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CHAPTER 1 
 

INTRODUCTION 
 

The state of the whole commercial world can seldom be much affected by 

the improvement of any particular country; and the market for such commodities 

may remain the same or very nearly the same after such improvements as before. It 

should, however, in the natural course of things rather upon the whole be somewhat 

extended in consequence of them. If the manufactures, especially, of which those 

commodities are the materials should ever come to flourish in the country, the 

market, though it might not be much enlarged, would at least be  brought much 

nearer to the place of growth than before; and the price of those materials might at 

least be increased by what had usually been the expense of transporting them to 

distant countries. Though it might not rise therefore in the same proportion as that 

of butcher's meat, it ought naturally to rise somewhat, and it ought certainly not to 

fall. 

 
Adam Smith (1776) 

 

Economists have sought to understand the processes and frameworks of economic 

growth across countries since Adam Smith developed the modern concept of economic growth 

in 1776. Two centuries later, Robert Solow observed some additional advantages of economic 

concepts and developed the standard neoclassical model of economic growth. The neoclassical 

perspective led some to argue that some countries achieve large increases in output over 

extended periods of time that in turn dramatically changes the general economic, political, and 

institutional landscape. The link between economic growth and a wider concept of 

“determinants” is, however, controversial.  
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In the 1980s, many economists argue against the assumption in the Solow model that 

the permanent changes in conventional government policies have no permanent effects on an 

economy’s long-term growth. Paul Romer (1986) presents a profound finding that the long-

term growth is clearly endogenous. The key determinants of long-term growth, rather than by 

some exogenously growing variables such as unexplained technological change, are the 

reason for the name endogenous growth.  

Despite the vast literature on empirical growth studies following the papers of Sachs 

and Warner (1995), and Hall and Jones (1999), the empirical work attempted that has tried 

explain the dynamics of growth has identified a number of variables that only partially directly 

correlate with economic growth. The major problem is the lack of an explicit theory about the 

exact true causality of growth model.  

Why are some so rich and some so poor? Gallup et al. (1999) focus on the significant 

impacts of geography on economic development. They found that geography directly impacts 

growth, controlling economic policies and institutions, and the effects of geography on policy 

choices and institutions. The geography variables used in the model are the geographical 

proportion of land in the tropics, the proportion of land in the ecological tropics, the 

prevalence of malaria, hydrocarbon deposits, and regional dummy variables. Following the 

natural resources research, Jeffrey Sachs has emphasized the impact of human health on 

economic development, particularly, malaria in Africa.  

An empirical study, by Acemoglu et al. (2001), argues that the geography mechanism 

works entirely through institutions. Acemoglu et al. (2001) present the evidence on the 

significant role geography plays in explaining the establishment of early institutions. On the 
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contrary, Rodrik (2002) claims that geography plays both direct and indirect roles in the 

growth model. 

   A solution to the reasonable question of how to “go further” is proposed by Masters 

and McMillan (2001), who introduce a new climate variable labeled “annual hard frosts” that 

directly impacts economic growth. They note, however, as Masters and McMillan (2001) 

paraphrase above, that their aggregate measures choose a climate threshold that may perhaps 

be arbitrary. There are also various initially more substantial obstacles that can contribute to 

an incomplete picture and thus lead to possibly wrong conclusions since not all assumptions of 

the model uncertainty then hold. 

This study contributes to the debate on growth empirics by empirically identifying 

robust determinants of per capita growth rates across the world. The study is organized as 

follows: Chapter 2 starts with a short retrospective regarding climate impact on economic 

growth rate along with a few remarks on robustness in econometrics. Subsequently, I present 

an introduction to several extensions and empirical applications of robust estimation 

techniques which are both addressed and discussed.   

The following Chapter 3 applies the quantile regression procedure to the analysis of 

the economic growth model. The impact of climate factor on the conditional distribution of 

per capita income growth is considered. The obtained results vary significantly for different 

economic development. In next section, Chapter 4, the climate proxy “annual hard frosts” 

needs to be robustly linked to technical efficiency in agriculture. Finally, a brief summary is 

offered in Chapter 5.  
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CHAPTER 2 

 
ANNUAL HARD FROSTS AND ECONOMIC DEVELOPMENT 

 

2.1 Introduction 

 

Many empirical studies of the growth of countries have tried to investigate which 

factors matter most for economic growth. For many years economists has emphasized the 

importance of factor endowments, good economic policy (openness to trade, exchange rate 

system, inflation, and investment climate) and institutions (political stability, property rights, 

and legal systems) that are conducive to growth. Other economists have put a greater weight 

on climate and geography (which affects the incidence of disease, agricultural opportunities, 

as well as the applicability of some technologies) as well as access to the sea (which affects 

the scope for trade).1  

Climate is an important factor that influences human health and agricultural 

productivity. Tropical areas are consistently poorer than temperate zone areas, because of the 

intrinsic effects of tropical ecology on human health and agricultural productivity. Tropical 

infectious diseases impose very high burdens on human health, which may lead to shortfalls in 

economic performance.  

The influential paper by Masters and McMillan (2001) tests the importance of these 

alternative hypotheses, looking at a sample of about 90 rich and poor countries. They apply 

different data sources measuring climate, frostdays, as proxy for climate factors. The studies 

find a correlation between climate and economic growth using frostdays. The growth 

regression shows that countries with more frostdays in winter time had dramatically higher 

economic growth in the subsequent years, after controlling for other factors that likely 

influenced growth, like initial income level, initial human capital formation, and 

ethnolingustic heterogeneity. Their main conclusion is that one factor differentiating wealthy 

                                                 
1 Geographic isolation can be costly because it lowers international integration. This helps to explain, for example, 
why U.S. economic development is concentrated at its ocean and Great Lakes coasts [see Rappaport and Sachs 
(2003)]. 
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countries from poor includes winter frosts, which reduces insect borne disease. Annual hard 

frosts can also improve agricultural success by allowing a buildup of organic matter that leads 

to rich, fertile topsoil, and by ensuring moist soils in the spring. In other words, hard frosts 

boost economic development. 

This explanatory factor, however, is not mutually exclusive. The recent paper by 

Easterly and Levine (2003) has also tested the relative importance of geography versus 

institutions and policy. The results are intriguing. Institutions turn out to matter most for 

growth, while geography and policy don’t matter at all. The general conclusion is that 

countries with good institutions tend to do all right with policies. In the same way, countries 

with bad institutions tend to do badly regardless. Other studies have found that geography 

affects institutions. Favorable geography promotes good institutions; good institutions then 

promote development.2 The occurrence of conflicting studies evokes a legitimate quest for an 

assessment of the robustness of research findings. This paper therefore re-examines the cross-

sectional link between annual hard frosts and economic growth. 3  One believes that by 

outlining existing methodological difficulties and by suggesting methods to solve some of 

these problems, the paper constitutes a further step towards developing a framework for the 

frost-growth nexus. 

The paper is organized as follows. Section 2.2 reviews the discussion on the 

robustness of empirical economic growth studies and revisits the frost-growth nexus. Where 

there are differences in results, I identify and discuss the source of the differences and explain 

                                                 
2 For a critical view, see Sachs (2003). Recently a few other papers have carried out somewhat similar analyses. 
Acemoglu et al. (2001) investigate a variety of seventeenth- to nineteenth-century European colonial strategies. 
Where settler mortality was low, because geography and climate were conducive to good health, Europeans 
moved in and planted good institutions (examples include the United States, Australia and New Zealand). Where 
settler mortality was high, because of bad geography and diseases, they stayed away and planted bad institutions 
(examples include much of sub-Saharan Africa and Latin America). These institutions, good and bad, put down 
roots explaining the pattern of modern world income distribution. The paper focuses in particular on institutional 
developments among former colonies of European countries; it is therefore not directly applicable to many other 
countries that were not subject to colonization. 
3 Cross-sectional growth empirics has come under attack by those who advocate panel data studies because the 
cross-sectional framework permits a very limited treatment of problems of estimation resulting from parameter 
heterogeneity [among them are Islam (1995) and Caselli et al. (1996)]. Panel data methods, however, have their 
own problems because they may introduce unwanted business cycle effects and are also not immune from 
methodological issues because the popular Generalised Method of Moments (GMM) estimator has been found to 
have large finite sample bias.   
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why one believes this approach is superior on conceptual or empirical grounds. Conclusions 

and topics for further research are presented in Section 2.3. 

 

2.2 The Robustness of the Frost-Growth Nexus 

 

The existing empirical growth literature using “Barro-regressions” has been criticized 

for its lack of robustness. With competing guidance as to the precise nature of the 

hypothesized relationships, a plethora of specifications exist. In this sub-field, there is much 

debate over such questions as, “what variables should be included?” and “how should those 

variables be measured?”. There is also a corresponding debate over the “right” or “best” 

statistical methodology to employ.  

Durlauf and Quah (1999) and Temple (1998, 2000) stress that applied 

macroeconomists are inclined to follow theory rather loosely and simply try variables to 

establish factors determining economic growth. In these empirical specification searches, 

econometric problems such as robustness are often ignored [Durlauf (2001)]. Because the 

literature also reveals more than 50 variables significantly correlated with growth, the question 

arises as to how sensitive the results of cross-country growth regressions are to slight 

alterations in the setup.4 

Dollar and Kraay (2002) claim that the model is too weakly identified to be able to 

sharply estimate any of the parameters of interest if institutions to be endogenous. They are at 

least able to uncover a significant partial association between trade and growth which survives 

the inclusion of a variety of proxies for institutional quality if institution is treated as 

exogenous.  

Following the analysis in Masters and McMillan (2001), this section considers to re-

examine the relative importance of climate and geography, the cross-sectional econometric 

framework presented in Masters and McMillan (2001) is used. Fig. 2.1 presents the frequency 

of frost against the average real GDP growth rate over the sample period. The broad 

                                                 
4 Excellent surveys of the literature are provided by Durlauf and Quah (1999) and Temple (1999). An extensive 
treatment of robustness issues is provided in McAleer et al. (1985). 
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feature is that poor countries are located in the geographic tropics with little frost, and most of 

the wealthy countries are in temperate regions with hard frosts. The intuition is that frost kills 

pests and pathogens, so that agricultural productivity is higher in temperate climates.  

 

Figure 2.1 Frost Frequency and Average GDP Growth, 1960 - 1990 
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Note: Frostdays are defined as the average number of such days per month in winter (December – 
February in the Northern hemisphere and June – August in the Southern hemisphere) where the 
estimated temperature falls below 0ºC. Values are averages for 1961 – 1990. 
 

It now turns to the question of how significant average frostdays may be for long-term 

growth prospects. This analysis starts with the function for country’s per capita growth rate in 

period t, tyΔ , as ),,( 00 hyFyt =Δ , where 0y  is initial per capita GDP, 0h  is initial human 

capital formation, and other variables comprise an array of control and environmental 

influences. Table 2.1 replicates the OLS estimates originally presented in Masters and 

McMillan (2001). It uses the following Barro and Sala-i-Martin (1991) cross-country growth 

framework, in which the average annual income growth in country i is regressed on initial 
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incomes, annual hard frosts, domestic population size, total trade as a fraction of GDP, 

linguistic heterogeneity, as well as all other variables used in previous studies.  

 

(2.1) ii othersFrostdaysSchoolingTradePopulationomeInitialIncY μγγγβα +++++= )(),,( 321  

 

where Yi is the average per capita growth rate and iμ  is the error term. The model regresses 

the average per capita growth rate for 89 countries over the period 1960 to 1990 on measures 

of its endowments, macroeconomic policy, institutional development, and frost variables. 

 

Table 2.1 Baseline Empirical Growth Model 

(Dependent Variable: Average Annual Growth in Real GDP, 1960 – 1990) 

Variable Coefficient t-Statistics Coefficient t-Statistics 
Constant 6.308 3.360 6.210 3.337 
ln(Pop) 1960-62 0.845 2.724 0.853 2.757 
X+M/GDP 1960-62 0.025 5.042 0.026 5.276 
Language heterogeneity -0.030 -3.963 -0.029 -3.869 
ln(GDP) 1960-62 -1.811 -3.177 -1.902 -3.357 
Area-weighted frostdays 0.087 3.619 0.390 2.367 
Frost-days squared -0.027 -1.682 
Frost-days cubed 0.001 1.503 
   
Observations 89 89  
Adjusted R-squared 0.371 0.384  
Jarque-Bera 5.204 p = 0.074 2.467 p = 0.291 
Ramsey RESET F-statistic 0.159 p = 0.691 0.451 p = 0.504 

Notes: The data definitions and sources are explained in Masters and McMillan (2001), p. 177. The 
Jarque-Bera diagnostic is one for normality of the residuals. Ramsey’s RESET test for incorrect 
functional form and nonlinearities is also reported. 
 

Table 2.1 shows regressions for annual average growth rates of per capita real GDP. 

Most of the data apply from Master and McMillan (2001). It characterizes worldwide growth 

in terms of convergence, scale impacts and climate effects. The frost variable is highly 

significant and thus ignoring the growth effects of hard frosts leads to an overestimate of 

growth in the tropics. The second row also suggests the possibility of a nonlinear climate 
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effect: as the number of frost days increases, the impact on growth becomes larger.5 The 

regressions shows that, as one of the few variables found to do so, the frostdays robustly 

matter for economic growth. Moreover, it seems likely that more frostdays indeed cause 

higher growth and not the other way around. The results in Table 2.1 set the stage for the 

remainder of the paper, where one asks: how robust are these results?  

 

2.2.1 Threshold Estimation 

A first problem with the work of Masters and McMillan (2001) is their assumption that 

a “natural” breakpoint of five days of frost per month is apparent in the data [Masters and 

McMillan (2001), p. 176]. This assumption is not borne out by any estimation technique and 

therefore the cut-off for hard frosts (≥ 5) is inevitably arbitrary. A better solution here is to use 

Hansen’s (2000) threshold estimation technique which provides an intuitive and simple setting 

for sample-splitting. The approach is based on a very simple idea. The model with a single 

threshold takes the form 

 

(2.2) ( ) ( ) eqIxqIxy iiiiiii
+>+≤+= ′′ γβγβα 21

  

 

where the dependent variable yi is a scalar, xi is a vector of regressors, I(⋅) is an indicator 

function, the threshold variable qi is a scalar, and ei is an i.i.d. N(0, σ²). The subscript indexes 

the regions {1 ≤ i ≤ n}. Equation (2.2) can be re-written as 

 

(2.3) 
⎪⎩

⎪
⎨
⎧

>+′+

≤+′+
=

γβα

γβα
qifex

qifex
y

iiii

iiii

i
2

1   

                                                 
5 If investment in physical and human capital creates new knowledge, then there will be a spillover from each 
agent’s investments to knowledge useful for other agents in the economy. Economies that already have high per 
capita incomes will have the highest returns for new investments. If these spillover effects are strong enough, 
then virtuous and vicious circles will form in the long run [see Azariadis (1996), Azariadis and Drazen (1990) 
and Murphy et al. (1989)]. In a similar vein, Gallup et al. (1999) have argued that vector-borne diseases, 
particularly malaria, have such a large effect on labour productivity that some countries, particularly in Sub-
Saharan Africa, are trapped in a vicious poverty-disease trap.    
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The threshold model therefore allows the regression parameters to differ depending on 

the value of qi. The specification collapses to the traditional linear one if β’1 = β’2. This 

implies that the procedure allows formal verification of the number of convergence clubs in 

the cross-section. Hansen (2000) has suggested a practical and straightforward method to 

estimate γ using least squares techniques and to construct asymptotically valid confidence 

intervals for γ .6 F-tests can then be used to test for threshold effects (β’1 ≠ β’2), and likelihood 

ratio tests LR(γ) can be constructed to test the hypothesis H0: γ = γ0. In other words, the major 

innovation of the elegant technique is to treat the number and the size of the thresholds as 

unknown. Furthermore, the procedure allows to test whether the identified threshold effect is 

statistically significant. 

An additional problem is the possibility of multiple thresholds. Bai (1997a, 1997b, 

1999) shows that (mechanically) proceeding sequentially in testing for thresholds, i.e. test first 

for one threshold against no threshold; then conditional on the results of the first test, test for 

the existence of a threshold in each of the two subsamples and so on, produces consistent 

estimates of the number and the location of the thresholds. However, when there are multiple 

thresholds, and one tests for the presence of one threshold only, the estimated break point is 

consistent for any of the existing break points and its location depends upon which of the 

breaks is “stronger”. If this is the case, Bai (1997a, 1997b, 1999) has suggested to refine the 

estimate of the thresholds. That is, if two thresholds are identified at n1 and n2, one should re-

estimate n1 over the interval [1, n2] and n2 over [n1, n]. Each refined estimator of the location 

of the threshold has then the same properties as the estimator obtained in the case the sample 

has a single break point. 

