endogenous 
treatment of the CCS option (model version 1.1). This study uses MIND 1.1, 
adapted slightly to meet the requirements of the IMCP, and enhanced by a more 
sophisticated carbon cycle (Hoos et al. 2001). The following section provides a 
summary of the model structure and parameter calibrations. Model equations 
are restricted to the parameters treated in the sensitivity analysis and parameter 
studies in this article; for a comprehensive discussion of the model structure we 
refer to Edenhofer et al. (2005) and Bauer (2005). 
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MIND is an integrated assessment model comprising a model of the world 
economy drawing specific focus on the energy sector, and a climate module computing 
global mean temperature changes. MIND therefore allows us to assess the impacts of 
constraints to climatic change on the economy in cost-effectiveness analysis. 

MIND models economic dynamics by adopting an endogenous growth 
framework. It calculates time paths of investment and consumption decisions 
that are intertemporally optimal. The objective is to maximize social welfare, 
defined as the present value of utility (pure rate of time preferences is 1%), which 
is a function of per capita consumption exhibiting diminishing marginal utility. 
Most economic activity is subsumed in an aggregate CES production function 
(equation 1), the output Y

A
 of which describes the gross world product (GWP).1

Y
A
 = φ

A
[ξ

A
L(A * L

A
)–ρ

A + ξ
A
E(B * E)–ρ

A + ξ
A
K K

A
–ρ

A]–1/ρ
A (1) 

 
The income share related parameters ξ

A
 are calibrated so that the actual income 

shares of labor L
A
, energy E, and capital K

A
 relate to each other at the ratio of 

66:4:30. Total factor productivity Φ
A
 is a fixed scalar calibrated to a value where 

the historical output of 2000 is reproduced. The elasticity parameter ρ
A
 determines 

the elasticity of substitution σ
A = (1+ρ

A
)-1. In some integrated assessment models, 

the elasticity of substitution between capital and energy is 0.4 for developed 
countries and 0.3 for developing countries (Manne et al, 1995). We have chosen 
an overall elasticity of substitution for all three factors of σ

A = 0.4. Labor L
A
 

is described by an exogenous population scenario adopted from the commoncommon 
POLES/IMAGE baseline (CPI, Vuuren et al. 2003). Capital stock baseline (CPI, Vuuren et al. 2003). Capital stockVuuren et al. 2003). Capital stock. Capital stock K

A
 is built up 

through investments and depreciates at a rate of 5 %. The initial value of K
A
 is 

derived from Y
A
 and an estimated capital coefficient. Capital coefficients were 

computed from the OECD database and from PWT6.1 for different countries. 
Their values agglomerate around 2.5. Since energy sector capital is separate from 
K

A
, we assume a lower capital coefficient of 2.0. Variables A and B denote the 

productivities of labor and energy, respectively, and are stock variables determined 
by R&D investments according to equation (2):
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RD
A
 and RD

B
 are investment flows controlled by the central planner. The 

parameters γ
A
 and γ

B
 (where 0<γ

A 
<1. 0<γ

B
 <1) model the decreasing marginal 

productivity of R&D investments. They are assumed to take the values of 0.05 

1. MIND is implemented in discrete time steps of 5 years. In the model equations of this text we 
present the more intuitive continuous formulations, e.g. in case of derivatives.
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and 0.1, respectively. Parameters α
A
 and α

B
 determine the productivity of R&D 

investments. They are calibrated at a rate such that spending 1 % of the GWP on 
energy R&D increases the energy efficiency parameter by 2.25 %; when 2.5 % of 
GWP is spent on labor R&D, the labor efficiency parameter increases by 2 %.

The energy input to aggregate production, E, is an additive composite of 
fossil energy, renewable energy, and traditional non-fossil energy, with the latter 
given exogenously. Fossil energy is produced from energy conversion capital and 
primary energy input in a CES production function. Fossil resources are converted 
to primary energy using an exogenous assumption about the carbon/energy ratio 
of the fossil fuel mix, its availability being described by a model of resource 
extraction. Resource R is extracted by capital Kres, the average productivity of 
which is subject to a scarcity effect (κres,s) and a learning-by-doing effect (κres,l):

 
R = κres Kres (4)  

 
κres = κres,s κres,l (5)
  

The initial resource extraction is R = 6.4 GtC (SRES), assumed to be produced 
by a capital stock of Kres = 5 trillion $US. This determines κres,l because κres,s is 
normalized to unity.

The scarcity effect κres,s is determined by the marginal costs of resource 
extraction C

res
mar:

 χ
1κres,s =  ——— (6)

 C
res
mar

  
In equation 6, parameter χ

1
 as well as the marginal costs in 2000 are set to $113. 

During the simulation, marginal costs C
res
mar increase with cumulative resource 

extraction CRres according to equations 7 and 8. 

 CR
resC

res
mar = χ

1  
+ χ

2
 ——— 

χ
4

 (7)
 χ

3
 

CR
res

(t)  =   
t

∫ 
τ1    

R(t')dt', with CR
res

 (t = τ
1
) = 0 (8)

 

Parameter χ
1
 denotes initial costs of the fossil resource, the exponent χ

4
 captures 

the curvature of the function (i.e. the timing of increasing costs), and χ
2
 gives 

the marginal costs once the amount described by χ
3
 has been extracted. We 

parameterize this function according to Rogner’s (1997) empirical assessment 
of world hydrocarbon resources, and arrive at the values χ

2
 = 700, χ

3
 = 3500 

and χ
4
 = 2. 
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The learning-by-doing effect of capital productivity κres,l depends on the 
ratio of actual resource extraction Eres,l to initial resource extraction E0

res,l. 
 
 κres,l Eres,l
κ• 

res,l =  ————  (κ
res,l

max – κres,l) ———  
βres,l

  – 1   (9)
 τres,l κres,l

max E0
res,l

with  κres,l (t = τ
1 
) = κ0

res,l

  
The factor βres,l = 0.4 dampens the learning-by-doing effect: a rapid increase in 
extraction induces a loss in productivity gains relative to the same increase in 
extraction spread over a longer time period. Furthermore, productivity gains from 
learning saturate when productivity approaches its maximum value κ

res,l
max which is 

set to twice its initial value. Parameter τres,l determines the speed of learning and 
is set to 100 years.

Renewable energy Eren is produced by capital Kapren which is employed 
at FLHren = 2190 full load hours per year.

Eren (t) = FLHren * Kapren (t) (10)
 
Kapren (t) =   

t

∫
t0    

ω (t – t') κren (t') Iren (t')dt' (11) 
 

The available renewable energy capital stock in each point in time is determined 
by summing over the investments into renewable energy Iren in preceding time 
steps multiplied with the productivity of installed capital κren. Depreciation is 
modeled by weights ω which determine the fraction of capital that still remains. 
ω

1
 to ω

7
 are set to 1.0, 0.9, 0.8, 0.7, 0.5, 0.15, 0.05, and ω

i
 = 0 if i > 7. This allows 

to model different capital productivities for different vintages of the capital stock. 
Capital productivity κren indeed changes in time because the costs of renewable 
energy equipment cren decrease, subject to learning-by-doing.

 
 1
κren  = ——————— (12)
 cren (t) + cfloor 
 

The inverse of floor costs cfloor = 500 US$/kW constrains capital productivity from 
above, while cren starts out at cren = 700 US$/kW and decreases with cumulative 
installed capital CKapren:

CKapren =    
t

∫ 
τ0    

Kapren (t')dt' (13) 
 

The following equation describes the dynamics of learning-by-doing in the 
renewable sector: 

cren,t  –  cren,t– 1 =  cren,0 CKap–μr

re
en

n,0
  (CKap–μr

re
en

n,t  –  CKap–μr
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 CKapren,t – 1
 × —————— 

βren

 (14)
 CKapren,t 
with cren (t = 0) =  c0

ren,
 

The learning parameter μren determines the learning rate lr and reflects a learning 
rate of 15 %, i.e. investment costs decrease by 15 % with every doubling of 
cumulative installed capacity. Parameter βren within the last factor of the right 
hand side of the equation causes a dampening similar to βres,l in the learning-by-
doing equation of the fossil resource extraction (equation 9). Set to βren = 0.4, it 
prevents learning that is too fast. 

There are three sources of carbon dioxide emissions: fossil fuel combustion, 
leakage from sequestered CO

2
, and emissions from land-use and land-use change. 

The latter are described by an exogenous time series. Since fossil resources are 
measured in tons of carbon, resource use R and emissions Em coincide, except for 
land-use emissions and Carbon Capturing and Sequestration (CCS):

Em(t) = R(t) + LULUC(t) – R
cap

(t) + LEAK(t), (15) 
 

where R
cap

 denotes the amount of CO
2
 captured in a given year and LEAK denotes 

leakage.
CCS is modeled as a chain process distinguishing six steps: CO

2
 

is captured at point sources (1) and transported via pipelines to sequestration 
sites (2). There, the CO

2
 needs to be compressed (3) before it is injected into 

the sequestration site (4). Then, it either remains in the site (5) or leaks into the 
atmosphere (6). Processes 1-4 are capital intensive and are modeled as capital 
stocks representing available capacities for the individual processes. Capacities 
are built up by investments according to the following equation:

Kpq (t) =   
t

∫
t0    

ωq (t – t') ι –1
pq (t') Ipq (t')dt' (16)

  
Variables Kpq denote the capacities, index p denotes the process step, and the 
index q denotes different investment alternatives such as one of five distinct 
capture technologies or one of six distinct sequestration alternatives. Weighting 
parameters ω introduce a depreciation scheme for different vintages of the 
capital stocks, similar to equation (11) in case of renewable energy. Investments 
are denoted Ipq and the investment costs are ιpq. Investment costs for capturing 
capacity range from ~100 $US/tC to ~450 $US/tC depending on the specific 
capture technology. When the productivity of CCS investments is varied in 
parameter studies later on in this paper, the same relative change is applied to the 
investment costs for each technology.

In addition to the limitation inflicted by the necessity to build up 
capacity, the amount of carbon that may be captured is limited by a static and 
a dynamic constraint. The static constraint limits the amount of carbon which 
can be captured from a large power plant as a fraction of the resource use in 
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the business-as-usual scenario. The dynamic constraint defines an upper limit 
of investments into the specific capture technologies in each period. The upper 
limit is defined as a share of the investments in the power generation sector. The 
rationale is that the capability of retrofit investments in large power plants depends 
on the total amount of investments undertaken in the power generation sector.

The injection of CO
2
 into particular sequestration sites demands two 

types of facilities: compressors and injection wells (steps 3 and 4). The modeling 
approach takes into account that both facilities demand investments and secondary 
energy. In steps 5 and 6, the modeling approach considers the capacity constraint 
of each sequestration alternative j and leakage of sequestered carbon: Leakage is 
described by a rate, and the capacity of each sequestration alternative is the upper 
bound for the cumulative amount of CO

2
 that is injected into each sequestration 

alternative. 

3. THE ROLE OF ENDOGENOUS TECHNOLOGICAL CHANGE IN  MIND

In what ways does endogenous technological change matter in policy 
scenarios computed with MIND? In the following sections, we explore this 
question using sensitivity analysis and miscellaneous parameter studies (see Bauer 
et al, 2005 for initial parameter studies with MIND). In the sensitivity analysis, we 
rank important technology-related model parameters according to their influence 
on two model outputs: the opportunity costs of climate protection and the mix of 
options used for CO

2
 mitigation. We then study the effect of parameter variations 

on the same model outputs and analyze the underlying economic dynamics. All 
model runs stabilize atmospheric CO

2
 concentration level at 450 ppm.

3.1 Local Sensitivity Analysis

Figure 1a and 1b show the influence of important parameters of 
MIND on opportunity costs of climate policy (1a) and on the mix of mitigation 
options (1b). The former are measured as losses of gross world product (GWP), 
accumulated from 2000 to 2100 and discounted to present value at a rate of 5 %, 
relative to the business-as-usual scenario. The latter is represented by the ratio of 
the two dominant options, renewable energies and CCS, where a ratio of unity 
implies that the same amount of CO

2
 reductions may be attributed to each of 

the mitigation options. Parameter influence is measured by the response of the 
model to a 5 % variation of the parameter. Taking the set of parameters from the 
model calibration as the starting point, we vary one parameter at a time, hence the 
effects reflect local sensitivity. As local sensitivity analysis assesses parameter 
sensitivity at only one point in parameter space it neglects the fact that sensitivities 
may vary tremendously at other points in parameter space. Using a measure of 
global sensitivity, i.e. a measure that takes into account simultaneous variation of 
several parameters, is preferable as it provides a remedy to this shortcoming. 
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However, local sensitivity analysis is used in this paper for the following 
two reasons. Firstly, the model response to a change in a single parameter, ceteris 
paribus , is an intuitive measure. Secondly, the computational burden for a 
local analysis is much lower. To emphasise, while this analysis sheds light on 

Figure 1. Sensitivity Analysis

1a.

1b.

Figures 1a and 1b show the influence of important technological parameters on opportunity costs and 
mix of mitigation options, respectively. Metric is the deviation of the output in response to an up to 
5% increase (decrease) of the parameter. The parameter “e.o.s. production” refers to the elasticity of 
substitution σ

A
 in aggregate industrial production, i.e. production of the gross world product.
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the influence of parameters and the potential influence of their uncertainties on 
model results, we do not explicitly test parameter uncertainties. Therefore, we 
make no statements about the relative importance of parameters in contributing 
to the uncertainty of computed results, but rather, about the ir potential to impact 
results themselves.

As Figure 1a indicates, the greatest influence on opportunity costs is 
exerted by the elasticity of substitution σ

A
, followed by the parameters describing 

the availability of fossil resources, and the effectiveness of R&D investments in 
labor productivity. The latter and the top three parameters have a positive effect 
on costs, i.e. costs increase with the parameters, whereas the assumption of high 
marginal future fossil resources costs have a negative effect. Productivity of energy 
efficiency R&D and the learning rate of the renewable energy technologies rank 
next, followed by two more sector specific parameters, the learning parameter in 
fossil resource extraction and the efficiency of investments in CCS. Overall, the 
relatively small responses of the model to parameter variations (less than 5%) 
improves the confidence in the robustness of the computed opportunity costs. 
In the next two sections we will explore the reasons for this observation, and 
evaluate the role of technological change in deriving these results.

Figure 1b depicts the influence of parameters on the mix of mitigation 
options. It is immediately evident from a comparison between Figure 1a and Figure 
1b that the ranking of parameters has changed. Most notably, the elasticity of 
substitution has dropped to the bottom rank, and two resource related parameters, 
χ

2
 and χ

3
, also emerge to fall in ranking. Conversely, the parameterization of 

labor R&D, the learning rate of renewable technologies, and the efficiency of 
CCS investments have risen in the hierarchy. Overall, the mitigation mix is 
more sensitive (with variations up to 10 %) than the mitigation costs in Figure 
1a. This result comes as no surprise. Since GWP losses are closely related to 
social welfare, the maximization of which is the objective of MIND, GWP loss 
is deliberately kept to a minimum. The mix of mitigation options, on the other 
hand, is endogenously determined to minimize costs. It is intuitive that a change 
in the parameter values alters the competitiveness of mitigation options, hence its 
impact on the mitigation mix is significant.

3.2  Determinants of the Opportunity Costs

This section takes a closer look at the opportunity costs of climate 
protection. We present parameter studies varying two parameters simultaneously. 
This enables us to discuss the effects of varying these parameters, as well as 
analyzing the interdependencies between them, hence taking a first step beyond 
a local sensitivity analysis presented in Section 3.1. To an extent, this analysis 
remains very much local in character since many parameters remain fixed at 
their default levels. However, restricting the variation to two parameters at a time 
enables an intuitive graphical presentation of the results, which provides deeper 
and useful insights into the workings of MIND.
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We start out by taking a look at the engine of endogenous growth in 
MIND: R&D investments that drive labor and energy efficiencies. Figure 2a 
displays the productivity of these investments. While the two parameters are similar 
with respect to the process they describe – accumulation of a knowledge stock 
increasing the productivity of an input factor to aggregate production – their effects 
on opportunity costs are contrary. An enhanced effectiveness of labor productivity 
R&D raises costs, while better energy efficiency R&D reduces GWP losses. This is 
due to opposite effects on the mitigation gap, i.e. the discrepancy of CO

2
 emissions 

between business-as-usual and climate policy scenarios. More effective labor R&D 
stimulates additional economic growth and implies higher CO

2
 emissions in the 

baseline. More effective energy R&D investments, on the other hand, facilitate 
much better energy efficiency in the baseline, and hence lowers CO

2
 emissions. 

Figure 2. Parameter Studies of Mitigation Costs

Figures in this panel show discounted gross world product loss (discount rate is 5 %) for several 
parameter studies. In figure 2a, energy R&D and labor R&D refer to the productivity of investment 
into research that enhances the efficiency of the corresponding factor. In 2b, e.o.s. production refers to 
the elasticity of substitution in the aggregate industrial production sector. Parameters χ

3
 and χ

4
 in figure 

2b and 2c refer to the size of the fossil resource base and the exponent of the Rogner curve, respectively. 
Figure 3d treats the learning rate of renewable technologies and the efficiency of investments in CCS 
technology. The pairs of default parameter values are indicated with a bold cross.
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The mitigation gap characterizes the challenge for the economy facing climate 
protection goals and manifests itself in the opportunity costs.

Figure 2b compiles two parameters with an effect of the second type: 
the elasticity of substitution in the aggregate production sector, and the estimated 
size of the available fossil resources. Figure 2b shows that costs increase with the 
elasticity of substitution. This too can be attributed to baseline effects: higher 
elasticity of substitution implies a more flexible production technology which 
induces higher economic growth in the business-as-usual scenario. Therefore, 
achieving 450 ppm requires a substantial departure from the baseline and is 
relatively costly. A variation of the resource base has a bigger impact on the 
mitigation costs if the elasticity of substitution is relatively high. Low values of the 
elasticity of substitution hinder economic growth and consequently imply a lower 
demand for energy. At low energy demand, relaxing the scarcity of the resource 
has a smaller effect. In general, a larger resource base allows higher economic 
growth in the business-as-usual case. When climate policy constrains resource 
use, it devaluates exhaustible resource as an economic asset and diminishes the 
rent income of their owners. The loss of rent income increases with the resource 
base because a relatively cheap and abundant resource can no longer be used as 
input in production.

We take yet a closer look at the fossil resource base. Figure 2c studies 
the variation of the size of the resource base χ

3
 and parameter χ

4
. Parameter χ

4 

as well as the resource base are proxy variables for the technological progress 
in the extraction sector. Increasing χ

3
, i.e. assuming more abundant resources, 

results in cheaper short to medium term supply of the fossil resource. Increasing 
χ

4
 trades a slow and steady increase of the marginal costs for a steeper increase 

at a later time – thus making the resource cheaper and more easily available in 
the short to medium term. High values of χ

4
 allow higher economic growth in 

the business-as-usual case and induce a relatively large mitigation gap. For high 
values of χ

4
 the marginal costs of extraction are essentially constant. Under this 

condition, an increased resource base has moderate impact on macro-economic 
mitigation costs. For low values of χ

4
, an increased resource base has a slightly 

higher impact on the macro-economic costs because marginal improvements 
in extraction already increase the shadow price of the resource. This parameter 
study shows that climate protection becomes relatively costly if there is a high 
rate of technological progress in the exploration and extraction of fossil fuels. 
Accelerated technological progress in the extraction sector makes climate policy 
more costly, because such policy devaluates assets (resources and capital stock 
in the corresponding sectors). Therefore, special attention ought to be paid to 
assumptions about resource availability and their uncertainties.

Contrary effects can be observed if technological progress decreases the 
costs of mitigation technologies. The impact on opportunity costs is shown in 
Figure 2d. We explore two parameters which are both closely related to mitigation 
options: the efficiency of investments into Carbon Capture and Sequestration 
technologies (CCS) and the learning rate of renewable energy technologies. 
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Varying these two parameters shifts the competitive advantage between the two 
mitigation options and, consequently, the extent to which they are used. It turns 
out that the efficiency of CCS investments has no strong impact on the overall 
opportunity costs if the learning rate of renewable energy technologies is relatively 
high. The reason is that renewables are modeled as a backstop technology, i.e. 
as a carbon-free energy source, and need no non-reproducible input for energy 
production. In contrast to the renewables, CCS investments only bridge from the 
fossil fuel age to a carbon-free era. CCS makes the transition of the energy system 
smoother but has severe limitations if fossil fuels become more costly because of 
increasing marginal extraction costs at the end of the 21st century. At the same time, 
renewable energy becomes cheaper because of learning-by-doing. It is plausible 
that this effect cannot be altered by high efficiencies of CCS investments. At low 
learning rates of the backstop technology, CCS becomes more important.  

3.3  Mitigation Strategies

In this section we analyze the impact of the same parameters explored 
in the previous section on the option portfolio of an optimal mitigation strategy. 
Mitigation options are compared on the basis of the amount of CO

2
 that they 

enable the economy to reduce. For the CCS option, this is straightforward: it is 
simply the amount of captured and sequestered CO

2
 (less the amount that leaks 

from the sequestration site). In case of energy related mitigation options, i.e. 
renewable energy and energy efficiency improvements, the corresponding amount 
of “mitigated CO

2
 emissions” was derived from the equivalent amount of energy 

from fossil fuels. In , the degree of efficiency on converting primary into final 
energy is determined endogenously in the production function of the fossil sector. 
In this ex post analysis, however, we estimate the “equivalent” amount of fossil 
energy by assuming a fix coefficient. The remaining mitigation options, namely 
energy savings by substitution of energy at the levels of energy transformation 
and aggregate production, are visualized as the difference to the total reduction 
of CO

2
.

Figure 3a shows that the amount of CCS within the portfolio of 
mitigation options increases with the assumed resource base. The cumulative 
amount of CO

2
 reduced by renewables within the next century decreases, energy 

efficiency remains constant and energy savings increase. An increasing resource 
base implies increasing rents for the owners. This increasing rent income makes 
CCS a more profitable option. Due to high economic growth and relatively cheap 
fossil fuels, the return on investment in renewables falls short of the returns on 
CCS investments.

In figure 3b, energy savings (reduction of energy consumption by 
substituting energy by capital in different sectors) become more profitable if the 
elasticity of substitution increases; at the same time, the importance of energy 
efficiency decreases. 
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Figure 3. Parameter Studies of Mix of Mitigation Options

Figures 3a-f show how the mix of mitigation options varies in parameter studies. CO
2
 reductions 

caused by avoiding the use of fossil fuels (renewable energy, energy efficiency improvements, and 
substitution) are estimated from the alternative use of fossil fuels. Dashed lines indicate the default 
parameter value.
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A more surprising result is obtained in figure 3c and 3d. In figure 3c 
an increasing productivity of R&D investment in labor enhancing activities also 
increases the share of renewables in the mitigation portfolio. The explanation 
is as follows: economic growth induces additional energy demand that is met 
by carbon-free technologies. Due to high economic growth, marginal extraction 
costs of fossil fuels increase sooner, and thus CCS is less competitive compared 
to renewables. In contrast, when R&D investments in energy efficiency become 
more productive, the mitigation gap shrinks, and the share of renewables within 
the mitigation portfolio decreases (3d). Interestingly, changes in the productivity 
of energy R&D investments affect the baseline rather than providing a more 
attractive mitigation option. In this study, the energy efficiency parameter varies 
from 63 to 245 % of its regular value in 2100 in the baseline, the latter implying 
that energy use in 2100 is decreased by 60%. Climate policy, however, only 
induces 0.4 to 2.7 % additional increases of the efficiency parameter. To sum, 
higher energy efficiency and a lower baseline for economic growth reduce the 
demand for renewables. The importance of the renewable energy option depends 
heavily on the underlying economic growth path. 

As figure 3e shows, high learning rates in the renewable energy sector 
reduce the optimal amount of CCS substantially. In that sense CCS can be seen 
as a joker-option if the learning rate of the renewables is relatively low. It is 
also remarkable that energy savings are less important when the learning rate 
is relatively high because the energy demand can be met by the carbon-free 
renewables. Learning-by-doing reduces the price of electricity produced by 
renewables and increases the demand for renewables which reduces their costs 
further. This feedback loop makes CCS less important. As figure 3f indicates, 
this effect can be counteracted by an increasing efficiency of CCS-investments. 

4. CONCLUDING REMARKS

In what ways does technological change matter? Our analysis shows 
that technological change works in two “directions”: we identify technological 
progress that permeates the entire economy and technological progress that 
is restricted in its effects to a single sector. Examples for such sector-specific 
technological change are learning-by-doing effects associated with renewable 
energy technologies and resource extraction, as well as technological progress in 
CCS, here modeled via its investment efficiency. In , parameters associated with 
such sector specific technological change have a significant impact2 on the optimal 
mix of mitigation options. For example, an increased learning rate increases the 
share of renewables, and improved investment efficiency in CCS increases the 
share of CCS within the entire portfolio of mitigation options (Figures 1b and 

2. We refer to the impact of a parameter in terms of a relatively large potential influence, i.e. a large 
sensitivity of results to changes of this parameter. Recall, however, that the actual uncertainty about 
parameters is not taken into account. 
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3ef). However, these parameters are less important in determining the overall 
opportunity costs of climate protection which measure the impact on the overall 
economy (Figure 1a).

In contrast, there is technological change with significant impact on the 
macro-economic growth process, evident in its influence on opportunity costs. 
Such technological change is described by parameters of the macro-economic 
environment, like the elasticity of substitution, and the parameters characterizing 
the effectiveness of labor- and energy R&D investments. Labor R&D investments 
in particular have a strong influence on macro-economic growth as well as the 
mix of mitigation options. Progress in resource extraction is an example of sector-
specific technological change with a macro-economic impact. This progress is 
characterized by the parameters of Rogner’s scarcity curve and has been shown 
to exert a significant influence on opportunity costs. The most prominent effect 
of these parameters is their impact on the baseline.

We conclude that feedbacks between the macro-economy and the energy 
system are crucial for determining mitigation costs and the development of the 
mitigation portfolio in time. The case of technological change in resource extraction 
shows how sector-specific processes may exert significant influence on the macro-
economy, while the impact of labor R&D productivity on the share of renewable 
energy is an example of macro-economic influence on a distinct sector. 

This has strong implication for policy. A sector-specific policy that 
fosters technological change in the extraction sector induced by increasing 
prices in the oil or gas market would increase the opportunity costs of climate 
protection. A policy that increases the economy-wide energy efficiency in all 
energy related sectors would reduce the costs of climate protection substantially. 
Enhancing technological change in the extraction sector makes sense, if decision 
makers intended only to increase energy security. Analysis here highlights that 
the impact of such a policy on the opportunity costs of climate protection must 
also be taken into account. 

The results presented here indicate that partial-equilibrium models 
omitting intertemporal and inter-sectoral aspects can be misleading for designing 
a climate and energy policy. Thus, they stress the utility of hybrid models 
incorporating endogenous technological change at the sector level as well as at 
the macro-economic level. Moreover, hybrid models pose a coherent framework 
not only for the assessment of the opportunity costs and portfolios of mitigation 
strategies, but also for the design of climate and energy policy instruments. 
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Michael Grubb*** and Jonathan Köhler†

This paper summarizes results from ten global economy-energy-environment 
models implementing mechanisms of endogenous technological change (ETC). 
Climate policy goals represented as different CO

2
 stabilization levels are imposed, 

and the contribution of induced technological change (ITC) to meeting the goals 
is assessed. Findings indicate that climate policy induces additional technological 
change, in some models substantially. Its effect is a reduction of abatement costs in 
all participating models. The majority of models calculate abatement costs below 1 
percent of present value aggregate gross world product for the period 2000-2100. The 
models predict different dynamics for rising carbon costs, with some showing a decline 
in carbon costs towards the end of the century. There are a number of reasons for 
differences in results between models; however four major drivers of differences are 
identified. First, the extent of the necessary CO

2
 reduction which depends mainly on 

predicted baseline emissions, determines how much a model is challenged to comply 
with climate policy. Second, when climate policy can offset market distortions, some 
models show that not costs but benefits accrue from climate policy. Third, assumptions 
about long-term investment behavior, e.g. foresight of actors and number of available 
investment options, exert a major influence. Finally, whether and how options for 
carbon-free energy are implemented (backstop and end-of-the-pipe technologies) 
strongly affects both the mitigation strategy and the abatement costs. 
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1. INTRODUCTION

The Innovation Modeling Comparison Project (IMCP) aims to look at 
the impact of induced technological change (ITC) on the economics of stabiliz-
ing carbon dioxide emissions at different levels. The IMCP is motivated by the 
conviction that endogenous technological change1 (ETC) is vital in modeling eco-
nomic dynamics over the lengthy time scales required in climate policy analysis. 
Despite considerable progress in ETC research, significant discrepancies among 
models as well as uncertainties of model results still remain. The IMCP advances 
the understanding of ETC by assessing these discrepancies and analyzing their 
potential causes. This paper summarizes a quantitative model comparison experi-
ment using a broad range of relevant models. 

Two types of uncertainties contribute to the discrepancy of the results 
from different models. First, there is parameter uncertainty, referring to a lack 
of empirical knowledge to calibrate the parameters of a model to their “true” 
values. Parameter uncertainty implies an uncertainty of the predictions of any 
one model and discrepancies may result even in case of otherwise very similar 
models. Parameter uncertainty is addressed in model specific uncertainty analy-
ses including sensitivity analysis and parameter studies, and modeling teams in 
the IMCP were encouraged to explore parameter uncertainty in the individual 
papers collected in this special issue. Second, there is structural uncertainty or 
model uncertainty, defined as the uncertainty arising from having more than one 
plausible model structure (Morgan and Henrion 1990, p. 67). In this paper, we 
address model uncertainty.

In general, model uncertainty may be reduced by eliminating possible 
model structures from the set of plausible models. One way of doing so is validat-
ing models against empirical evidence to discriminate “better” models and con-
sequently discard “bad” models. However, even “perfect validation” provides noHowever, even “perfect validation” provides no “perfect validation” provides noprovides no no 
proof that a model best explains reality. Alternatively, “Ockham’s razor” proposesAlternatively, “Ockham’s razor” proposes“Ockham’s razor” proposesOckham’s razor” proposes’s razor” proposess razor” proposes” proposes proposes 
that if another model explains the same empirical phenomena using less specific another model explains the same empirical phenomena using less specific 
or more intuitive assumptions and parameters, then it can be deemed preferable.then it can be deemed preferable.it can be deemed preferable.can be deemed preferable. preferable.. 
Yet to this date, the theoretical and empirical foundation of technological change to this date, the theoretical and empirical foundation of technological change, the theoretical and empirical foundation of technological changethe theoretical and empirical foundation of technological change 
within economics remains insufficient to allow for a sound evaluation of modelsfor a sound evaluation of modelsa sound evaluation of models 
according to Ockham’s razor. In other words, the uncertainties about the appropri-
ate model structure remain. 

Our approach to model uncertainty involves identifying discrepancies 
in results of different models running the same scenarios, and investigating their 
origins. The analysis follows four steps: First, we classify the models according to 
their structure. Second, we assess discrepancies in a central model output, namely 
the impact of climate policy on the economy, or the “costs” of climate policy. 

1. We distinguish between endogenous and induced technological change: Technological change 
is endogenous (ETC) if its course is an outcome of economic activity within the model. Given an 
endogenous description, technological change in policy scenarios may exceed (or fall short of) its 
extent in the baseline, i.e. policies induce additional technological change which we refer to as ITC.
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Third, we analyze the different model dynamics leading to the discrepancies us-
ing aggregated indicators of model behavior and drawing on structural informa-
tion about the models. We measure the impact of technological change on these 
quantitative indicators,, ceteris paribus. Finally, we take a close look at the energy 
system as a major contributor to possible climate change.

The objective of this comparison is improved understanding of how and improved understanding of how and 
whether technological change matters. Technological change is a hotly debated 
issue because its impact on mitigation costs and mitigation strategies has political 
consequences. Recently, some models have been developed incorporating endog-
enous technological change. Examples of the papers which compare these models 
in a qualitative way are Sijm (2004), Clarke and Weyant (2002), Löschel (2002), a qualitative way are Sijm (2004), Clarke and Weyant (2002), Löschel (2002), qualitative way are Sijm (2004), Clarke and Weyant (2002), Löschel (2002), 
Weyant and Olavson (1999), Grubb, Köhler and Anderson (2002), and Köhler et 
al. (2006), the latter includes an up to date survey of ETC in the literature. 

The next section briefly summarizes the literature on modeling compari-
son; in the third section, the participating models are characterized and a taxon-
omy of models is provided. Section 4 outlines the method of comparison used in 
the IMCP. In Section 5, we analyze the impact of ITC on mitigation costs, mitiga-
tion strategies, and energy mix. Section 6 offers some conclusions.

2. MODEL COMPARISONS IN THE LITERATURE

There is a broad literature on estimating the economic impact of climate 
change mitigation policies using models of various types. The Assessment Reports 
of the Intergovernmental Panel on Climate Change (IPCC) provide a comprehensive 
overview (IPCC 1996, 2001). Moreover, the Second and Third Assessment Reports 
(SAR and TAR) draw conclusions from comparative evaluations of these modeling 
studies. Among the original studies of model comparison, those of the Stanford 
Energy Modeling Forum (EMF) are particularly worth mentioning. This section 
briefly summarizes some of the key findings of previous model comparisons.

The SAR differentiates top-down (economic) and bottom-up (engineer-
ing) models, further distinguishing Computable General Equilibrium models 
(CGE), optimizing models, and econometric macroeconomic models among the 
top-down approaches. Top-down and bottom-up models have been known to dif-
fer greatly in their estimates of the costs of mitigation policies. The authors of 
SAR note that this classification is increasingly misleading as efforts are being 
made to combine features from macro and CGE models, and to incorporate bot-
tom-up technological features in top-down models. Furthermore, they conclude 
that different assumptions about the economic reality represented in the models, 
e.g. about the nature of market barriers, have a far greater impact on the results 
than the type of the model. In their extended discussion of results from SAR, 
Hourcade and Robinson (1996) conclude that “there is no a-priori reason that 
the two modeling approaches will give different results. Whether they [bottom-up 
and top-down models] do or not depends largely on their respective input as-
sumptions”.
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Two Economics Reports of the PEW Center on Global Climate Change 
summarize the economics of climate change policy and the role of technology 
(see Weyant 2000, Edmonds et al. 2000). Both studies review why model results 
differ. Weyant (2000) attributes the differences to variations mainly in the baselinevariations mainly in the baseline mainly in the baseline 
emission scenarios, different flexibilities regarding where, when, and which GHGregarding where, when, and which GHGwhere, when, and which GHG 
emissions are reduced, and whether or not benefits from avoided climate change 
are taken into account. Once the effects of these differences are separated, the re-
sidual differences can be traced to substitution and technological change. EdmondsEdmonds 
et al. (2000) emphasize Hourcade and Robinson’s (1996) finding of the importance (2000) emphasize Hourcade and Robinson’s (1996) finding of the importance(2000) emphasize Hourcade and Robinson’s (1996) finding of the importance 
of assumptions underlying model design. Concerning the role of technological 
change, they note that technological change mitigates costs and occurs over long, they note that technological change mitigates costs and occurs over long they note that technological change mitigates costs and occurs over long 
time horizons. They stress that technological change can be induced by policies, 
and that including induced technological change is important, however difficult.

On discussions about why studies differ, TAR revisits the top-down ver- discussions about why studies differ, TAR revisits the top-down ver-s about why studies differ, TAR revisits the top-down ver- why studies differ, TAR revisits the top-down ver-
sus bottom-up controversy. Top-down models are distinguished into CGE andto CGE and CGE and 
time-series-based econometric models, and TAR points out that the former typetype 
is arguably more suitable for describing long-run steady-state behavior, while the arguably more suitable for describing long-run steady-state behavior, while the 
latter models are more suitable for forecasting in the short-run. TAR also notes thatmodels are more suitable for forecasting in the short-run. TAR also notes that more suitable for forecasting in the short-run. TAR also notes thatin the short-run. TAR also notes thatthe short-run. TAR also notes that 
efforts are being made to eliminate these shortcomings (IPCC 2001, pp. 591).p. 591).. 591). 

EMF 19 (2004) set out to understand how models being used for glob-
al climate change policy analyses represent current and potential future energy 
technologies, and technological change. Weyant (2004) summarizes three main 
insights from the study: developing and implementing new energy technology is 
necessary for stabilizing atmospheric CO

2
 concentration; the required transition 

will be costly to implement, and implementation will take many decades; but 
costs may be moderated if it is possible to pursue many options, to phase in new 
technologies gradually, and if supporting policies start soon.

In an extensive survey of the recent literature, Sijm (2004) focuses on 
models that exhibit features of endogenous technological change.2 He separates 
bottom-up and top-down studies and finds major similarities in the outcomes of 
models in the former category, e.g. costs decline, the energy mix changes towards 
fast learners, and total abatement costs decline. Modeling studies in the latter 
category, however, show a wide diversity in outcomes with regard to the impact 
of induced technological change. He identifies variations in the following modelHe identifies variations in the following model 
features as possible explanations: ITC channels; optimization criteria; model: ITC channels; optimization criteria; model; optimization criteria; model optimization criteria; model; model model 
functions; calibration; spillovers; and also aggregation; number and type of policy; calibration; spillovers; and also aggregation; number and type of policy calibration; spillovers; and also aggregation; number and type of policy; spillovers; and also aggregation; number and type of policy spillovers; and also aggregation; number and type of policy; and also aggregation; number and type of policy and also aggregation; number and type of policy; number and type of policy number and type of policy 
instruments; and the time horizon.; and the time horizon. and the time horizon.

These modeling comparison exercises illuminate and outline reasonsilluminate and outline reasons reasons 
why models differ in their cost estimates. Several studies list induced technologi-
cal change as a good candidate for explaining some of these differences. However, 
the extent of its impact and the precise reasons as to how and why technological 
change matters remain unclear in many cases. Focusing on the effects of ITC, all 

2. For a recent collection of models incorporating ETC, see Vollebergh and Kemfert (2005).
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participating modeling teams of the IMCP deliver scenarios in which technologi-
cal change processes have been ‘switched off’ and ‘switched on’. A comparison 
between these scenarios allows on the one hand, a quantitative assessment of tech-
nological change and on the other hand, a further explanation of the underlying 
economic mechanisms that explain different model outputs.

3. MODEL CLASSIFICATION

The models considered in this comparative study have two common 
aspects: they incorporate technological change in innovative ways and allow an: they incorporate technological change in innovative ways and allow anthey incorporate technological change in innovative ways and allow anhey incorporate technological change in innovative ways and allow an 
assessment of costs of global carbon dioxide mitigation. At the same time, a widea wide 
range of model types is represented in this project. Understanding the conceptions model types is represented in this project. Understanding the conceptions 
underlying the designs of different model types is necessary when comparing 
models within and across model types. In this section we give a summary of the 
concepts on which we base our discussion. We start with a general classification, 
which serves as a guideline for the brief introduction of the models that follows. 
As the major motivation for the design of many models as well as a key question 
in this study, we draw focus on the determination of the economic impact of cli-, we draw focus on the determination of the economic impact of cli- we draw focus on the determination of the economic impact of cli-e draw focus on the determination of the economic impact of cli- determination of the economic impact of cli-
mate policies in terms of social costs, and recapitulate different concepts of costs, and recapitulate different concepts of costsrecapitulate different concepts of costs 
which are prominent in different model types..

3.1 Model Types in IMCP

In Table 1, we differentiate four models types, mainly characterized by 
their calculus, i.e. the mathematical paradigm underlying the computation. 

1. Optimal growth models – maximize social welfare intertemporally.
2. Energy system models – minimize costs in the energy sector.
3. Simulation models – solve initial value or boundary condition 

problems (this includes econometric models, i.e. models which base 
a subset of their relationships on historical time series). 

4. General equilibrium market models – balance demand and supply 
among multiple actors.

Many models in this study transcend the outlined categories. Whilst the 
modeling paradigm that underlies a model is useful for understanding its dynam-
ics, we urge the reader to consult the individual papers for an in-depth discussion 
of the models.

These papers also include discussions of the model calibration and sen-
sitivity analysis of crucial parameters. Model calibration is important to gauge the 
parameter uncertainties going into the models, and sensitivity analysis assesses the 
effect of these uncertainties. Model calibration includes equations of the basic mod-
el and the equations specifying how technological change behaves. That is the basic 
model describing macroeconomic variables (such as gross world product, energy 
demand, etc.) on the one hand, and how technological change affects the dynamics 
of these main variables and is affected by them on the other hand. For this analysis, 
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all models are calibrated such that the main variables show similar behavior during 
the first twenty years of the projected time. Again, we refer the reader to the indi-
vidual model papers for details.

Model uncertainty, in particular structural differences in the description 
of ETC is assessed in this report. For the purpose of model comparison, the di-, the di- the di-
versity of assumptions underlying the models (Table 2) becomes an asset to thisto this this 
project as it allows for robust conclusions to be drawn. 

3.1.1 Optimal Growth Models

Economic growth is a major driver for GHG emissions. Optimal growthfor GHG emissions. Optimal growth GHG emissions. Optimal growth 
models are aimed at understanding growth dynamics over long term horizons. The 
key property of neoclassical growth models is their social welfare maximizing be-
havior. Early growth models determined optimal capital accumulation. Endogenous 
growth theory extends this framework to include economic forces that explain tech-
nological change. Among the growth models represented in this study a varying 
degree of technological change is endogenous. In AIM/Dynamic-Global, growth, growth growth 
accrues from autonomous energy efficiency improvements in addition to capital 
accumulation (the later is of course present in all models). DEMETER-1CCS, EN-
TICE-BR and FEEM-RICE use exogenous total factor productivity (Table 2, last 
column) hence ETC implemented in these models also contributes to economic 
growth. In MIND, growth is fully endogenous. These models derive a first-best or 
a second-best social optimum and may be used as intertemporal social cost benefit 
analysis of mitigation strategies. First best models like MIND implicitly assume 
perfect markets and the implementation of optimal policy tools. InIn second best mod- best mod-

Table 1. Classification of Models in the IMCP
 Technological detail 

Calculus Top Down Bottom Up 

Welfare maximization Optimal growth models 
 ENTICE-BR  
 FEEM-RICE 
 DEMETER-1CCS 
 AIM/Dynamic-Global 
 MIND 1.1  

Cost minimization   Energy system models 
  MESSAGE-MACRO 
  GET-LFL 
  DNE21+ 

Initial value problems Simulation models 
 E3MG  

Static equilibrium +  Computational general equilibrium  
recursive dynamics  models (CGE) 
 IMACLIM-R
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els like FEEM-RICE market imperfections or sub-optimal policy tools are not re-are not re- not re-
movable or modifiable. Policy of non-reproducible input factors  instruments would 
be necessary. In other words, they may take so called no-regret options into account. 
In this case, the opportunity costs of climate protection can be lower or sometimes or sometimes sometimes 
even negative compared to the baseline, dependent on the design of climate policy.

In AIM/Dynamic-Global, ETC concerns energy efficiency (Masui et al. 
2006). In addition to autonomous energy efficiency improvements, investments 
in energy conservation capital raise macroeconomic3 energy efficiency in the 
manufacturing sector, i.e. ETC affects the energy efficiency parameters in the 
production function which increases if the energy conservation capital stock in-
creases faster than the output in the manufacturing sector. AIM/Dynamic-Global 
divides the world into six regions and describes regions with nine sectors which 
are mostly energy related.

FEEM-RICE (Bosetti et al. 2006) is modeled after Nordhaus’ regionalized 
integrated assessment model, RICE 99 (Nordhaus and Boyer 2000). It differentiates 
eight world regions and computes the global solution by solving a non-cooperative 
Nash game. ETC in FEEM-RICE is represented by an energy technological change 
index (ETCI) which is increased through R&D investments as well as by learn-
ing-by-doing in carbon abatement. Its impact is twofold: ETCI affects the partial 
substitution coefficients in a Cobb-Douglas production function, shifting income 
shares from energy to capital. Secondly, ETCI decreases the macroeconomic carbon 
intensity. FEEM-RICE is presented in two parameterizations, FAST and SLOW, 
reflecting different assumptions about the speed of technological progress, its effec-
tiveness and the crowding out effects between different types of investments. 

ENTICE-BR (Popp 2006) is based on Nordhaus’ DICE model (Nordhaus 
and Boyer 2000), hence it does not resolve regions. Among other modifications, Popp 
incorporates in his model, an R&D sector with two knowledge stocks. They are built in his model, an R&D sector with two knowledge stocks. They are built, an R&D sector with two knowledge stocks. They are built an R&D sector with two knowledge stocks. They are built 
up endogenously by R&D investments, one affecting macroeconomic energy effi-
ciency and the other lowering the price of a generic backstop technologyand the other lowering the price of a generic backstop technology the other lowering the price of a generic backstop technologying the price of a generic backstop technology the price of a generic backstop technology4. Energy is 
produced either by this backstop technology, or from fossil fuels in a corresponding 
sector. Both ENTICE-BR and FEEM-RICE derive a second-best social optimum by 
simulating market behavior in an intertemporal optimization framework.

The model MIND (Edenhofer et al. 2006) is an intertemporal optimiza-
tion model with a macroeconomic sector and four different energy sectors: re-
source extraction, fossil-fuel based energy generation, a renewable energy source, 
and carbon-capturing and sequestration (CCS). The growth engine in the macro-
economic sector is fueled by R&D investments in labor productivity and energy 
efficiency. There is no autonomous total factor productivity improvement. The 
investments in the different energy sectors are determined according to an inter-
temporal optimal investment time path. MIND derives a first-best social optimum 

3.  Here, we use the term macroeconomic to indicate an effect or process described at the macro 
level, e.g. described by one parameter for the economy.

4.  Backstop technologies provide carbon-free energy and are not subject to any scarcities.
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and therefore calculates the potential of ITC for reducing the costs of climate 
protection if market failures and social traps at the international level are resolved 
by appropriate policy measures. 

DEMETER-1CCS models a dynamic economic system which is inter-
temporally optimal for the representative household. The firms solve a per-period 
dynamic optimization problem, treating learning effects as external to the pro-
duction decision level (Gerlagh 2006). Moreover, it comprises a composite good 
sector and different energy sectors for renewable energy sources (playing the role 
of a backstop-technology) and for fossil fuels. In the energy sector the costs are 
reduced through learning-by-doing.

3.1.2 Energy System Models

Energy system models usually derive a cost-minimum sequence of en-
ergy technologies for an exogenously given energy demand using linear program-
ming. In more advanced versions, the energy technologies are improved by learn-
ing-by-doing. The main advantages of this approach are the detailed depiction 
of the energy sector and the possibility of basing technological change on an en-
gineering assessment of different technologies. Three energy system models are 
participating: DNE21+, GET-LFL, and MESSAGE-MACRO. 

DNE21+ differentiates eight primary energy sources in 77 world regions 
(Sano et al. 2006). Technological change has an endogenous description for wind 
power, photovoltaics, and fuel-cell vehicles; exogenous assumptions about tech-
nological change are made for other energy technologies. Energy demand in the 
end-use sectors is modeled using long-term price elasticities; gross world product 
(GWP) is exogenous to the model.

GET-LFL is a globally aggregated model differentiating eight primary 
energy sources (Hedenus et al. 2006). It includes a carbon capturing and sequestra-
tion (CCS) option which is used with different fossil fuels as well as with biomass. 
GET-LFL implements cost minimization with limited foresight in a partial equi-
librium (energy market), implying an elastic energy demand. ETC in GET-LFL is 
implemented in learning curves for investment costs of carbon-free technologies as 
well as energy conversion technologies, and spillovers in technology clusters.

MESSAGE-MACRO. The MESSAGE model describes the entire en-
ergy system from resource extraction, through imports and exports, to conversion, 
transportation and end-use (Rao et al. 2006). Learning-by-doing is implemented 
for energy technologies. MESSAGE is solved in an iterative process with the 
economy model MACRO, allowing for some feedbacks between energy system 
and the macroeconomic environment, such as an impact on GWP.

3.1.3 Simulation and Econometric Models

We use the term simulation model to refer to models that start at a given 
state of the economy; then continue to calculate the next time step. In mathemati-
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cal terms, they solve initial value problems or boundary value problems given as 
systems of differential equations. Econometric simulation models are additionally 
based on time series data, i.e. the equations are estimated from data. 

Econometric models are represented by the Tyndall Centre’s E3MG 
model (Barker et al. 2006). It is based on a post-Keynesian disequilibrium macro-
economic structure with two sets of econometric equations (describing energy de-
mand and export demand) estimated using Engle-Granger cointegration. E3MG 
differentiates 20 world regions modeled with input-output structures, 41 industrial 
sectors, 27 consumption categories, twelve fuels, and 19 fuel users. 

3.1.4 General Equilibrium Models

General equilibrium models compute demand/supply equilibria in an 
economy modeled in distinct, interdependent sectors. Implicitly, households and 
firms within these sectors try independently to optimize their welfare and their 
profits, respectively. Computable General Equilibrium models (CGE) are promi-
nent examples of this type. CGE models calculate static equilibria at each point in 
time prescribing some growth dynamic in between time steps, i.e. they are recur-
sive dynamic. This guarantees not only that all markets are cleared but also that 
a Pareto-optimum is achieved. Sectoral resolution and the dynamics of relative 
prices are the main strengths of CGE models. 

IMACLIM-R is solved recursively but includes an endogenous growth en-
gine that differs from standard CGE approaches (Crassous et al. 2006). The world is 
disaggregated into five regions, each made up by ten economic sectors. Cumulative 
investments drive both the energy efficiency and the labor efficiency at the same 
time. IMACLIM-R represents formation of mobility needs through infrastructures 
and technical progress in vehicles. Three transportation sectors (air, sea, and terres-
trial) are differentiated in which energy efficiency is driven by fuel prices. Addition-
ally, energy technologies in electricity generation improve via learning-by-doing.

3.1.5 A Comment on Model Types

Different modeling frameworks were created for different problems, 
with each model design tailored to address a specific set of questions. The charac-
teristics of the modeling framework as well as the primary questions that guided 
its designs must be kept in mind when comparing the model results. Repetto and 
Austin (1997) note that macro and CGE models complement each other in pre-
dicting short-term and long-term responses to a climate policy. Making models 
to predict century long economic behavior poses a great challenge in modeling 
frameworks that rely on past data or the present structure of the economy. Growth 
models using an optimizing framework allow endogenous savings and investment 
decisions with unlimited foresight while many recursive dynamic CGE models 
restrict optimizing behavior of its agents to a sequence of static equilibria. Hence, 
the time path of emissions and investments derived by most CGEs are not inter-
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temporally cost-effective. This lack of optimality is not a shortcoming of these 
models as they try to replicate the outcome of decentralized markets in which 
market imperfections are inherent. In contrast to recursive CGE models, an opti-
mal economic growth model allows an understanding of transition paths and an 
assessment of what decentralized markets could achieve if appropriate policy in-
struments were applied. On the other hand, most intertemporal economic growth 
models lack economic detail and offer only limited insights into sectoral dynam-
ics. Energy system models focus on sectoral dynamics providing very detailed 
predictions. When restricted to the energy sector, they neglect feedbacks with 
the macroeconomic environment, e.g. the revaluation of capital. The integration 
of energy system models with macroeconomic models is a topical subject under 
scrutiny and a feature of several models in this study.

Three models, MIND, MESSAGE-MACRO and E3MG, adopt a hybrid 
approach, i.e. they combine features from different model designs to address the 
gap between them. MIND integrates technological detail similar to energy sys-
tem models in the framework of a growth model. MESSAGE-MACRO adds an 
economic environment to an energy system model by iterating the models MES-
SAGE and MACRO. E3MG includes a cost minimizing energy system sector 
within a Keynesian econometric model.