Following this computationally convenient sequential procedure this analysis allows 

the number of thresholds to be unknown and endogenously determined by the data.7 The frost 

variable (area weighted frostdays) as the threshold variable has been used in this study. Fig. 

                                                 
6 The computationally easy procedure determines γ as that value that minimizes the concentrated sum of squared 
errors function.  
7 The estimation and test procedures made use of a GAUSS procedure, which is available on Bruce Hansen’s 
homepage http://www.ssc.wisc.edu/~bhansen. 
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2.2 displays a graph of the normalized likelihood ratio sequence LR(γ) when estimating a 

single-threshold model. The least squares estimate of γ  is the value that minimizes this graph, 

which occurs at γ1 = 2.11049. The asymptotic 95% critical value of 7.35 is also plotted (dotted 

line). The result shows that there is reasonable evidence for a two-regime specification and 

therefore geography matters.8 

Finally, following the procedure suggested by Bai (1997a, 1997b, 1999), this analysis 

has searched for a double threshold. This sequential procedure using subsamples leads to no 

further significant thresholds. Thus one concludes that there exists a single threshold effect 

which is less than half as large as the assumed breakpoint in Masters and McMillan (2001). 

The implication is that temperate regions have tended to forge ahead of the sub-tropical and 

tropical countries and frost may be viewed, statistically speaking, as an important component 

of the rich/poor distinction among the countries of the world. This frost-produces-growth 

hypothesis potentially supports the finding of Hansen (2000) and Quah (1996) that the world 

income distribution is polarising into two groups, i.e. both subgroups are growing apart. 

 

                                                 
8 While one finds evidence of multiple equilibria, it has nothing to say about how countries can make the 
transition from one equilibrium to the other. To do this requires a more structural, dynamic model with various 
stages of development. 
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Figure 2.2 Likelihood Ratio Sequence in the Single Threshold Model 
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Having obtained an estimated threshold for the frost variable, it can use that criterion 

to subdivide the sample and test for parameter heterogeneity across the temperate-tropical 

divide. Fig. 2.3 presents the frequency of frost against the average real GDP growth rate over 

the sample period in two subsamples. It shows that frost is negatively correlated with growth 

in the tropical subsample, but it is positively correlated with growth in the temperate 

subsample. 
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Figure 2.3 Frost Frequency and Average GDP Growth of Subsamples, 1960 – 1990 
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2.2.2 Outliers 

Equation (2.1) and (2.2) provide a feasible method of estimation, however, the question 

of outliers is another problem. A valid concern with cross-country work is that the equations 

will fit some observations particularly badly, and it is possible that these observations will act 

as influential outliers. Take for instance Fig. 2.4(a). In that Figure point A is clearly an outlier; 

it lies outside the typical relationship between x and y. Especially such outliers in the 

dependent variable, i.e. in the y-direction, have received quite some attention in the literature. 

Such vertical outliers often possess large positive or large negative residuals, which are easy to 

identify when plotting the residuals. Note, however, that if xi is near the center of the set of 

explanatory variables, as is the case in Fig. 2.4(a), it will mainly affect the constant and hardly 

alter the slope. Alternatively, outliers can occur in the x-direction. As Fig. 2.4(b) shows, even 

one unusual observation in the x-direction (point B) can actually tilt the OLS regression line. It 

does not fit the main sequence (in fact, it does slope downwards) because it attempts to fit all 

the data points and is pulled away by point B. In such a case it calls the outlier a bad leverage 

point, in analogy to the notion of leverage in mechanics. In general one calls an observation a 

leverage point whenever it lies far away from the bulk of the observed x in the sample. Note 

that this does not take y into account, so a leverage point does not necessarily have to be an 

outlier. For instance in Fig. 2.4(c), the leverage point C lies exactly on the regression line 

determined by the majority of the data, and hence is not an outlier. It is considered to be a 

good leverage point. Therefore, saying that an observation is a leverage point refers only to its 

potential for strongly affecting the regression coefficients. Obviously, the most worrisome 

outliers, i.e. bad leverage points often cannot be discovered by looking at the OLS residuals. 

As in Fig. 2.4(b), if the regression line is tilted by the bad leverage point, deleting the points 

with the largest OLS residuals implies that some "good" observations would be deleted instead 

of the bad leverage point. Hence, outliers pose a serious threat to standard least squares 

analysis.9 

                                                 
9 For example, in the recent empirical growth literature, the link between equipment investment and economic 
growth has been analyzed for a broad cross section of countries. DeLong and Summers (1991, 1992) have 
initially argued that equipment investment yields high externalities. Auerbach et al. (1994) have, however, 
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Figure 2.4 Outlying Observations and Leverage Points 

 
Note: The dashed lines represent the OLS estimates including the unusual observation. The solid lines 
represent the OLS estimates without the outlying observations. 
                                                                                                                                                          
demonstrated that this result is very fragile and essentially driven by one outlier in the cross-section dataset 
(Botswana). 



Chapter 2. Annual Hard Frosts and Economic Development 

 16

Basically, there are two solutions to this problem: regression diagnostics and robust 

estimation. Regression diagnostics are certain statistics mostly computed from the OLS 

regression estimates with the purpose of pinpointing outliers and leverage points.10 Often the 

outliers are then removed from the dataset. When there is only one outlier, then some of these 

methods work quite well. It is, however, much more difficult to identify outliers when there 

are several of them. Take for instance Fig. 2.5. Deleting either of the two observations D and E 

will have little effect on the regression outcome and will therefore not be spotted by single-

case diagnostics. The potential effect of one outlying observation is actually masked by the 

presence of the other. This so-called masking-effect can only be solved when observations are 

considered to be jointly outliers and/or leverage points.11 

 

Figure 2.5 The Masking Effect 

 
Note: The dotted line represents the OLS estimates including both outlying observations D and E. The 
dashed line represents the OLS estimates without the first unusual observations D. The solid line 
represents the OLS estimate without both unusual observations D and E. 
 

                                                 
10 Of course, in simple regression this is not a big problem since one should first look at a scatter plot of the (xi, yi) 
data. But in multiple regression, this is no longer possible, i.e. the real challenge is multiple regression. Chatterjee 
and Hardi (1988) and Rousseeuw and Leroy (1987) discuss regression diagnostics. 
11 Such joint tests, however, pose serious computational problems. For the single-case diagnostic measure I need 
to compute n diagnostics, one for each observation. In the multiple observations case, for each subset of variables 
of size m, there are n!/[m!(n-m)!] possible subsets for which diagnostic test statistics can be computed. For n=90 
and m=10 this results in 5.72⋅1012 diagnostics. Masters and McMillan (2001) have addressed the outlier problem 
with the DFITS diagnostic. These statistics, however, may fail to pick up “unrepresentative” outliers due to the 
masking effect explained above. 
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This study turns to the second approach, called robust regression. It tries to devise 

estimators which are not so strongly affected by outliers. When using as a diagnostic tool, 

robust techniques first fit a regression to the majority of the data and then determine outliers as 

those points which possess large residuals from that robust solution. 

The most well-known estimator is the OLS method. The basic idea behind this estimator is to 

optimize the fit by minimizing the sum of squared residuals (ei): 

 

(2.4) ∑
=

n

i
ie

1

2

ˆ
min

β
 

 

For OLS one knows that one outlier can be sufficient to cause the estimator to take on values 

for β̂  arbitrarily far from β . As shown in Fig. 2.4(a), one observation like point B is sufficient 

to throw the OLS line indefinitely far off target. This is independent of the total number of 

observations n available. The OLS breakdown point equals 1/n which tends to zero for 

increasing sample size, which reflects the extreme sensitivity of the OLS method to outliers. A 

robust alternative adopted in this paper is the least trimmed squares (LTS) estimator of 

Rousseeuw and Leroy (1987).12 The LTS estimator can formally be written as 

 

(2.5) ( )∑
=

h

i nie
1 :ˆ

2min
β

 

 

where(e²)1:n ≤ (e²)2:n ≤ ... ≤ (e²)n:n are the ordered squared residuals (note that the residuals are 

first squared and than ordered). Formula (2.5) is very similar to OLS, the only difference being 

that the largest squared residuals are not used in the summation, thereby allowing the fit to stay 

away from the outliers.  The LTS estimator is consistent and asymptotically normal. In order to 

determine the LTS location estimate one has to consider the n-h+1 subsamples {y1:n, ..., 

yh:n},{y2:n, ..., yh+1:n}, ..., {yn-h+1:n, ..., yn:n}. With k unknown parameters the LTS method attains 

the highest possible breakdown value, namely {[(n-k)/2]+1}/n which asymptotically equals 50 

                                                 
12 Temple (1998) has also used the LTS estimator when re-examining the augmented Solow with human capital. 
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percent, i.e. it can withstand a lot of bad leverage points occurring anywhere in the data. 

Equation (2.3) resembles that of OLS but does not count the largest squared residuals, thereby 

allowing the LTS fit to steer clear of outliers. The default setting for h suggested in the 

literature is h ≈ n/2.13 The LTS regression and scale estimates can then be used to identify 

outlying observations, defined to be those observations whose studentised residual is larger 

than the rule-of-thumb cut-off value |2.5|.14  

Therefore, this study uses the least trimmed squares (LTS) estimator of Rousseeuw and 

Leroy (1987) which can withstand a lot of bad leverage points occurring anywhere in the 

data.15 The corresponding estimation results for both subsamples are given in Table 2.2 and 

Table 2.3. To account for cross-country growth differences, the same array of right-hand-side 

variables as Master and McMillan (2001) is used. Looking at the results of both tables it is 

clear that in some ways the “frost model” stands up rather well. The estimated coefficient of 

the frost variable is significant in the tropical subsample, but has the “wrong” sign. While 

negative growth impacts seem to prevail for little frost, the effect of frost disappears when the 

level of frost is higher. The Sachs-Warner measure of openness and initial income turn out 

significant in both subsamples and trump all other variables in the temperate subsample. On 

the contrary, the so-called Gastil index of institutional quality and the ethnolinguistic diversity 

measure turn out insignificant. In particular, as shown in Table 2.3, the inclusion of 

geographical variables seems to reduce the role of frost variable. Most variables lose their 

significance except the investment rate and the secondary school enrollment rate in temperate 

subsample. The geography has the insignificantly positive correlation with economic growth 

in temperate subsample, but insignificantly negative correlation in tropical subsample.  

 

                                                 
13 For larger h the breakpoint value is approximately given by (n-h)/n. 
14 Various resampling algorithms have been suggested to obtain the LTS regression and scale estimates. The 
resampling approach is required because the LTS criterion function is not at all smooth; it typically contains many 
local minima and therefore cannot be minimized by conventional methods. Rousseeuw and Leroy (1987) propose 
drawing a large number of subsamples, each of size k (the number of regression coefficients, including the 
constant term) and evaluate the objective function (2). This is repeated often, and the solution with lowest 
objective function is kept. Both authors show that, if the number of subsamples is large, at least one of them is 
virtually certain to be uncontaminated by outliers. The LTS regression is based on these "clean" subsamples. In 
this paper 3000 subsamples have been drawn.  
15 Temple (1998) has also used the LTS estimator when re-examining the augmented Solow with human capital. 
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Table 2.2 LTS Estimates for Both Sub-Samples 

(Dependent Variable: Average Annual Growth in Real GDP, 1960 – 1990) 

Variable    Frostdays ≤ 2.11049 
Coefficient     t-Statistics

   Frostdays > 2.11049 
Coefficient   t-Statistics 

Constant 20.331 8.517 17.061 6.517 
ln(Pop) 1960-62 0.338 1.120 -0.388 -1.429 
X+M/GDP 1960-62 -0.027 -3.785 -0.007 -0.875 
Language heterogeneity 0.008 1.425 -0.011 -1.519 
ln(GDP) 1960-62 -3.539 -5.540 -3.488 -4.234 
Area-weighted frostdays -0.959 -4.574 0.017 0.861 
ln(I/GDP) 3.596 4.780 1.653 1.436 
ln(SCHOOL) 3.207 6.247 1.617 1.477 
Openness(Sachs-Warner) 1.366 2.555 1.744 3.372 
Institutional quality (GADP) 0.934 0.753 0.778 0.418 

  
Observation 37 33  
Adjusted R-squared 0.862 0.592  
Jarque-Bera 5.637 p = 0.060 0.008 p = 0.996 
Ramsey RESET F-statistic 0.216 p = 0.646 0.464 p = 0.503 

  
Outliers Ghana Botswana  

Hong Kong Chile  
Nicaragua Lesotho  
Philippines   
Rwanda   
Singapore   
Trinidad    
Zaire   

Notes: The data definitions and sources are explained in Masters and McMillan (2001), p.177. The 
Jarque-Bera diagnostic is one for normality of the residuals. Ramsey’s RESET test for incorrect 
functional form and nonlinearities is also reported. 
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Table 2.3 LTS Estimates for Both Subsamples 

(Dependent Variable: Average Annual Growth in Real GDP, 1960 – 1990) 

Variable    Frostdays ≤ 2.11049 
Coefficient     t-Statistics

   Frostdays > 2.11049 
Coefficient   t-Statistics 

Constant 16.823 4.486 19.127 8.496 
ln(Pop) 1960-62 0.563 1.221 -0.073 -0.333 
X+M/GDP 1960-62 -0.019 -1.807 0.000 -0.014 
Language heterogeneity -0.001 -0.151 -0.003 -0.554 
ln(GDP) 1960-62 -3.238 -3.254 -3.853 -6.322 
Area-weighted frostdays -0.857 -2.611 0.007 0.326 
ln(I/GDP) 3.704 3.281 2.283 2.404 
ln(SCHOOL) 1.341 1.816 2.365 3.006 
Openness(Sachs-Warner) 2.263 2.623 1.499 3.603 
Institutional quality (GADP) 0.122 0.065 0.741 0.572 
Absolute latitude -0.029 -0.908 0.001 0.059 

  
Observation 40 32  
Adjusted R-squared 0.657 0.733  
Jarque-Bera 0.230   p = 0.891 2.598 p = 0.273 
Ramsey RESET F-statistic 0.704 p = 0.409 7.238 p = 0.014 

  
Outliers Hongkong Botswana  

Singapore Chile  
Trinidad and 
Tobago 

India  

Zaire Zimbabwe  
   

Notes: The data definitions and sources are explained in Masters and McMillan (2001), p. 177. The 
Jarque-Bera diagnostic is one for normality of the residuals. Ramsey’s RESET test for incorrect 
functional form and nonlinearities is also reported. 
 

The outlying countries Hongkong and Singapore reveal that rich, non-agricultural 

tropical countries do not suffer a geographical deficit of this kind. Air conditioning is probably 

the great equalizer in labour productivity in manufacturing and services. If a country can 

escape to high incomes via non-agricultural sectors, the burdens of the tropics and sub-tropics 

can be lifted.  
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2.2.3 Model Uncertainty 

In order to test for the robustness of these results, it has turned to other “usual suspects” 

which have been used as explanatory variables in the literature before.16 Hundreds of variables 

have been estimated to be significantly correlated with growth in the literature, unfortunately, 

there seems to be no agreement on which other variables should always be accounted for in 

growth regressions. Some variables are used systematically in most studies. Which variable 

should one select in this note?  

Trade openness is used to indicate the degree of goods market integration. It is 

measured as the fraction of years that the country does not interfere with foreign trade, as 

compiled by Sachs and Warner (1995). The index, measured on a (0, 1) scale, have been 

widely used in cross-sectional on growth. A country is considered open if it satisfies all the 

following criteria: (a) non-tariff barriers cover less than 40 percent of trade; (b) average tariff 

rates are less than 40 percent; (c) the black market premium was less than 20 percent in the 

1970s and 1980s; (d) the economy is not socialist; and (e) the government does not control 

major exports. This openness index covers 79 countries during the 1950-1994 time period. The 

shortcomings of the Sachs-Warner index as a measure of trade policy are discussed at length in 

Rodriguez and Rodrik (2000). They argue not all countries have data for each of the five index 

components in the original sample. They stress Sachs-Warner index’s strength derives mainly 

from the combination of the black market premium and the government monopoly of exports, 

but little action directly measure from tariff and non-tariff barriers. The African economics are 

closed to (e) because of their state monopolies of exports and Latin American economics are 

closed to (c) because of their high levels of black market premium.  