Finally, we note on the scope of the models. While all models are well 
calibrated, some models make very specific assumptions to explore special sce-
narios. Three models in particular are explorative in character. First, IMACLIM-R 
adopts a pessimistic view of technological change by assuming strong inertia and 
by neglecting carbon-free energy sources from backstop technologies. Second, 
AIM/Dynamic-Global focuses on the investment in energy-saving capital as a 
mitigation option, and largely neglects other options. As a consequence, economic 
growth cannot be decoupled from emissions. Third, FEEM-RICE is presented in 
a FAST version where especially optimistic assumptions are made about learning 
and the level of crowding-out.

4. METHODS OF MODEL COMPARISON  

The following section outlines the IMCP approach of quantitative model 
comparison, specifically which scenarios were run, and which model outputs were 
reported. The effects of climate policies may be explored by comparing scenarios 
of climate protection with a business-as-usual scenario (baseline). In accordance 
with Article 2 of the UNFCCC which postulates stabilizing greenhouse gas con-
centrations, we investigate climate policy scenarios with the goal of stabilized CO

2
 

concentration. We focus on carbon dioxide as the most influential GHG, defining 
three policy scenarios stabilizing CO

2
 concentrations at levels of 450ppm, 500ppm, 

and 550ppm, respectively. Where possible we also report results for a stabilization 
level of 400ppm. For this stabilization level the probability to meet the 2°C target 
is substantially increased (Hare and Meinshausen 2004). The 2°C target is per-
ceived by some scientists and influential politicians, CEOs (like Lord Browne) and 
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governmental bodies (like the EU Commission) as an interpretation of Article 2 of 
the UNFCCC. The concentration levels selected are somewhat arbitrary and serve 
to explore model responses to increasingly ambitious policies. As we prescribe a 
policy goal rather than a policy, model results represent a way of conforming to the 
policy goal and may guide the design of actual climate policy measures.

To assess the model response to climate policies and in particular the role 
of ITC, scenarios should ideally harmonize all other assumptions and also model 
calibration in order to isolate the effects of different implementations of ITC. It is 
known that the business-as-usual scenario has strong impact when evaluating the 
consequences of climate policies: assuming lower economic growth and therefore 
lower CO

2
 emissions implies that climate protection poses a lesser challenge to the 

economy. Where models prescribe gross world product (GWP) and/or emissions ex-
ogenously, data from the Common POLES/IMAGE baseline (CPI) was used (Vuuren 
et al. 2003). However, harmonizing economic output and emissions in models which 
determine these numbers endogenously proves to be difficult if not impossible. Here, 
modeling teams have made an effort to calibrate their models to the CPI baseline, but 
there remain differences that must be taken in account when interpreting results. 

Carbon dioxide concentration caps could not be imposed in models that 
do not include a carbon cycle submodel to translate emissions into concentrations. 
Such models either prescribe CO

2
 emission paths corresponding to the selected 

concentration levels exogenously, or constrain the overall centennial carbon bud-
get. Differences in the implementation of carbon cycle models may imply that the 
same concentration level requires more stringent emission paths. Care was taken 
that the carbon cycle models showed good agreement. 

4.1 Scenario Definitions With and Without ITC

To assess the impact of ETC model output, stabilization scenarios were 
run with and without induced technological change. The baseline scenarios in IMCP 
comprise all components of endogenous technological change potentially incorpo-
rated in the considered model. A policy scenario ‘with’ induced technological change 
refers to a scenario in which additional endogenous technological change is induced 
by climate policy. In contrast to this, a policy scenario ‘without’ induced techno-
logical change means that climate policy cannot induce endogenous technological 
change beyond the baseline scenario. Therefore, in a policy scenario without ITC, 
technological change simply follows the time path of the baseline scenario as if it 
was given exogenously.5 A comparison between ‘with’ and ‘without’ induced tech-
nological change measures the extent to which climate policy induces technological 
change in addition to baseline ETC. Table 3 summarizes these scenario definitions.

5.  The time paths of ETC related variables in the baseline simulation are stored and then prescribed 
as exogenous, fixed time series in this scenario.
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4.2 Model Output and Indicators

The broad range of models is a key asset of this comparison, naturally 
comparable model outputs that are available in all models are of an aggregate 
nature. More specific outputs might allow deeper insights into some models but 
would exclude others. The selected model outputs (e.g. GWP, emissions, incre-
mental costs of carbon, energy use, and the fuel mix) and the derived indicators 
(e.g. macroeconomic costs and sector costs, energy- and carbon intensity) reflect 
this trade off.

Despite the effort to harmonize assumptions and scenarios among mod-
els, it remains a challenging task to determine why model results differ, i.e. to 
disentangle the role of ITC from other assumptions. In addition to the analysis 
offered in this paper, modelers were asked to elaborate on the calibration of their 
model and its sensitivities in their paper contributions to this special issue, thus 
providing a starting point to assess the assumptions underlying the model calibra-
tion and their implications. 

4.3 Concepts of Mitigation Costs

The SAR distinguishes four types of mitigation costs (IPCC 1996, p. 
269). This taxonomy of costs provides a useful guide for the interpretation of 
results and is therefore recapitulated in the following:

1. Direct engineering costs of specific technical measures: These 
numbers provide some information about the costs of a mitigation 
measure or a specific technology. The cost estimates are mainly 
derived from engineering process-based studies of specific 
technologies. Examples include the costs of switching from coal to 
gas. In this model comparison, they are presupposed in all models. 

2. Economic costs for a specific sector are computed in sector-specific 
models, which allow the integration of a multitude of mitigation 
measures, often in a partial equilibrium framework. For example, 
energy system models assess the sectoral costs of the energy sector.6 

3. Macroeconomic costs reflect the impact of a given mitigation 
strategy on the level of the gross domestic product (GDP) and its 
components. At this level of analysis, feedbacks between sectors and 

6. Note that MESSAGE-MACRO goes beyond this by linking with the MACRO model.

Table 3. Summary of IMCP Scenario Definitions
The baseline is a business-as-usual scenario. Technological change is determined endogenously. 

Policy scenarios with ITC impose a policy goal of CO
2
 stabilization at three different levels (450, 

500, 550ppm CO
2
) or comparable 

Policy scenarios without ITC impose the same policy goal but restrict technological change to the 
extent found in the baseline scenario 
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the macroeconomic environment are accounted for. Such “general 
equilibrium effects” can be calculated by models which encompass 
either the whole economy, or coupled models of specific sectors and 
macro-economy. Thus, macroeconomic costs include the effects of 
engineering costs and sector-specific costs.

4. Welfare costs: The GDP variations, underlying the assessment 
of macroeconomic costs, do not provide an adequate measure of 
human welfare because the ultimate goal of economic activities 
is not producing GDP but allowing consumption of private and/
or public goods and leisure. Mitigation policies, however, may 
increase investments and thus GDP while at the same time reducing 
consumption. Therefore, GDP is not a reasonable indicator for 
human welfare. However, per capita consumption is also a flawed 
indicator for welfare because human welfare is not always a linear 
function of per capita consumption. Therefore, most intertemporal 
optimization models assume in accordance with some empirical 
evidence that the utility index is an increasing function of per capita 
consumption, and marginal utility is decreasing with consumption. 
This implies that costs measured in per capita consumption are 
exaggerated or underestimated depending on the per capita 
consumption level. Moreover, the utility index depends also on 
the distributional issues and non-market traded goods and bads. 
Economists who rely on welfare theory may argue that the utility 
index could be modified according to fairness criteria and public 
goods. Therefore, this index could be used as a reliable indicator 
for human welfare. 

Within IMCP, we analyze the impact of mitigation strategies on the sec-
ond and third types of costs. Welfare implications along the lines of item 4 are 
not assessed explicitly because the models participating in IMCP do not share a 
common measure of welfare. 

It seems worthwhile to note that all these cost concepts leave room for 
interpretation and may fuel a debate about the explanatory power of mitigation 
cost estimations. When GWP losses and consumption losses per capita are report-
ed in absolute numbers, these are naturally large and may create the impression 
that mitigation is a costly option. Put into perspective as relative percentage of the 
net present value of the GWP in the business-as-usual scenario, mitigation may be 
seen as only postponing economic growth for several months. A simple thought 
experiment illustrates this point: Assume that GWP growth of 2% per year in the 
business-as-usual scenario. If mitigation policy lowered growth to 1.97%, GWP 
losses over the whole century discounted by 5 % would amount to 1%. In conse-
quence, the annual GWP that would have been achieved in 2100 is now reached 
in 2101 (see Azar and Schneider 2002 for a similar argument). Does this imply 
that mitigation costs nearly nothing for humankind? One could argue that with 
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these trillions of dollars the lives of millions of poor people could be rescued, e.g. 
by investing in clean water facilities. On the other hand, damages caused by non-
action may destroy the rural habitats of millions of people elsewhere which also 
rarely count in terms of GWP. There is need for further investigation of the extent 
to which rapid climate change affects the welfare of people. Whilst acknowledg-
ing that different social outcomes can be hidden behind an aggregated number like 
GWP and the limitations of this approach, some useful insights about the impact 
of ITC can be drawn using GWP. Clearly, a situation where GWP is increased 
because of ITC is preferable to a situation where climate policy reduces the op-
portunities to invest in other desirable global projects.

In the context of IMCP we report GWP losses and consumption losses in 
terms of relative net present value which means that we measure the net present 
value losses between the business-as-usual scenario and the policy scenario and 
relate them to the net present value of GDP in the business-as-usual scenario. This 
allows a comparison of the cost estimations of different models. 

When interpreting mitigation costs, it is necessary to recall that in the 
IMCP we compare mitigation costs at given stabilization levels. Some models, 
e.g. ENTICE-BR and FEEM-RICE estimate climate change impacts caused by 
specific stabilization levels. Therefore, the benefits of avoiding such impacts are 
reflected in the GWP losses in these models. In the IMCP, we inform the reader 
only about the mitigation costs of achieving a certain stabilization level irrespec-
tive how much damages can be avoided by the predefined stabilization levels. 
In the cases of ENTICE-BR and FEEM-RICE the mitigation costs are reduced 
further by the damages caused at the specific stabilization level. Therefore, these 
GWP losses can be interpreted as net mitigation costs. In the following section we 
discuss the impact of technological change on these mitigation costs. 

5. RESULTS AND DISCUSSION

This section presents the collected data as follows: First we outline and 
analyze the costs of achieving specific stabilization targets. Second, we analyze 
the necessary emission reductions in the different models in terms of their effect 
on carbon intensity, energy intensity, and gross world product. Third, the transfor-
mation of the energy system which is a key challenge to meet the climate protec-
tion targets is described and evaluated. 

5.1 Mitigation Costs within Different Model Types

In this section we refer simultaneously to two different representations of 
mitigation costs. In both representations – Figure 1 and in Figure 2 – we show the 
mitigation costs as a loss of gross world product (GWP). Figure 1a shows mitigation 
costs from different models relative to the respective baseline GWP in the case when 
technological change is switched on (cf. scenario definitions in Table 3). In Figure 1b 
the cost estimations are reported when technological change is switched off, Figure 
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1c indicates the additional mitigation costs for the scenarios without technological 
change, i.e. the differences between Figure 1a and Figure 1b. Figure 1c shows the 
potential to induce technological change in the different models: the larger the cost 
increase when ITC is switched off, the lower the potential of endogenous technologi-
cal change incorporated in the implementation in that model. If a models incorpo-
rated no endogenous technological change, Figure 1c would indicate no additional 
costs because costs with ITC would be the same as costs without ITC. 

In Figure 2 the mitigation costs are shown as a function of the cumula-
tive CO

2
 reduction. The plotted data points correspond to the 550, 500 and 450 

ppm stabilization scenario. The main purpose of Figure 2 is to relate costs to the 
mitigation gap which has to be overcome by the different models. In some models 
the costs are relatively low because of a small mitigation gap and not because of 
a strong impact of ITC on the costs. In all but two models, mitigation costs are 
computed as the difference in cumulated GWP (2000 to 2100) between baseline 
and policy scenarios, discounted at a rate of 5% and relative to (discounted) base-
line GWP of the same time span.7 As there is no endogenous GWP in DNE21+ 
and GET-LFL, they present instead energy system costs and producer/consumer 
surplus in the energy sector, respectively.8 

By plotting the costs at different stabilization levels against the corre-
sponding cumulative CO

2
 reductions (also 2000 to 2100), the costs are put into 

perspective of the mitigation challenge that each model is confronted with in the 
policy scenarios. 

The severity of the challenge is determined by the ‘mitigation gap‘, i.e. 
the difference between predicted business-as-usual emissions and admissible 
emissions in the policy scenario. Models tend to agree on the latter, which is a 
property of the carbon cycle modules in the models, but advocate various pre-
dictions of business-as-usual GWP growth and CO

2
 emissions. Consequently, so 

called baseline effects have a strong influence on the results. Figure 2a depicts re-
sults from scenarios with ITC; for the scenarios in Figure 2b, ITC was disabled.

With one exception (E3MG), the models agree about the trend of costs: 
lower concentration targets imply larger costs. Also, costs rise disproportionately 
with CO

2
 reductions. 
In Figure 1a and Figure 2a, two models (E3MG and FEEM-RICE-FAST) 

show negative costs, i.e. gains from implementing climate policies. In the case of 
E3MG, this originates from the Keynesian treatment of demand-side long-term 

7.  We use a 5% rate to discount GWP reductions from all models to make numbers comparable 
among models and to other studies in the literature. The rates of pure time preference used in models 
that anticipate future development vary: ENTICE-BR and FEEM-RICE use a 3% rate initially which 
declines over the course of the century; AIM/Dynamic-Global applies a 4% discount rate; the rates 
of pure time preference are 3% and 1% in DEMETER-1CCS and MIND, respectively; the energy 
system models (DNE21+, GET-LFL, and MESSAGE-MACRO) use a 5% discount rate. There is no 
(macroeconomic) discounting in E3MG (except in the electricity sector) and IMACLIM-R. 

8.  Surplus and energy system costs are converted to the same metric as the GWP losses, i.e. their 
difference between baseline and policy scenarios is presented relative to the present value of baseline GWP.
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Figure 1.  Mitigation Costs

Figure 1a shows loss of gross world product, except for DNE21+, which reports the increase in en-
ergy system costs relative to the baseline, and GET-LFL, which reports the difference in producer 
and consumer surplus. Figure 1b displays the corresponding data from the scenarios without ITC. 
Figure 1c shows the difference between Figure 1a and Figure 1b. 

(a) Mitigation costs with ITC

(b) Mitigation costs without ITC

c) Difference of mitigation costs with ITC and without ITC
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Figure 2.  Mitigation Costs as a Function of Cumulative CO2 Reduction

All models report loss of gross world product except the DNE21+ which reports the increase in 
energy system costs relative to the baseline, and GET-LFL which reports the difference in producer 
and consumer surplus. The plotted data points correspond to the 550, 500, and 450ppm stabilization 
scenarios (with increasing CO

2
 reductions). In case of MESSAGE-MACRO, the presented scenario 

is 500ppm stabilization. Not shown for scaling reasons are GWP losses from IMACLIM-R which 
range from 2.5-6.2% in scenarios with ITC and 6.8-15.4% in scenarios without ITC.

 (a) Mitigation costs with ITC relative to corresponding CO
2
 reductions

(b) Mitigation costs without ITC relative to corresponding CO
2
 reductions
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growth that assume increasing returns to production and under-employment of la-
bor resources in the global economy. In E3MG, policy-driven increases in carbon 
prices lead to more investment and output. In the case of FEEM-RICE-FAST the 
negative costs are the consequence of the optimistic assumptions on the effects of 
R&D investments and of the role that stabilization targets have in inducing more 
R&D investments. This reduces the inefficiencies in the global R&D market that 
are calibrated in their second-best baseline scenario.

We now discuss these results in more detail by model design and by in-
dividual model. We start with cost estimates of energy system models, which are 
relatively low, partially due to neglected general equilibrium effects. In a second 
part we consider the results of general equilibrium market models and simulation 
models which calculated relatively high mitigation costs because they are focused 
on price effects and neglect intertemporal investment dynamics. Finally, the opti-
mal growth models within IMCP are discussed.

5.1.1 Energy System Models 

Mitigation costs in the energy system models DNE21+, GET-LFL (Fig-
ure 1 and Figure 2) differ from those reported by other models in this exercise, 
which measure the loss of GWP (or welfare). The opportunity costs of climate 
protection are measured as the increase in energy system costs compared to the 
baseline in DNE21+, and measured in terms of producer/consumer surplus rela-
tive to the baseline in the case of GET-LFL. We emphasize that using alternative 
metrics in our comparisons is problematic. In fact, while macroeconomic models 
are less adept to account for the system engineering costs in the energy sector, 
some system engineering models do not report on the aggregated implications 
of mitigation for total GWP. Thus, as the energy sector accounts for the partial 
equilibrium effects, the mitigation costs appear relatively low in Figure 1 and 
Figure 2. MESSAGE-MACRO adopts a hybrid approach, combining a systems 
engineering and macroeconomic model, and thus calculates energy system costs 
as well as GWP losses. However, it remains open to debate whether all intertem-
poral equilibrium conditions hold in this framework and thus all relevant compo-
nents of macro-economic mitigation costs are taken into account. For the sake of 
consistency with the macroeconomic models, Figure 1 and Figure 2 reports loss 
in terms of % GWP. 

The main advantage of energy system models is their higher resolution 
with respect to technology representation, emphasizing internal plausibility and 
consistency of structural change in the energy system. They are hence better at ac-
counting for costs related to barriers of technology diffusion and adoption than mac-
roeconomic models, where technology is traditionally represented in a more stylized 
and generic way. The downside of using purely systems engineering approaches 
is that the reported energy system costs do not provide a comprehensive account 
of potential welfare losses outside the energy sector. As discussed above, costs of 
DNE21+ and GET-LFL presented in Figure 2 are thus relatively small compared 
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to the majority of the macroeconomic models. The costs of mitigation depicted by 
MESSAGE-MACRO are seen to be relatively low as well, but mainly because of the 
small CO

2
 reductions required to meet the 500-ppm stabilization target. 

From a methodological point of view, the three systems engineering 
frameworks differ in particular with respect to representation of energy demand. In 
DNE21+ demand is price inelastic, i.e. feedbacks from changes within and outside 
the energy sector are not considered. GET-LFL takes into account price-elastic en-
ergy demand and therefore considers rebound effects in a partial equilibrium of the 
energy market. In partial equilibrium models, producer and consumer rents may be 
diminished by climate policy. Therefore, consumer and producer surpluses present 
a better estimate of the mitigation costs than energy system costs in this model. 
Both these estimates of energy system costs are relevant measures of the costs 
imposed by climate policy, because the transformation of the energy system is one 
of the greatest challenges posed by constraining CO

2
 emissions. In MESSAGE-

MACRO the price response of energy demand is estimated via its macroeconomic 
module (MACRO), where the economy is viewed as a Ramsey-Solow model of 
optimal long-term economic growth. In particular, feedbacks between energy and 
non-energy sectors are determined by relative prices of the main production factors 
capital stock, available labor, and energy inputs, subject to optimization.

Figure 1c compares the mitigation costs from Figure 1a (with ITC) and 
Figure 1b (without ITC). It is apparent from the results of DNE21+ and GET-LFL 
that ITC effects within the energy system are relatively small compared to those 
given by macroeconomic models, which account also for GWP changes outside 
the energy sector. Again, this might not come as a surprise because these energy 
system models calculate only partial equilibrium effects. Another reason may be 
that for the DNE21+ model, learning-by-doing to only selected technologies (wind, 
photovoltaic, and fuel cell vehicle). GET-LFL, however extensively incorporates 
learning-by-doing. In this case, climate policy does not induce significant progress 
for two reasons: floor costs for carbon capturing and sequestration and biomass are 
already nearly realized in the baseline scenario mainly because of spillover effects 
in technology clusters. Additionally, abundant resources of natural gas help to close 
the mitigation gap without further resorting to the carbon-free energy technologies 
which lack learning potential in the scenario without ITC. Results of the latter mod-
el in particular illustrates that technological detail is needed to understand possible 
compensation mechanisms that might limit inducement effects of climate policies 
in the energy sector.  

Figure 1 includes the GWP losses from MESSAGE-MACRO (for the 
500ppm scenario only). In the scenario without ITC, mitigation costs are much 
higher. However, comparability to the results from other models is limited, since 
MESSAGE-MACRO ran a fixed cost “without ITC” scenario. In other words, the 
structure of the energy system changes towards today’s best practice technologies 
(given specific resource and environmental constraints). In contrast, the other models 
have defined exogenous technological enhancements in the scenarios without ITC. 
The effect of ITC in these and other macroeconomic models are discussed next.
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5.1.2 General Equilibrium Models

CGE models are represented in the IMCP by IMACLIM-R. CGE models 
have been known to predict high costs and indeed, IMACLIM-R estimates GWP 
losses for 550, 500, and 450ppm stabilization targets at 2.5, 4.6, and 6.2% (Figure 
1). As expected, these numbers are the highest cost estimates in this and there are 
reasons inherent to the model structure that explain this tendency.

Models like IMACLIM-R calculate a general equilibrium taking into ac-
count the relative price effects not only in the energy sectors but in all sectors. This 
way, climate policy not only induces a transformation of the energy system but 
also a revaluation of all capital stocks in the energy sectors and in turn in energy 
demand sectors. It follows that resources within the economy need to be reallocat-
ed according to the changed equilibrium. Hence in a general equilibrium model, 
climate policy has the potential to trigger a greater transformation than that of the 
energy system alone. Pitted against the need for change throughout the economy 
are potentially larger – economy wide – flexibilities to react to the restrictions of 
climate policy. However, recursive dynamic CGE models lack foresight as well as 
the flexibility of endogenous, sector specific investment decisions.

In particular, the IMACLIM-R model assumes that investments in the 
composite good sector simultaneously enhance labor productivity and energy 
productivity, i.e. investments in physical capital exhibit an externality. Addition-
ally, labor productivity is improved by learning-by-doing. Climate policy induc-
es increases and reallocations of investment in the energy sectors including the 
corresponding learning-by-doing. Due to learning-by-doing energy prices de-
crease and cause an additional energy demand – a rebound effect. These invest-
ments in the energy and transport sectors crowd out investments in the composite 
good sector and reduce economic growth. The reduction of investments in the 
composite good sector also lowers the growth rate in labor productivity, which 
reduces economic growth further. The double dividend of increasing investments 
becomes a double burden if investments have to shrink. Among other things, the 
crowding out effect and this double burden increase the opportunity costs of cli-
mate protection – an effect which is very pronounced in IMACLIM-R. Moreover, 
the interplay between inertia in the transport sector, imperfect foresight and non-
optimal carbon tax profile induced further welfare losses. These welfare losses 
can be considerably lowered by efficiency gains and technology diffusion. 

Without induced technological change, costs increase further in IMA-
CLIM-R, demonstrating that the implementations of ETC endow the models with 
additional flexibility (Figure 1c). In IMACLIM-R, mitigation costs for the 550, 
500, and 450ppm scenarios climb to 6.8, 12.0, and 15.4%, respectively.

5.1.3 Simulation Models

In E3MG, CO
2
 permits and taxes are imposed on the economy in order to 

achieve the required stabilization targets. In contrast to other long-term studies but 
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consistent with many shorter-term studies (e.g. IPCC 2001, p. 516), climate policy in-
duces GWP gains. This result can be understood in comparison with the second-best 
solutions of optimizing models. These try to reproduce the market behavior which in 
general exhibits all sorts of market imperfections – like unemployment, postponed 
price adjustments, etc. – by relaxing assumptions about perfect market clearing. A 
crucial feature in E3MG is that although product markets clear, labor and other mar-
kets may not clear. Part of the effect of including ITC in the model is to raise growth 
by more labor transfer from traditional to modern sectors in the world economy.

This effect of taxation in E3MG is due to the fact that investors are limited 
in their foresight. In a perfect foresight model we would expect that investors adjust 
their portfolio of investment according to long-term price and taxation expectations. 

5.1.4 Optimal Growth Models

Four of the models in the IMCP are implemented in the framework of 
growth models subject to intertemporal welfare maximization (MIND, ENTICE-
BR, AIM/Dynamic-Global, DEMETER-1CCS, and FEEM-RICE, the latter in 
FAST and SLOW parameterizations). The large differences in CO

2
 reductions 

necessary for stabilization between these models are caused by different baseline 
projections of GWP and the corresponding emissions. These different projections 
are a direct result of implementing ETC within these economy models. Whereas 
optimal growth models without ETC make an assumption about GWP growth, 
these models make assumptions about ETC which then contribute to overall GWP 
growth. This makes GWP growth a result of how ETC is modeled rather than an 
assumption. In most optimal growth models in the IMCP overall technological 
change is determined by an exogenous total factor productivity in addition to an 
implementation of ETC. MIND differs in this respect, describing technological 
change fully endogenously. All models share a common starting point in 2000. 
However, large differences result over the course of the century. 

With the exception of AIM/Dynamic-Global, the cost predictions of the 
growth models in Figure 2 are low (below 1% GWP up to the 450ppm scenario). 
We have argued above that general equilibrium effects tend to raise the opportu-
nity costs of climate policy, but these models are endowed with perfect foresight. 
In conjunction with endogenous investment possibilities this allows models to act 
flexibly thus avoiding large mitigation costs.

AIM/Dynamic-Global incorporates perfect foresight but studies only a 
single endogenous mitigation option. Energy efficiency depends on a stock of 
energy conservation capital. Investment in energy conservation capital improves 
energy efficiency and is a decision variable of the optimization. AIM/Dynamic-
Global also includes carbon-free energy from renewables and nuclear power, but 
investments in these options cannot be induced by climate policy – only invest-
ments in energy conservation are a control variable. This demonstrates the impact 
of flexibility on mitigation costs and how the exclusion of mitigation options in-
creases the costs substantially.
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In contrast, MIND includes investment decisions into capital stocks of 
energy technologies, including the backstop technology in particular. We attribute 
the low cost estimates of these models to this flexibility.

ENTICE-BR and FEEM-RICE-SLOW compute slightly higher costs 
compared to MIND. ENTICE-BR incorporates a backstop technology which im-
proves through R&D investments. However, this effect is overcompensated by the 
built-in crowding out effects caused by investments in the energy sector. In addi-
tion, the backstop technology displays most of its effects in the baseline scenario, 
independent of stabilization targets. In FEEM-RICE-SLOW costs are low because 
of the combined effect of learning-by-doing and R&D investments. An increase in 
R&D investments induced by a stabilization target enhances learning-by-doing as 
well. This makes R&D investments more profitable by oncreasing benefits from 
climate change reductions. ENTICE-BR and FEEM-RICE GWP numbers include 
benefits of climate policy, and that the gross numbers would be slightly higher.

In FEEM-RICE-FAST, there are negative mitigation costs, i.e. gains from 
mitigating carbon. The FEEM-RICE model is a second-best model in the sense that 
market imperfections occur in the baseline due to externalities in the R&D invest-
ments. Regions invest too little in R&D because of their non-cooperative behavior. 
If faced with climate policy, they are induced to increase their R&D investments, 
which get closer to cooperative levels. That is, an improvement of R&D investment 
is a by-product of climate policy. Therefore, climate policy has a clear net benefit. 
However, this net benefit changes to net costs if the learning-rate is slow and the 
crowding out effect between different types of investments is large. 

The DEMETER-1CCS model also computes a second-best solution 
of the world economy accounting for independent actions of firms and house-
holds. DEMETER-1CCS’s cost estimates are among the lowest in this study, for 
a number of reasons. In DEMETER-1CCS households are endowed with perfect 
foresight, hence even though firms show a static profit maximizing behavior, the 
model is at an advantage in averting mitigation costs. Moreover, the model makes 
optimistic assumptions about substitution possibilities between fossil fuels and 
carbon-free energy, and backstop technologies. The latter are assumed to exhibit 
high learning rates (20% for renewables and 10% in case of CCS), and the share 
of energy from these sources is not restricted, e.g. there is no sharp increase in 
costs when the energy supply has to rise as it does in many energy system models. 
Moreover, CO

2
 emissions are low in the baseline scenario, so that complying with 

policy scenarios poses a smaller challenge than in other models.
If technological change is switched off (Figure 2b), costs increase. The 

comparison of Figure 1a and Figure 1b in Figure 1c shows that the cost reduction 
potential of ITC varies between different models: In FEEM-RICE-FAST as well 
as in FEEM-RICE-SLOW, ITC shows a large potential for reducing the mitiga-
tion costs when low stabilization scenarios should be achieved. Both versions of 
FEEM-RICE show remarkably similar behavior without ITC, in particular, GWP 
gains in FEEM-RICE-FAST have turned into losses, hence the observed effect 
can be attributed to “fast” technological change.
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In AIM/Dynamic-Global disabling energy conservation investments has 
some influence on mitigation costs. The option of energy conservation invest-
ments is shown to have significant influence, but in comparison with options in 
other models, this option is less important. 

In MIND, mitigation costs increase sharply when ITC is switched off. 
MIND demonstrates that removing backstop technologies when switching ITC 
off has a significant impact.9 In scenarios without ITC, the MIND model exhibits 
mitigation costs comparable to costs in CGE models. 

In ENTICE-BR the net effect of ITC is small because of two effects: 
first, investments in the energy sector are less productive than investments in the 
rest of the economy. Therefore, less technological progress is induced in the poli-
cy scenario. Second, the exogenously determined total factor productivity further 
reduces the impact of endogenous technological change on the model output.

5.1.5 Stricter Climate Policy (400ppm Stabilization)

Table 4 shows that a few models achieve a feasible solution when faced 
with a stabilization target of 400ppm (DEMETER-1CCS, MIND, FEEM-RICE, 
and GET-LFL). In general, the reason why many models cannot derive a feasible 
solution can be found in the inflexibility of the energy system to manage the re-
quired cumulative emission reductions. The inflexibility comprises phenomena 
like boundaries for the diffusion of backstop technologies, limited sets of mitiga-
tion options or myopic investment behavior. 

5.1.6 Robust cost estimate

The IMCP set out not only to learn from the differences in model results, 
but also to identify robust findings. Is it possible to identify a robust estimate of 

9.  In MIND, the availability of renewable energy sources and carbon capturing and sequestration 
is considered an option of ETC because its use depends on the costs of carbon, consequently, in the 
scenarios without ITC, the extent of renewables and CCS is restricted to the baseline. In all other 
models, the availability of technologies is not considered as “ETC”, e.g. in DEMETER-1CCS’s 
scenarios without ITC, renewables and CCS may be used; however there is no learning-by-doing for 
these technologies in this scenario. Therefore, if endogenous technological change is switched off, 
MIND can only reduce energy consumption and GWP.
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Table 4. Mitigation Costs for 400ppm Stabilization
 Mitigation costs [%GWP] 

Model Name With ITC Without ITC 

DEMETER-1CCS 0.07 0.17  
FEEM-RICE-FAST 0.01 3.1  
FEEM-RICE-SLOW 2.0 3.7  
MIND 0.76 8.9 
GET-LFL 0.62 0.67
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climate protection costs across models in the IMCP? 
One might be hesitant to see robustness in the broad range of costs e.g. in 

the case of 450ppm stabilization, ranging from benefits to costs greater than 6% of 
aggregate GWP 2000-2100 (at present value). However, the range is reduced con-
siderably when we recognize that three models are of a predominantly exploratory 
nature, i.e. their intent is not to give a best estimate but to explore an extreme sce-
nario. These are: IMACLIM-R, which explores the role of the transportation sector 
under the assumption that energy sector and transportation sector are inflexible and 
externalities of investments in physical capital are biased against energy efficiency; 
AIM/Dynamic-Global limiting mitigation options to investments in energy conser-
vation capital, hence emissions cannot be decoupled from economic growth in the 
long-run (these two models arrive at the highest costs in this study); FEEM-RICE-
FAST exploring the possibility of “fast” technological change, which then results 
in benefits of climate protection rather than climate protection costs.

If we furthermore consider E3MG separately, because it is fundamentally 
different with its Keynesian rather than neoclassical point of view, we are thus 
left with a set of seven models and cost estimates that range from 0.04% to 0.66% 
for 450ppm stabilization. Average climate protection costs among these remaining 
models are 0.39, 0.16, and 0.1%, for 450ppm, 500ppm, and 550ppm stabilization, 
respectively. Here, the MESSAGE-MACRO model is only included in the 500ppm 
average because it did not run the other scenarios. If we exclude the two energy 
system models that do not report costs in terms of GWP, the numbers only slightly 
change to 0.41, 0.16, and 0.1 percent, for 450ppm, 500ppm, and 550ppm stabiliza-
tion, respectively. These last numbers average over 4, 5, and 4 models, respectively. 
Table 5 summarizes these values along with average costs at alternative discount 
rates, illustrating the influence of the discount rate on the cost estimate. 

In view of this and with the considerable uncertainties about model 
structure and other assumptions in mind, it seems a robust conclusion from the 
presented energy system models and optimal growth models to expect climate 
protection costs of up to one percent.

5.2 Mitigation Strategies for Different Stabilization Scenarios

In this section we identify the contributions of different carbon mitiga-
tion options towards achieving an overall mitigation target, and we assess the role 
of technological change in the mitigation effort. Kaya’s identity10 provides a set of 
indicators that pinpoint the different ways taken by models to meet a given target, 
namely the attribution of total carbon dioxide emissions to global economic out-
put, energy intensity of GWP, and carbon intensity of the energy: 

 CO
2 

PE
CO

2
 = —— × —— × GWP (1)

10. Kaya’s identity originally also differentiates between income effect (GWP per capita) and a 
population effect. As an exogenous population scenario is used in this study, we can neglect this factor.
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 PE GWP 
 

Here, CO
2
 denotes emissions, PE primary energy, and GWP is gross world 

product. To facilitate interpretation and to help track down the features underlying 
these aggregate effects in the models, we summarize endogenous and exogenous 
technological change in the individual models in Table 2 and attribute the features 
of technological change to their likely effects in terms of either energy intensity 
or carbon intensity. Of course, the complex nature of the models does not allow a 
definite classification. Still, these preliminary classifications may serve to structure 
features of technological change and guide interpretation, for comprehensive 
model descriptions we refer to the literature references in Section 3.

5.3 Decomposition Analysis

The indicators output, energy intensity and carbon intensity are chosen 
because they provide information about fundamental differences in the mitigation 
strategies pursued by the individual models. Yet because of their highly aggregate 
nature, they abstract from the technological and implementational details in the 
models, thus allowing quantitative comparison across models.

Reduction of carbon intensity makes it possible to maintain a high level 
of energy use, putting relatively little stress on the economy as a whole (the climate 
issue is ‘solved’ in the energy sector). If this solution is not feasible (this depends 
largely on availability of carbon-free technologies), energy intensity must be de-
creased (implying a reduction of energy) to comply with the climate policy. Forcing 
the economy to use drastically less energy can amount to ‘choking’ it, i.e. it may 
lead to a reduction in output (gross world product). The decomposition analysis 
allows quantification of the contribution of carbon intensity, energy intensity and 
output reduction to the required effort of emission reduction. For the purpose of this 
modeling comparison we use the refined Laspeyres index method (Sun 1998, Sun 

Induced Technological Change  /  83

Table 5. Average Discounted Abatement Costs
Concentration   Declining 
level 5% discount ratea 2% 1% undiscounted 

[ppm CO2] [%GWP] [%GWP] [%GWP] [%GWP] [%GWP] 

450 ppm 0.41 0.64 0.71 0.83 0.95  
500 ppm 0.16 0.25 0.28 0.32 0.37  
550 ppm 0.10 0.14 0.16 0.18 0.19

a. Declining discounting rates were adopted from the Green Book (HM Treasury 2003) starting at 
3.5% for the first 30 years, then dropping to 3.0% until year 75, and 2.0 until year 125. 

Table 5 shows abatement costs averaged over central models, i.e. we exclude models with a 
predominant explorative nature and we restrict the average to GWP losses only ignoring the different 
metrics from GET-LFL and DNE21+. That is, the above averages include ENTICE-BR. FEEM-
RICE-SLOW, DEMETER-1CCS, MIND, and MESSAGE.
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and Ang 2000). We apply the decomposition analysis to the differences of cumula-
tive values between baseline and policy scenario. Figure 3 displays the decomposi-
tion of the centennial CO

2
 reductions along Kaya’s identity for different models.

5.3.1 Mitigation Strategies to Comply with 550ppm Stabilization 

The stacked bars in Figure 3 show the CO
2
 savings in the 550ppm policy 

scenario from the baseline cumulated over the century. Additionally, shading 
indicate how much reductions in carbon intensity, energy intensity, and output 
(GWP) contribute to these savings. 

The necessary carbon dioxide reductions differ widely between models. 
The cumulative reductions necessary to comply with a 550ppm concentration cap 
range from ~116GtC to ~987GtC (in FEEM-RICE and MIND, respectively), with 
correspondingly great differences in the challenge that these reduction pose for 
an economy.11 We stress that models tend to agree on the maximum cumulative 
CO

2
 emissions for a given stabilization scenario: averages among models for 

cumulative CO
2
 emissions are 589, 783, and 931 GtC for 450, 500, 550 ppm 

stabilization scenarios, respectively. The corresponding standard deviations are 
72, 77, and 92 GtC. The differences in Figure 3 stem mainly from different CO

2
 

emission paths in the baseline: cumulative CO
2 
emissions in the baseline range 

from 980 to 2000 GtC, mean 1430, with a standard deviation of 323 GtC. To 
account for such baseline effects, we will base our analyses on measures that are 
relative to this ‘mitigation effort’ as much as possible. 

Note that baseline growth and CO
2
 emissions seem unrelated to model 

types. This is not very surprising when growth and emissions are exogenous and 
therefore arbitrary. In other models, it is possible to calibrate growth and emissions, 
e.g. in recursive CGE models, by a variation of exogenous model parameters like 
the total factor productivity. In the optimal growth models, total factor productiv-
ity, efficiency of R&D investments, and elasticity of substitution can be adjusted to 
approximate a given baseline scenario. However, the baseline is not determined by 
exogenous parameters alone but also by the endogenous features of technological 
change. This implies that CO

2
 emissions of such models cannot be fully harmonized. 

Nevertheless, there is no reason to assume that models with endogenous technologi-
cal change exhibit an inherent trend to particularly high or low emission scenarios.

A group of models (IMACLIM-R and AIM/Dynamic-Global) share 
similar behavior. Here, the larger part of the CO

2
 reductions can be attributed to 

lowered energy intensity and cut-backs in production. They also show the largest 
cut-backs in production of all models. A possible explanation is that an inability 
to provide enough carbon-free energy (which would show up as carbon intensity 
reduction) forces economies to reduce the energy input (evident in the reduced 
energy intensity) to an extent where it harms the economy (visible as GWP reduc-

11.  An obvious corollary is that emission reductions are necessary to meet even the 550ppm 
policy goal despite the presence of ETC in the baseline.
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tions). IMACLIM-R resorts to decreasing energy intensity and reducing GWP be-
cause it does not incorporate a backstop technology. Here, the increasing energy 
price reduces energy demand and induces additional investments in the electric-
ity- and transport sectors which crowd out the overall investments in the com-
posite good sector which are needed to induce economic growth. An optimum, 
cost-effective tax profile would probably lower costs compared to the exogenous 
linearly increasing tax imposed in these scenarios.

The RICE/DICE models, FEEM-RICE and ENTICE-BR, show strikingly 
similar behavior but this differs substantially from the remaining growth models. 
Here, the predominant mitigation strategy is to increase the energy efficiency. 
FEEM-RICE does allow explicitly for carbon intensity reduction as well as for 
energy intensity reduction. However, both are driven by the same index of techno-
logical change. Hence the ratio of reductions in carbon- and energy intensities is 
implied by model structure and calibration, and it is not a degree of freedom in the 
model. Both FAST and SLOW versions of the FEEM-RICE rely more on energy 
intensity reduction than on carbon intensity reduction. The FAST version shifts 
the mitigation strategy towards carbon intensity reductions. ENTICE-BR explicitly 
includes a backstop technology so one might expect a bigger carbon intensity ef-
fect. However, carbon-free energy is already strongly represented in the baseline 
(the share of renewables rises from 4% in 2000 to 11% in 2100). The required CO

2
 

abatement is therefore small and can be met by energy efficiency improvements via 
R&D investment in a corresponding knowledge stock and factor substitution. 

DEMETER-1CCS behaves differently. Here, energy intensity reductions 
and carbon intensity reductions make equally large contributions, while produc-
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Figure 3. Cumulative CO2 Reduction for the 550ppm Stabilization Scenario

CO
2
 reductions are attributed to reductions in carbon intensity, energy intensity, and gross world 

product using decomposition analysis. Note that the 550ppm scenarios are not available from 
MESSAGE-MACRO and we therefore display results from their 500ppm scenario using a separate 
scale on the second y-axis.
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tion cut-backs are kept at a minimum. A low emissions baseline and optimistic 
assumptions about substitution possibilities and carbon-free energy sources play a 
key part in this and were discussed in detail in the preceding section.

In energy system models, the mitigation strategy relies heavily on carbon 
intensity reduction, i.e. CO

2
 emissions are mitigated largely by switching to low car-

bon energy sources. Indeed, all these models include options to build up a backstop 
technology providing carbon-free energy, and in each case learning curves are imple-
mented for some backstop technologies. At the same time, a significant share of the 
CO

2
 reductions is attributed to reductions in energy intensity implying some sort of 

energy conservation. In DNE21+, energy demand is exogenously given. However, 
energy savings in end-use sectors in climate policy scenarios are modeled using long-
term price elasticities. GET-LFL implements learning-by-doing in energy conversion 
technologies as well as a price dependent energy demand in a partial equilibrium. In 
MESSAGE-MACRO runs, energy demand is determined in the MACRO economy 
model, which allows energy to be substituted by other factors. 

Remembering that MIND includes a reduced form energy sector that 
borrows from bottom-up energy system models, the similar ratios of carbon and 
energy intensity in MIND and in the energy system models is no surprise. Rather, 
it indicates that energy system dynamics are successfully approximated by the re-
duced form model. Furthermore, MIND consistently describes the macroeconomic 
environment taking into account general equilibrium effects. Hybrid models like 
MIND therefore constitute an attempt to bridge the gap between top-down and bot-
tom-up models in order to assess the importance of the investment dynamics. 

In E3MG most of the necessary reductions are attributed to reduced en-
ergy intensity. There are three routes by which carbon intensity and energy in-
tensity are affected: First, an increasing price of carbon induces a reduction in 
energy demand, and second, a switch to carbon-free technologies within the power 
and transport sectors. Finally, the share of fossil fuels in the overall energy mix is 
slightly decreased because the elasticity of substitution in the energy and transport 
sector is very low. 

5.3.2 Effects of Enhanced Climate Policies

Figure 4 indicates the change of the portfolio of mitigation options, if 
instead of 550ppm CO

2
 concentration, the more ambitious level of 450ppm has 

to be achieved. How and in which way do the mitigation strategies change when 
a more demanding climate protection goal is pursued? Bars in Figure 4 give the 
change of the mitigation portfolio in terms of the contributions to overall CO

2
 

reduction in Figure 3. They are symmetrical because an increased share of one 
option is always balanced by a corresponding decrease in one or more other op-
tions. For example, a 20% increase of the carbon intensity effect accompanied by 
the corresponding 20% decrease of the energy intensity effect in the case of DE-
METER-1CCS implies that the contribution of carbon intensity rises from 50% to 
70% whereas the contribution of energy intensity drops to 30%.
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Figure 4 shows that lowering the stabilization level has different impacts 
on the portfolio of mitigation options in the models. Whilst several models show 
little change (e.g. MIND and E3MG), others show substantial changes. Large 
changes may indicate that favorable mitigation options which contribute to CO

2 

abatement in laxer policy scenarios have been exhausted hence other options are 
increasingly deployed for more stringent climate policies. Small changes suggest 
that the greater challenge is addressed much the same way as the lesser challenge.

In DEMETER-1CCS, the contribution of carbon intensity reduction in-
creases by nearly 20% to a share of 70%. In other words, carbon free energy from 
renewables and CCS now contribute to mitigation to a similar extent as they do in 
energy system models. The reason lies in the fact that the 550ppm scenario in DE-
METER-1CCS is relatively close to the baseline, and a large share of the neces-
sary emission reductions can be accomplished by energy savings. In contrast, the 
450ppm concentration target requires a much more substantial departure from the 
baseline, and the option of factor substitution decreases in relative importance.

In many models (ENTICE-BR, AIM/Dynamic-Global, DEMETER-
1CCS, MIND, DNE21+, GET-LFL, E3MG) we observe a similar pattern of change 
in the portfolio: to achieve 450ppm stabilization, a mitigation strategy is chosen that 
incorporates a larger share of carbon intensity reduction than in case of the 550ppm 
stabilization. In all of these cases, a carbon-free technology is implemented, and 
this change can be attributed to a heavier use of carbon-free energy in the energy 
mix. Exceptions to this pattern are FEEM-RICE and IMACLIM-R. FEEM-RICE 
and IMACLIM-R have in common, the feature that they do not model a carbon-
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Figure 4. Change of the Mitigation Strategy with More Ambitious  
Climate Policy 

The bars in this figure give the absolute differences between the percentages describing the 
contributions of the options in the 550ppm and the 450ppm scenarios. There is no result for 
MESSAGE-MACRO because only the 500ppm scenario was available.
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free energy technology. This seems to limit their potential to reduce carbon inten-
sity compared to models with a backstop technology. The difference is particularly 
striking when FEEM-RICE is compared to ENTICE-BR. The two models share 
the general model structure of Nordhaus’ DICE/RICE models, yet only the latter 
incorporates a backstop technology with the consequence that it becomes possible 
to increase the contribution of the carbon intensity effect.

In IMACLIM-R, most of the additional CO
2
 reductions are accomplished 

by reducing GWP. The limited potential of carbon- and energy intensity reduc-
tion is largely exhausted at the 550ppm stabilization concentration. The reduction 
potentials are limited due to capital inertia preventing the retirement of old capital. 
As before in the 550ppm scenario, a rebound effect in the transportation sector 
and crowding out of growth inducing investments in composite goods determine 
the GWP losses. 

5.3.3 Mitigation Strategies With and Without ITC

Figure 5 shows how the portfolio of mitigation options changes when fea-
tures of endogenous technological change are disabled, i.e. technological change 
is restricted to the extent computed in the baseline. The bars give the change in 
portfolio (cf. Figure 4). Large changes indicate that including the possibility for 
ITC has a big impact on the mitigation strategy.

MIND, FEEM-RICE, and IMACLIM-R show relatively large changes. 
In MIND, the modelers’ understanding of ITC plays an important part (see Foot-
note 9).12 When the common definition of ITC is applied, changes in MIND are 
closest to the changes in DEMETER-1CCS, i.e. there are much smaller changes. 
Four models show little change (AIM/Dynamic-Global, DNE21+, GET-LFL, and 
ENTICE-BR) because model behavior with and without ITC is very similar.

In Figure 5, ENTICE-BR, FEEM-RICE, DEMETER-1CCS, and MIND 
share the same sign for the change in the contribution of carbon intensity re-
duction. In these models, the carbon intensity effect decreases implying that the 
induced technological change works more towards decarbonization rather than 
reducing energy intensity. Naturally, this mirrors the fact that these models imple-
ment features of endogenous technological change that are related to decarbon-
ization, e.g. learning curves for backstop technologies. Two qualifications apply: 
MIND also includes endogenous energy efficiency reduction. In this case, Figure 
5 shows that induced carbon intensity reductions outweigh induced energy in-
tensity reductions. Secondly, in FEEM-RICE-SLOW the contribution of carbon 
intensity decreases from an 11% contribution to -23% contribution. Here, the av-
erage global carbon intensity is higher in the policy scenario without ITC than in 
the baseline because under climate policy, a larger share of global energy use is al-

12. A small carbon intensity effect remains, because the fixed amount of renewables represents 
a greater share of the (reduced) total energy in the policy scenario without ITC than in the baseline, 
which implies reduced carbon intensity for the energy mix.
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located to countries with relatively high carbon intensity (U.S., Europe, and other 
high income countries), thus raising the global average relative to the baseline.

Conversely, in E3MG, MESSAGE-MACRO, and IMACLIM-R, the cli-
mate policy induces a larger contribution of energy intensity reduction, though 
for differing reasons. In IMACLIM-R, stabilization levels without technological 
change can only be achieved with a substantial reduction of GWP because of the 
sunk costs in the energy system, the constant rate of exogenous technical change 
and the absence of sequestration options. The carbon tax induces no additional 
change in the pace of technological change. The economy only adapts to the im-
posed carbon tax through a changed energy mix (see the increasing carbon inten-
sity in Figure 5 if technological change is switched off). Therefore GWP has to be 
reduced in order to compensate decreasing energy intensity.

In E3MG the key feature of the model underpinning the ITC results is 
that GWP growth has been made endogenous, with technological change hav-
ing a major influence (via export equations). However, endogenous technological 
change only has a small decarbonization effect on the global economy. Energy 
demand and supply is very small in relation to the rest of the economy, around 
3-4% of value added, and technological change is led by improvements in the 
use of machinery and information technology and communications. These im-
provements allow long-term growth to proceed by decreasing energy-intensity 
if technological change is switched on. The growth itself ultimately comes from 
the demand by consumers for goods and services, promoted by technological and 
marketing innovations. 

Induced Technological Change  /  89

Figure 5. Change in Mitigation Strategies when ITC is Disabled in the 
550ppm Scenario

The bars in this figure give the absolute differences between the percentages describing the 
contributions of the options in the scenarios with ITC and without ITC. For message-macro, the 
500ppm scenario is used instead.
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Disabling ITC possibilities increases the contribution of GWP reduction 
to mitigation in all cases. This comes as no surprise: Removing the flexibility of 
inducing further technological change from the model makes it more difficult for 
the models to reduce CO

2
 emissions without cutbacks in production.

5.4 Timing of Mitigation Options

Figure 6 depicts the timing of the mitigation options (adopted from Gerlagh 
2006). We show the reduced carbon intensity in the 450ppm policy scenario relative 
to the baseline versus the reduced energy intensity as a time trajectory, from 2000 un-
til 2100 with bullets set every 20 years. A trajectory where both options contributed 
to the same extent would run along the bisector. Steeper or gentler slopes indicate a 
preference for carbon intensity reduction or energy intensity reduction, respectively. 

Interestingly, in a majority of models, the trajectory bends to the left with 
time indicating that carbon intensity reduction becomes increasingly more impor-
tant. A plausible explanation is the widespread use of carbon-free technologies 
that need to be built up gradually by investments, and often become increasingly 
more productive through learning-by-doing. The trajectory of IMACLIM-R il-
lustrates well, how lack of a backstop technology prevents this change in the miti-
gation strategy: the model sticks to its mainly energy saving strategy over time. 
FEEM-RICE-SLOW shows similar behavior: the reduction of energy intensity 
dominates the reduction of carbon intensity (i.e. the slope of the trajectory is less 
than unity) because of a missing backstop technology. 

Similar to the other models, FEEM-RICE initially increases the reduction 
of both energy intensity and carbon intensity. While FEEM-RICE-SLOW retains this 
mitigation strategy, FEEM-RICE-FAST decreases reductions of carbon intensity. As 
mentioned before, carbon intensity and the elasticity of substitution are driven by the 
same endogenous index of technological change in FEEM-RICE, and the relation of 
carbon intensity and energy intensity is therefore determined by model structure.

In GET-LFL energy demand is reduced by an increasing energy price, 
which in latter periods is compensated by a stronger reduction of carbon intensity. 