The Gastil index of institutional quality, also named Government Anti-Diversion 

Policies (GADP) index, is constructed by Knack and Keefer (1995) with data from the 

International Country Risk Guide. The index is measured on a (0, 1) scale, though it is the best 

                                                 
16  In order to keep the specification simple one limited oneself to a relatively small number of additional 
explanatory variables. However, other variables may be included in an extended model and are certainly worth 
monitoring in an extended model: alternative measures of fractionalization and legal origins. Alesina et al. (2003) 
have shown that fractionalization creates destructive rent-seeking and conflicts and has detrimental effects upon 
growth. The impact of alternative legal institutions has also received substantial attention in the literature, notably 
the impact of systems stemming from different colonial influences [see La Porta et al. (1999)].   
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measure of institutional indicators one could construct, is admittedly crude. The index is an 

equal-weighted average of the following criteria: (a) rule of law; (b) quality of bureaucracy; (c) 

corruption in government; (d) risk of expropriation; and (e) government repudiation of 

contracts. The GADP index covers 130 countries measured around 1985. Knack and Keefer’s 

bureaucracy and corruption variables, which are computed for 1985 only; corruption and bad 

bureaucracy could very well by the endogenous response to a poor economic performance 

between 1960 and 1985. This study has also developed an alternative measure of institution 

indicators, which although it is also crude, is derived from completely different data sources, 

and covers a different time period. The alternative institution indicator used qualitative 

assessments of the civil liberties from Freedom House.17  The earliest description of civil 

liberties in these advisories data from 1965, and are drawn from the Heritage Foundation’s 

Index of Economic Freedom. Each country is rated on a scale of 1 to 5, with a higher score 

indicating fewer liberties. The external war index is set equal to one from countries in which 

an external war effects the whole countries or the while country except for major cities, and 

zero otherwise.18  

Empirical research on economic growth has used a number of data sets related to geography 

and economic policies and institutions of countries after neglecting geography over the past 

decade. Though most results point out the strong correlation of geographical variables and 

economic development, economists argue the physical geography is an extremely dubious 

explanatory variable in growth model. Favorable geography plays a role in promoting 

institutions and inducing growth. 

Table 2.4 replaces the Sachs-Warner openness variables and the institutional variable 

GADP by the black market premium on foreign exchange, civil liberties and the occurrence of 

an external war, and drop out geographical variable from model.  

 

 

                                                 
17 The civil liberty measure indicates the degree of freedom. In general, the Freedom House indicators are widely 
recognized (and used) as a high-quality measure of political freedom and democratic rights. For further details, 
see www.heritage.org/research/features/index. 
18 The external war index measures the dummy variable for countries that participated at least one external war 
over period 1960 – 1985. For further details, see www.worldbank.org   
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Table 2.4 LTS Estimates for Both Subsamples 

(Dependent Variable: Average Annual Growth in Real GDP, 1960 – 1990) 

Variable     Frostdays ≤ 2.11049 
 Coefficient     t-Statistics 

   Frostdays > 2.11049 
 Coefficient   t-Statistics 

Constant 17.085 6.892 18.828 5.314 
ln(Pop) 1960-62 2.025 6.885 -0.102 -0.301 
X+M/GDP 1960-62 0.025 8.572 -0.001 -0.071 
Language heterogeneity -0.027 -5.158 -0.012 -1.278 
ln(GDP) 1960-62 -4.058 -6.260 -3.207 -4.578 
Area-weighted frostdays -0.067 -0.297 0.024 1.081 
ln(I/GDP) 1.446 1.657 1.687 1.319 
ln(SCHOOL) 1.013 2.327 3.209 2.709 
Black market premium  -0.657 -3.265 -2.006 -2.706 
Civil liberties -0.334 -2.907 0.152 0.814 
External war -1.102 -4.263 -0.469 -1.068 

   
Observation 41 34  
Adjusted R-squared 0.884 0.480  
Jarque-Bera 0.536 p = 0.765 0.046 p = 0.977 
Ramsey RESET F-statistic 1.415 p = 0.244 0.536 p = 0.472 

   
Outliers Guatemala Botswana  

 Indonesia Algeria  
 Madagascar   
 Paraguay   
 Zambia   

Notes: Jarque-Bera diagnostic is one for normality of the residuals. Ramsey’s RESET test for incorrect 
functional form and nonlinearities is also reported. 
 

Using data on economic growth from 1960 to 1990 and corresponding data on 

covariates in Table 2.4, the area-weighted frostdays variable is no longer significant for the 

tropical subsample but the civil liberty variable is correctly signed and highly significant for 

the developing countries. The external war indicator shows a significant negative correlation 

with subsequent growth. The Black Market Premium has a high and apparently robust 

coefficient when inserted in growth regressions. Therefore, institutions and economic policies 

are indeed crucial in economic development. First, market distortions as measured by the black 

market exchange rate premium are found to harm growth. Second, the rule of law delivers 
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growth. Third, human capital has a significant explanatory power. These results are 

encouraging because they are not indulging in economic determinism. 

Growth empirics in practice involve consideration of a number of possible 

combinations of explanatory variables, justify a set of assumptions for inclusion/exclusion of 

variables, and then settle on a final model to report. The comparison of Table 2.2 and 2.3 with 

a diverse set of explanatory variables illustrates that the significance of explanatory variables 

depends to some extent on which other variables are included in the regressions, which 

questions the robustness of the correlation between growth rates and the explanatory variables 

used. Hence, Extreme Bounds Analysis (EBA) to deal with this subtle difficulty is additionally 

used.  

In the work below it will call an explanatory variable "robust" in case changes in the 

list of explanatory variables do not alter its estimated coefficient too much. It assembled a 

cross-sectional data set with a large number of potential regressors and subjected to a variety 

of Edward Leamer’s (1983, 1985) “extreme bounds analysis”. The central idea in Leamer’s 

analysis is that a coefficient of interest is robust only to the degree that it displays a small 

variation to the presence or absence of other regressors.  The EBA approach estimates the 

following cross-section regression: 

 

(2.6)     μδγβα ++++= iZYXG  

 

where G is the rates of per capita GDP growth, and X is a set of variables should be included in 

every regression on assumption, Y is a set of up to three variables drawn from the possible 

additional explanatory variables by past studies, Zi is the variable of interest, and μ  is the 

error term. The extreme upper bound is defined by the maximum value of δ  plus two standard 

deviations, and the extreme lower bound is defined by the minimum value of δ  minus two 

standard deviations. Levine and Renelt (1992) have initially pursued the EBA approach to 

investigate this type of “robustness” of explanatory variables in cross-section growth 

regressions. The EBA approach boils down to an assessment of the sign and significance of a 

variable’s estimated coefficient under permutations of the set of conditioning variables. Levine 
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and Renelt (1992) conclude that almost all results are fragile, except for the correlations 

between the investment share and growth, and between international trade to output.  

The EBA technique can be applied to our dataset, and that is the task of the remainder 

of this section. The complete dataset for the Extreme Bounds Analysis comprises of 13 

variables. Following earlier sensitivity analyses, the set of “fixed” conditioning variables is 

restricted to three [ln(GDP) 1960-62, ln(I/GDP) and ln(SCHOOL)] because they have been 

widely used and have been found reasonably robust. Table 2.5 gives the estimation results, 

containing the number of models being estimated, the mean, the standard deviation, the 

percentage of regressions in which the variable of interest has a significant positive or negative 

sign, and the strong and weak EBA test. The results indicate that almost all of the variables 

except initial income and openness are fragile. In other words, the openness variable 

measuring market integration and impediments thereof is the clear winner of the “horse race” 

and seems to play a starring role in fostering economic convergence across countries. 
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Table 2.5 Extreme Bounds Analysis 

Variable No. of 
Models 

Mean 
Value

Standard
Dev. 

No. of 
Signif. 

Positive 
Coeff.

No. of 
Signif. 

Negative 
Coeff. 

Strong 
Extreme 
Bounds 

Test 

Weak 
Extreme 
Bounds 

Test 
Frostdays > 2.11049 
ln(Pop) 1960-62 256 -0.384 0.142 0 2 - - 
X+M/GDP 1960-62 256 -0.005 0.00572 0 0 - - 
Language heterogeneity 256 -0.009 0.00476 0 0 - - 
ln(GDP) 1960-62 512 -3.710 0.328 0 512 + + 
Area-weighted 
frostdays 

256 0.014 0.0112 0 0 - - 

ln(I/GDP) 512 1.920 0.488 32 0 - - 
ln(SCHOOL) 512 2.290 0.558 276 0 - - 
Openness(Sachs-
Warner) 

256 1.930 0.154 256 0 + + 

Institutional quality 
(GADP) 

256 1.240 2.14 17 0 - - 

Black market premium  256 -0.817 0.424 0 46 - - 
Civil liberties 256 -0.043 0.111 0 12 - - 
External war 256 -0.965 0.123 0 221 - - 
        
Frostdays ≤ 2.11049 
ln(Pop) 1960-62 256 0.984 0.373 122 0 - - 
X+M/GDP 1960-62 256 0.013 0.005 162 0 - - 
Language heterogeneity 256 -0.010 0.005 0 31 - - 
ln(GDP) 1960-62 512 -3.410 0.713 0 494 - + 
Area-weighted 
frostdays 

256 -0.874 0.160 0 186 - - 

ln(I/GDP) 512 2.860 0.913 293 0 - - 
ln(SCHOOL) 512 1.630 0.639 271 0 - - 
Openness(Sachs-
Warner) 

256 2.560 0.478 251 0 - + 

Institutional quality 
(GADP) 

256 4.090 1.710 127 0 - - 

Black market premium  256 -0.828 0.109 0 239 - - 
Civil liberties 256 -0.332 0.108 0 77 - - 
External war 256 -0.312 0.246 0 1 - - 

Notes: The weak extreme bounds test indicates whether 95% of the coefficients are significant and 
have equal signs. The “+” indicates pass, and the “-” fail. The results for the constant are not reported. 
 

One problem of the EBA approach is that it may be too mechanical and may overstate 

the degree of uncertainty about parameters because it ignores the information that some 
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models are poor and should therefore be dismissed. This intuitive idea can easily be formalized. 

Sala-i-Martin (1997) has refuted EBA and Levine and Renelt’s (1992) “kiss of death” for the 

empirical growth literature because the test is “too” strong. Alternatively, he suggests to 

investigate the distribution of coefficient estimates and suggests that a variable that is 

significant in 95 percent of the cases provides sufficient evidence for a variable to be robustly 

correlated with growth. What this suggests is to use a weighted extreme bounds test. The 

weights are defined as the value of the likelihood of the regression equation, giving more 

weight to regressions that are more likely to represent the true model. Hence, weighting is 

based on model adequacy.19 Analogous conclusions are reached by Doppelhofer et al. (2000), 

Ley and Steel (1999) and Fernandez et al. (2001), who base their tests of robustness on the 

Bayesian Moving Average (BMA). The relaxation of the robustness criterion leads to a more 

optimistic conclusion since for a larger number of variables the relation to economic growth 

turns out to be robust.20 The following table also reports the fraction of estimates that fall 

within the Cumulative Density Function (CDF) of the weighted average of the estimated 

coefficients. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
19 The output of alternative models is weighted with the log likelihood measure of goodness-of-fit (ln likelihood). 
Granger and Uhlig (1990, 1992) have also suggested to ignore any bounds generated by poor models. 
20 In fact, the problem is not limited to growth analysis. Faust and Irons (1999), for instance, show that empirical 
tests of business cycle models are often based on too small macroeconomic information set and this casts serious 
doubts on the reliability of results.  
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Table 2.6 Weighted Extreme Bounds Tests 

Variable No. of 
Models

Weighted 
Mean Value

Weighted 
Standard 

Dev. 

Weighted 
Extreme Bounds 

Test 

Weighted 
CDF 

Frostdays > 2.11049 
ln(Pop) 1960-62 256 -0.388 0.290 + 0.090 
X+M/GDP 1960-62 256 -0.004 0.008 - 0.297 
Language heterogeneity 256 -0.009 0.009 + 0.169 
ln(GDP) 1960-62 512 -3.700 0.728 + 0.000 
Area-weighted frostdays 256 0.015 0.024 + 0.725 
ln(I/GDP) 512 1.920 1.370 + 0.918 
ln(SCHOOL) 512 2.290 1.130 + 0.979 
Openness(Sachs-Warner) 256 1.930 0.617 + 0.999 
Institutional quality (GADP) 256 1.400 2.460 + 0.715 
Black market premium  256 -0.833 0.663 + 0.105 
Civil liberties 256 -0.048 0.186 - 0.397 
External war 256 -0.964 0.394 + 0.007 
      
Frostdays ≤ 2.11049 
ln(Pop) 1960-62 256 0.975 0.488 + 0.977 
X+M/GDP 1960-62 256 0.012 0.005 + 0.992 
Language heterogeneity 256 -0.010 0.008 + 0.112 
ln(GDP) 1960-62 512 -3.410 1.090 + 0.001 
Area-weighted frostdays 256 -0.873 0.369 + 0.009 
ln(I/GDP) 512 2.890 1.320 + 0.986 
ln(SCHOOL) 512 1.660 0.759 + 0.986 
Openness(Sachs-Warner) 256 2.570 0.808 + 0.999 
Institutional quality (GADP) 256 4.170 2.040 + 0.980 
Black market premium  256 -0.831 0.334 + 0.006 
Civil liberties 256 -0.332 0.201 + 0.050 
External war 256 -0.311 0.448 + 0.244 

Notes: The results are weighted with the log likelihood of the regressions. The column CDF gives the 
fraction that lies at the right side of zero. The weighted weak extreme bounds test indicates whether 
95% of the weighted coefficients are significant and have equal signs. The “+” indicates pass, and the 
“-” fail. The results for the constant are not reported. 
 

The results of this less strict definition of robustness in Table 2.6 clearly replicate the 

divergence between the Levine and Renelt (1992) and Sala-i-Martin (1997) using a different 

dataset. The estimates lead to a much more optimistic conclusion regarding the robustness of 

the coefficients. The number of robust variables increases substantially and the frost variable 

turns out significant for both subsamples. The robustness results for the frost variable in Table 
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2.6 are consistent with the hypothesis in Masters and McMillan (2001). On the other hand their 

“core hypothesis” (p.171) that the scale variables population size, total trade as a fraction of 

GDP, and linguistic heterogeneity are insignificant for the temperate regions is clearly rejected 

and therefore the main message of their paper is fragile. 

 

2.2.4 Endogeneity 

Many recent researches have reflected on the impact of institutions on economic 

performance. Good institutions guarantee property rights and minimize transaction costs, 

creating an environment conducive to economic growth; Countries may be able to afford 

efficient institutions because they are rich. This section follows the previous literature by using 

Instrumental Variable (IV) methods to address the issue of endogeneity.  

The instrumental variable is a variable that is uncorrelated with the error term but 

correlated with the explanatory variables in the equation. I am looking for a “good” variable 

which is highly correlated with explanatory variables, however, a lot of recent theoretical pay 

attention to the “weak instruments” problem. If the correlation between the instrument and the 

variable it instruments for is insufficient, it is called a weak instrument. Unfortunately, there is 

no benchmark to estimate that how low the correlation must be before it becomes a weak 

instrument. Dollar and Kraay (2003) argue that existing attempts to isolate the partial effects of 

institutions and trade on growth in the long run suffer from serious identification problems. 

They point out that existing historical and geographical instruments in the literature tend to 

have strong predictive power for both institutions and trade. Many specifications are weakly 

identified although instruments have apparently good performance in the first stage regressions. 

Shea (1997) provides a computationally simple measure of instrument relevance for 

multivariate models. In these models, instrumental variable works poorly even when the 2R  is 

high if instruments are highly collinear. It therefore follows previous papers in regressing the 

average GDP growth on measures of institutional quality by using the following Two-stage 

Least-square procedure: 

 

(2.7)     Second Stage: μβα ++= XQualitynalInstitutioY , 
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(2.8)     First Stage: wXsInstrumentQualitynalInstitutio ++= γδ  

 

where Y is average GDP growth, X is a set of included exogenous variables, μ  and w  are the 

error terms of the second stage and the first stage regressions, respectively.  

Recently a few seminal publications have carried out somewhat similar analyses and 

deserve discussion. The subsequent study focuses on those instruments variables that have 

been shown to be the key determinants in the following three previous papers [Hall and Jones 

(1999), Gallup et al. (1999), and Acemoglu et al. (2001)].  

Starting at the 15th century, Western Europeans were likely to settle regions of the rest 

of the world and were likely to settle in the similar climate as Western Europe. Hall and Jones 

(1999) use two language variables as instruments for social infrastructure because they argue 

that the languages of Western Europe are spoken as a mother tongue is correlated with 

“Western influence”, which are the fraction of a country’s population speaking one of the five 

primary Western European languages (English, French, German, Portuguese, and Spanish) as 

a mother tongue and the fraction speaking English as a mother tongue. The data set covers 134 

countries and comes from the work of Barbara Hunter (1992). 

Gallup, Sachs, and Mellinger (1999) examine that regions linked to coasts or ocean-

navigable waterways, are strongly favored in development relative to the hinterlands. The 

instrument variable is the proportion of the region’s population within 100 kilometers of the 

coastline or within 100 kilometers of the coastline or ocean-navigable river. The data set 

comes from geographical information system data.  