5.5 Energy Mix

In the previous section, we showed that the dynamics in the energy sec-
tor, e.g. the development of a carbon-free technology, have a key impact on carbon 
abatement. In this section we take a close look at the projected development of the 
energy system and the role of ITC.

Figure 7 shows the development of the energy system characterized by 
the mix of energy sources at the beginning (2000), middle (2050) and end of 
the century (2100). Five energy sources are distinguished, namely three fossil 
energy sources (coal, gas, and oil) plus renewable energy sources, and nuclear 
fission. If additional energy sources were implemented in a model which could 
not be subsumed in these categories, or if a model does not differentiate between 
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the categories, the data is presented in the categories of “aggregate fossil” and 
“aggregate non-fossil” energy sources. Results are reported in three columns per 
model giving the baseline energy mix, the 450ppm policy scenario with ITC, and 
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Figure 6. Trajectories in Energy Intensity/Carbon Intensity Space

Trajectories start at the origin and bullets are set 20 years apart. Figure 6a shows the 450ppm 
scenario with ITC, Figure 6b the same scenario without ITC.

(a) Strategy trajectory with ITC

 
(b) Strategy trajectory without ITC

3.5 Results and Discussion 77



92  /  The Energy Journal

the 450ppm scenario without ITC.13 In 2000, the three cases coincide. The models 
FEEM-RICE and ENTICE-BR are not shown as these models do not compute 
energy in Joules but incorporate “carbon services” to productions measured in 
carbon instead. In the case of MESSAGE-MACRO, results from the 500ppm sce-
narios are displayed instead of the unavailable 450ppm scenarios.

5.5.1 Different Formulations of the Backstop

We have seen that implementing a backstop technology can make a great 
difference in how models respond to climate policy goals. In accordance with the 
literature, we define a backstop technology as a carbon-free technology whose 
usage is not restricted by scarcity of non-reproducible production factors. What 
makes backstop technologies so important in carbon abatement? 

In Figure 8, we sketch model behavior given two different assumptions 
about backstop technology. The price of energy from a fossil resource is indicated 
in black, and an exogenously set price for energy from the backstop technology is 
indicated in light gray. In contrast, the price of energy from a backstop technology 
is plotted in dark gray for an endogenously determined backstop price. Solid time 
paths indicate business as usual, and slashed curves are induced by a policy goal. 
We assume that imposing a policy goal brings down the price of energy from the 
backstop technology because larger investments in carbon-free energy sources 
need to be made and therefore more learning occurs. The price of energy from 
fossil resources rises due to the costs of the corresponding emissions, e.g. through 
carbon taxes or emission permits.

Under climate policy, the price of non-backstop-technologies (like ex-
haustible resources) is rising sharply and intersecting the exogenous backstop 
price, at which point the latter becomes economical and is used to an extent that 
keeps the energy price at this same level (intersection 1). 

For the backstop technology that is explicitly modeled, i.e. capacity is 
being build up, and its price changes according to a learning curve, the backstop 
technology is competitive much earlier and at a lower price (intersection 2). The 
price of carbon-free energy declines from the beginning, indicating that invest-
ments are being made in anticipation of the later competitiveness. Intersection 3 
illustrates that this may even be the case in the absence of a policy goal.

From these illustrations we conclude that the cost-decreasing potential of 
backstop technologies is strengthened when lowering prices endogenously is an 
option in the model, furthermore, if economic agents possess the foresight and the 
possibilities to make early investments in order to use this option.

There are models in IMCP without a backstop technology (IMACLIM-R 
and FEEM-RICE). As we have seen, these models mainly reduce energy intensity 

13. Alternatively, the laxer scenarios could have been used to arrive at much the same conclusions. 
We decided on the most stringent case because here the observed effects are more pronounced. The 
alternative figures were omitted due to limited space.
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Figure 7. Energy System Represented by the Contributions of Different 
Energy Sources to the Overall Primary Energy Consumption 

In 2050 and 2100, the three bars per model display the energy mix in the baseline scenario, 450ppm 
policy scenario, and 450ppm policy scenario without ITC. In 2000, these three cases coincide. We use 
darker shading for energy from fossil fuels and lighter shading for carbon free energy sources. Data 
from the 500ppm scenario is shown in case of MESSAGE-MACRO. Also in case of this model, the 
third bar represents a fixed costs scenario and not the usual scenario “without ITC.”

(a) Energy mix in 2000

(b) Energy mix in 2050

(c) Energy mix in 2100
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to achieve climate protection goals. 
Those models that incorporate carbon-free energy from backstop tech-

nologies (i.e. rather than prescribing an exogenous price, the backstop technology 
is endogenous to these model) are of the second type discussed above (ENTICE-
BR, AIM/Dynamic-Global, DEMETER-1CCS, MIND, GET-LFL, DNE21+, 
MESSAGE-MACRO, and E3MG). 

It is also interesting that especially in GET-LFL the investments in the 
backstop technology are undertaken long before the break-even-point is achieved. 
The reason is that intertemporal optimum decision-making anticipates the tem-
poral spillover effects (learning-by-doing or accumulation of knowledge through 
R&D). The model GET-LFL is only a limited foresight model. Nevertheless, this 
feature implies that temporal spill-overs are partially internalized. In GET-LFL 
the impact of the backstop technology on the overall energy mix is very modest 
because in both cases the backstop technology has gained a substantial propor-
tion of the energy mix in the business-as-usual scenario (Figure 7). In GET-LFL 
enough cost reduction potential has already been realized in the business-as-usual 
scenario. Moreover, the GET-LFL model assumes a high share of gas in the fossil 
fuel mix, so that a modest reduction in the energy demand makes it possible to 
achieve climate protection goals even without much ITC. 

In DEMETER-1CCS, ITC has only a moderate impact on the energy mix 
for two reasons: First, the business-as-usual scenario already assumes some learning 
as the backstop technology is introduced as a technological option in 2025. Hence 
the cost reduction potential in the policy scenario is limited. Second, the business-
as-usual scenario also assumes a decreasing fossil fuels price path, thus the marginal 
effect of learning-by-doing is limited and the break-even point is changed little.

 Figure 8 also helps to understand the role of technological change in the 
resource extraction sector. Similar to technological change in the case with back-
stop technology, it could reduce the growth rate of the price of energy from fossil 
fuels by making more fossil resources available at lower costs. If learning-by-do-
ing was assumed, the effect would be more pronounced in the baseline than in the 
policy scenario, which would widen the gap between the resource price with and 
without policy goal. Cost reductions of fossil fuels due to technological progress 
decreases the competitiveness of the backstop technology and therefore increas-
es the opportunity costs of climate protection. Note, that sensitivity analysis in 
MIND supports this qualitative insight – technological progress in the extraction 
sector is one of the most sensitive parameters in determining the opportunity costs 
of climate protection (Edenhofer et. al. 2006). Thus, it would be interesting to see 
other model types including realistic representation of endogenous technological 
change in resource extraction and its effects on resource availability into their 
estimates of climate protection costs.

Another aspect is illustrated by Figure 7: as discussed above, some mod-
els will rather cut back on energy use relative to business-as-usual than provide 
carbon-free (or low carbon) energy. This is evident in Figure 7 when overall en-
ergy consumption in the policy scenarios is much lower than in the baseline; ex-
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amples are IMACLIM-R, and E3MG. Other models manage to make almost as 
much energy available as in the baseline by changing to low carbon or carbon-free 
energy sources, e.g. MIND, DEMETER-1CCS and the energy system models. 
This echoes the findings from the previous section, and is in fact one of the un-
derlying factors influencing whether a model implements a mitigation strategy of 
carbon intensity reduction or energy intensity reduction.

5.5.2 Shadow Prices, Carbon Taxes and Path Dependency

The price of carbon plays a different role in different models (Figure 
9 and Figure 10). First best models of the economy (e.g. MIND) make the im-
plicit assumption that all market imperfections may be cured. Hence, the result 
of welfare maximization in these models is a Pareto-efficient solution without 
any further restrictions. In these models, the shadow price of carbon represents 
the social costs of carbon. Second best models, e.g. general equilibrium models, 
simulate market behavior, i.e. the model incorporates distortions that cannot be 
removed by policy instruments for institutional or political reasons. The carbon 
tax in DEMETER-1CCS represents a second-best optimum in the sense that it  
is imposed on the economy in order to guarantee the achievement of the stabilization 
level and a minimum of welfare losses subject to the market distortions that cannot 
be removed by policy instruments because of institutional or political inertia. 

In the other models in Figure 9 (IMACLIM-R and E3MG) the imposed 
tax does not represent a second best optimum because the carbon tax only allows 
the achievement of a stabilization level irrespective of its welfare implications. 
The carbon tax profiles in IMACLIM-R and E3MG are prescribed exogenously, 
i.e. they are non-optimum.
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Figure 8. Different Formulations of Backstop and Resource Scarcity
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In the class of optimal growth models, the carbon price is a dual variable 
and represents the social costs of carbon (Figure 10). Moreover, the time path of 
carbon follows an optimum path which could be interpreted as an ideal market for 
carbon permits or as an imposed optimal carbon tax. In energy system models the 
carbon price is also a dual variable in an optimization framework. However, the 
carbon price does not necessarily represent the total social costs of carbon because 
of the omitted feedback loops between the energy sector and the macro-economic 
environment in that partial-equilibrium framework.

The carbon price also reflects the effect of ITC in some models. In nearly 
all models the carbon price is higher in the scenarios without technological change. 
However, in MIND the carbon price behaves differently: it increases exponentially 

Figure 9. Carbon Tax

Figure 9 a shows the 450ppm CO2 stabilization scenario with ITC, Figure 9b shows the 
corresponding scenario without ITC. Values greater than $800 per ton of C were cut off; the 
corresponding maximum value is given.

(a) Carbon tax with ITC

(b) Carbon tax without ITC
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in the case without ITC but it peaks and decreases if ITC is switched on.
There is an interesting pattern in carbon price development in some mod-

els: towards the end of the century, the shadow price reaches a maximum and be-
gins to decline. This is true for all scenarios with ITC in MIND and in the 450ppm 
scenario for DEMETER-1CCS. If the price of the backstop technology decreases 
over time, even without an increasing shadow price of emissions (and fossil fuel 
price), the backstop technology remains competitive with fossil fuels. In contrast 
to a model with an exogenous price of the backstop technology, learning-by-do-
ing of the backstop technology creates a path dependency because its price is 
determined endogenously by investments in learning-by-doing. There is no longer 
an incentive for investors to promote fossil fuels after the energy system is trans-
formed because the price of the backstop technology also declines with the trans-
formation of the energy system. The shadow price in most energy system models 
increases throughout the century indicating that the transformation of the energy 
system is not completed before 2100. This may be in part because renewables or 
nuclear power (as backstop technologies) are not able to substitute fossil fuels un-
til the end of the century, due to bounds on market share for renewables, moderate 
price increases for fossil fuels that remain too low to trigger a transformation, and 
relatively optimistic assumptions about CCS. The remaining share of fossil fuels 
will turn carbon into a scarce factor in production with a positive price.

 Path dependencies occur if the transformation to a carbon-free energy 
system is irreversible in that the carbon-free technologies become the least cost 
set of options.

5.5.3 The Specific Role of Carbon Capturing and Sequestration

Among the participating models, five explicitly incorporate the option 
of capturing and storing CO

2
 emissions from combustion (DEMETER-1CCS, 

MIND, DNE21+, GET-LFL, and MESSAGE-MACRO). Figure 11 shows how 
much CO

2
 is captured in different scenarios, accumulated over the century. Fig-

ure 12 gives the corresponding time paths of carbon capturing and sequestration 
(CCS) for one exemplary scenario (500ppm CO

2
 stabilization).

As one would expect, Figure 11 shows that the more challenging the 
climate policy target, the more CO

2
 is captured and stored. There is no CCS in the 

baseline, as capture and storage of CO
2
 is costly and hence only becomes econom-

ical in the presence of climate policy. DNE21+ is an exception, because the model 
includes an option to use CCS in the context of enhanced oil recovery which 
makes CCS economical in its own right. The contribution to overall abatement 
(the difference of cumulative emissions between baseline and policy scenarios) is 
substantial, in particular in MIND, DNE21+, and GET-LFL. However, nowhere 
is CCS the dominant mitigation option but rather, it is always predicted to be one 
among many (we conclude this from the fact that captured CO

2
 is only a small 

proportion of the difference of emissions in baseline and policy scenario).
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Figure 10. Shadow Price of Carbon

Figure 10a shows the 450ppm scenario with ITC, Figure 10b shows the corresponding scenario 
without ITC. In case of MESSAGE-MACRO, the figures show numbers from the 500ppm scenario 
instead of the 450ppm scenario. Values greater than $800 per ton of C were cut off; the corresponding 
maximum value is given.

(a) Shadow price with ITC

(b) Shadow price without ITC
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Figure 11. Captured CO2 and Total CO2 Emissions

The figure summarizes usage of the CCS option in the baseline and two policy scenarios as a share 
of total amount of CO

2
. CO

2
 that is not captured is emitted.

As mentioned before, the models show agreement on the allowable car-
bon budget in the policy scenarios, yet they predict divergent cumulative emis-
sions in the baseline. This affects the predicted extent of CCS. DEMETER-1CCS 
and MESSAGE-MACRO, on the one hand show fairly low baseline emissions 
and in turn low predictions for CCS. On the other hand the remaining three mod-
els are faced with a greater need to reduce emissions and resort to a stronger usage 
of the CCS option. Both groups, DEMETER-1CCS and MESSAGE-MACRO as 
well as MIND, DNE21+ and GET-LFL show good agreement in their predicted 
utilization of the CCS option.

Figure 12 shows the development of CCS over the course of the century. 
The five models show diverse behavior. In two of the linear-programming energy 
system models (DNE21+ and GET-LFL) the capacity of CCS increases almost 
linearly with time and is still rising at the end of the century. This suggests that the 
rapidity of increasing this capacity is restricted, but no (anticipated) constraints 
to the volume of CCS are effective yet. GET-LFL includes CCS in combination 
with energy production from biomass. Thus in GET-LFL CCS is indeed not con-
strained by fossil fuel scarcity.

In contrast, CCS in DEMETER-1CCS levels off towards the end of the 
century. Here, CCS activity has reached at least a temporary equilibrium. Possibly 
the low emission profiles in the baseline allow these models to reach a CCS capac-
ity that is both sustainable and sufficient for the policy target.

MIND and MESSAGE-MACRO show yet another type of behavior. In 
MIND, capacities for CCS are built up even faster than in the energy system models, 
but after a peak around mid-century the usage of CCS declines. Similarly, in MES-
SAGE-MACRO CCS peaks in 2080 and declines. Both models respect the scarcity 

3.5 Results and Discussion 85



100  /  The Energy Journal

of fossil fuel resources increasing costs on the utilization of CCS in the long-run. 
While CCS is at a competitive advantage over renewable energy technologies due 
to cheap fossil fuels early on in MIND and MESSAGE-MACRO, this advantage is 
lost as renewables become more economical due to learning-by-doing. 

Two more features contribute to the temporary nature of CCS in MIND: 
readily available storage sites are subject to scarcity14, and MIND includes leakage 
from storage sites at a fixed rate (i.e. the same percentage leaks from the storage 
site in each time period), implying that CCS does not prevent but only strongly 
delays emissions into the atmosphere. The leakage rate is highly uncertain, but 
it plays an important part in determining whether CCS constitutes a temporary 
rather than a permanent solution. It would therefore be instructive to see whether 
other models confirmed this result from MIND (Bauer et al. 2005), when leakage 
is included.

Carbon capturing and sequestration (CCS) is different from backstop 
technologies because it is dependent on non-reproducible inputs, e.g. fossil re-
sources15. Furthermore its extent is limited by the availability of storage sites. 
If all relevant intertemporal social costs are taken into account, CCS is only a 
temporary solution until the backstop technology becomes competitive. CCS is 
an end-of-pipe technology allowing in the best case a welfare improving post-
ponement of the diffusion of the backstop technology. In a theoretical analysis, 

14.  In MIND, the assumption is that with the rising utilization of CCS, increasingly long pipelines 
are needed to transport CO

2
 to the storage site. In general, spatial aggregation within the models and 

limited knowledge about the location of suitable storage sites add to the uncertainties in modeling CCS.
15.  GET-LFL also includes CCS in combination with energy production from biomass. 

Figure 12. Carbon Capture and Sequestration Over the Course  
  of the Century
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Edenhofer et al. (2005b) show that temporary welfare gains from CCS increase 
when (a) the discount rate is increased, (b) the energy penalty is decreased, (c) 
the operation and maintenance costs (O&M) are reduced, (c) the leakage rate of 
deposits are lowered, (d) the capacity of deposits is increased and (e) the costs of 
the fossil fuels are decreased. Gains are also higher when the price of the backstop 
technology is high and/or when its learning rate is low.

 The CGE model within IMCP has not incorporated CCS so far. In gen-
eral, CGE models could inform about the market potential of CCS under different 
policy scenarios. However, CGE models allowing only for a recursive dynamic 
are not appropriate for deriving realistic market behavior because they implicitly 
assume purely myopic investment behavior which is arguably an exaggerated or 
extreme behavior.

6. CONCLUSION

This model comparison aims to draw robust results on ETC by identify-
ing both the differences between and the underlying mechanisms of the multitude 
of participating models. We find that the participating models describe a wide 
range of possible futures, with and without climate policy. Although there is no 
consensus on the potential role of induced technological change, we identify cru-
cial economic mechanisms that drive ITC. This modeling comparison exercise 
demonstrates a large influence of the following determinants: 

1. Baseline effects
2. First-best or second-best assumptions
3. Model structure
4. Long-term investment decisions
5. Backstop and end-of-the-pipe technologies

6.1 Baseline Effects

All models in the IMCP incorporate endogenous technological change 
in their baseline, sometimes in addition to exogenous technological change. In 
effect, baseline emissions are difficult to harmonize and vary widely. Both en-
dogenous and exogenous components contribute to this mitigation gap. In some 
models optimistic assumptions about exogenous parameters result in relatively 
low costs which are then due not to induced technological change, but mainly 
to exogenous assumptions. In addition, if the baseline scenario already includes 
many positive effects of technological change related to energy and carbon sav-
ings, then the introduction of stabilization targets does not induce much addtional 
technological change. Consequently, the cost difference between scenarios with 
and without ITC is small.
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6.2 First Best or Second Best Assumptions

It has important consequences whether a first best or a second best world 
is modeled: First best models implicitly assume perfect markets and the imple-
mentation of optimum policy tools. In other words, first best models preclude so 
called no-regret options. Therefore, they are inherently more pessimistic about the 
costs of climate protection because climate protection reallocates scarce resources 
which are utilized in an optimum way in the baseline to climate friendly invest-
ments. In contrast, second best models assume that climate policy can positively 
affect market imperfections as a side effect. Compared to first best models the op-
portunity costs of climate protection in second best models can be lower and even 
negative, depending on the design of policy.

6.3 Model Structure 

Previous model comparison exercises have shown that CGE models 
tend to calculate higher mitigation costs than energy system models or economic 
growth models (Löschel 2002); we find that this result still holds. However, the 
underlying reason is not necessarily the model type, but rather in assumptions 
commonly made by “CGE modelers”, “energy system modelers”, and “economic 
growth modelers”, e.g. about foresight and intertemporal behavior of the agents.

It turns out that energy system models calculate low mitigation costs 
because they only assess the impact of mitigation strategies on energy system 
costs. Yet partial equilibrium analysis explicitly omits general equilibrium effects 
- partial equilibrium models by definition exclude feedback loops between the 
energy sector and other sectors of the economy. In particular, energy system mod-
els implicitly assume that investments within the energy sector can be funded 
by the economy at a constant rate of interest. However, this assumption is not 
justified when an ambitious climate policy is imposed in the system. This would 
depreciate capital stocks in various sectors and therefore also change the return on 
investment in the energy sector. Consequently, the changed return on investment 
induces a reallocation of investments across sectors. This investment dynamic is a 
major determinant of macroeconomic costs of climate policy which is neglected 
in partial equilibrium analyses. Moreover, most energy system models neglect 
rebound effects and the crowding-out implications of investments. The impact of 
these general equilibrium effects emerge to be significant.

In contrast, CGE models demonstrate the quantitative impact of general 
equilibrium effects. However, recursive CGE models reduce the flexibility of long-
term investment behavior remarkably. By assumption, investment shares for dif-
ferent sectors are fixed even if an ambitious stabilization level is imposed on the 
economy. Some CGE models include a backstop technology, however, its costs 
are independent of the timing of investments. Mitigation costs are overestimated 
because of the underlying assumptions that investors are myopic.

The econometric model in IMCP describe a second best world. Imper-
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fections on the labor market and design of the carbon tax allow substantial welfare 
improvements from climate policy. The policy implication is clear. Policy makers 
can claim that climate policy is a free lunch. However, it should be emphasized 
that second best do not claim that climate policy is the only way or the best way 
to cure market failure. If better solutions exist, then climate policy is no longer a 
free lunch but has positive opportunity costs. It seems promising to calculate these 
opportunity costs based on the strength of both frameworks.

Optimal growth models allow greater flexibility. Some of the optimal 
growth models are already designed as multi-sectoral and intertemporal optimiza-
tion models comprising a reduced form energy sector. These models demonstrate 
the effect of full temporal and sectoral flexibility. In contrast to energy system 
models they do not assume that the differences of the return on investments across 
sectors can be ignored. It turns out that an appropriate timing of investments has 
the potential to reduce the mitigation costs substantially. In particular, the opti-
mum timing of backstop technologies (like renewables) and end-of-pipe tech-
nologies (like CCS) has a great potential for cost reduction. 

6.4 Long-term Decision Making: Foresight and Flexibilities

Assumptions about long-term investment decisions exert a major influ-
ence: The number and flexibility of mitigation options has been shown to have an 
impact on mitigation costs (Edenhofer et al. 2005a). This observation is confirmed 
in this study. 

 Perfect foresight enables investors to anticipate necessary long-term 
changes and to control investment decisions accordingly, including possible ex-
ternalities such as learning-by-doing. The multi-sector optimal growth models in 
this study demonstrate the potential of perfect foresight to reduce mitigation costs. 
Models allowing for flexible and long-term investment decisions achieve an equi-
librium that can be characterized by low emissions and low macroeconomic costs. 
Naturally, assuming perfect foresight is normative rather than descriptive, i.e. its 
model results are motivation for policies rather than an exploration of its effects. 

The assumption of intertemporal optimization may exaggerate the po-
tential of ITC to reduce mitigation costs because the rationality and foresight of 
investors and entrepreneurs implicit in their intertemporal optimization behavior 
represents an optimistic assumption. The assumption of great foresight of the ac-
tors in such models becomes more realistic when a macroeconomic policy ensures 
credible expectations. Currently, the number of uncertainties for investors is large, 
including uncertainty about emission targets, well-designed international tradable 
permit schemes, subsidies for R&D investments, well-behaved capital markets 
allowing for long-term investments, and competition and globalization on the en-
ergy market. A stable macro-economic environment and clear long-term emission 
targets are crucial for the transformation of the energy system. Therefore, a focus 
for post-Kyoto discussions beyond 2012 should be the design of policy instru-
ments allowing for long-term investments. 
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6.5 Backstop and End-of-the-pipe Technologies

Finally, the results depend on the design of backstop and end-of-pipe 
technologies: Whether and how a carbon-free energy source is implemented has an 
essential impact on mitigation costs as well as on the mix of mitigation options. 

If a model allows for endogenous long-term investments in backstop 
technologies and/or end-of-pipe technologies, then mitigation costs are substan-
tially reduced and the stabilization targets can be met without drastic declines 
in energy consumption. Moreover, available carbon-free energy sources shift the 
abatement strategy towards decarbonization rather than energy saving. 

Nearly all models conclude that more ambitious climate protection goals 
increase the costs. It should be noted that this is not a trivial statement because 
due to learning-by-doing, mitigation costs could be decreased if less ambitious 
stabilization targets are imposed. However, modeling teams in IMCP assume that 
learning-by-doing has its clear limits because of floor costs, barriers of diffusion 
and other market imperfections like insufficient internalization of intertemporal 
or interregional spillovers.

Over the past decade the debate has been focused mainly on the learning-
by-doing potential of backstop technologies. However, this study shows that this is 
only one aspect. Another key factor determining the competitiveness of the back-
stop is technological progress in the fossil fuel sector. Assumptions about the fossil 
fuel sector and its potential for technological change are crucial for determining 
costs and strategies. Therefore, further modeling efforts should also focus on a more 
realistic representation of technological progress within the fossil fuel sector. 

Moreover, all models indicate carbon costs that rise with time in the ear-
ly years, and most maintain this across the century. However, some models which 
incorporate backstop technologies and carbon capturing and sequestration show a 
“hump” in the time path of carbon permit prices, i.e. carbon costs peak and decline 
afterwards. This supports what some technical change analysts have supposed: expe-
rience from learning-by-doing or the reality of sunk costs introduce a path dependen-
cy scenario development, and thus the marginal costs of maintaining low emission 
levels decrease in the long term due to cumulative learning effects and the usage of 
a broad range of mitigation options like improvement of energy efficiency, the diffu-
sion of backstop technologies and the temporary use of end-of-pipe technologies.

6.6 Hints for a Future Research Agenda

This modeling comparison exercise takes a first step in assessing the quan-
titative impacts of ITC on mitigation costs and mitigation strategies. We assess the 
impact of ITC is isolated by imposing ceteris paribus conditions, i.e. ITC is induced 
by climate stabilization targets in a setting where boundary conditions and param-
eters remain unchanged. 

Beyond the IMCP, we recommend research expansion two ways. First, fu-
ture model comparisons could refine the harmonization of the participating models 
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to a baseline of central variables (capital stock, investments, direction of technologi-
cal change) and parameters in order to minimize baseline effects. Second, more so-
phisticated ceteris paribus scenarios could be run, e.g. exploring the impact of single 
ITC options rather than enabling and disabling all ITC as it was done here. 

Not all important aspects of ITC could be addressed in this study. They 
should be explored in future model comparisons, e.g. regional spillovers. More-
over, while this study restricted policy intervention to imposing stabilization levels 
(i.e. represents only the targets approach to policy), the effects of different policy 
instruments are neglected. An exercise comparing policy instruments across dif-
ferent model types could accelerate research on optimal climate policy design. 

IMCP allows to set out a formulation of an agenda to improve model-
ing design. First, we have explored some reasons for the gaps between top-down 
and bottom-up models and discussed several models that begin to bridge this gap. 
These hybrid models seem a promising starting point from which to develop a 
coherent framework incorporating intertemporal, intersectoral and interregional 
effects of induced technological change. Second, as it has turned out in the IMCP, 
assumptions about long-term investment behavior have a strong impact on mitiga-
tion costs and strategies. Therefore, experiments with different assumptions about 
long-term expectations and long-term flexibility of investment behavior would be 
highly valuable. Third, the way carbon-free energy is made available has turned out 
to have a major influence on the response of the model to climate policy goals and 
therefore deserves attention. This is explored by many models implementing back-
stop- and/or end-of-the-pipe technologies. We argue that endogenous technologi-
cal change in the extraction sector of fossil fuel is a complementary prerequisite for 
a comprehensive understanding of ITC. Many modeling teams within IMCP have 
incorporated learning-by-doing of the backstop technology. In contrast to this, en-
dogenous technological change in the exploration and extraction sector of fossil 
fuels has not received as much attention. There is significant technological change 
(e.g. in the resource extraction sector) with a potentially strong influence on the 
opportunity costs of climate protection. A better understanding of the underlying 
dynamics may therefore both satisfy scientific curiosity and also provide a prereq-
uisite for improving the design of climate policy. 
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Research cooperation and international standards in
a model of coalition stability

Kai Lessmann a,∗, Ottmar Edenhofer a

aPotsdam Institute for Climate Impact Research, PO Box 60 12 03, D-14412 Potsdam,
Germany

Abstract

Suggestions on international cooperation in climate policy beyond 2012 include substi-
tuting or complementing international environmental agreements (IEA) with technology
oriented agreements (TOA). We look at the impact of TOA on environmental cooperation
in the framework of coalition stability. Using a numerical model, we analyze the differ-
ences of several TOA and how they interact. We find that participation in and environmen-
tal effectiveness of the IEA are raised less effectively when the TOA focuses on mitigation
technology rather than augmenting productivity, which is due to the former having an effect
on all actors via emissions, whereas effects of the latter are exclusive to research partners.
For the same reason, we find that restricting the effects of R&D cooperation is credible
only in case of productivity. Technology standards may fail to foster participation when
they are restricting members and non-members alike, and may suffer from inefficiencies.
However, when implemented as a complementary instrument, these disadvantages did not
apply. Separately negotiated technology standards may hence facilitate participation in an
IEA without adding to its complexity.

Key words: Coalition Formation, International Environmental Agreements, Issue Linking,
Non-cooperative Game Theory, R&D Spillovers, Technology Standards

1 Introduction

Achieving full cooperation in a self-enforcing international environmental agree-
ment (IEA) is difficult when the underlying game presents the actors with a dilemma:
while global cooperation is socially optimal, it is often better for a number of play-
ers to act as free-riders, i.e. enjoying the benefits of other players’ abatement efforts
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Email address: Kai.Lessmann @ pik-potsdam.de (Kai Lessmann).
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without reducing their own emissions. Consequently, it is a standard result in non-
cooperative game theoretic models that voluntary participation in environmental
cooperation alone tends to be low (see for example Carraro and Siniscalco, 1992,
and Barrett, 1994, or the more recent Finus et al., 2006, and Carraro et al., 2006).

By introducing additional incentives, the structure of the game may be changed
making cooperation easier to achieve. These incentives range from positive incen-
tives such as side payments, permit allocation, and issue linking to negative incen-
tives such as reciprocal measures, financial penalties, and trade restrictions (Barrett
and Stavins, 2003), see Wagner (2001) for an overview of incentives to stabilize
international environmental agreements. In this paper, we focus on linking envi-
ronmental cooperation to a technology oriented agreement (TOA).

1.1 Issue Linking

The unfavorable incentive structure in climate change mitigation is due to the public
good character of a stable climate. Enjoying a stable climate is non-rival, and there
are no means of excluding anybody from doing so, hence the possibility to free-
ride.

Issue linking attempts to improve the incentive structure by linking the provision
of the public good to an exclusive access to a club good (Carraro, 1999). When the
attractiveness of the club good outweighs the incentive to free-ride, the dilemma is
overcome. Possible candidates for such club goods are technology oriented agree-
ments. De Coninck et al. (2007) provide an overview of TOA stressing out the
potential role of TOA in addressing the free-riding incentives in climate protection
negotiations.

Among the TOA, in particular the spillovers from R&D agreements have the quali-
ties of a club good (non-rivalry and excludability). Previous issue linking modeling
studies have analyzed the potential of spillovers to raise participation in interna-
tional cooperation. In these studies, cooperative research and development creates
spillovers concerning production costs (Carraro and Siniscalco, 1997; Botteon and
Carraro, 1998), profit (Katsoulacos, 1997), energy efficiency (Kemfert, 2004), pro-
ductivity and emission intensity simultaneously (Buchner and Carraro, 2006), and
marginal abatement costs (Nagashima and Dellink, 2008).

1.2 Potential of spillovers

Research and development is known to have spillovers. Griliches (1992), for ex-
ample, reviews a number of empirical studies which estimate social and private
rates of return to R&D. Griliches concludes, “R&D spillovers are present, their

2
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magnitude may be quite large, and social rates of return remain significantly above
private rates.”

Research partnerships may facilitate these spillovers. There are numerous reasons
for cooperative research, ranging from costs minimization to strategic considera-
tions. In particular, the list of reasons includes internalizing spillovers, e.g. learning
from partners, transfer of technology and technical knowledge, and increasing ef-
ficiency and synergies through network, as well as exploiting the non-rivalry of
knowledge, e.g. by sharing R&D costs (Hagedoorn et al., 2000). Of course, rais-
ing the spillover intensity is not a policy instrument at the disposal of governments.
But by encouraging research partnerships spillovers might be fostered indirectly.

Existing governmental policies aimed at encouraging cooperative R&D focus on
providing legal frameworks as well as financial support, noteworthy the EU Frame-
work Programmes on Research and Technological Development (FWP). Aimed at
industry as well as universities and research laboratories, the FWP offer financial
support of up to 50 percent of the total joint research costs but require the research
partnership to include members from at least two EU countries (Hagedoorn et al.,
2000), i.e. the FWP are a prime example of boosting international research cooper-
ation.

1.3 Potential of international standards

Contrary to R&D spillovers, international standards do not promise to lessen the
dilemma by raising payoffs in the participating regions. They are therefore not
suited to be issue-linked to an environmental agreement in the way of R&D, rather,
they could complement an environmental agreement. For example, Edmonds and
Wise (1999) propose a standard requiring carbon capture and storage for new elec-
tricity power plants and for synthetic fuels from coal. Barrett (2003) suggests com-
plementing technological R&D with an agreement on international technology
standards. These standards provide a market pull incentive to commercialize the
results of cooperative R&D. Participation in such a technology standard may be
spurred by the following incentives (Farrell and Saloner, 1987; David and Green-
stein, 1990; Barrett, 2003):

• Standards induce network externalities: the higher the number of participants in
a standard, the larger the benefits of adopting the standard.

• Standards protect their participants from lock-in in technologies that are then
abandoned.

• Standards help reduce costs when economies of scale can be exploited.

Additionally, a minimum participation clause and trade restrictions against non-
participants can be implemented to further strengthen these incentives (Barrett,
2003): Network externalities and scale effects increase with participation, hence

3
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minimum participation guarantees a minimum extent of these incentives. And com-
bined with a trade ban against non-compliant players, minimum participation en-
sures a growing market for the new technology as well as a shrinking market for
old technology, reinforcing the fear of being locked into an abandoned technol-
ogy. Barrett (2003) argues that these incentives make the adoption of technology
standards much easier than raising participation in an environmental agreement.

Barrett’s (2003) proposal is intended as a substitute for an emissions abatement
agreement with the advantage of a better incentive structure. Whether these in-
centives suffice to provide effective environmental protection has been challenged
(Philibert, 2003, 2004; de Coninck et al., 2007). The usefulness of technology stan-
dards as a complementary policy instrument is however undisputed.

1.4 Coalition formation

The formal analysis of self-enforcing international environmental agreements in
non-cooperative game theory was pioneered by Barrett (1991a,b) and Carraro and
Siniscalco (1992, 1993), and has recently been reviewed in Finus (2008).

The incentive of issue linking, which is the focus of this paper, has been studied
using conceptual and empirically calibrated models. Carraro and Siniscalco (1995,
1997) investigate linkage of environmental cooperation to cooperation on R&D in
a static three-stage game showing that linkage indeed furthers participation. Bot-
teon and Carraro (1998) extend this analysis adding heterogeneity based on empir-
ical data to this model. While this renders the model intractable, they confirm their
earlier findings numerically: participation in the IEA rises with spillover intensity
including full cooperation of five out of five players.

Katsoulacos (1997) questions the approach of having one entity decide upon both,
environmental and technological cooperation, arguing that the decision to cooper-
ate on technological R&D is taken by firms, not governments. Consequently, his
model distinguishes firms deciding on spillover levels and governments deciding on
R&D subsidies aimed at encouraging spillovers. The analysis is restricted to two
countries, which can be shown to enter joint cooperation on R&D and environment
if the gains from subsidies are large enough.

Kemfert (2004) explores the effects of issue linking in a CGE model calibrated to
the GTAP database (McDougall et al., 1998). The scenarios include cooperation on
energy efficiency R&D as well as trade barriers against non-cooperating countries.
In this model, introducing R&D cooperation has a strong effect on the incentive to
participate in an IEA. With R&D cooperation, all four of the negotiating countries
want to join the IEA, compared to none in the base case, i.e. full cooperation is

4
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internally stable. 1

Buchner et al. (2005) apply a multi-actor optimal growth model to questions of
issue linkage. They limit their analysis to a selected set of coalitions, in particular
the coalition of Kyoto signatories plus the United States, and explore the effect of
linking R&D cooperation to environmental cooperation on the incentives for the
United States to join the Kyoto signatories. It turns out that, given sufficiently high
spillovers, such an agreement does indeed become stable. They note, however, that
making R&D cooperation dependant on environmental cooperation is not credible,
i.e. Kyoto signatories prefer to cooperate on R&D with the United States even if
the latter act non-cooperatively on emission abatement.

Nagashima and Dellink (2008) use the STACO model to explore the effects of
technology spillovers on the stability of coalitions. They focus on spillovers in mit-
igation technology, and model these through changes of the marginal abatement
cost curve. They observe that spillovers have a positive effect on the abatement ef-
fort, but the number of participating regions is only increased by one beyond the
business as usual maximum participation of six out of twelve regions. This finding
proves robust against a variation of the intensity of spillovers and the way spillovers
affect the marginal abatement costs curves, as well as the choice of the indicator
for the state of technology. Thus, the authors conclude that technology spillovers
do not substantially increase the success of IEA.

All issue linking studies cited above find that issue linking with spillovers has pos-
itive effects on participation in the IEA. But the extent of this positive effect varies,
ranging from complete success in stabilizing full cooperation (Botteon and Car-
raro, 1998; Kemfert, 2004), to merely marginal increases of the coalition size (Na-
gashima and Dellink, 2008). The models differ in a great number of ways and it is
unclear which modeling assumptions give rise to these differences in model results.
Most authors acknowledge that the intensity of spillovers is an important determi-
nant, but given the state of the literature, it is difficult to provide a sound empirical
basis for the choice of spillover intensity. Variation of this key parameter, as studied
in Botteon and Carraro (1998) and Nagashima and Dellink (2008), reveals the sen-
sitivity of this key assumption, yet the selected values for spillover intensity cannot
be compared across models. Furthermore, the sources of spillovers differ between
models. The implication of the kind of spillover, e.g. whether related to produc-
tivity as in Botteon and Carraro (1998), or related to mitigation technology as in
Nagashima and Dellink (2008) has not been studied.

1 Coalitions are internally stable when no member has an incentive to leave. We define this
formally below.
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1.5 Novelty

We go beyond existing studies by comparing spillovers that arise from two different
research sectors, productivity and mitigation technology, showing that the effective-
ness of spillovers depends on the type of knowledge that spills over. The reason is
that, unlike in the case of productivity R&D, progress in mitigation technology
has an external effect via its impact on emissions, making it easier to achieve high
levels of cooperation by linking to productivity R&D. These results on participa-
tion carry over to similar conclusions about the impact of IEA on environmental
effectiveness and global welfare. In order to increase the comparability of spillover
intensity, we estimate the gains from spillovers in terms of additional consumption.

Furthermore, the effect of spillover from cooperative R&D has so far only been
investigated in isolation from international technology standards. We complement
spillovers by technology standards and explore the interdependence of the two, as
well as the scope of technology standards to stabilize coalitions by themselves. We
find that cooperative R&D and technology standards are mutually reinforcing in
their positive effect on international cooperation. By themselves, technology stan-
dards have almost no effect on participation in the IEA. The remainder of this paper
follows the usual three steps definition of the model (Section 2), results (Section 3)
including some sensitivity analysis (Section 4), and conclusions (Section 5).

2 The Model

We approach the assessment of coalition stability, research cooperation, and in-
ternational standards in a multi-actor optimal growth model, which is a common
modeling framework for the economy-climate stock pollutant problem in general
(e.g. Nordhaus and Yang, 1996; Kypreos and Bahn, 2003; Bosetti et al., 2006)
and also in coalition stability analyses (e.g. Eyckmans and Tulkens, 2003; Buch-
ner and Carraro, 2006). In particular, it is appropriate for the long economic time
horizon required for an integrated assessment of global warming (Edenhofer et al.,
2006). Furthermore, intertemporal utility maximization of a representative agent
gives macroeconomic models a firm micro-foundation and makes them suitable for
welfare analysis (Turnovsky, 2000, pp. 3).

6
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2.1 Model Equations

Preferences

Within this framework, each region i is modeled following Ramsey (1928) as a
maximizer of its intertemporal welfare Wi. Here, we chose the utilitarian welfare
function with an instantaneous utility function U , U ′ > 0 and U ′′ < 0, and per
capita consumption cit/lit as an indicator of well-being. Parameter ρ denotes the
pure rate of time preference, −η is the elasticity of marginal utility, and lit the size
of the population.

Wi =
∞∫

0

lit U(cit/lit)e−ρt dt (1)

U(cit/lit)=
(cit/lit)1−η

1−η
(2)

Technology

Each region produces a single good using Cobb-Douglas technology F from capital
kit and exogenously given labor supply lit , which is subject to labor enhancing
technological change ãit . Parameter β is the income share of capital.

F(ãit lit ,kit)= (ãit lit)1−β kβ
it (3)

Capital is made up from past investments, init . New ideas that contribute to labor
productivity ait in country i are a function of the funds invested in R&D, iait .
Parameters λ ≤ 1 and Φ ≥ 0 describe effects of researchers “stepping on tows”
and “standing on shoulders,” respectively. Parameter ξa is a scaling parameter. This
knowledge production function is proposed in an empirical study by Jones and
Williams (1998) and has been applied in integrated assessment in Edenhofer et al.
(2005, 2006).

d
dt
kit = init (4)

d
dt
ait = ξa (iait)λ (ait)Φ (5)

Labor productivity ãit encompasses the accumulated knowledge of region i (ait) as
well as eventual spillovers from other regions. In the base case we assume no spill-
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overs between regions and simply set ãit = ait . When R&D spillovers are modeled,
we use a weighted aggregate of labor productivity in all regions. This approach is
also used in the empirical literature on R&D spillovers, for example in Griliches
(1992).

ãit =∑
j

εai ja jt (6)

Griliches (1992) interprets εi j as the “economic and technological distance” be-
tween i and j where large values of εi j indicate “closeness”. We always set εaii = 1,
and in the base case εai j = 0 for i �= j. Values of εai j > 0 indicate spillovers and are
discussed below.

Climate Dynamics

We model greenhouse gas emissions eit as a by-product of economic activity (yit
below in Equation 16). Emission intensity of production decreases exogenously
with eit at an annual rate of dr but may be additionally decreased by investing in
a mitigation stock kmit . Mitigation kmit reduces emission intensity σit with dimin-
ishing effectiveness described by γ < 1.

eit = σit eit yit (7)
eit = exp(−ν t) (8)

σit = (1+ ˜kmit)−γ (9)
d
dt
kmit = ξmimit (10)

Parameter ξm determines the effectiveness of investments imit . As before in the case
of productivity, we allow for spillovers but set the spillover intensity εmi j to εmi j = 0
(i �= j) in the base case and εii = 1.

˜kmit =∑
j

εmi j kmjt (11)

To account for the stock pollutant character of global warming, we include a styl-
ized model of the climate system (Petschel-Held et al., 1999). Parameters of the
climate system are defined in Appendix A. The total stock of atmospheric green-
house gases cet grows due to the instantaneous emissions of all countries

8
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d
dt
cet =∑

j
e jt (12)

and is linked to the greenhouse gas concentration conct according to

d
dt
conct =Bcet +βP∑

j
e jt −σP(conct − conc0) (13)

The concentration, in turn, determines the change of global mean temperature temp
by

d
dt
tempt = μ log(conct/conc0)−αP(tempt − temp0) (14)

For a detailed description of the climate equations and their parameters we refer to
the original publication.

Adapted fromNordhaus and Yang (1996), temperature changes cause climate change
damages, destroying a fraction 1−Ωit of economic output:

Ωit = 1/(1+dam1i(tempt)dam2i) (15)
yit = ΩitF(kit , lit) (16)

The physical budget constraint closes the economy.

yit = cit + init + iait + imit (17)

2.2 Coalition Formation

Coalition formation is modeled as a two stage game. In the first stage, a membership
game is played, i.e. regions choose whether to become members and henceforth
act cooperatively on emission abatement with the other coalition members, or to
remain individual entities as non-members. In the second stage, the emission game,
non-members and the coalition (acting as one player) determine their emissions
indirectly by deciding on their consumption and investment behavior.

9
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Coalition Stability

Among all possible coalitions, we consider stable coalitions in the sense of internal
and external stability of D’Aspremont and Gabszewicz (1986). Coalitions are in-
ternally stable if no member has an incentive to leave the coalition (Wi|S ≥ Wi|S\{i}
for i ∈ S), and externally stable if no non-member has an incentive to join (Wj

∣∣
S >

Wj
∣∣
S∪{ j} for j /∈ S). The coalition is thus self-enforced by economic incentives.

R&D Cooperation and Issue Linking

When applied to the provision of a public good, the motivation for issue linking
is to offset the incentive to free-ride on the non-excludable benefits of the public
good by the incentive to gain access to an (excludable) club good (Perez, 2005).
We adopt this view for our paper by identifying the coalition of regions dedicated
to cooperation on emission reduction with a club of regions that shares spillovers
from R&D.

Spillovers become a club good of the coalition S (a subset of the set of all regions
N) via the spillover intensities εi j in Equation 6 or Equation 11, which compute the
weighted sums of productivity and mitigation, respectively. We set only spillover
intensities εi j for i, j ∈ S to non-zero levels. This restricts spillovers to coalition
members. In contrast, if spillovers of cooperative R&D within the coalition are
a public good, spillovers extend to all regions, in which case we can set εi j for
i ∈ S, j ∈ N and i �= j to positive values. We use the public good case when we test
credibility of the club good assumption.

International Standards

As argued in the introduction, standards on the technology level exhibit incentives
that foster a broad adoption of such standards on their own right. In this study, we
are interested in the effects of an existing standard on participation and issue link-
ing. Therefore, we assume that the decision of adopting the standards has already
taken place, i.e. this decision is exogenous to our model. 2

We implement international standards by requiring a reduction of endogenous emis-

2 Adoption of the international standards may be viewed as a third stage game of the coali-
tion formation game taking place before the membership game: Players meet to decide on
the adoption of standards first, then, based on the (possibly partial) standards agreement,
go on to decide upon membership in the environmental agreement, and finally decide upon
emission strategies. In this setting, our assumption is that the outcome of the first stage
is adoption of standards by all players. This is also a welcome reduction of the computa-
tional burden (i.e. we only explore two out of nine possible outcomes of the first stage: full
adoption and no adoption at all).

10

128 Chapter 5 Research cooperation and international standards



sion intensity σit by a fraction θ of the business-as-usual emission intensity, i.e. the
non-cooperative equilibrium intensity σNE

it . 3

σit ≤ (1−θ)σNE
it (18)

In effect, this implements a performance standard, which we use to approximate the
effect of technology standards. 4 The implicit assumption is that a broad adoption
of technological standards aimed at low emissions technologies will translate to low
emission intensity on the macro-economic level. While this is plausible, it is clearly
desirable to check this assumption in a model with the necessary technological
detail in the future.

3 Results

For our analyzes, we run the following experiments: To assess the impact of spill-
over intensity and the stringency of standards on stable coalition size, environmen-
tal effectiveness, and welfare, we systematically vary θ as well as εai j and εmi j for
i, j ∈ S, with the coalition S ranging from the empty set to the set of all players
(see Equations 6, 11, and 18). For exploring the credibility of threatening exclusive
access to spillovers we additionally need to vary εai j and εmi j for i ∈ S and j ∈ N.

3.1 Participation in Environmental Cooperation

The first experiment looks at the effect of spillovers on coalition formation. We
plot the size of the largest stable coalition (participation) for different spillover
intensities.

3 To avoid numerical infeasibility of the model, we implement a smooth transition from
no standards to the full level of standards in early years of the simulation.
4 The literature distinguishes equipment standards (particularly technology standards) and
performance standards. The positive effects of technology standards cited in the introduc-
tion (network externalities, no lock-ins, economies of scale) are often due to the ability
of these standards to enforce compatibility. Performance standards are technology-neutral.
This characteristic is likely to increase their cost-effectiveness when applied to emission
reduction but they lack much of the positive incentives of equipment standards (Barrett,
2003, Ch. 9).
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Figure 1. Participation (size of the largest stable coalition) as a function of spillover in-
tensity. Spillover intensity is measured as induced consumption gain, i.e. the increase due
to spillovers in discounted consumption for the respective coalition size, relative to the
no-spillovers case (see also Footnote 5). The values of spillover intensity parameters εm

and εa are given next to the data points.

Cooperative R&D

To make spillovers of knowledge in mitigation technology and productivity com-
parable, we use induced consumption gains on the x-axis. Spillovers are manna
from heaven compared to an economy without spillovers, and the additional payoff
due to the same parameter value of the spillover intensity of productivity, εa, or
mitigation technology, εm, may vary. The induced consumption gain is the addi-
tional consumption due to spillovers for the coalition under consideration and thus
a proxy for its intensity. 5

In Figure 1 we observe the following: First, participation is low in absence of spill-
overs. This is in line with the literature and confirms that players in this model are
indeed facing a dilemma, i.e. the incentive to free-ride is large enough for play-
ers to act non-cooperatively. Second, for both kinds of spillovers participation rises
with spillover intensity. Again, this is in line with the literature. For high spillovers,
full cooperation is supported. Third, participation rises more rapidly in the case of
productivity cooperation. This is the case in terms of parameter values, which are
smaller by a couple of orders of magnitude, as well as, more importantly, in terms
of induced consumption gains.

To understand why productivity R&D is more effective in raising participation,
we take a closer look at how spillovers raise participation, i.e. create incentives for
larger stable coalitions. In particular, we take a look at payoffs received inside and

5 Technically, we take the difference of consumption paths with and without spillovers,
discounted using a 3 percent discount rate. We convert to percentages of discounted base
case consumption. We prefer a consumption based metric to a welfare metric to make the
order of magnitude of the necessary spillovers easier to grasp.
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Figure 2. Payoff inside and outside of a given coalition. The figures compare the inside
payoff received by a member of a coalition of size n (on the x-axis) with the outside payoff
of a non-member free-riding on the effort of a coalition of size n− 1. An inside payoff
larger than an outside payoff indicates a stable coalition. We show payoffs for the base
case without spillovers, and one exemplary case with spillovers, for productivity (left) and
mitigation spillovers spillovers (right). The corresponding data points for stable coalitions
are circled. Payoffs are given as percentage of the difference between full cooperation and
no cooperation without any spillovers.

outside a given coalition, i.e. the inside payoff of a player within the coalition of
size n versus the outside payoff of the same player should she abandon the coalition
and instead face the remaining coalition of n−1 players as a non-member.

The left graph in Figure 2 shows payoffs for introducing spillovers in productivity,
the right hand graph shows results of introducing spillovers in mitigation technol-
ogy. Both figures show the case of no spillovers and one exemplary level of spill-
overs to illustrate the discussion; the argument presented holds for all intensities of
spillovers considered in this study.

Without spillovers the payoffs both inside and outside any given coalition rise with
the size of the coalition. Inside the coalition the payoff rises because the emission
externality is increasingly internalized. Outside the coalition, players free-ride on
the abatement effort of the coalition, which becomes increasingly more ambitious
as participation rises and thus the benefit of free-riding increases. The curves of in-
side payoff and outside payoffs intersect before coalition size 3, marking a coalition
of 2 as the largest stable coalition.

What changes when spillovers are introduced? Spillovers are restricted to coali-
tion members only, therefore in case of productivity the outside payoff curve re-
mains unchanged. Member payoffs increase with spillovers, thus shifting the in-
side payoff curve upwards and tilting it to the left because spillovers affect larger
coalitions more strongly: there simply are more players benefiting from them. In
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Figure 3. Effect of international standards. The left figure shows the effect of standards on
participation for selected spillover intensities. The figures on the right shows the effect of
standards on the spillover-participation relationship analogous to Figure 1.

effect, this moves the intersection of inside and outside payoff curves to the right—
participation increases.