Acemoglu, Johnson and Robinson (2001) introduce the settler mortality rate as a 

plausible instrument for institutional development. Many European settlers influenced the 

colonization strategy and tried to replicate the European institutions in most colonies. They 

hypothesize that settler mortality rate is the major determinants of settlements which correlated 

with early institutions and institutions today. The higher settler mortality European faced the 

worse institutions today the country has. They find that there is no evidence that settler 

mortality has a direct effect on economic performance. Data compiled by Acemoglu et al. 

(2001) covers 64 ex-colonies, mostly followed Curtin (1989, 1998), using the earliest available 
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number for each country. They produce remarkably similar results as Curtin by alternative 

methods.  

Table 2.7 reports the results from instrumental variable estimation of the effect of a 

change in institutional quality on the average per capita growth rate. Four instruments are used: 

settler mortality, the fractions of the population speaking English and a European language, as 

well as the proportion of land area within 100 kilometers of the coast, respectively. 

 

Table 2.7 Instrumental Variable Estimates for Both Sub-Samples 

(Dependent Variable: Average Annual Growth in Real GDP, 1960 – 1990) 

Variable Frostdays ≤ 2.11049
Coefficient     t-Stat.

Frostdays > 2.11049
Coefficient   t-Stat.

Frostdays ≤ 2.11049 
Coefficient     t-Stat. 

Frostdays > 2.11049
Coefficient   t-Stat.

Constant 19.875 7.270 17.999 2.480 19.950 7.904 17.831 2.480
ln(Pop) 1960-62 0.197 0.515 -0.345 -0.467 0.231 0.674 -0.325 -0.445
X+M/GDP 1960-62 -0.026 -2.640 0.016 0.856 -0.028 -3.089 -0.016 -0.852
Language 
heterogeneity 

0.008 1.037 -0.020 -1.002 0.009 1.329 -0.021 -1.117

ln(GDP) 1960-62 -3.794 -3.082 -4.393 -2.975 -3.564 -3.593 -4.452 -3.094
Area-weighted 
frostdays 

-1.052 -3.826 0.044 1.454 -1.064 -4.207 0.045 1.523

ln(I/GDP) 3.335 1.973 3.427 1.657 3.663 2.725 3.484 1.706
ln(SCHOOL) 3.081 4.905 -0.259 -0.080 3.042 5.303 -0.456 -0.150
Openness(Sachs-
Warner) 

1.763 2.035 2.636 3.070 1.660 2.179 2.609 3.089

Institutional quality 
(GADP) 

2.866 0.585 0.700 0.195 1.768 0.483 0.949 0.287

   
Observations 31 12 31  12
   
Instruments:   
  Settler mortality Yes Yes Yes  Yes
  English fraction  Yes  Yes
  European fraction   Yes  Yes
  Land100km   Yes  Yes

      
 

 

As shown in Table 2.7, the corresponding 2SLS estimate of the impact of institutions 

on income per capita is much higher that the OLS estimates reported in Table 2.3. This 

suggests that measurement error in the institutions variables that creates attenuation bias is 
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likely to be more important than reverse causality and omitted variables biases. However, 

institutions are all insignificant in OLS and 2SLS. Furthermore, The estimated coefficients of 

X+M/GDP and ln(SCHOOL) in Column 2 and the coefficient of ln(SCHOOL) in Column 4 

have “wrong” sign. This result suggests that the historical and geographical instruments have 

insufficient explanatory power for institutions in the temperate countries. How does one move 

forward from such a negative result? One possibility is regarding the strength of the instrument. 

When includes the settler mortality as the instrument in Table 2.7, the sample of countries is 

drastically cut from 81 to 43. Especially, it is 64.7% missing data in the temperate countries. 

The instruments in the temperate countries are less weak than in the tropical countries.  

 

 

2.3 Conclusions 

 

This chapter argues that the frost-growth nexus in a systematic way in order to assess 

what the “bottom line” of previous studies is when appropriate econometric estimators and test 

procedures are used to draw inferences. Master and McMillan (2001, p.179) claim that scale 

effects (total trade as a fraction of GDP, population size, and linguistic heterogeneity) are 

significant for the tropical but not the temperate climatic-zones is the main result of their paper. 

The upshot of these conflicting results is that this claim is fragile and seems too strong.  

Several kinds of evidence suggest that trade policy and human capital formation seems 

to be a sufficient statistic for accounting for economic development in a large cross-section of 

countries. There is a clear positive relation between changes in policy openness and changes in 

institutional policy in tropical countries. Tropical countries produce high levels of output per 

capita in the long run because they achieve high rates of investment in physical capital and 

human capital and because they implement efficient institutions and government policies. 

According to this line of research, geography matters for many poor developing countries 

because they are far from markets and thus less likely to realize benefits from trade. Economic 

development in tropical regions will benefit from a concerted international effort to develop 
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human capital formation, therefore agricultural technologies specific to the needs of the 

tropical economies. 
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CHAPTER 3 

 
A QUANTILE REGRESSION ANALYSIS OF THE FROST－GROWTH NEXUS 

 
 

3.1 Introduction 

 
 Most of the empirical literatures adopt the ordinary least squares approach to long-

term growth study, which is based on the analysis of the mean of linear regression. Several 

researches argue that the classical linear regression model provides an incomplete analysis of 

the distribution dynamics of economic development. Koenker and Bassett (1978) firstly 

suggested that the quantile regression approach is one of the ways to analyze development 

distribution dynamics, providing a more complete view of possible causal relationships 

between variables in the growth model. The quantile regression model gives a richer 

description of functional changes than other regression models. Afterward, Quah (1993, 1997) 

and Magrini (1996) give alternative frameworks.21  

In this chapter, a quantile regression approach is used to estimate and to test for the 

average rate of growth of income per capita. The research revisits the pervious study in 

Chapter 2 and seeks to address evidence that the effect of climate variables on growth rates 

varies across the quantiles. This chapter consists of five sections: Section 3.2 introduces the 

basic principles of the quantile regression approach; Section 3.3 applies the quantile regression 

procedure to the analysis of economic growth; and the findings of this study are summarized in 

Section 3.4. 

 

 

3.2 Methodology 

 
Koenker and Bassett (1978) introduced the quantile regression approach to investigate 

the functional relations between variables for all portions of a probability distribution. Quantile 

                                                 
21 Quah (1993, 1997) and Magrini (1996) provide alternative frameworks to consider the distribution dynamics of 
economic growth, which based on non-parametric analysis and the application of Markov chains.  
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regression has been used in a broad range of application settings, such as ecological 

applications [Kaiser et al. (1994), Terrell et al. (1996), Thomson et al. (1996), as well as 

Huston (2002)]; investigations of wage structures [Buchinsky and Leslie (1997)]; earnings 

mobility [Eide and Showalter (1999), Buchinsky and Hunt (1996)]; and educational attainment 

[Eide and Showalter (1998)]. Several publications have used quantile regression approach for 

the analysis of growth and welfare. Engle and Manganelli (1999) and Morillo (2000) have 

used it for financial applications to assess the problems of value at risk and option pricing 

respectively. Growth applications include Mello and Novo (2002), Cunningham (2003), Mello 

and Perreli (2003), Barreto and Hughes (2004), and Canarella and Pollard (2004). 

In an unpublished paper, Mello and Novo (2002) illustrate how traditional conditional 

mean estimation methods fail to explain complex explanatory variables on the conditional 

distribution of GDP growth rates. They introduce a quantile regression technique on the 

growth equation. They employ Barro-Lee’s database, which covers 98 countries between 1960 

and 1985, on both the Barro and Mankiw-Romer-Weil growth models.22 In the Barro model, 

initial income is positive for the lower quantiles and turns negative at the 65th quantile. In the 

MRW model, the coefficient of initial income increases in the quantiles. They find that the 

effect of policy variables depends on the position on the conditional distribution of GDP 

growth rates, which suggests that the quantile regression provides a more complete analysis of 

the growth experiences witnessed in these countries.     

The above work is further explored in Mello and Perrelli (2003), who estimate the 

convergence growth equation with MRW variables using quantile regression. Mello and 

Perrelli (2003) use both MRW and the Bernanke-Gurkaynak database, which includes 104 

countries covering two periods, 1960-1985 and 1960-1995, in models of different sample sizes. 

The work displays different results on initial income, which has a negative effect on the 

average growth rate, displays a concave pattern at all quantiles. Investment share and 

                                                 
22 The Barro model calculates the correlation between the real per capita GDP in the initial year and the average 
rate of growth of real GDP for the period.  
The MRW model is given by 

ihgnGDPIYYY εβδββββ +++++++= )ln()ln()ln(ln)ln( 43260106085
, where the 

explanatory variables include the initial GDP per capita, the average share of real investment to real GDP over the 
period, the average rate of growth in the working-age (between 15 and 64 years) population, the rate of 
technological growth and depreciation, as well as human capital.     
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population growth are highly significant and relatively stable around their OLS estimates. 

Their results provide evidence that OECD countries are indeed capturing the strong 

convergence forces among many countries but that there is no convergence tendency among 

all 104 countries.     

Further evidence of conditional convergence in the neoclassical growth model is 

developed by Canarella and Pollard (2004). They estimate the same MRW growth model 

covering 86 countries over the period 1960-2000. Their findings support the contention that 

the growth dynamics of rich and poor countries are different. Their evidence suggests that 

countries residing the lower quantiles have no conditional convergence and can not catch up 

with countries at the higher quantiles. Conditional convergence is a characteristic only of those 

countries at the higher quantiles.    

Two additional publications of quantile regression are relevant to the estimation of the 

neoclassical growth model. Cunningham (2003) presents a comprehensive analysis of the 

effects of social and political variables on economic growth from both international cross-

sectional and panel data. He provides evidence that the impact of initial GDP, financial system 

performance, social factors, and trade distortions are insignificant in long-run economic 

growth. To estimate the significance of institutional realities on growth across countries, 

Barreto and Hughes (2004) develop further the sensitivity analysis of Levine and Renelt (1992) 

on quantile regression estimation.23 They assume that institutions are a significant determinant 

of rapid national growth and conditional convergence of per capita income. Their study covers 

119 countries between 1960 and 1989. It indicates that the population growth is not an 

important determinant of growth, especially at higher quantiles. Initial income is insignificant 

in the extreme lower tail, while it is negative and significant at the lower quantiles. Moreover, 

their results show that investment to facilitate growth exists at the highest quantiles and 

institutional inadequacies exist at the lowest quantiles.   

The methodology used in the above papers has been developed by Koenker and 

Bassett’s (1978) is a heteroscedastic linear location scale model. Koenker and Bassett (1982) 

develop a new robust approach to the problems of testing homoscedasticity, based on 
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regression quantiles, which emphasized the robustness of their previous work. They describe 

the general quantile regression model, which can be written as: 

 

 (3.1)   iii uxy += 0
' β , ni ,...,1=  

 

where 0β  is an unknown 1×K  vector of coefficients, 'ix  is a 1×K  vector of independent 

variables, iy  is the thi  observation of the dependent variable, and iu  is the i.i.d. error term.24 

Based on the equation in (3.1), the conditional quantile of y  given x  is  

 

(3.2)   ( ) 0
' βiii xxyQuant =  or ( ) 0

' βτ iii xxyQ =  

 

where )1,0(∈τ  is a fixed and known quantile of interest. As the τ  increases from 0 to 1, it can 

be traced through the entire conditional distribution of y  given x . One can obtain the quantile 

regression estimator by solving the minimization problem,  

 

(3.3)   ( )
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Equation 3.3 can be reformulated as a single expression: 

 

(3.4)   ( )∑ −=
∈ i

iiR
xyQ 0minˆ βρτβτ  

 

                                                                                                                                                          
23 Levine and Renelt (1992) find that investment share and trade share are the two significant and positive 
explanatory variables of growth.  
24 Rogers (1992) points out that in the presence of heteroscedastic errors Koenker and Bassett’s (1982) method 
understates the standard errors. He suggests the bootstrapped estimator of standard errors.  
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where ( )uτρ  is the “check function” defined as ( ) uu τρτ =  if ( ) ( )uuoru 10 −=≥ τρτ  if 

0<u . The estimator 0β̂  is the specific case of the generalized method of moment framework. 

Buchinsky (1998) points out that the form and construction of 0β̂  can be written as: 

 

(3.5) ( ) ( )000 ,0ˆ Ω⎯→⎯− Nn dββ  

 

where the matrix 0Ω  is estimated by the application of a non-parametric bootstrap.  

The quantile function is a weighted sum of the absolute value of the residuals. Koenker 

and Bassett’s conventional quantile regression methods complement the established mean 

regression methods, which occur when 5.0=τ . They provide a more flexible role for the 

covariate effects, allowing them to influence the location, scale and shape of the response 

distribution. The quantile regression approach allows for a full characterization of the 

conditional distribution of the dependent variable, which describes the tail characteristics of 

the conditional distribution.25 

The quantile regression approach also addresses the problems of parameter 

heterogeneity and sample selection. One important characteristic of quantile regression is the 

robustness of the quantile regression estimator. Quantile regression is robust to outliers, with 

the added benefit that it gives us a better insight into the behavior of unusual observations.26 

Since Koenker and Bassett’s (1978, 1982) seminal papers, the theoretical framework of 

quantile regression has been furthered in many publications. Newey and Powell (1990) as well 

as Koenker and Zhao (1994) present a weighting scheme that creates opportunities for 

improved efficiency of estimation. 27  In order to enable the estimation of all conditional 

                                                 
25 Friedman (1992), Quah (1993), and Bernard and Durlauf (1994) begin to estimate the relationship between per 
capita growth rates and investment in physical and human capital, population growth rates, and the initial level of 
per capita income.  
26 Adrover et al. (2004) provide evidence that Koenker and Bassett’s Quantile Regression is not robust when the 
predictors contain leverage points. Rousseeuw and Hubert (1999) introduce a “deepest regression” approach with 
which to address this leverage points problem. However, He et al. (1998) points out that the approach is more 
computationally demanding and less efficient than quantile regression.  
27 Newey and Powell (1990) argue that their estimator is not efficient under the conditional quantile restriction. 
Therefore they propose an efficient quantile regression estimator which requires a sample splitting device to 
estimate the efficient score and optimal weight. 
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quantiles, censored quantile regression was proposed by Powell (1994), Fitzenberger (1997), 

Buchinsky and Hahn (1998), Khan and Powell (1999), as well as Portnoy (2003). 28  For 

endogenous explanatory variables, Chernozhukov and Hansen (2001, 2002), Powell (1983), 

Blundell and Powell (2003), as well as Ma and Koener (2004) propose a two-stage estimation 

procedure. Several publications extended the focus of the linear-in-parameters quantile 

regression model onto the application of the nonlinear quantile regression model, see Weiss 

(1991), Welsh, Carroll, and Ruppert (1994), Koenker and Park (1996), and Fitzenberger 

(1997).     

In Chapter 2 are presented several pieces of evidence supporting the proposition that 

there is a clear, positive relationship between changes in policy openness and changes in 

institutional policy in tropical countries. This chapter proposes to revisit Masters and 

McMillan’s (2001) empirical study. Given the same set of explanatory variables used in 

Chapter 2, quantile regression estimates the dependent variable conditional on the selected 

quantile. The dataset covers 89 countries. 

 

 

3.3 Empirical Results 

 
This section examines the relationship between annual frostdays and economic growth. 

Koenker and Xiao (2002) suggest testing the hypothesis on the entire conditional distribution 

of GDP growth rates. Next, the impact of annual frostdays on both the mean and the dispersion 

of the conditional distribution of GDP growth rates are tested.  

The section begins with the same base model used in Chapter 2, which includes 

regressing the average real per capita growth rate covering 89 countries for the period of 1960-

1990 on initial GDP per capita, initial population size, total trade expressed as a percentage of 

GDP, language heterogeneity, the annual frostdays, the investment share of GDP, human 

                                                 
28 One drawback of Powell (1994, 1996) and Fitzenberger (1997) is that the estimation problem no longer has a 
strict linear programming representation.  
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capital, the black market premium on foreign exchange, civil liberties, as well as the 

occurrence of an external war, which are listed in Table 3.1.29 

 

Table 3.1 Raw Statistics for the Main Variables 

Variable Ob. Mean SD Min Max 
Growth Rate 89 1.992 2.002 -2.910 7.380 
ln(Pop) 1960-62 89 0.828 0.631 -0.745 2.822 
X+M/GDP 1960-62 89 49.618 39.370 8.000 309.000 
Language Heterogeneity 89 35.371 27.129 0.000 84.000 
ln(GDP) 1960-62 89 3.200 0.394 2.417 4.003 
Area-weighted frostdays 89 6.691 8.700 0.000 29.684 
ln(I/GDP) 82 17.996 8.085 5.400 36.900 
ln(SCHOOL) 82 5.498 3.466 0.400 11.900 
Black Market Premium 82 0.324 0.519 0.000 3.275 
Civil Liberties 82 3.838 1.841 1.000 6.778 
External War 82 0.439 0.499 0.000 1.000 

         

This chapter proceeds to estimate generalized quantile regression, which is similar to 

median regression, the difference being that one estimates an equation describing a quantile 

other than the 0.50 quantile.30 This approach provides a more complete and systematic analysis 

of the growth experiences witnessed in the countries under consideration.  

 

 

 

 

 

 

 

 

 

                                                 
29 All variables are defined in Chapter 2. 
30 This chapter use the computer program STATA. 
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Table 3.2 OLS and Quantile Regression Estimates for the Base Model 

Regression Coefficients Variable 
OLS Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

Constant 
  

6.308 
(3.36) 

1.451 
(0.49) 

4.569
(1.70)

4.553
(1.37)

7.420
(3.44)

6.292
(2.86)

7.426
(3.77)

7.338 
(3.87) 

8.482 
(3.85) 

10.524
(1.80)

ln(Pop) 1960-62 
  

0.845 
(2.72) 

1.340 
(3.27) 

0.700
(1.69)

0.715
(1.42)

0.646
(1.91)

0.722
(2.14)

0.944 
(2.72)

0.809 
(2.24) 

0.787 
(1.18) 

0.228
(0.14)

X+M/GDP 60-62 
  

0.025 
(5.04) 

0.035 
(4.34) 

0.024
(3.88)

0.029
(4.66)

0.027
(6.93)

0.025
(6.45)

0.025
(6.24)

0.023 
(5.70) 

0.021 
(2.81) 

0.020
(1.96)

Language 
Heterogeneity 

-0.030 
(-3.96) 

-0.023 
(-1.29) 

-0.028
(-2.08)

-0.025
(-1.69)

-0.029
(-3.36)

-0.029
(-3.39)

-0.033
(-4.05)

-0.036 
(-4.72) 

-0.038 
(-3.69) 

-0.028
(-1.46)

ln(GDP) 1960-62 
  

-1.811 
(-3.18) 

-1.334 
(-1.91) 

-1.679
(-2.40)

-1.585
(-1.64)

-2.223
(-3.41)

-1.741
(-2.59)

-1.995
(-3.31)

-1.783 
(-3.13) 

-1.950 
(-2.81) 

-2.248
(-1.22)

Area-weighted 
frostdays 

0.087 
(3.62) 

0.114 
(3.61) 

0.109
(3.46)

0.091
(2.04)

0.086
(3.10)

0.088
(3.26)

0.080
(3.11)

0.065 
(2.54) 

0.059 
(1.59) 

0.038
(0.48)

  

Observations 89 89 89 89 89 89 89 89 89 89 
(Pseudo31) 2R  0.407 0.292 0.274 0.265 0.265 0.266 0.269 0.257 0.251 0.269

Notes: The calculation of standard errors is based on the “delta method”, an approximation appropriate 

in large samples.32 The t-statistics values are given in brackets. 

 

Table 3.2 presents the results from OLS and a selection of ten quantiles. As a 

benchmark, the results obtained using the traditional OLS method are presented firstly. The 

OLS regression indicates that five explanatory variables are significant at the five percent level. 

Table 3.3 presents the results of a selection of ten quantiles from three models, which are 

estimated in Chapter 2. Models 1 and 2 suggest the possibility of a nonlinear climate effect. 

                                                 
31  Pseudo 

2R  is calculated as 
quantilerawaboutdeviationsweightedofsum

quantileestimatedaboutdeviationsweightedofsum
−1 . This is based on the 

likelihood for a double exponential distribution ii rhe . 
32  Delta Method is a straightforward and well structured approach for computing confidence interval and 
maximum likelihood estimate.  
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Total trade is individually significant beyond the 90th percentile, and language 

heterogeneity is individually insignificant under the 10th percentile. The quantile process for 

the variable initial income exhibits a non-linear increasing trend. It lies below the zero line for 

all quantiles. For countries in the bottom 10 percent of the conditional growth distribution the 

estimated coefficient on initial income is minus 1.334. It decreases to minus 2.223 for 

countries in the bottom 40 percent of the distribution, increases to minus 1.995 for countries in 

the top 40 percent of the distribution, and then decreases again to minus 2.248 in the top 10 

percent of the distribution. The coefficients on the trade and language variables are 

extraordinarily stable across the quantiles, and are not statistically different from its least 

squares estimate. The coefficient on area-weighted frostdays decreases as one moves down the 

distribution. On average, each extra percent of frostdays improves growth by approximately 

11.4% at 0.10 quantiles, declining to a 3.8% increase in growth for the 0.90 quantiles. Where 

there are differences across the quantiles, frostdays is more effective in increasing income in 

countries with lower values of growth.  

In the base model the quantile process for the frostdays variable lies above the zero line 

and exhibits a slight downwards trend. It would seem that what one observes at the highest 

quantiles is uncorrelated to initial population and annual frostdays, albeit not identified in the 

OLS model, which shows more frostdays toward growth. More interestingly, the Model 1 

estimate for the bottom 10 percent of countries experiencing slow growth is highly significant 

for all explanatory variables. As the number of frostdays increases, the impact on growth 

becomes greater. This suggests that the positive and significant effects of frostdays on GDP 

growth rates tend to apply to countries in the lower tail of conditional growth distribution. The 

results in Table 3.3 support the proposition that more frostdays do indeed cause a higher rate 

of economic growth in those countries which were previously experiencing slow growth.   
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Table 3.3 Quantile Regression Estimates for Selected Models 

Base Model Model 1  Model 2 
Variable τ  Coef. T-stat. Coef. T-stat. Coef. T-stat.

0.10 1.451 0.44 -0.512 -3.66 2.127 0.54
0.20 4.569 1.70 3.740 1.46 3.000 1.18
0.30 4.553 1.37 5.785 1.94 3.776 1.31
0.40 7.420 3.44 6.315 2.04 6.626 2.09
0.50 6.292 3.47 6.178 3.08 6.768 4.74
0.60 7.426 3.77 5.655 4.20 6.599 4.43
0.70 7.338 3.87 6.969 3.18 7.129 2.79
0.80 8.482 3.85 8.476 3.24 8.455 3.05

Constant 

0.90 10.524 2.79 10.338 1.68 14.286 2.27
0.10 1.340 2.40 1.483 67.95 1.862 3.77
0.20 0.700 1.69 0.672 1.76 0.957 2.57
0.30 0.715 1.42 0.820 1.76 1.052 2.63
0.40 0.646 1.91 0.627 1.31 0.441 0.89
0.50 0.722 1.55 0.712 2.23 0.542 2.37
0.60 0.944 2.72 0.663 2.75 0.571 2.12
0.70 0.809 2.24 0.642 1.46 0.920 1.79
0.80 0.787 1.18 0.777 0.94 0.779 0.87

ln(Pop) 1960-62 
 

0.90 0.228 0.39 0.210 0.11 0.116 0.07
0.10 0.035 3.73 0.041 162.38 0.035 2.99
0.20 0.024 3.88 0.025 3.75 0.025 3.74
0.30 0.029 4.66 0.030 5.51 0.031 5.71
0.40 0.027 6.93 0.027 4.83 0.027 4.47
0.50 0.025 3.18 0.026 6.81 0.026 9.65
0.60 0.025 6.24 0.024 9.12 0.025 8.16
0.70 0.023 5.70 0.023 4.84 0.024 4.25
0.80 0.021 2.81 0.022 2.31 0.022 2.19

X+M/GDP 60-62 
 

0.90 0.020 1.85 0.020 1.84 0.020 2.04
0.10 -0.023 -1.63 -0.022 -37.47 -0.034 -1.47
0.20 -0.028 -2.08 -0.020 -1.51 -0.021 -1.63
0.30 -0.025 -1.69 -0.024 -1.91 -0.028 -2.34
0.40 -0.029 -3.36 -0.030 -2.37 -0.030 -2.23
0.50 -0.029 -3.85 -0.031 -3.69 -0.030 -4.94
0.60 -0.033 -4.05 -0.029 -5.13 -0.031 -4.86
0.70 -0.036 -4.72 -0.036 -4.05 -0.034 -3.28
0.80 -0.038 -3.69 -0.038 -2.88 -0.038 -2.64

Language Heterogeneity 

0.90 -0.028 -2.10 -0.028 -1.28 -0.035 -1.87
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Base Model Model 1 Model 2 
Variable τ  Coef. T-stat. Coef. T-stat. Coef. T-stat.

0.10 -1.334 -1.33 -1.254 -30.03 -1.579 -1.74
0.20 -1.679 -2.40 -1.618 -2.38 -1.455 -2.10
0.30 -1.585 -1.64 -2.105 -2.38 -1.534 -1.75
0.40 -2.224 -3.41 -1.890 -2.03 -1.997 -2.09
0.50 -1.741 -3.08 -1.735 -2.87 -1.967 -4.49
0.60 -1.995 -3.31 -1.474 -3.60 -1.827 -4.01
0.70 -1.783 -3.13 -1.666 -2.49 -1.866 -2.38
0.80 -1.950 -2.81 -1.956 -2.31 -1.951 -2.20

ln(GDP) 1960-62 

0.90 -2.248 -2.20 -2.169 -1.10 -3.354 -1.67
0.10 0.114 3.61 0.202 38.31 0.552 1.90
0.20 0.109 3.46 0.237 2.29 0.464 2.18
0.30 0.091 2.04 0.183 1.64 0.424 1.73
0.40 0.086 3.10 0.136 1.18 0.384 1.40
0.50 0.088 3.26 0.186 2.44 0.437 3.30
0.60 0.080 3.11 0.133 2.50 0.366 2.56
0.70 0.065 2.54 0.094 1.12 0.222 0.90
0.80 0.059 1.59 0.086 0.66 0.078 0.20

Frostdays 

0.90 0.038 0.48 0.031 0.12 0.161 0.19
0.10 -0.001 -7.59 -0.046 -1.85
0.20 -0.005 -1.21 -0.031 -1.54
0.30 -0.003 -0.67 -0.028 -1.28
0.40 -0.002 -0.55 -0.026 -1.02
0.50 -0.005 -1.59 -0.031 -2.47
0.60 -0.002 -0.96 -0.025 -1.81
0.70 -0.001 -0.28 -0.012 -0.53
0.80 -0.001 -0.24 -0.000 -0.01

Frostdays Square 

0.90 0.000 0.01 -0.009 -0.12
0.10 0.001 1.85
0.20 0.001 1.35
0.30 0.001 1.10
0.40 0.001 0.94
0.50 0.001 2.25
0.60 0.001 1.62
0.70 0.000 0.46
0.80 -0.000 -0.02

Frostdays Cubic 

0.90 0.000 0.11
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Robust regression is another attempt to correct the outlier-sensitivity deficiency in 

ordinary regression. Robust regression estimation yields similar results to describe the central 

tendency but generates different standard errors. Rogers (1992) points out that in the presence 

of heteroscedastic errors this method understates the standard errors and suggests using 

bootstrapped standard errors. Provided the error terms are homoscedastic, Koenker and Bassett 

(1982) and Rogers’ (1992) methods would be adequate to calculate the variance-covariance 

matrix. With STATA, generalized quantile regression and simultaneous quantile regression 

provides an estimate of the entire variance-covariance matrix of the estimators. Simultaneous 

quantile regression estimates the equations simultaneously and obtains estimators by 

bootstrapping, which empirical research has shown to be better than generalized quantile 

regression. 33  Bootstrapping entails random re-sampling to obtain the desired empirical 

distribution, which provides more appropriate standard errors and confidence intervals. 

Bootstrapped estimator of standard errors is therefore used in the following estimations in 

Table 3.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
33 Rogers (1992) provides evidence that, in the case of quantile regression, the bootstrap standard errors are better 
than the convention asymptotic distribution approaches.  
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Table 3.4 OLS and Simultaneous Quantile Regression Estimates for the Base Model 

Regression Coefficients 
Variable 

OLS Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

Constant 
  

6.308 
(3.36) 

1.451 
(0.32) 

4.569
(1.64)

4.553
(1.85)

7.420
(3.88)

6.292
(3.29)

7.426
(3.94)

7.338 
(3.15) 

8.482 
(3.02) 

10.524
(2.23)

ln(Pop) 1960-62 
  

0.845 
(2.72) 

1.340 
(2.32) 

0.700
(1.27)

0.715
(1.47)

0.646
(1.43)

0.722
(1.57)

0.944
(1.79)

0.809 
(1.42) 

0.787 
(1.49) 

0.228
(0.36)

X+M/GDP 60-62 
  

0.025 
(5.04) 

0.035 
(4.15) 

0.024
(2.58)

0.029
(3.32)

0.027
(3.75)

0.025
(3.34)

0.025
(2.44)

0.023 
(2.64) 

0.021 
(2.13) 

0.020
(1.49)

Language 
Heterogeneity 

-0.030 
(-3.96) 

-0.023 
(-1.44) 

-0.028
(-1.93)

-0.025
(-1.97)

-0.029
(-3.49)

-0.029
(-3.69)

-0.033
(-3.79)

-0.036 
(-3.78) 

-0.038 
(-3.38) 

-0.028
(-1.79)

ln(GDP) 1960-62 
  

-1.811 
(-3.18) 

-1.334 
(-1.04) 

-1.679
(-2.24)

-1.585
(-2.90)

-2.223
(-3.69)

-1.741
(-2.88)

-1.995
(-3.81)

-1.783 
(-2.59) 

-1.950 
(-2.32) 

-2.248
(-1.73)

Area-weighted 
frostdays 

0.087 
(3.62) 

0.114 
(3.31) 

0.109
(2.89)

0.091
(2.86)

0.086
(2.64)

0.088
(3.25)

0.080
(3.89)

0.065 
(3.14) 

0.059 
(2.15) 

0.038
(1.01)

 
Observations 89 89 89 89 89 89 89 89 89 89 
(Pseudo) 2R  0.407 0.292 0.274 0.265 0.265 0.266 0.269 0.257 0.251 0.269
F tests 11.4 8.35 7.9 5.87 13.24 11.72 11.57 10.77 4.94 1.310
(P-value) 0 0 0 0 0 0 0 0 0.001 0.267
Notes: Standard errors are based on a bootstrapping procedure with 100 iterations. The t-statistics 
values are given in brackets.  
 

The simultaneous quantile regression estimates in Table 3.4 yield the same coefficients 

as the estimates in Table 3.3. Due to the bootstrapping procedure presented by Efron (1983), 

the results of standard errors and confidence intervals are robust. The F -test suggests that the 

control variables are jointly highly significant for the ten quantiles considered. For this reason, 

Fig. 3.1 provides a summary of quantile regression results for the basic model in Table 3.4. 

For each of the six coefficients, the 10 distinct quantile regression estimates are plotted for τ  

ranging from 0.05 to 0.95 as the solid line, the 95% confidence interval for the quantile 

regression estimate as the dashed line, and the OLS estimate as the dotted line. The coefficient 

on total trade shares and initial income decreases as one moves down across quantiles. The 

coefficient of the language heterogeneity and initial income are close to the OLS coefficient 
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when the regression moves down the quantiles. The initial GDP per capita is an insignificant 

determinant of growth in the lower quantile. These results are supported in the work by 

Cunningham (2004) and Barreto and Hughes (2004).34 

In all the panels of Fig. 3.1, the quantile regression estimates lie outside the confidence 

intervals for the ordinary least squares regression at the lowest and highest tails. This is due 

largely to the fact that standard errors are much higher at these points than close to the median, 

suggesting that the OLS confidence interval performs well of representing this range of 

disparities in the base model.  

 

                                                 
34 Cunningham (2004) reports his findings using quantile regression estimation on both cross-sectional and panel 
data. Barreto and Hughes (2004) consider the annual growth rate of real per capita GDP on initial GDP per capita 
and other variables covering 119 countries over 30 years. The initial GDP per capita and average rate of 
investment expressed as a percentage of GDP have the same effect across quantiles as the result of this study, 
albeit investment has an insignificant positive effect on growth at lower quantiles. 
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Figure 3.1 OLS and Simultaneous Quantile Regression Estimates 

for the Base Model 
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Annual frostdays is the only explanatory variable that displays a smooth decreasing 

curve when one begins to move further down the quantiles. In all the results above, one may 

conclude that annual frostdays boost economic growth across countries. In order to assess the 

robustness of the basic economic growth model, added policy and institution variables to the 

basing growth model, such as the investment share of GDP, human capital formation, the 
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black market premium on foreign exchange, civil liberties, and the occurrence of an external 

war following the Barro and Sala-i-Martin (1991) cross-country growth model in Chapter 2.35 

Table 3.5 below exhibits the results from OLS and a selection of ten quantiles for the 

augmented growth model.  

 

 

                                                 
35 Barro and Sala-i-Martin (1991) cross-country growth framework is given as: 

ii othersFrostdaysSchoolingTradePopulationomeInitialIncY μγγγβα +++++= )(),,( 321 .  