Spillovers in mitigation technology shift and tilt the inside payoff curve in the
same way, upwards and to the left. However, in contrast to the case of produc-
tivity, the outside payoff curve is tilted counterclockwise, too. 6 Whereas produc-
tivity of coalition members hardly affects non-members, spillovers in mitigation
technology lead to an increased abatement effort by reducing the abatement costs
for coalition members. Reduced global emissions, however, have an effect on all
players: non-members, too, enjoy these additional emission reductions in form of
reduced damages. Thus the positive effect on the inside payoff curve is partially
offset by the tilting outside payoff curve—participation is still increased, but less
effectively.

Technology Standards

In the following experiments, we combine spillovers with standards, i.e. we in-
troduce standards in a world where simultaneously research cooperation is imple-
mented.

Figure 3 shows participation as a function of the stringency of the technology stan-
dard (left). The stringency θ indicates the prescribed reduction of emission inten-
sity relative to emission intensity in non-cooperative equilibrium (Equation 18).
Technology standards by themselves (i.e. for ε = 0) have very little impact. Partic-
ipation remains low with only a temporary increase by one member at θ = 0.2 and

6 We do not observe an upward shift of the outside payoff curve the way to inside payoff
curve is shifted. It simply rotates around the fixed-point (2,0) because the outside payoff
of a coalition of 2 is simply the non-cooperative equilibrium where there are no spillovers
irrespective of the spillover intensity parameter. In contrast, the fixed-point of the tilting
inside payoff curve is (1,0), which we observe as a tilting and shift upwards in the range
of coalition from 2 to 9.
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Figure 4. Inside payoff and outside payoff with standards. Analogous to Figure 2, the graphs
show inside payoff (received by a member of a coalition of size n), which is larger than
outside payoff (received by a non-member facing a coalition of size n−1) if the coalition
is stable. Spillover on the left are in productivity and in mitigation technology on the right.
For stable coalitions the corresponding data points are circled. Payoff is scaled to the gap
between no cooperation (0 percent) and full cooperation (100 percent) in the base model
without spillovers.

θ = 0.3. 7 Only in combination with spillovers, standards raise participation sub-
stantially. Likewise, the positive effect of spillovers on coalition size is strengthened
by standards (Figure 3, right).

Why do standards hardly change participation by themselves, but they do enlarge
stable coalitions when combined with spillovers? Again, we take a look at payoffs
inside and outside the coalitions for mitigation spillovers and productivity spill-
overs (Figure 4).

Standards guarantee investment in abatement beyond the level of Nash equilibrium
without standards. Hence, ambitious standards reduce climate change damages and
give all players higher payoffs even in non-cooperative equilibrium or in presence

7 Without standards, emission intensity is lower for coalition members compared to non-
members. With increasing standards stringency, non-members are forced to abate more.
The coalition benefits to the extent that coalitions of three instead of coalitions of two
become stable. However, due to (a) the small coalition size and (b) the absence of spillovers,
emission intensities within the coalition do not differ much from emission intensities of
non-members. Hence with the stringency of standards increasing furthermore, there soon
comes a point where standards also affect the abatement behavior of coalition members.
This lowers the coalition welfare enough to destabilize the coalition of three. Stability of
larger coalitions, or coalitions in calculations with non-zero spillovers are not affected in
this way, because the emission intensity within the coalition is lower to begin with and is
therefore not affected by standards.
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of small coalitions. Compared to the case without standards in Figure 2, payoff in
non-cooperative equilibrium (outside payoff for coalition size 2) is now lifted half
way towards payoff for fully cooperative behavior (50 percent of the gap between
no cooperation and full cooperation).

The distance between non-cooperative and fully cooperative solutions has therefore
been decreased. In the absence of spillover effects, however, this does not facilitate
more participation since the relative position of inside and outside payoff curves
is not affected, i.e. outside payoff grows more rapidly with coalition size than the
inside payoff and soon (at coalition size 3) exceeds it. Spillovers make a difference
because, as discussed above, they shift the curve of inside payoffs upwards, thus
delaying the interception of the two curves and hence increasing the size of the
largest stable coalition.

The argument holds for spillovers in mitigation technology as well as productivity.
Again, the latter is more effective in raising participation because here there outside
payoff is largely unaffected by spillovers.

3.2 Environmental Effectiveness and Welfare Effects

In the previous section we have seen under which circumstances cooperative R&D
and technology standards may raise participation. This section explores the impli-
cations of increased participation for environmental effectiveness and for global
welfare. We begin the analysis by turning to cooperative R&D.

Cooperative R&D

Figure 5 shows environmental effectiveness relative to socially optimal emission
levels in absence of spillovers as the reference point (i.e. 100 percent, whereas
emissions from non-cooperative behavior are scaled to 0 percent). Environmental
effectiveness increases with spillover intensity in a very similar way to participation
(Figure 1), indicating that coalition size is a major determinant and hence a good
proxy for environmental effectiveness in this model.

An interesting difference to participation is that environmental effectiveness is ex-
ceeded in case of mitigation technology spillovers but not for spillovers of produc-
tivity. The reason is that spillovers in mitigation technology decrease abatement
costs and therefore a cleaner environment becomes socially optimal.

The impact of mitigation spillovers on environmental effectiveness offsets some of
the drawbacks of mitigation spillovers in terms of participation: Figure 1 stressed
that achieving full cooperation required larger spillover intensities in case of miti-
gation technology. This is also true for environmental effectiveness. However, Fig-
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Figure 5. Environmental effectiveness of cooperative R&D. This figure shows environ-
mental effectiveness for stable coalitions, where zero percent is the emission level in ab-
sence of spillovers and coalitions, and 100 percent describes socially optimal emissions in
an economy without spillovers. Spillover intensity is measured in consumption gain (see
Figure 1). We indicate the size of the respective stable coalitions next to the data points.
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Figure 6. Welfare effects of cooperative R&D. In this figure we show how global welfare
of stable coalitions increases with spillover intensity (measured in consumption gain, see
Figure 1). Much of the effect is due to rising participation (see Figure 1), hence we indicate
coalition size next to the respective data points.

ure 5 shows that the difference in spillover intensity to achieve 100 percent environ-
mental effectiveness is less than the difference in achieving full cooperation. Still,
productivity cooperation remains the more effective incentive.

Figure 6 shows the welfare effect of stable coalitions. Welfare is normalized to
the non-cooperative behavior (0 percent) and full cooperation (100 percent) in an
economy without spillovers. Again, we find a similar picture to participation and
environmental effectiveness. Participation, or the degree of cooperation, is also a
strong determinant of global welfare. Global welfare exceeds 100 percent of wel-
fare without spillovers for both cases of R&D cooperation, highlighting the fact
that spillovers are manna from heaven, i.e. compared to an economy without spill-
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Figure 7. Effects of standards on cumulative emissions (left) and welfare (right). Stable
coalitions are induced by spillovers of mitigation technology, the spillover parameter εm is
included next to the corresponding curves.

overs they provide an additional free income.

Technology Standards

This section explores environmental effectiveness and welfare implications of im-
posing technology standards. When standards are stringent enough, they might
solve the environmental dilemma by themselves irrespective of any cooperation
agreements on environment or R&D. We look at the effectiveness and the welfare
implications of standards and assess the scope that cooperative agreements have in
this setting.

Figure 7 shows the effect of standards on emissions in Nash equilibrium and in case
of stable coalitions. When the stringency of the standard is increased, the effect
on cumulative global emissions is to bring them down towards their optimal level
and below. As cumulative global emissions approach their optimum levels, so does
global welfare (Figure 7). However, welfare does not reach its optimum level but
starts to fall before emissions reach the optimum. This is due the fact that the timing
of emission intensity reduction prescribed by the standards are not cost-effective.
It is the inefficiency of standards as a policy instrument manifesting in this figure.
This disadvantage of command and control instruments like standards compared
to market or price incentive based instruments is well known (see e.g. Requate,
2005). Indeed any of the levels of cumulative emissions in the previous figure could
likely be reached at lower costs and higher global welfare if the timing of emission
intensity reduction was not prescribed but chosen optimally.

Cooperative agreements on environment and R&D can bridge this gap: Figure 3
includes welfare levels for a number of coalitions that are stable at the given stan-
dard stringency due to including cooperative R&D (spillovers) in the agreement.
Standards that fall short of enforcing optimal emission levels and are inefficient to
begin with, may still be sufficient to induce full cooperation in combination with
some spillovers. We observe that often the standards that were necessary to sta-
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Figure 8. Credibility of restricting spillovers to coalition members. We compute credibility
as the difference of coalition members’ welfare with restricted spillovers minus the case of
spillovers to all regions, hence positive values imply credibility.

bilize full cooperation are exceeded under full cooperation—otherwise standards
would distort the optimal solution resulting in below-optimal welfare levels.

3.3 Credibility of Exclusive R&D Cooperation

Restricting spillovers to coalition members is only credible if coalition members are
not worse off compared to the case where knowledge is public, i.e. spillovers are
unrestricted. Hence we investigate the credibility of exclusive R&D cooperation by
comparing it to a scenario where R&D spillovers extend to all regions and not just
coalition members. We continue to assume that only coalition members participate
in R&D cooperation, i.e. spillovers extend to non-members but not vice versa.

Figure 8 shows whether restricting spillovers to the coalition is beneficial to its
members. Values are plotted for different stringencies of standards and only for sta-
ble coalitions. In case of productivity we find that threatening exclusiveness is cred-
ible for all stable coalitions, and all unstable coalitions as well (not shown). There
is no advantage for coalition members in boosting productivity for non-members.
Quite the contrary, the increased productivity would entice non-members to pro-
duce and pollute more.

Excluding non-members from spillovers of R&D in mitigation technology is al-
most always a non-credible threat for stable coalitions (Figure 8, right). Coalition
members benefit from letting spillovers extend to non-members, because the spill-
overs add to non-member abatement and further reduce the emission intensity and
actual emissions of the non-members. Coalition members then benefit from reduced
climate change damages. This is a crucial difference to productivity spillovers that
do not have this feedback onto the coalition.

For both kinds of spillovers, credibility approaches zero for small as well as for
large coalitions and exhibits a maximum for medium coalition sizes. This depends
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Figure 9. Spillover intensities that support full cooperation. We show the impact of param-
eter variation on the effectiveness of research cooperation by giving the lowest spillover
intensity that induces full cooperation. Results for cooperation on productivity and miti-
gation are shown side by side for each parameter; numbers above and below data points
indicate the low and high values used.

on the extent of spillovers to nonmembers: the smaller coalitions are, the lower
the number of players generating spillovers. On the other end of the spectrum, the
larger the coalition, the lower the number of nonmembers receiving spillovers.

4 Sensitivity of Key Results

This section explores the sensitivity of key results towards variation of input pa-
rameters. Central results of the preceding sections are that TOA may sustain full
cooperation depending on the spillover intensity, and that linking to productivity
cooperation is generally more effective in raising environmental cooperation than
linking to cooperative research on mitigation.

We explore in how far these results continue to hold when parameter values change
by running high value and low value scenarios for key parameters. An assessment
of global sensitivities, i.e. a simultaneous variation of all parameters, would be
preferable because it accounts for the fact that sensitivity of the results for variation
of one parameter will in general depend on all other parameters. We stick with an
exploration of local sensitivities to limit the computational burden.

Figure 9 shows results from these low value/high value calculations. Using full co-
operation as a reference point, Figure 9 reports the spillover intensity necessary for
the grand coalition of all players to be stable. The first message from this figure
is that in all variations, either full cooperation was sustained by raising spillover
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intensities or was even achieved at lower spillover intensities. Thus, R&D cooper-
ation proves to be a sufficiently strong incentive for all parameter values in these
variations. More importantly though, the spillover intensities necessary to achieve
full cooperation via cooperative mitigation research are always higher than in case
of the corresponding calculation featuring cooperation on productivity. Hence, our
this finding is also robust with respect to our parameter variations.

Table 1 summarizes our choice of high and low parameter values and also reports
the impact of these parameter variations on more key results. The difference be-
tween cooperation on productivity versus mitigation is measured by the “difference
in incentives” in columns 6-7, reported as the difference in spillover intensities that
are sufficient to stabilize full cooperation. In Figure 1 this is the distance between
the topmost data points of mitigation cooperation and productivity cooperation on
the x-axis. This difference is considerably affected by parameter changes, mostly
in the range of plus/minus thirty percent of the default, yet it is always positive and
larger than 0.5 percent, indicating that R&D cooperation on productivity remains
significantly more effective than cooperation on mitigation R&D.

Similarly, columns 8-9 show the difference in environmental effectiveness for the
same stable grand coalitions from Figure 9. We take the metric of environmental
effectiveness from Figure 5, i.e. the numbers in this table measure the difference
of the topmost data points in Figure 5 on the y-axis. Analogously, columns 10-11
show the impact of parameter variation on the difference in global welfare of grand
coalitions, i.e. the distance of the topmost data points in Figure 6 on the y-axis. The
values in columns 8-11 of Table 1 show that even though parameter variation has a
considerable impact, our conclusions remain intact.

5 Summary and Conclusions

We assessed different technology oriented agreements (TAO) in a conceptual model
and had to resort to numerical solutions. Naturally, any conclusions from these
result about the economy described by the model must be taken with a grain of
salt. Nevertheless, the model suggests some rather general differences between the
selected TOA, which we summarize in the following.

Cooperative R&D in mitigation technology is less effective because via emissions
reductions, spillovers of mitigation technology raise both, the coalition payoff and
the free-rider incentive. This feedback of mitigation reduces the positive incentive
of spillovers on coalition formation making cooperative R&D that is unrelated to
emission abatement a more attractive option for setting incentives for participation.

Contrary to R&D in productivity, R&D in mitigation technology has a positive
impact on the environment by reducing abatement costs. Indeed the same level of
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environmental effectiveness can be reached with smaller coalitions using R&D co-
operation in mitigation technology rather than productivity. Nevertheless, the spill-
over intensity necessary to reach this same level of environmental effectiveness is
larger than in case of productivity.

Moreover, our model suggests that restricting spillovers exclusively to the coali-
tion is non-credible in case of mitigation technology. This is plausible because in
a world with a global warming problem, it is desirable to let advanced mitigation
technology diffuse as much as possible. Overcoming non-credibility due to eco-
nomic reasons may be possible by means exogenous to this model, for example
by commitment (e.g. Houba and Bolt, 2002, Ch. 7), which could be enforced by
reputation or eliminating the alternatives. Nevertheless, this is a complication that
is absent in productivity spillovers.

This impact of the source of spillovers could be one of the reasons why Nagashima
and Dellink (2008) only find small effects of spillovers related to marginal abate-
ment costs, whereas Botteon and Carraro (1998) observe a significant increase of
participation up to full cooperation due to spillovers that reduce production costs. 8

We argued that if technology standards are easier to agree upon than a cooperative
environmental agreement, then adopting an agreement on standards may be a help-
ful first step towards an international environmental agreement. Our model suggests
that this works when standards cause emission reductions for non-members but are
fulfilled voluntary by coalition members. Here, this is the case only when at least
some cooperative R&D is carried out, setting the abatement levels of members and
non-members far enough apart.

A combination of technology standards and cooperative R&D is also promising
for a second reason. International standards by themselves reduce emissions in a
way that is not cost efficient. Combined with cooperative R&D, however, they
may induce environmental cooperation to an extend beyond standards, therefore
making its inefficiency unimportant.

Limitations

This study aimed to identify general cause-effect relationships in the interplay of
TAO and IEA. The simplifying assumptions of (ex ante) identical regions and lack
of technological detail facilitated the analysis, but at the same time they reduce

8 Of course, the models used in Botteon and Carraro (1998) and Nagashima and Dellink
(2008) differs in many respects from this model, among them are: a different modeling
framework, heterogeneity of players, and inclusion of transfers within the coalition. The
feedback of a stronger abatement effort (due to lower abatement costs) onto non-members
ought to be present in the model nonetheless. It is also not clear how the assumed spillover
intensities in the different models compare.
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the scope of its conclusions for real world policy. Therefore, testing the lessons
learnt from this study in models with heterogeneous regions and explicit technology
choice would be a step to confirm them and elaborate on their implications.

In particular, we analyzed the interaction of standards and spillovers from a purely
macro-economic perspective, arguing that standards come into force due to incen-
tives that are exogenous to the model. Recent integrated assessment models (e.g.
Bosetti et al., 2006) resolve some technological detail providing the basis to imple-
ment standards on the technology level and allow to explore the scope of the results
of this paper in a less conceptual setting.

Moreover, we argued that the spillover extent could be fostered through govern-
mental programs, assuming that this is possible at no additional societal costs.
While this assumption is backed by the very idea of R&D spillovers, namely that
R&D generates particularly high returns, it does not account for crowding out of
other R&D.

Acknowledgements

Discussions of previous versions of this paper with Carlo Carraro, Robert Mar-
schinski, Michael Finus, and Carsten Helm greatly helped to sharpen our ideas,
which we gratefully acknowledge. All remaining mistakes are, of course, our own.
The model experiments made extensive use of the SimEnv (Flechsig et al., 2008)
multi-run simulation environment. Kai Lessmann received funding from the Euro-
pean Commission within the ADAM project (project 018476-GOCE).

References

Barrett, S., 1991a. Economic analysis of international environmental agreements:
lessons for a global warming treaty. In: OECD, Responding to Climate Change:
Selected Economic Issues. OECD, Paris, pp. 111–49.

Barrett, S., 1991b. Economic instruments for climate change policy. In: OECD,
Responding to Climate Change: Selected Economic Issues. OECD, Paris, pp.
53–108.

Barrett, S., 1994. Self-enforcing international environmental agreements. Oxford
Economic Papers 46, 878–894.

Barrett, S., 2003. Environment and Statecraft: The Strategy of Environmental
Treaty-Making. Oxford University Press.

Barrett, S., Stavins, R., 2003. Increasing participation and compliance in interna-
tional climate change agreements. International Environmental Agreements: Pol-
itics, Law and Economics 3, 349–376.

Bosetti, V., Carraro, C., Galeotti, M., Massetti, E., Tavoni, M., 2006. WITCH: A
World Induced Technical Change Hybrid model. The Energy Journal Special

24

142 Chapter 5 Research cooperation and international standards



Issue Hybrid Modelling of Energy Environment Policies: Reconciling Bottom-
up and Top-down, 13–38.

Botteon, M., Carraro, C., 1998. Game Theory and the Global Environmental. Ed-
ward Elgar Publishing, Cheltenham, UK, Ch. Strategies for environmental nego-
tiations: issue linkage with heterogeneous countries, pp. 180–200.

Buchner, B., Carraro, C., 2006. US, China and the economics of climate negotia-
tions. International Environmental Agreements 6, 63–89.

Buchner, B., Carraro, C., Cersosimo, I., Marchiori, C., 2005. The Coupling of Cli-
mate and Economic Dynamics. Vol. 22 of Advances In Global Change Research.
Springer Netherlands, Ch. Back to Kyoto? US Participation and the Linkage be-
tween R&D and Climate Cooperation, pp. 173–204.

Carraro, C., 1999. International Environmental Agreements on Clime Change.
Kluwer Academic Publishers, Ch. The structure of international environmental
agreements, pp. 9–25.

Carraro, C., Eyckmans, J., Finus, M., 2006. Optimal transfers and participation de-
cisions in international environmental agreements. Review of International Or-
ganizations 1 (4), 379–96.

Carraro, C., Siniscalco, D., 1992. The international dimension of environmental-
policy. European Economic Review 36 (2-3), 379–387.

Carraro, C., Siniscalco, D., 1993. Strategies for the international protection of the
environment. Journal Of Public Economics 52 (3), 309–328.

Carraro, C., Siniscalco, D., 1995. The Economics of Sustainable Development.
Cambridge University Press, Ch. Policy Coordination for Sustainability: Com-
mitments, Transfers, and Linked Negotiations.

Carraro, C., Siniscalco, D., 1997. International Environmental Agreements –
Strategic Policy Issues. Edward Elgar Publishing, Ch. R&D Cooperation and
the Stability of International Environmental Agreements, pp. 71–95.

David, P., Greenstein, S., 1990. The economics of compatibility standards: An in-
troduction to recent research. Economics of Innovation and New Technology
1 (1), 3–41.

de Coninck, H., Fischer, C., Newell, R. G., Ueno, T., 2007. International
technology-oriented agreements to address climate change. Energy Policy, 335–
356.

D’Aspremont, C., Gabszewicz, J. J., 1986. New Developments in the analysis of
Market Structures. Macmillan, New York, Ch. On the stability of collusion, pp.
243–64.

Edenhofer, O., Bauer, N., Kriegler, E., 2005. The impact of technological change
on climate protection and welfare: Insights from the model MIND. Ecological
Economics 54 (2-3), 277–292.

Edenhofer, O., Lessmann, K., Kemfert, C., Grubb, M., Koehler, J., 2006. Induced
technological change: Exploring its implications for the economics of atmo-
spheric stabilization – synthesis report from the Innovation Modeling Compar-
ison Project. Energy Journal Special Issue Endogenous Technological Change
and the Economics of Atmospheric Stabilisation, 57–107.

Edmonds, J., Wise, M., 1999. International Environmental Agreements on Climate

25

5.6 References 143



Change. Kluwer Academic Publishers, Ch. Exploring a technology strategy for
stabilizing atmospheric CO2, pp. 131–154.

Eyckmans, J., Tulkens, H., 2003. Simulating coalitionally stable burden sharing
agreements for the climate change problem. Resource and Energy Economics
25, 299–327.

Farrell, J., Saloner, G., 1987. Product Standardization and Competetive Strategy.
North-Holland, New York, Ch. Competition, Compatibility, and Standards: the
Economics of Horses, Penguins, and Lemmings, pp. 1–22.

Finus, M., 2008. Game theoretic research on the design of international environ-
mental agreements: Insights, critical remarks, and future challenges. Interna-
tional Review of Environmental and Resource Economics 2, 29–67.

Finus, M., van Ierland, E., Dellink, R., 2006. Stability of climate coalitions in a
cartel formation game. Economics of Governance 7, 271–91.

Flechsig, M., Böhm, U., Nocke, T., Rachimow, C., 2008. The multi-run simulation
environment SimEnv. Http://www.pik-potsdam.de/software/simenv/.
URL http://www.pik-potsdam.de/software/simenv/

Griliches, Z., 1992. The search for R&D spillovers. Scandinavian Journal of Eco-
nomics 94 (0), 29–47.

Hagedoorn, J., Link, A. N., Vonortas, N. S., 2000. Research partnerships. Research
Policy 29 (4-5), 567–586.

Houba, H., Bolt, W., 2002. Credible Threats in Negotiations – A Game-theoretic
Approach. Kluwer Academic Publishers, Boston, Dordrecht, London.

Jones, C. I., Williams, J. C., 1998. Measuring the social return to R&D. Quarterly
Journal of Economics 113 (4), 1119–1135.

Katsoulacos, Y., 1997. International Environmental Agreements – Strategic Policy
Issues. Edward Elgar Publishing, Ch. R&D spillovers, cooperation, subsidies and
international agreements, pp. 97–109.

Kemfert, C., 2004. Climate coalitions and international trade: assessment of coop-
eration incentives by issue linkage. Energy Policy 32, 455–65.

Kypreos, S., Bahn, O., 2003. A MERGE model with endogenous technological
progress. Environmental Modeling and Assessment 8 (3), 249–259.

McDougall, R., Elbehri, A., Truong, T., 1998. Global trade assistance and protec-
tion: The GTAP 4 data base, center for Global Trade Analysis, Purdue University.

Nagashima, M., Dellink, R., 2008. Technology spillovers and stability of interna-
tional climate coalitions. International Environmental Agreements: Politics, Law
and EconomicsDOI 10.1007/s10784-008-9079-1.

Nordhaus, W. D., Yang, Z., 1996. A regional dynamic general-equilibrium model
of alternative climate-change strategies. The American Economic Review 86 (4),
741–765.

Perez, O., 2005. Multiple regimes, issue linkage, and international cooperation: Ex-
ploring the role of the WTO. University of Pennsylvania Journal of International
Economic Law 26 (4), 735–778.

Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Tóth, F. L., Hasselmann, K.,
1999. The tolerable windows approach: Theoretical and methodological founda-
tions. Climatic Change 41 (3), 303–331.

26

144 Chapter 5 Research cooperation and international standards



Philibert, C., 2003. Technology innovation, development and diffusion. OECD
and IEA Information Paper COM/ENV/EPOC/IEA/SLT(2003)4, OECD Envi-
ronment Directorate and International Energy Agency.

Philibert, C., 2004. Lessons from the Kyoto protocol: Implications for the future.
International Review for Environmental Statistics 5 (1), 311–322.

Ramsey, F., 1928. A mathematical theory of saving. Economic Journal 38, 543–
559.

Requate, T., 2005. Dynamic incentives by environmental policy instruments – a
survey. Ecological Economics 54 (2-3), 175–195.

Turnovsky, S. J., 2000. Methods of Macroeconomic Dynamics. MIT Press.
Wagner, U. J., 2001. The design of stable international environmental agreements:
Economic theory and political economy. Journal of Economic Surveys 15 (3),
377–411.

A Parameter Choices

Table A.1 lists our choice of parameters. We restrict this study to the case of sym-
metric players, hence a calibration to real world regions is out of question. Nev-
ertheless we selected a set of parameters that is plausible in light of the empirical
literature. This appendix lists the assumptions we made.

Parameter ξa drives endogenous growth. We chose its value such that economic
output shows a 2.5 percent annual growth in the first century.

Parameters in the climate module are based on literature values, giving us a 3◦C
temperature increase by 2100, and a 7.5◦C increase by 2200 in non-cooperative
equilibrium and business as usual, i.e. without climate change damages.