Chapter 3. A Quantile Regression Analysis of the Frost-Growth Nexus 

 50

Table 3.5 OLS and Simultaneous Quantile Regression Estimates for  

the Augmented Growth Model 

 Notes: Standard errors are based on a bootstrapping procedure with 100 iterations. The t-statistics 

values are given in brackets.  

 

The initial income per capita is the only significant and most effective determinant of 

growth for all the quantiles. The result of variables used in the base model is similar to those 

Regression Coefficients 
Variables 

OLS Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 
Constant 
  

13.464
(5.66)

20.708 
(4.03) 

13.138
(4.32)

12.899
(5.07)

10.303
(3.99)

11.305
(4.06)

13.046
(4.49)

12.776 
(4.08) 

14.196
(3.76) 

13.359
(2.98)

ln(Pop) 1960-
62 

0.876
(3.14)

0.263 
(0.46) 

0.802
(1.58)

0.789
(1.88)

1.297
(3.15)

1.123
(2.67)

1.103
(2.35)

1.088 
(2.13) 

0.788 
(1.66) 

0.778
(1.62)

X+M/GDP 
1960-62 

0.017
(4.11)

0.010 
(0.79) 

0.016
(1.64)

0.016
(2.00)

0.023
(3.23)

0.019
(2.59)

0.019
(2.18)

0.023 
(2.35) 

0.013 
(1.37) 

0.022
(2.52)

Language 
Heterogeneity 

-0.018
(-2.91)

-0.018 
(-1.36) 

-0.016
(-1.70)

-0.017
(-2.23)

-0.020
(-2.49)

-0.025
(-3.27)

-0.024
(-2.48)

-0.024 
(-2.29) 

-0.010 
(-1.01)

-0.007
(-0.61)

ln(GDP) 1960-
62 

-4.282
-6.360

-6.404 
(-4.48) 

-4.085
(-4.67)

-4.037
(-5.32)

-3.245
(-4.35)

-3.603
(-4.33)

-4.108
(-4.80)

-4.465 
(-4.44) 

-4.678 
(-4.08)

-4.801
(-3.60)

Area-weighted 
Frostdays 

0.038
(1.64)

0.094 
(2.07) 

0.049
(1.54)

0.048
(1.99)

0.034
(1.43)

0.022
(0.93)

0.040
(1.67)

0.039 
(1.48) 

0.008 
(0.29) 

0.016
(0.45)

ln(I/GDP) 0.066
(2.69)

0.037 
(0.66) 

0.044
(0.96)

0.043
(1.02)

0.038
(0.98)

0.074
(1.69)

0.076
(1.53)

0.115 
(2.16) 

0.137 
(2.52) 

0.129
(2.66)

ln(SCHOOL) 0.214
(3.05)

0.301 
(2.44) 

0.185
(2.25)

0.194
(2.63)

0.144
(1.58)

0.117
(1.15)

0.116
(0.97)

0.192 
(1.54) 

0.191 
(1.52) 

0.286
(2.52)

Black Market 
Premium 

-0.731
(-2.51)

-0.294 
(-0.41) 

-0.363
(-0.56)

-0.428
(-0.82)

-0.564
(-1.16)

-0.604
(-1.28)

-0.636
(-1.32)

-0.722 
(-1.50) 

-0.899 
(-1.92)

-1.312
(-2.61)

Civil Liberties -0.272
(-1.99)

-0.620 
(-2.28) 

-0.415
(-2.13)

-0.355
(-1.97)

-0.272
(-1.49)

-0.150
(-0.72)

-0.189
(-0.83)

-0.065 
(-0.28) 

-0.140 
(-0.52)

0.172
(0.68)

External War -0.333
(-1.08)

-0.395 
(-0.57) 

-0.524
(-1.08)

-0.562
(-1.27)

-0.814
(-1.79)

-0.671
(-1.57)

-0.652
(-1.44)

-0.446 
(-0.88) 

-0.225 
(-0.42)

-0.638
(-1.15)

 

Observations 82 82 82 82 82 82 82 82 82 82 
(Pseudo) 2R  0.657 0.496 0.509 0.500 0.472 0.449 0425 0.405 0.408 0.479
F tests 13.63 5.43 13.85 22.84 10.99 12.04 7.77 9.24 4.07 15.78
(P-value) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
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used in Table 3.5. Initial population, language heterogeneity, and total trade are significant 

between the 30th and 70th quantiles. The results of the investment share and black market 

premium are insignificant at the lower quantiles. Conversely, human capital and civil liberties 

have insignificant effects at the higher quantiles. The coefficient on area-weighted frostdays 

decreases as one moves down the distribution a trend that is similar to that of the base model, 

albeit, having a statistically significant positive effect at the lower quantiles.  

 

Figure 3.2 OLS and Simultaneous Quantile Regression Estimates 

for the Augmented Growth Model 
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Fig. 3.2 illustrates the regression results of ten variables across quantiles for the same 

selected quantiles by using simultaneous quantile regression estimation. For each of the eleven 

coefficients, the ten distinct simultaneous quantile regression estimates are plotted for τ  and 

ranging from 0.05 to 0.95 as the solid line; the 95% confidence interval for the simultaneous 

quantile regression estimate as the dashed line; and the OLS estimate is represented by the 

dotted line. Again, the distribution of population size lies outside the 95% confidence interval. 

The coefficient of total trade as a fraction of GDP turns to a smooth increasing in Fig 3.2. 

Initial income is significantly negative in all quantiles, which is consistent with its least 

squares estimate. Similar results are obtained by Mello and Novo (2002), who use quantile 

regression to estimate the augmented Solow Growth Model by Mankiw-Romer-Weil. This 

finding is consistent with that of Canarella and Pollard (2004).36 Interestingly, the quantile 

process for the initial income coefficient exhibits a convex shape, which is in opposition to the 

finding by Mello and Perrelli (2003).37 The quantile process for the coefficient of investment 

share and civil liberties displays a slightly upward trend. The pattern of black market premium 

suggests that it has a stronger impact on countries in the upper tail of the conditional growth 

distribution. The results for the annual frostdays variable again largely mirrors those found for 

the OLS model. The coefficient has the same slightly downward trend as the base model, 

indicating that the positive effects of the annual frostdays growth on GDP growth rates tend to 

saddle the conditional growth distribution at the lower tail.  

 

 

 

 

 

                                                 
36 Mello and Nevo (2003) estimate initial income and policy variables on the average GDP growth rate, covering 
98 countries for the period of 1960-1985. However, their results show that the coefficient on the initial income 
per capita increases in the quantiles. Canerella and Pollard (2004) use a dataset, covering 86 countries between 
1960 and 2000, and estimate the same model as Mankiw-Romer-Weil. 
37 Their result shows that the initial income coefficient lies below the zero line for all quantiles and exhibits a 
concave shape. 
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3.4 Conclusion   

 
This chapter examines in general terms the effect of annual frostdays on economic 

growth using a quantile regression approach. OLS can only capture the effects of the frostdays 

variable on the mean of the conditional growth distribution but not on any other aspect of the 

conditional growth distribution. Quantile regression provides a more complete picture of the 

relationship between GDP growth rate and the frostdays variable. These findings imply that 

the quantile regression results are quite consistent with the ordinary least squares results.  

This chapter supports the findings of Chapter 2, namely that tropical countries have 

low levels of output per capita and would benefit from a development of investment in 

physical capital, human capital, and civil liberties as these would facilitate the implementation 

of efficient institutions and sound government policies. 

These findings provide evidence of conditional convergence, which is consistent with 

previous studies pointing to conditional convergence for fast-growing countries. Where there 

are differences across quantiles, annual frostdays have a larger impact in those countries which 

are located in primarily tropical regions and reside below the growth rate median.    
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CHAPTER 4 

 
ANNUAL HARD FROSTS AND TECHNICAL EFFICIENCY IN AGRICULTURE 

 
4.1 Introduction 

Levels of agricultural productivity vary throughout the world. Empirical research has 

strived to determine the factors that are of greatest importance for agricultural production in 

different regions. Beginning with Jyoti Bhattacharjee’s (1955) analysis of cross-country 

aggregate agricultural production, this applies economic literature has paid considerable 

attention to the widening gap in agricultural productivity between the developed and 

developing countries over the last three decades. This research was expanded on by Hayami 

and Ruttan (1970). They hypothesized that the higher level of agricultural productivity has 

been caused by the transmission by nonagricultural sectors of increased productivity to 

agriculture and by a continual succession of technical innovations in agriculture. Their results 

indicated that internal-resource endowments (land and livestock), modern technical inputs 

(machinery and fertilizer), and human capital (general and technical education) each accounted 

for about one-fourth of the difference in labor productivity between developed and developing 

countries. 

Following the publication of Hayami and Ruttan’s work, a number of empirical 

publications have studied agricultural productivity. Fulginiti and Perrin (1993, 1997, 1998, 

and 1999), Kudaligam and Yanagida (2000), Ball et al. (2001), Coelli and Rao (2003), as well 

as Trueblood and Coggins (2003) all identified an increase in agricultural productivity in 

developed countries while they find a decline in less developed countries.38 However, Martin 

and Mitra (2001) and Nin et al. (2003) argue against these findings of declining agricultural 

                                                 
38 They assume 10 developed countries in 1990, Germany, France, Italy, the Netherlands, Belgium, the United 
Kingdom, Ireland, Denmark, Greece, and the United States. The results show a positive relationship between 
capital accumulation and productivity growth.  
Using a different approach, they estimate aggregated agricultural output among 18 less-developed countries over 
the period 1961 to 1985. The approach of Färe et al. (1992) is a nonparametric approach that provides only point 
estimates of productivity gains. It allows the partitioning of productivity changes into efficiency and technical-
change components. The term of less developed countries is synonymous with the new IMF term developing 
countries. 
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productivity in developing countries and re-estimate the data under alternative technological 

assumptions. 39  They conclude that agricultural productivity in developing countries has 

increased, with technical change being the main source of the growth. The major limitations of 

all the approaches have been the lack of comparable data and the presence of inherent 

differences across countries.  

Since the mid-1980s, a succession of studies has attempted to assess how strong a 

correlation there is between geography and climate variables and cross-country levels of 

agricultural productivity. Most tropical countries have low agricultural productivity because 

they have an inhospitable environment for agriculture. Gallup (1998) applies the aggregate 

production function approach to 101 countries from 1961 to 1996. Tropical agriculture is 

estimated to be only 6% as productive as temperate agriculture, even when using the same 

inputs. Geography variables have a large effect on agriculture, although they are not very 

helpful in identifying the set of obstacles to agriculture. Parry (1990) suggests that climate 

change has a negative annual impact on global agriculture (in the 2% to 4% range). Two 

recent seminal publications provide an important mechanism for linking agricultural 

productivity to climate. Wiebe et al. (2000) analyze agricultural productivity by incorporating 

spatially referenced soil and climate data combined with high-resolution land-cover data. They 

develop a measurement of annual rainfall by aggregating and overlaying monthly precipitation 

data for 110 countries over the period 1961- 1990. In most regions, better soils and climate are 

associated with increases of 20% or more in agricultural output per worker. Masters and 

Wiebe (2000) test the climate effect on agricultural productivity. They apply annual winter 

frostdays as the climate data which can improve agricultural success by allowing a buildup of 

organic matter that leads to rich, fertile topsoil, and by ensuring moist soils in the spring. Their 

main conclusion is that annual winter frostdays affects production both directly and indirectly 

through key inputs.40   

                                                 
39  Nin et al. (2001) re-estimates a nonparametric Malmquist productivity index under alternative assumptions 
that allows negative productivity growth through the efficiency change component of the productivity index.  
40 The frostdays data represent about 12,500 individual 1°×1° cells covering almost the land surface of all over the 
world. Frostdays is defined as those temperature of ground-level grasses falls below 0°. Masters and Wiebe (2000) 
apply a set of simultaneous equations to estimate the net effect of the exogenous variables effect on aggregate 
productivity, using weighted OLS and 2SLS instrumental variables regressions.  
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Methodologically, this chapter seeks to extend the work of Gallup (1998). It employs 

different frontier approaches to estimate the cross-sectional links between annual frostdays 

and technical efficiency in agriculture.  

The remainder of the chapter is organized as followed: In section 4.2, the data used to 

estimate the production function are described. A comparison of different production function 

analyses is presented in section 4.3. Section 4.4 presents and interprets the results of the 

empirical estimation. Finally, section 4.5 summarizes the conclusions of this study. 

 

 

4.2 Data 

In order to estimate the agricultural production function, data are needed on output and 

inputs. Agricultural inputs are categorized as conventional and non-conventional. 

Conventional inputs consist of land, labor, livestock, tractors, and fertilizer. Non-conventional 

inputs are resource quality, physical infrastructure, research and development, and 

governmental policies. Most influential publications estimate the agricultural production 

function with five conventional inputs.41 A recent paper by Coelli and Rao (2003) introduces 

irrigation as a new agricultural input variable. 42  These papers draw heavily from data 

published by the Food and Agriculture Organization (1997). The FAO provides an agricultural 

database by country and by year, with information on trade, land, economically active 

population in agricultural activity, and means of population. The data on means of production 

include details about agricultural tractors, harvesters and threshers, agricultural machinery, 

fertilizers and pesticides. As economic growth has occurred, agriculture has become more 

capital intensive for most countries. The capital of an agricultural origin has declined relative 

to capital from fixed investments in machinery, irrigation, and buildings. Different capital 

goods have different curvature parameters and different lengths of life. The FAO database 

does not include data on structures, hand tools, and value of improvements to land. Larson, 

                                                 
41 See, e.g., Grilliches (1964), Kaneda (1968), Hayami and Ruttan (1985), Gallup (1998), Rao and Coelli (1998), 
as well as Lau and Yotpoulos (1989). 
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Crego, Butzer, and Mundlak (1997) construct a new agricultural fixed capital series for 57 

countries during the period 1967-1992. They define capital stocks in agriculture consisting of 

fixed capital, livestock, and orchards. Agriculture has become more capital intensive, even 

though capital stocks have declined in about 30% of the countries. Agricultural capital 

components have changed in most countries in the sample period. Capital from fixed 

investments in machinery, irrigation, and buildings has become increasingly important while 

the capital of agricultural origin has declined.  

Alternatively, Gallup (1998), the pioneer of large-sample studies, applies the aggregate 

production function approach on 101 countries for the period 1961-1996. The countries in two 

studies are listed in Table 4.1. 

 

 

Table 4.1 Agricultural Capital Stock Comparison 

 Larson et al. (1997) Gallup (1998) 

Africa 15 countries 34 countries 

North America 2 countries 2 countries 

South and Central America 13 countries 20 countries 

South and East Asia 11 countries 24 countries 

Europe and Central Asia 16 countries 21 countries 

 

                                                                                                                                                          
42 Coelli and Rao (2003) use the area under irrigation as a proxy for the capital infrastructure associated with the 
irrigation of farmlands.  
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Figure 4.1 Agricultural Capital Stock Comparisons 

 
 

The database of Crego et al. (1997) does not cover enough countries in Africa and the 

Americas to allow for accurate inferences about the role of geography in these regions. In the 

comparison scatter plots in Fig. 4.1, the majority of observations approximate to the 45 ﾟ line, 

which imply that the two measurements are correlated. The data series used in this chapter are 

drawn primarily from a Gallup dataset developed at the World Bank. The dataset provides 

data for 101 countries from 1961 to 1994.  

Masters and Wiebe (2000) use the prevalence of seasonal frost to test the effect of 

climate on agricultural productivity using panel data on 110 countries. They estimate the OLS 

regression, in which the climate variable is related to the agricultural productivity in 

developing countries when the relevant variables are covered. Fig. 4.2 illustrates the 

relationship between agricultural output and frost prevalence in 1961 and 1994. The following 

three figures, Fig. 4.3, Fig. 4.4, and Fig. 4.5, illustrate the relationship between soil quality and 
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land quality by plotting them both against frost prevalence. The results indicate that regions 

with fewer frostdays have less soil quality and also less land quality.  

 

Fig. 4.2 Agricultural Output and Frostdays Frequency, 1961 vs. 199443 
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43 Agricultural output is measured in constant 1995 U.S. dollars. See www.fao.org  
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Fig. 4.3 Soil Quality Index vs. Land Quality Index for the Entire Sample44 
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Fig. 4.4 Soil Quality Index vs. Frostdays Frequency 
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44 The soil quality index is calculated the average of the suitability for different crops as indicators of overall 
suitability [Gallup, (1998)]. The land quality index is based on the share of each country’s cropland [Wiebe et al., 
(2000)].  
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Fig. 4.5 Land Quality Index vs. Frostdays Frequency 

      

0

20

40

60

80

100

0 5 10 15 20 25 30 35

Average Frostdays per Month in Winter

L
an

d 
Q

ua
lit

y 
In

de
x

 
Another perspective considers whether the gap between developed and developing 

countries is related to historical factors. If so, do these historical factors affect the agricultural 

sector? La Porta et al. (1998) find empirical support for the view that national commercial 

legal traditions influence the economic, political, and cultural theories of institutions.45  In 

general, laws vary greatly across countries, in part because of differences in their origins. In 

order to help explain a country’s laws on creditor right, shareholder right, and private property 

rights, they divide these traditions into British common law, French civil law, German civil 

law, Scandinavian law, and Soviet socialist law. These laws have spread all over the world 

through conquest, colonization, imitation, and voluntary adoption. The British government 

establishes common law, which is a mechanism for protecting subjects from the crown. 

Common law has acted as a powerful counterbalance that has promoted private property rights. 

                                                 
45 La Porta et al. (1998) examine legal rules covering protection of corporate shareholders and creditors, the 
origin of these rules, and the quality of their enforcement in 49 countries.   
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Civil law gives investors weaker legal rights than common law, independent of the level of per 

capita income. Common law countries provide both shareholders and creditors the strongest 

protections, while French civil law countries provide the least protection. German civil law 

and Scandinavian countries generally fall between. This research comprises of 31 countries 

governed by British common law, 44 countries by French civil law, four countries by German 

civil law, and four countries by Scandinavian civil law.   

Like Gallup’s study, this paper is based on observational data, but it employs panel 

data. These data are mainly based on information from the FAO and World Bank. Table 4.2 

summarizes the key variables used in the agricultural production function in this chapter.  
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Table 4.2 Database of Agricultural Variables 

Definition of variables Number of 
Countries

Time 
Period Sources 

Dependant Variables 

101 1961-1994 Gallup (1998) 

56 
57 

1967-1969 
1970-1992 Larson et al. (1997) Agricultural GDP per capita refers to the gross domestic product divided in 

agriculture by midyear population, which used as an indicator of the general state 
of technology.   

166 1960-2000 
World Bank  (2003) 

PWT6.1 

Agricultural Output is measured in constant 1995 U.S. dollars.  101 1961-1994 Gallup (1998) 

FAO (1997) 
Agricultural Productivity refers to the ratio of agricultural value added to the 
number of workers in agriculture.46 83 1961-1994 World Development Indicators  (2003) 

Conventional Inputs 

Agricultural fixed capital series in Larson et al. (1997) are based aggregate national 
accounts investment data.47 

56 
57 

1967-1969 
1970-1992 Larson et al. (1997) 

                                                 
46 Agricultural value added is measured in constant 1995 U.S. 
47 Larson et al. (1997) point agricultural capital includes fixed capital stock, livestock, and orchards. Capital is equal to structures and equipment plus livestock and 
orchards.  Gallup (1998) estimates agricultural capital, including fixed and working capital, which measures of the number of tractors, the number of livestock and the 
consumption of fertilizer.  
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Definition of variables Number of 
Countries

Time 
Period Sources 

Livestock is measured by regional export unit values, based on FAO trade data. 
Livestock is measured in the quantities of livestock in a country. 48 

57 
101 

1967-1992 
1961-1994 

Larson et al. (1997) 
Gallup (1998) 

Orchards are measured in the quantities of orchard or treestock in a country. 52 1967-1992 Larson et al. (1997) 

101 1961-1994 Gallup (1998) 
Tractor refers to the total number of tractors used in agriculture. 

163 1960-2000 World Bank (2003) 

101 1961-1994 Gallup (1998) 
Fertilizer is measured as metric tons of nitrogenous, potash, and phosphate 
fertilizers.  

163 1960-2000 World Bank (2003) 

Agricultural land includes arable land, permanent cropland, and permanent 
pastures. 101 1961-1994 Gallup (1998),  

FAO database (1997) 

Labor is taken to be the economically active population in agriculture.49 101 1961-1994 Gallup (1998) 
FAO 

Non-conventional Inputs 

Labor quality, life expectancy and the rate of adult illiteracy (Wiebe et al. 2000) 101 1961-1994 Gallup (1998) 

World Bank 

                                                 
48 Livestock of different kinds are aggregated using the weights from Hayami and Ruttan (1985). 
49 Original data is from FAO database. For some years and countries, labor force data is filled in by linear interpolation. 
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Definition of variables Number of 
Countries

Time 
Period Sources 

Human capital is captured by mean years of schooling the population (Barro and 
Lee 1993).  101 1961-1994 Gallup (1998) 

World Bank 

Population density is midyear population divided by land, which is in square 
kilometer.   83 1961-1994 World Bank (2003) 

Frostdays is defined as the average number of such days per month in winter where 
the estimated temperature falls bellow 0℃. 97 1961-1990 Masters (2001) 

Water indicator is calculated total water availability using Global Historical 
Climatology Network (GHCN 1997 data) which includes estimation of water from 
rivers and lakes, precipitation, and evaporation on a national basis.  

101 1961-1994 Gallup (1998) 

Land quality index is based on the share of each country’s cropland. 110 1961-1997 Wiebe et al. (2000) 

Soil quality is calculated the average of the suitability for different crops as the 
indicator of overall suitability. It is derived from the landmark FAO Digital Soil 
Map of the world (1995). 

101 1961-1994 Gallup (1998) 

Ecozones function is devised using four indicators: growing season length, growing 
season temperature, annual precipitation and a potential evapotranspiration ratio. 
They are aggregated from the more detailed Holdridge Life Zone Classification 
(Leemans, 1990)  

101 1091-1994 Gallup (1998) 
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Definition of variables Number of 
Countries

Time 
Period Sources 

The Gastil index of institutional quality is an indicator of a basic dimension of the 
quality of the institutional environment.50  97 1960-1996 Knack and Keefer (1995) 

World Bank 

Trade openness is used to indicate the degree of goods market integration.51  83 1960-1996 Sachs & Warner (1995) 

Civil Liberty is based on a (1－7) scale, with 1 representing the highest degree of 
freedom.52 83 1960-1996 Freedom House 

Legal origin identifies the origin of the Company Law or Commercial Code in each 
country. There are five possible origins: British common law; French civil law; 
German civil law; Scandinavian civil law; and Socialist or Communist law. 

212  World Bank53 

                                                 
50 Also named Government Anti-Diversion Policies index, this variable is measured on a (0, 1) scale. The index is an equal-weighted average of five criteria: rule of law; 
quality of bureaucracy; corruption in government; risk of expropriation; and government repudiation of contracts.  
51 Sachs and Warner index is measured on the following criteria: (1) non-tariff barriers cover less than 40 percent of trade; (2) average tariff rates are less than 40 
percent; (3) the black market premium was less than 20 percent in the 1970s and 1980s; (4) the economy is not socialist; and (5) the government does not control major 
exports.  
52 Freedom House has published the world country ratings from 1972 to 2003. See www.freedomhouse.org  
53 The legal origin factor is compiled by the Doing Business team using several sources, including La Porta et al. (1999) and the CIA Factbook (2002). See 
www.worldbank.org   
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4.3 Methodology 

Various approaches can be used to estimate the technical efficiency of the production 

function with panel data. Battese and Coelli (1985) give a general overview of these methods. 

This section provides a description of the production function and the specification used in this 

chapter. The adopted methodology is based on a comparison of different production functions 

with respect to the estimated function parameters, estimated technical inefficiency scores, and 

the out-of-sample prediction errors.  

Production functions for estimation of production frontiers have evolved within two 

parallel traditions: the parametric and the nonparametric approach. Stochastic Frontier 

Analysis (SFA) and Data Envelopment Analysis (DEA) are alternative methods for estimating 

frontier functions and thereby measuring efficiency of production. SFA involves the use of 

econometric methods, whereas DEA involves the use of linear programming. The parametric 

SFA [see, e.g., Aigner et al. (1977), Meeusen and Van den Broeck (1977), as well as Olson et 

al. (1980)] has focused on the development of stochastic frontier production functions on the 

basis of the parametric specification of functional forms for the frontier and the residuals 

involved. The nonparametric DEA has focused on the development of multiple-input and 

multiple-output configurations.54 Both approaches have been applied to panel data. SFA is first 

applied to panel data by Pitt and Lee (1981), Schmidt and Sickles (1984), Craig et al. (1997), 

as well as Wiebe et al. (2000). DEA is developed for panel data by Charnes et al. (1985) and, 

in a much more informative way, by Färe et al. (1994), and in the recent studies of agricultural 

productivity by Trueblood and Coggins (2003), Rao and Coelli (1998), and further refined by 

Coelli and Rao (2003).   

 

4.3.1 Parametric Stochastic Frontier Analysis 

This section begins with a simple stochastic frontier production function. Aigner, 

Lovell, and Schmidt (1977) and Meeusen and Van den Broeck (1977) independently proposed 

                                                 
54 See, e.g., Charnes et al. (1978, 1979); Banker et al. (1984); Färe, Grosskopf and Lovell (1985); Färe and 
Hunsaker (1986); Trueblood and Cogins (2003); as well as Coelli and Rao (2003).     
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the stochastic frontier production function, in which an additional random error, iv  is added to 

the non-negative random variable, iu , in the equation to present the following.  

 

(4.1)   iiii uvxy −+= β)ln( , i=1, 2, …, N. 

 

The random error, iv  accounts for measurement errors and other random factors, such as the 

effects of weather and corruption on the value of the output variable, together with the 

combined effects of unspecified input variables in the production function. Aigner, Lovell, and 

Schmidt (1977) assume that each iv  was an independent and identically distributed normal 

random variables with mean zero and constant variance 2
vσ , independent of the instances of 

iu , which is assumed to represent an independent and identically distributed, which is either 

exponential or half-normal random variables.  

The basic features of the stochastic frontier production function are illustrated in two 

dimensions in Fig. 4.6. The inputs are represented on the horizontal axis, and the outputs on 

the vertical axis. The deterministic component of the frontier production function, 

)exp( βxy = , is drawn assuming that diminishing returns to scale apply. The observed outputs 

and inputs for two firms, i and j, are presented on the graph. The i-th firm uses the level of 

inputs, ix , to produce the output, iy . The observed input-output value is indicated by the point 

marked with a above the value of ix . The value of the stochastic frontier output, 

)exp(*
iii vxy +≡ β , is indicated by the point b above the production function, as the random 

error, iv , is positive. Similarly, the j-th firm uses the level of inputs, jx , and produces the 

output, iy . However, the frontier output, )exp(*
jjj vxy +≡ β , is below the production 

function, because the random error, jv , is negative. Of course, the stochastic frontier 

production function lies between the stochastic frontier outputs. The observed output may be 

greater than the deterministic part of the frontier if the corresponding random errors are greater 

than the corresponding inefficiency effects (i.e., )exp( βii xy >  if  ii uv > ). 
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Fig. 4.6 The Stochastic Frontier Production Function 

 
Transcendental Logarithm (Translog) and Cobb-Douglas functional forms have 

commonly been used in the empirical estimation of frontier production functions. The 

Translog function is the more flexible function for explaining the relationship between the 

output and input levels. The production technology is represented by the Translog function 
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where the subscripts i and t represent the i-th firm and the t-th year of observation, 

respectively. The log of agricultural output is represented by y, and x is the log of the 
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non-negative, unobservable random variable uit is associated with the technical inefficiency of 

production. The Cobb-Douglas production function is a special case of the Translog frontier, 

in which the coefficients of the second-order terms are zero, i.e., βjk = 0, j ≤ k = 1, 2. 
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Many studies have focused on the technical efficiency of productivity, using mainly the Cobb-

Douglas production function [e.g., Hayami and Ruttan (1970, 1985); Battese (1992)]. 

However, the Cobb-Douglas production has more restrictive assumptions [e.g., Greene (1980); 

Lau and Yotopolous (1989); Martin and Mitra (2001)]. Thiam et al. (2001) present their 

empirical result that studies using Cobb-Douglas production function, which yield a lower 

average technical efficiency than using the Translog production function.55 While the Translog 

production function imposes no restrictions on returns to scale or substitution possibilities, it 

has the drawback of being susceptible to multicollinearity and degrees of freedom problems.  

SFA production functions have three serious inherent deficiencies. First, the technical 

inefficiency of a particular observation can be estimated, but not consistently. Second, the 

estimation of the production function and the separation of technical inefficiency for statistical 

noise require specific assumptions about the distribution of technical inefficiency and 

statistical noise. Third, it may be incorrect to assume that inefficiency is independent of the 

regressors. All these problems are avoidable if one has panel data.56 An important aspect of 

the SFA production function is the possibility it offers for a richer specification, particularly in 

the case of panel data. Here it considers two categories of the stochastic frontier analysis. The 

first is a panel data production function with time-varying technical inefficiency, as suggested 

by Cornwell, Schmidt and Sickles (1990) and Battese and Coelli (1992). The alternative 

                                                 
55  Ahmad and Bravo-Ureta (1996) argue that employing different functional forms do not affect the TE 
estimation.  
56  Schmidt and Sickles (1984) point out that all parameters in technical inefficiency model, without any 
distribution assumptions, can be obtained by simply using the traditional estimation procedures for panel data. 
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production function is a technical efficiency time-invariant production function, as pointed out 

by Schmidt and Sickles (1984), and Hjalmarsson et al. (1996).  

 

 4.3.1.1 Technical Efficiency Time-variant Production function  

Cornwell et al. (1990) propose a production function that accounts for time-varying 

inefficiency effects within a stochastic panel data framework. They suggest that the production 

function can be specified as  
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where t0β  indicates the common production frontier intercept for all cross-sectional 

productive units in period t and ittit u−= 0ββ  is the intercept of the unit i in period t, random 

variables are itv  and itu  are defined above. 

Lee and Schmidt (1993) propose that the technical inefficiency effects for each 

productive unit at a different time period are defined by the product of individual technical 

inefficiency and time effects, itit uu δ= , where each tδ  is a time effect represented by a time 

dummy, and the iu  can be either fixed or random producer-specific effects. Alternatively, 

Battese and Coelli (1992) propose technical inefficiency to be an exponential function of the 

time. 

 

(4.5)    ( ) iitiiit uuTtu ηη ≡−−= )(exp  

 

where η  is a single unknown scalar parameter, and iu  is assumed to be normally distributed 

),( 2
uN σμ  truncated at zero from below. The specification above allows technical inefficiency 

to change over time in a particular way. Technical inefficiency either increases (η > 0), 
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decreases (η < 0), or remains constant (η  = 0) over time. Thus, the temporal pattern is not 

only the same for all countries; it also either increases or decreases exponentially.  

 

4.3.1.2 Technical efficiency time-invariant production function  

Battese and Coelli (1995) propose specific technical inefficiency effects in the 

stochastic frontier production function that are assumed to be independently distributed non-

negative random variables. The production function uses the z variables as determinants of 

technical efficiency: 

    

(4.6)      ∑ +=
s itsitsit zu ,ωδ   0≥itu . 

 

where z variables are treated as determinants of technical efficiency, and where itz  is a (1×M) 

vector of observable explanatory variables, whose values are fixed constants; and where δ  is 

an (M×1) vector of unknown scalar parameters to be estimated, which would generally be 

expected to include an intercept parameter. Two special cases of the production function are in 

order. First, 0δδ =∑s sits z implies that itu  is the truncated normal distribution considered by 

Stevenson (1980), and, second, 0=∑s sits zδ  gives the original formulation of Aigner, Lovell, 

and Schmidt (1977). The parameters of this production function can be estimated by the 

Maximum-Likelihood method. The likelihood function and estimation issues are discussed in 

Battese and Coelli (1995). The technical efficiency for the i-th countries in the t-th time period 

is defined by  

(4.7)       )exp( ititTE μ−=  

where the generalized likelihood-ratio test for the null hypothesis is 0H : 0=γ , where 

( )222 σσσγ += v . The likelihood function is evaluated for a number of values of the γ  

parameter between 0 and 1. If γ  equals 0, this indicates that deviations from the frontier are 
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attributable entirely to noise.57 If γ  equals 1, this indicates that all deviations are attributable 

entirely to economic inefficiency, and hence the stochastic frontier production function is not 

significantly different from the deterministic frontier production function with no random 

error.58 The generalized likelihood ratio test for the null hypothesis that the γ  and the β  

parameters are jointly equal to zero is calculated by using the values of the log-likelihood 

function for estimating the full frontier production function and that obtained from an OLS 

regression of the production function. This statistic has a mixed chi-square distribution.  

 

 4.3.2 Nonparametric Data Envelopment Analysis 

Farrell (1957) proposes a measure of the efficiency of a firm that consists of two 

components: technical efficiency, which reflects the ability of a firm to obtain maximal output 

from a given set of inputs, and allocative efficiency, which reflects the ability of a firm to use 

the inputs in optimal proportions, given their respective prices. These two measures are then 

combined to provide a measure of total economic efficiency. Farrell illustrates this concept 

using a simple example involving firms that use two inputs ( 1x  and 2x ) to produce a single 

output (y), under the assumption of constant returns to scale.  