The damage function was chosen such that in non-cooperative equilibrium damages
in 2100 are 6 percent. Within the mitigation option, parameters γ and ξm were
selected such that optimal abatement (the social optimum solution) reduces the
temperature increase in 2100 to 2.4◦C.
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Table A.1
Parameter values

Parameter Symbol Value

Pure rate of time preference ρ 0.01

Elasticity of marginal utility η 1

Income share capital β 0.35

Growth rate of labor supply grl 0.01

Exogenous rate of decarbonization ν 0.01

Initial labor l0 1

Initial labor productivity a0 1

Initial capital stock k0 34

Effectiveness of investments in a ξa 0.023

Effectiveness of investments in km ξm 5.0

Abatement cost exponent γ 0.2

Ocean biosphere as CO2 source βP 0.47

Atmospheric retention factor B 1.51e-3

Radiative temperature driving factor μ 8.7e-2

Temperature damping factor αP 1.7e-2

Ocean biosphere as CO2 sink σP 2.15e-2

Initial concentration conc0 377

Initial temperature temp0 0.41

Initial cumulative emissions cume0 501

Damage function coefficient dam1 0.02

Damage function exponent dam2 1.5
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Chapter 6

Synthesis and Outlook

The starting point for this thesis is set by two assumptions: first, action to mitigate climate

change is necessary, and second, technologies will play a key role in this effort because

technology and technological change facilitate the reduction of anthropogenic greenhouse

gas emissions. Both assumptions are supported by the latest scientific findings reported

in IPCC WG3 (2007). As a consequence, the way technological change is described in

integrated assessment models of climate change is of great importance, and a sound un-

derstanding of endogenous technological change and its interaction with climate policies

is needed.

There is empirical evidence that technological change is induced by policies, but results

from previous modeling assessments of induced technological change (ITC) have been

ambiguous about the responsiveness of technological change to climate policies and its

potential to reduce the costs of mitigating climate change. On the other hand, inducing

this kind of technological progress requires a clear climate policy. Stern (2007) concludes:

“Without a ‘loud, legal and long’ carbon price signal, in addition to direct support for

R & D, the technologies will not emerge with sufficient impact.” The carbon price signal

ought to extend globally in order to prevent carbon leakage and achieve efficiency, but

according to the literature on international environmental agreements the prospect for

global cooperation on climate policy is not bright.

This raises two broad research questions: First, what is the role of ITC for climate change

mitigation? And second, if there is a desirable contribution of ITC to mitigation, how can

we achieve the global policy that triggers this technological change?

The four papers presented in this thesis contribute to these two questions. The first two

papers explore the role of ITC within a single integrated assessment model (Chapter 2)

and across a broad range of models in a model comparison excercise (Chapter 3). The

remaining two papers address the second question, i.e. achieving a global policy, by look-

ing at the prospect of achieving high participation in a self-enforcing international cli-

mate agreement by linking climate policy negotiations to trade sanctions (Chapter 4) and

technology-oriented agreements (Chapter 5).

This chapter synthesizes these four papers, proceeding as follows: First, I summarize

Chapters 2 and 3 and discuss the role of ITC for mitigation strategies. Then I summarize

Chapters 4 and 5 and discuss issue linking. The thesis concludes with an outlook on

possible extensions of this work.
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6.1 Induced technological change in integrated
assessment modeling

In the introduction of this thesis, I broke down the two broad research questions con-

cerning the role of ITC for mitigation on the one hand, and the necessary climate policy

regime on the other hand, in four sets of questions. The following sections answer these

questions drawing on the insights from Chapters 2–5.

6.1.1 Implications of ITC in the MIND model

The first set of questions focuses on the impact of ITC on the costs and strategies of

mitigating climate change.

• What is the impact of ITC on mitigation policy scenarios?

• What is the role of economy wide feedbacks concerning ITC?

• What are the implications of ITC in particular for mitigation costs and mitigation

strategies, i.e. the optimal composition of mitigation options?

MIND is a model built for the integrated assessment of climate change and global eco-

nomic development (Edenhofer et al., 2005a). Its novelty is that it incorporates macro-

economy and energy system, albeit in a stylized way, and endogenous technological

change (ETC) throughout the economy.1 That is, macro-economic growth is driven by

ETC, and ETC is also implemented in the energy system sectors. This makes an analysis

of MIND well suited to address these question. Indeed, I find that in MIND, ITC has

significant impact on both, costs and strategies of mitigation.

In particular, the analysis reveals two “directions” of technological change (Table 6.1).

First, there is technological change that permeates the entire economy—this is reflected

in a strong impact on the overall macro-economic costs of mitigation policy. This is the

case for R & D that augments overall labor productivity or energy efficiency, or ETC in

the resource extraction sector, which has impact on the entire economy because of the

strong effect of cheap fossil fuel on economic growth in the baseline. And then there is

technological change whose impact is specific to a single sector, the energy sector, as evi-

dent from a strong impact on the contribution to mitigation options. For example, learning

by doing effects for renewable energy and for resource extraction belong to this class of

ETC. The competitiveness of mitigation options has a strong impact on the strategy, but

their effect on mitigation costs is negligible.

ETC therefore proves to be an influential determinant of mitigation costs and strategies.

Costs may rise or fall due to ETC depending on whether “clean” progress (e.g. in re-

newable energy technology), or “dirty” progress (e.g. in resource extraction technology)

1The concepts of endogenous technological change (ETC) and induced technological change (ITC) are

closely related, in fact the two terms are often used synonymously. Here, I use ETC to emphasize the mod-

eling assumption of endogenous (versus exogenous) technological change, and ITC to stress technological

change being triggered by climate policy.
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Impact of ETC is . . .

macro-economic sectoral

Macro-economic ETC labor R & D

energy efficiency

Sectoral ETC resource extraction renewables

resource extraction

Table 6.1: The scope of ETC in MIND

prevails. The effect of ETC on the competitiveness of mitigation options influences their

contributions to overall mitigation.

Moreover, this reveals the importance of economy-wide effects of ETC beyond sector

boundaries, and stresses the importance of models that resolve important technological

options including their potential of ETC, and account for the economy-wide impact of

ETC.

The analysis in Chapter 2 highlighted the importance of including ETC in climate policy

models that explore mitigation costs and strategies. The numerical experiments relied on

parameter variation, therefore assessing impact of parameter uncertainty for one partic-

ular implementation of ETC—but the question how to incorporate ETC in models is far

from trivial. On the contrary, among models that include ETC there is a wide variety of

approaches taken to describe ETC. I now turn to Chapter 3, which explored the resulting

differences in the assessment of ITC.

6.1.2 Implications across models

The variety in ETC implementations and the corresponding variety in the findings about

the effects of ITC are addressed in the next set of question.

• How much do integrated assessment models differ in their analysis of ITC?

• What are the underlying reasons for the differences?

• What conclusions are robust across models despite the model uncertainty?

The above set of questions was addressed in a comparison exercise of ten state-of-the-

art models of energy, economy, and environment. At the heart of this comparison is the

definition of ceteris paribus scenarios that aim to isolate and expose the impact of ITC

in the various models: policy scenarios that use exogenous technological change (taken

from a separate business-as-usual scenario) are compared to scenarios that implement the

same policy target, but allow for additional technological change to be induced by the

policy. I refer to these scenarios as “without ITC” and “with ITC.”

At the most aggregate level, the impact of ITC becomes apparent in mitigation costs with

and without ITC. The analysis reveals that ITC has potential to reduce costs: compared

to the scenarios without ITC, mitigation costs are lower in scenarios with ITC, in many

models substantially. Average mitigation costs in the participating neoclassical models,
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Figure 6.1: Loss of GDP in 2100 in percent. IMCP models use the Common POLES/IMAGE baseline,

which is based on SRES scenarios A1B and B2 and assumes “a strong dependence on fossil fuels” (van

Vuuren et al., 2003). GDP losses in 2100 for MIND and DEMETER are very close to zero. Source:

adapted from IPCC WG3 (2007, Figure 3.25)

excluding those models that explore an extreme scenario (such as energy conservation as

the sole abatement option), are below 1 percent discounted GDP (gross domestic product)

for the next century. This is low compared to numbers from other models. Figure 6.1

from IPCC WG3 (2007) shows that mitigation cost estimates from this comparison study

(denoted as “-IMCP”) are at the lower end of a set of state-of-the-art models.

However, the magnitude of the impact of ITC differs greatly, ranging from 90 percent

reduction of mitigation costs to models where introducing ITC has almost no effect. Nu-

merous reasons for this variety in model results were identified. Here, I summarize these

reasons in three categories: first, baseline effects, second, differences in mitigation strate-

gies, and third, modeling assumptions.

Baseline Effects

The baseline (or business-as-usual scenario) has a strong impact on mitigation costs be-

cause it determines the necessary emission reductions. Emission profiles that are consis-

tent with a certain GHG concentration stabilization target are very similar across models

because the uncertainty about climate models is relatively small. Contrary, predictions

of economic output and associated emissions for the next century vary strongly between

economic models. Although an effort was made to harmonize the business-as-usual sce-

narios of the different models, the remaining differences need to be taken into account

when interpreting the results.

Mitigation Strategies

The choice of a mitigation strategy is closely related to the corresponding mitigation costs:

when the mitigation strategy constitutes avoiding emissions by reducing the economic

output, costs will be high compared to strategies that rely on switching from fossil fuel
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combustion to carbon free energy sources. Here, mitigation strategies are explored on two

levels of aggregation. First, abatement is decomposed along the Kaya identity, i.e. into

reductions of economic output, energy intensity of output, and carbon intensity of energy

(Kaya, 1990). Second, abating emissions through change in the composition of energy

supply are considered, e.g. the usage of energy from renewable sources or utilization of

carbon capture and storage (CCS).

Overall emissions reductions are attributed to the factors of Kaya’s identity, carbon inten-

sity, energy intensity, and output2

emissions =
emissions

energy
· energy

output
·output

using the refined Laspeyres index method (Sun, 1998). Naturally, reducing output as a

means of mitigation is only a last resort as it translates directly into mitigation costs mea-

sured as loss of GDP. The analysis reveals that macro-economic models without explicit

representation of the energy sector tend to focus their abatement strategy on reductions of

energy intensity, whereas energy system models and models that feature an energy sector

achieve the majority of their abatement through decarbonization. Reducing carbon inten-

sity becomes particularly important for large reductions of emissions: while many models

raise the contribution of carbon intensity reductions for lower levels of GHG concentra-

tion stabilization, those models without decarbonization options in explicitly modeled

energy systems resort to reducing their GDP. The tendency that carbon intensity reduc-

tions become increasingly more important with the level of emission reductions is con-

firmed by their contribution over time: reduction of energy intensity dominates abatement

in early periods of simulation time, but the contribution of carbon intensity reduction is

more important in later time periods.

The composition of the energy supply mirrors these trends. Models that focused their

abatement strategy on reducing energy intensity and GDP are those that lack options to

decarbonize the energy system, or that simply did not resolve the energy sector explicitly.

Conversely, large reductions of carbon intensity are implemented through large shares of

carbon free energy, e.g. energy from renewable sources, use of CCS, and nuclear power.

This implies that mitigation costs as well as strategies ought to be sensitive towards the

assumptions about the availability of carbon free energy, e.g. from backstop technologies

or end-of-the-pipe technologies—a hypothesis that is confirmed by the analysis in Chap-

ter 2 of this thesis. Among the carbon free energy sources, CCS plays a special role. With

respect to the utilization of this option over time, those models that account for rising

fossil fuel prices due to resource scarcity show a peak and decline of CCS. This suggests

that the competitive advantage of CCS is lost when resource scarcity raises the price of

fossil fuels and at the same time alternative carbon free energy sources such as renewable

energy become cheaper due to learning effects. Thus, CCS would only be a temporary

abatement option.

Modeling Assumptions

Three key modeling assumptions were identified that explain some of the major differ-

ences in model results: first, whether a model describes a first-best or a second-best world.

2As population dynamics are exogenous to all participating models, I omit it as a factor in the identity.
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Second, the choice of the model type, e.g. energy system model, computational general

equilibrium model (CGE), or optimal growth model. Third, assumptions about foresight

of economic agents in their investment decisions.

First-best models abstract from market distortions. Therefore, comparing first-best sce-

narios with and without climate policy exposes the opportunity costs of mitigation. In

contrast, in a second-best model a (climate) policy may remove imperfections that distort

markets in business-as-usual in addition to implementing climate protection. Second-best

assumptions explain the outliers in the comparison that show very low costs or even neg-

ative mitigation costs.

The model type often implies a choice of equilibrium concept. The participating energy

system models are implemented as partial equilibrium models. They show particularly

low costs, which can be due to neglected general equilibrium effects. The participating

CGE model is solved recursively dynamic which reduces its investment flexibility com-

pared to models with perfect foresight. This helps to explain the extraordinary high costs

in this model. Finally, models in the optimal growth framework demonstrate the effects

of full sectoral and temporal flexibility.

The long-term investment behavior of economic agents in the different models is driven

by their ability of foresight. Under perfect foresight, the necessary investments may be

undertaken early, thus reducing mitigation costs. This is another reason for the low costs

reported in optimal growth models and energy system models.

6.1.3 Discussion

The previous sections stressed the importance of technological change in the assessment

of mitigation costs and strategies. Endogenous technological change and the implementa-

tion of technological detail in the energy sector were found to make potentially important

contributions to mitigating climate change at low costs. This is a plausible result. When

introducing ETC and a variety of low carbon technologies increase the flexibility within

a model to decarbonize the economy, the impact on costs ought to be favorable. How-

ever, this raises the question, whether the flexibility of the real world energy system and

economy, or rather their inertia and inflexibilities, are sufficiently captured.

Indeed, several models used in this thesis rest on assumptions that potentially overestimate

the world economy’s flexibility to be decarbonized. These assumptions include modeling

the world as one aggregate rather than distinguishing world regions, and focusing on the

combustion of fossil fuels in the energy sector as the main driver of GHG concentrations.

The latter neglects that abatement of emissions from, for example, transport or consump-

tion behavior of households may be more difficult to achieve. Indeed, one modeling team

cited the explicit transport sector in their model as an important factor contributing to

the pessimistic prediction of mitigation costs (IMACLIM-R). Modeling the world econ-

omy without regional disaggregation, on the other hand, cannot resolve any inefficiencies

that arise from regional heterogeneity. Consequently, the model comparison study rec-

ommended extending integrated models towards “hybrid models” comprising detailed

energy system models in a macro-economic setting, and to explore the regional effects of

mitigation.
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Since the publication of Edenhofer et al. (2006a) and Edenhofer et al. (2006b), model

development in integrated assessment of climate change has shifted towards such hybrid

models (see for example the Special Issue on Hybrid Modelling edited by Hourcade et al.,

2006), in particular in new model developments such as the WITCH and REMIND-R

models (Bosetti et al., 2006b; Leimbach et al., 2008). Resolving technological detail

allows these models to draw on technological and empirical data, giving these models a

solid, data based calibration, which before was only available to energy system models.

Moreover, both WITCH and REMIND-R feature multiple regions.

The assumption of perfect foresight has a large influence in bringing down costs. Of

course, this model assumption overstates the ability of individual economic actors. In

this sense, models that assume perfect foresight only conclude that mitigation costs are

potentially low. However, this result should also be a motivation for policy to implement

a stable long-term climate policy and investment environment, which in effect increases

the ability of economic actors to take longer time horizons into account. The design of

stable mitigation agreements is addressed in Chapters 4 and 5 of this thesis.

6.2 The Prospect of Issue Linking for Global Climate
Policy

Chapters 2 and 3 looked at climate policies implemented as global policy targets, in par-

ticular maximum carbon dioxide concentrations. They took for granted that policies need

to be agreed upon and implemented to achieve these targets by placing the necessary

price on carbon, e.g. by determining a distribution of emission allowances and setting up

a global carbon market. Establishing a carbon price this way requires global coordination

and cooperation but it is known from literature as well as political experience that negoti-

ating such an international environmental agreement is difficult. Chapters 4 and 5 looked

at the potential of issue linking to help to build such agreements.

6.2.1 Trade Sanctions

In the introductory chapter, the following questions were raised concerning international

cooperation:

• What is the prospect for international cooperation on climate change mitigation?

• How can it be increased by the design of international environmental agreement?

• What is the potential of trade sanctions to increase participation in international en-

vironmental agreements?

• What are the effects on environmental and global welfare of trade sanctions on the

one hand and increased cooperation on the other hand?

• How can competitive equilibria be computed in models with emission externality,

international trade, and tariffs?
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To answer these questions, I developed an integrated assessment model of coalition for-

mation. The topic at hand, namely international cooperation to mitigate climate change,

requires a modeling framework apt to describe long-term economic development due to

the inertia of the climate system. To account for the stock pollutant character of climate

change, a dynamic model is needed. And any model discussing the prospect of cooper-

ation needs to describe many actors. Therefore, the model developed for this thesis is a

multi-actor optimal growth model. Including international trade and implementing trade

sanctions in a coalition model within this framework has to the best of my knowledge not

been done before.

The model is calibrated such that global totals of the model outputs like economic output,

savings rate, export ratio, emissions, are consistent with real world data. However, actors

within the model are assumed to be identical. This limits the applicability of the model to

real world negotiation, but facilitates studying the incentives for cooperation in isolation

from the distributional effects introduced via heterogeneity of actors.

I show in numerical experiments that introducing trade sanctions positively affects coop-

eration on international cooperation: When those actors that cooperate on climate pro-

tection additionally impose import tariffs on goods from non-members of the coalition,

more actors are inclined to participate in the joined international agreement of both, envi-

ronment and trade, than elsewise. Indeed, participation rises with the tariff rate, reaching

full cooperation at some point. How quickly participation rises and at which tariff rate

full cooperation is sustained depends on the ease with which taxed goods are substituted

with alternatives. Global welfare rises with participation despite the distortions caused by

trade restriction. These results proved robust against variation of key parameters. Tariffs

therefore seem to be a feasible means of increasing participation.

Moreover, trade sanctions turn out to be a credible incentive in the sense that imposing an

import tariff is beneficial to the coalition. This is true as long as the tariff rate is ‘small’

in relation to the substitutability of the taxed good: when goods are easily substituted the

losses of reduced trade will exceed the additional income in form of tariff revenues.

Standard approaches to find a competitive equilibrium for traded goods could not be ap-

plied due to the market distortions introduced via climate change on the one hand and

tariffs on the other hand. This was overcome by extending existing approaches.

6.2.2 Technology-oriented Agreements

The next set of questions explores potential interactions between endogenous technolog-

ical change and international cooperation. Specifically, it focuses on issue linking of

environmental agreements and technology oriented agreements.

• How does ETC help to promote international cooperation on emission abatement?

• What are the roles of different technology oriented agreements (TOA)?

• What is the role of cooperative research and development and technological spill-

overs?

• In which ways does the type of technology that spills over matter?
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• What is the role of international technology standards?

I address these questions by applying the model of coalition formation developed for

this thesis. The model was extended by two concepts of technological cooperation: in-

ternational actors could chose to cooperate on R & D (augmenting either productivity or

mitigation) and by doing so benefit from increased technology spillovers, or actors could

jointly implement international technology standards.

It turns out that ETC provides a means to increase participation in an environmental co-

operation: issue linking of the environmental agreement to cooperative research, which

induces increased technology spillovers changes the incentive structure such that more

actors sign the linked agreement. The number of participants rises with the intensity of

spillovers up to and including full cooperation.

The type of technological knowledge that spills over (either related to productivity or

mitigation) makes a difference for the effectiveness of this type of issue linking: cooper-

ation on productivity R & D is unambiguously more effective in raising participation in

the agreement, global welfare, and environmental quality. The reason is that the bene-

fit of cooperation is only truly exclusive to the coalition in case of productivity. In case

of cooperation on mitigation some of the benefits of cooperation spill over indirectly to

non-members via reduced climate change damages. This impact of the source of spill-

overs helps to understand why previous investigations into this topic came up with mixed

results: in Botteon and Carraro (1998) where spillovers are related to productivity high

levels of cooperation are sustained through issue linking. Contrary, in Nagashima and

Dellink (2008) spillovers are related to mitigation technology and the impact on partici-

pation is only modest.

International technology standards are also shown to have a positive effect on coalition

formation. By assumption, standards are easier to agree on and implement, and “standards

agreements” are accomplished ad hoc. The existence of a separate standards agreement

alone has very little impact on environmental cooperation. It would, however, signifi-

cantly increase participation in a linked agreement on environmental and technological

cooperation.

This renders a stepwise approach of building coalitions possible: creating a global agree-

ment on technology standards would not (according to this model) solve the climate prob-

lem in the sense of inducing increased cooperation in an environmental agreement. It

does, however, prepare the ground for a linked agreement on environmental and techno-

logical cooperation.

6.2.3 Discussion

Chapters 4 and 5 assessed the impact of linking environmental cooperation to trade sanc-

tions or technology-oriented agreements on the incentives to participate in an interna-

tional environmental agreement using numeric model experiments. In principle, it would

be preferable to derive analytical solutions because of their greater generality. However,

showing the stability of coalitions in general is often not feasible, in particular when mod-

els include more complex interactions such as spillovers, trade, and tariffs. Relying on nu-

merical simulations enables me to explore these issues in the state-of-the-art framework of
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optimal growth modeling. Additionally, I can avoid simplistic assumptions during model

development, for example, the stock pollutant characteristic of GHG concentrations can

adequately be accounted for by using a dynamic modeling setting. Still, it is important to

keep the limitations of numerical results in mind when drawing conclusions from model

results.

The modeling approach in this thesis takes middle ground between using stylized eco-

nomic actors and modeling real world actors by calibrating global totals of economic

output, GHG emissions, etc. to data. While using identical actors has advantages when

investigating the impact of issue linking in general, the analysis would benefit from cal-

ibrating all actors to real world regions to additionally estimate the magnitude of these

effects.

The model assumes national product differentiation in a single good world to describe

the driving forces of international trade. Consequently, when trade sanctions in form

of import tariffs are imposed by coalition members, all trade is affected. Realistically

though, a trade sanction under World Trade Organisation rules could only target carbon

intensive goods. So while the current description of trade suffices to access the scope

of trade sanctions in a very general setting, a real world analysis of the approximate

magnitudes of gains, losses, and impact on incentives of tariffs would require multiple

traded goods.

Furthermore, the exploration of technology oriented agreements includes a first numeri-

cal assessment of international technology standards. As discussed in the corresponding

chapter, an ad hoc agreement concerning the global implementation of these standards

is assumed because arguably, their incentive structure makes standards self-enforcing.

Naturally, the analysis would be more complete if the decision about an agreement on

standards was incorporated into the given model. The necessary model extension would

encompass introducing technological dynamics exhibiting the potential for increasing re-

turns to scale and lock-in effects for technologies.

6.3 Outlook and Further Research

The questions and concepts explored in this thesis can be extended in future research in

at least three ways: further model comparisons, advanced concepts of coalition stability,

and accounting for the large uncertainties, which are pervasive in integrated assessment

modeling of climate change.

Model comparisons are established as a tool to assess uncertainty in model structure. The

Stanford Energy Modeling Forum (EMF) has pioneered model comparisons for integrated

assessment models of climate change, and likewise, Chapter 3 of this thesis used a model

comparison to shed light on the impact of induced technological change. Section 3.6.6

suggests to move the comparison of mitigation strategies in IAM down to the level of tech-

nological options—this suggestion has been taken up in ADAM (2008, pp. 8–9). Game

theoretic models of climate change are not as numerous as their integrated assessment

counterparts. But new model developments from recent years, Finus et al. (2006), Bosetti

et al. (2006b) and the coalition model from this thesis (Lessmann et al., 2009), have led

to a critical mass in models and variability in their predictions (e.g. about the effects of
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spillovers on participation in different models as discussed in Section 5.5), thus meriting

a comparison of these models and the driving forces of their results. Comparing the pre-

dicted stable coalition from these model would be a demanding task. Running comparable

scenarios in these different models is already a challenge for simple non-cooperative or

fully cooperative settings, and the game theoretic setting of stable coalitions adds another

layer of complexity: assumptions concerning the concept of stability, number of players,

choice of regions, intra-coalitional welfare transfers, etc. would require harmonization.

Nevertheless, valuable insights may be gained, e.g. concerning which assumptions are

decisive for the incentive to free-ride for different regions in different models.

The concept of coalitional stability used in this thesis, cartel stability, is frequently used in

applied analyses of international environmental agreements. It has great intuitive appeal

and is readily implemented, partially due to its myopic perspective, e.g. a player aban-

doning a coalition will not anticipate whether the remaining coalition perseveres, even

though this has strong implications for her payoff. In a setting where actors take their

economic decision with perfect foresight, this assumption on strategic foresight seems

rather limiting. More advanced coalition concepts are discussed in the game theoretic

literature, such as Faresightedly Stable Coalitions and the Coalition Proof Nash Equilib-

rium. To date, these concepts have rarely been applied in integrated assessment models.

Furthermore, in case of the cartel stability concept, international environmental agree-

ments are modeled as a one-shot, static game, even though the negotiations on a climate

agreement under the UNFCCC seeks to increase participation in future commitment peri-

ods. Dynamic games would capture this better than the static approach, indeed non-static

concepts have recently been employed: Weikard and Dellink (2008) allow to renegotiate

their agreement in several commitment periods, Rubio and Ulph (2007) analyse dynamic

membership. Still, modeling dynamic international environmental agreements is in its

infancy.

In economic models that span several centuries, uncertainties abound. This is especially

true for the estimates of climate change damages, which are an integral part of game the-

oretic models of climate change because the assumption on damage functions determine

the benefits of abatement. The analysis of coalition stability would therefore benefit from

additional research on damage functions.

Overall, the studies reported in this thesis suggest that there is indeed potential that ITC

may reduce the burden that mitigation requirements will put on the economy. And while

there is no final conclusion to the magnitude of the impact of ITC due to the model uncer-

tainty, which remains large, this thesis advanced the understanding of these uncertainties

and the underlying reasons for the variability in the results. To exploit a large potential

of ITC, a clear carbon price signal is required. This thesis suggests that linking the nego-

tiations on climate policy to trade sanctions or to research cooperations is a feasible way

to create incentives that make a cooperative global climate policy more likely. Again,

more research is needed to determine the magnitude of the potential of issue linking, but

its potential in general has been shown and different issue linking proposal have been

characterized with respect to their advantages and disadvantages.
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