 

                                                 
57 Previous studies use a standard econometric methodology that, in this author’s opinion, is entirely correct in 
their implicit assumption of economic efficiency.  
58 Kneller and Stevens (2002) find that, in practice, the γ  parameter is statistically significant in the range of 
0.80 to 0.85.  
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Fig. 4.7 Technical and Allocative Efficiencies from an Input Orientation 

 
In Fig. 4.7, SS’ represents the unit isoquant of a fully efficient firm, and II’ represents the 

slope of the isocost line. If a given firm uses quantities of inputs, defined by the point E, to 

produce a unit of output, the technical inefficiency of that firm can be represented by the 

distance TE, which is the amount by which all inputs could be reduced proportionally without 

a reduction in output, as reflected in the following equations:   

 

(4.8)             OEOTTEi = . 

 

(4.9)           OTOAAEi = . 

 

(4.10)         OEOAEEi = . 

 

where ii AETE ,  and iEE  represent the technical efficiency, allocative efficiency and total 

economic efficiency, respectively. In the input-orientated case above, the DEA method defines 

the frontier by seeking the maximum possible proportional reduction in input usage, with 
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output levels held constant, for each country. By contrast, in the output-orientated case, the 

DEA method seeks the maximum proportional increase in output production, with input levels 

held fixed.59  

            The analysis developed in Chames et al. (1978) assumes Constant Returns to Scale 

(CRS) in their approach. CRS model assumes there are data on x inputs and y outputs for each 

of z firms. The zx ×  input matrix, X, and the zy ×  output matrix, Y, represent the data for all 

z firms. The DEA formulation, via the ratio form, can be obtained as the maximum of a ratio 

of weighted outputs to weighted inputs subject to the constraint.  

 

(4.11)     ( ),''max , iivu xvyu  

                st     ,1'' ≤jj xvyu   j=1,2,…,z 

                        .0, ≥vu  

 

where u is an 1×y  vector of output weights and v is a 1×x  vector of input weights. One 

problem with this ratio formulation is that it has an infinite number of solutions. This can be 

avoided by imposing the constraint, 1' =ixv , which provides the following multiplier form of 

the DEA linear program.  

 

(4.12)     ( ),'max , jvu yμ  

                st      1' =ixv , 

                         ,0'' ≤− jj xvyμ   j=1,2,…,z 

                         .0, ≥vu  
 

Using the duality in linear programming, the form in equation 4.12 can derive an equivalent 

envelopment form as following. 

 

                                                 
59 Fare and Lovell (1978) point out that, under Constant Returns to Scale, the input-orientated and output-
orientated measures of technical efficiency are equivalent.  
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(4.13)       ,min , θλθ  

                 st       
.0

,0
,0

≥
≥−
≥+−

λ
λθ
λ

Xx
Yy

i

i

 

 

where θ  is a scalar and λ is a 1×z  vector of constants.  

Alternatively, Fare et al. (1985) introduce a Variable Returns to Scale (VRS) approach, 

which corrects CRS approach weakness.60 They add the convexity constraint, 1'1 =λz , on the 

CRS model to modify the linear programming problem.61 

 

(4.14)   ,min , θλθ  

             st       

.0
,1'1

,0
,0

≥
=

≥−
≥+−

λ
λ

λθ
λ

z
Xx
Yy

i

i

 

 

where z1 is an 1×z  vector of ones.  

Recent years have seen a great variety of applications of DEA for evaluating the 

performances of many kinds of entities engaged in various activities [Lovell (1993), Fulginiti 

and Perrin (1997), Rao and Coelli (1998), as well as Nin et al. (2003)]. DEA has opened up 

possibilities for use in cases that have been resistant to other approaches because of the 

complex nature of the relations between the multiple inputs and multiple outputs involved in 

many of these activities. DEA techniques are flexible and adaptable. This approach is simply 

compatible with the linear programming methods and concepts. DEA does not distinguish 

between technical inefficiency and statistical noise effects, and DEA does not account for 

noise. 

                                                 
60 Fare et al. (1983), Byrnes et al. (1984), and Banker et al. (1984) provide the evidence that CRS analysis is 
biased by scale efficiencies.  
61 Coelli et al. (1995) point that the convexity constraint ensures that an inefficient firm is only ‘benchmarked’ 
against firms of a similar size.  
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4.4 Empirical Results 

In this paper, the stochastic frontier production functions are applied to a sample of 

agricultural productivity in developed and developing countries over a period of 34 years. The 

sample covers 83 countries, 24 are in Africa, 20 are in South and Central America, 16 in Asia, 

16 in Europe, four in Oceania, and three in North America. The Translog and Cobb-Douglas 

stochastic frontier production functions, defined by equations 4.2 and 4.3, contain 20 β-

parameters and the eight additional parameters associated with the distributions of the itv  and 

itu  random variables. Maximum-likelihood estimates of these parameters of four stochastic 

frontier production functions are obtained by using the FRONTIER computer program, are 

given in Table 4.3.62  Column 1 has a Cobb-Douglas functional form. All the remaining 

production functions have a Translog functional form. Column 2 excludes explanatory 

variables for the technical inefficiency function. In Column 3, frostdays is assumed to be a 

linear variable, whereas it hypotheses a nonlinear effect in Column 4. Finally, Column 4 is the 

basic production function. It assumes a Translog functional form, technical inefficiency effects, 

geography, historical, trade, institutional, and nonlinear frostdays effects in the technical 

inefficiency component.  

The signs of most β -estimates in the basic production function are as expected and 

statistically significant, with the exception of the negative estimate of the variables for land 

and tractors. The negative elasticity for land may be caused by the fact that rapid population 

growth and the resulting need for human settlement and increased urbanization. The parameter 

γ  is estimated approximate to 1.0, suggesting that the technical inefficiency effects are highly 

significant. The estimates of frostdays, the Africa dummy, as well as Middle East (ME) and 

North Africa (NA) dummy variables in the inefficiency production function indicate that there 

exist significant climatic and geographical disadvantages for countries with fewer frostdays in 

the winter.63 The significance of the forstdays variables indicates a nonlinear climate effect: as 

the number of frostdays increases, the efficiency becomes larger, which is same as previous 

                                                 
62 The FRONTIER computer programs is available on The Centre for Efficiency and Productivity Analysis 
http://www.uq.edu.au/economics/cepa/software.htm  
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Chapter 2. The scatter plot of mean technical efficiency against the frequency of frost is shown 

in Fig. 4.8. The maximum point in the data occurs at around 16.50 frostdays in the winter on 

the smooth convex curve, with a slight increase of technical efficiency up to the threshold, but 

a sharp decline beyond. The threshold occurs at different point in previous study. Chapter 2 

shows the break point is around at 2.11049 frostdays in the winter, which is negatively 

correlated with growth in the tropical sub-sample but positively correlated in the temperate 

sub-sample.64 

    

Fig. 4.8 Frost Frequency and Mean Technical Efficiency, 1961-1994 
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63 The geography dummy variables are defined by the World Bank.    
64 The difference of points is the upshot of using different dataset and methodologies. In Chapter 2, we assume 
the annual frostdays has a significant impact on growth rate in Solow Model; in this Chapter, the annual frostdays 
plays a significant role in logarithm production function in agriculture.  
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Table 4.3 The Maximum-Likelihood Stochastic Frontier Production Functions 
Variable Cobb-Douglas  Translog 1 Translog 2 Basic P.F. 

Frontier Function Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. 
Constant 2.435  33.633 2.505 7.606 1.699 5.681  2.503  9.722 
Land -0.005  -0.416 -0.461 -4.919 -0.371 -4.157  -0.267  -4.215 
Fertilizer 0.081  10.470 0.432 6.753 0.625 10.640  0.706  12.257 
Livestock 0.371  17.738 -0.182 -0.964 0.211 1.223  0.091  0.602 
Tractors 0.165  11.206 -0.301 -3.893 -0.635 -8.285  -0.710  -10.206 
Labor 0.339  21.448 1.586 23.610 1.356 21.569  1.227  19.800 
(Land)²  -0.062 -4.296 -0.035 -2.637  -0.034  -2.725 
(Fertilizer)²  0.093 16.329 0.095 17.509  0.082  16.246 
(Livestock)²  0.108 3.379 0.047 1.611  0.059  2.422 
(Tractor)²  0.069 9.779 0.089 12.386  0.061  9.256 
(Labor)²  0.101 11.025 0.102 12.230  0.123  15.760 
Land × Fertilizer  0.029 1.972 0.041 3.054  0.066  4.968 
Land × Livestock  0.044 1.291 0.035 1.085  -0.008  -0.369 
Land × Tractors  0.000 -0.004 -0.045 -3.008  -0.003  -0.280 
Land × Labor  0.134 9.233 0.126 9.187  0.090  6.785 
Fertilizer × Livestock  -0.131 -6.579 -0.164 -9.008  -0.186  -9.690 
Fertilizer × Tractors  -0.092 -8.140 -0.088 -8.304  -0.062  -6.299 
Fertilizer × Labor  -0.017 -1.536 -0.041 -4.027  -0.051  -7.486 
Livestock × Tractors  0.115 5.103 0.178 8.222  0.191  9.489 
Livestock × Labor  -0.280 -12.743 -0.201 -9.648  -0.150  -7.273 
Tractors × Labor  -0.117 -9.281 -0.147 -12.552  -0.176  -17.513 

Inefficiency Production Function 
Constant 0.633  4.994 -0.239 -5.300  0.321  10.890 
Frostdays 0.013  2.779 0.018 10.129  -0.008  -3.161 
Frostdays Square -0.003  -7.599  0.000  0.864 
Frostdays Cube 0.000  9.016   0.000  1.760 
Africa Dummy 0.031  1.984  0.459 9.872  0.165  16.850 
ME and NA Dummy 0.066  1.332 0.035 0.824  0.040  3.710 
Legal Origin Dummy65 0.040  4.020 -0.012 -0.760 0.054  8.817 
Openness -0.126  -7.956 -0.132 -4.154  -0.031  -3.028 
Civil Liberty 0.032  8.182 -0.002 -0.301  0.016  5.782 

Variance Parameters 
σv² + σ² 0.030  21.264 0.026 10.159 0.016 15.813  0.013 39.433
γ = σ²/(σv² + σ²) 1.000  13.034 0.551 5.952 0.285 3.930  1.000 1582
Countries 83 83 83  83  
Time periods 34 34 34  34  
Log-Likelihood 980   1735 2109.1  2179  

                                                 
65 The legal origin dummy variable is equal to one if the country adopts the British common law, and zero 
otherwise.  
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Several LR-tests are presented in Table 4.4. It starts by testing the Cobb-Douglas 

production function against the Translog production function. The results indicate that the 

Cobb-Douglas functional form is rejected. The remaining tests consider restrictions on the 

parameters in the inefficiency production function. The countries operating under British 

common law have a significantly lower level of agricultural productivity than countries with 

German, Scandinavian, or those of socialist legal origins. The negative estimate for trade 

openness and positive estimate for civil liberty variables imply that countries with better trade 

and institutional policies tend to be more efficient. Early empirical publications, Battese and 

Coelli (1995), Hjalmarsson et al. (1996), and Wiebe et al. (2000), have other appropriate 

explanatory variables for the technical inefficiency effects in Agriculture. Their results 

indicate that human capital, land quality, water indicators, and time trend are significant 

components in the technical inefficiency production function. It is notable that those four 

variables are insignificant in my estimation and are deleted from the basic production function 

in Table 4.3. In this application, the Translog production function is a better fit for the 

underlying data. The inefficiency effects in the stochastic frontier are clearly stochastic and are 

related to climate, geography, historical, trade, and institutional variables. 
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Table 4.4 Likelihood-Ratio Tests for Parameters 
 in the Frontier Production Function 

Notes: the statistic has a mixed chi-square distribution. All the tests are carried out using 5% 
significance level.  

Table 4.5 provides average technical efficiency scores for each of the countries for the 

years 1961-1994. The results show that the average technical efficiency score of 0.662 over 34 

years implies that 83 countries are, on average, producing 66.2% of the output that could 

potentially be produced using the observed input quantities. Among the developed countries in 

Table 4.5 are a larger number of countries that have technical efficiencies exceeding the mean 

efficiency level. Efficient technology promotes favorable agricultural productivity. Most 

countries with lower technical efficiency over the sample period are in Asia and Africa, as 

supported in Lusigi and Thirtle (1997), Fulginiti and Perrin (1998, 1999), as well as Nin et al. 

(2003).66     

                                                 
66 Lusigi and Thirtle (1997) estimate the DEA of 47 African countries.  

Null Hypothesis Log 
Likelihood 

Critical 
Value Decision 

 2179.26    

0H : ijβ =0, i,j = 1,....,5 
(Cobb-Douglas) 

979.77  26.30 Reject 0H  

0H : 0321 === δδδ  
(no climate effect) 

2060.24 9.49 Reject 0H  

0H : 07 =δ  
(no trade effect) 

2172.00  3.84 Reject 0H  

0H : 08 =δ  
(no institutional effect) 

2151.10  3.84 Reject 0H  

0H : 054 == δδ  
(no regional effect) 

2042.50  7.81 Reject 0H  

0H : 06 =δ  
(no legal origin effect) 

2150.42 3.84 Reject 0H  

0H : 8,...,1,0 === iiδγ  
(no inefficiency effects) 

1734.86 16.27 Reject 0H  
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Table 4.5   Mean Technical Efficiency of 83 Countries by SFA, 1961-1994 

Country TE Country TE Country TE 
Zambia 0.454 Austria* 0.632 Ghana 0.698 
Zimbabwe 0.499 Uruguay* 0.639 Mexico* 0.700 

Tanzania 0.508 Trinidad and 
Tobago* 0.639 Portugal* 0.701 

Malawi 0.515 Tunisia 0.640 Malaysia* 0.704 
Kenya 0.523 Indonesia 0.641 Cyprus* 0.705 
Central African Rep. 0.533 Bolivia 0.643 New Zealand* 0.706 
Botswana* 0.538 Iraq 0.650 Costa Rica* 0.708 
Swaziland 0.541 United States* 0.652 Denmark* 0.717 
Mozambique 0.547 Nigeria 0.652 France* 0.717 
Benin 0.551 Sweden* 0.653 Colombia 0.725 
Norway* 0.554 Venezuela* 0.654 Chile* 0.727 
Angola 0.559 Peru 0.665 Switzerland* 0.735 
Algeria 0.560 Iran, Islamic Rep. 0.667 Philippines 0.739 
Finland* 0.566 India 0.669 Paraguay 0.753 
Senegal 0.571 Guatemala 0.669 Nicaragua 0.756 
Madagascar 0.573 United Kingdom* 0.670 Dominican Republic 0.759 
Cameroon 0.578 Jordan 0.673 Japan* 0.763 
Sri Lanka 0.581 Guyana 0.677 Egypt 0.778 
Zaire (Congo, Dem Rep.) 0.584 Honduras 0.677 Syrian Arab Republic 0.779 
Uganda 0.584 Jamaica 0.678 Spain* 0.782 
Bangladesh 0.587 Canada* 0.678 Greece* 0.783 
Fiji 0.611 Australia* 0.680 Ecuador 0.796 
Mauritius* 0.611 Suriname 0.681 Belgium and Luxembourg* 0.802 
South Africa 0.613 Turkey 0.685 Argentina* 0.806 
Ireland* 0.616 Papua New Guinea 0.685 Italy* 0.821 
Morocco 0.626 Brazil 0.690 Netherlands* 0.896 
El Salvador 0.626 Thailand 0.691 Israel* 0.936 
Pakistan 0.632 Germany* 0.692 Mean Efficiency 0.662 

Notes: Developed countries with “*”, defined by World Bank67.  

                                                 
67 In general, the term “developing economics” has been used to denote the set of low and middle income 
economics. The Bank’s income categories (low, middle, high income) are based on the Bank’s operational 
lending categories. www.worldbank.org  
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To test the robustness of the SFA results, this study considers an alternative 

specification of the frontier production function using DEA methods on the same agricultural 

inputs and output dataset. The computer program DEAP is concerned with the use of DEA 

method to construct a nonparametric piecewise frontier over the data to calculate efficiency 

relative to this frontier surface. 68  The DEAP program constructs DEA frontiers for the 

calculation of CRS technical efficiency and VRS technical efficiency, as well as for the 

calculation of efficiency scores and technical change. Table 4.6 presents the level of technical 

efficiency resulting from the application of the DEA methodology. Fig. 4.9 compares the 

average scores in technical efficiency using the SFA, CRS DEA, as well as VRS DEA 

methods.69 The similarity in efficiency scores suggests that the SFA results are quite robust in 

the choice of methodology. The outliers are Botswana, Cameroon, the Central African 

Republic, and Nicaragua. The difference between two production functions may be due to the 

fact that the DEA method can envelope the observations in a more flexible way than the SFA 

method.  

 

Fig. 4.9 Mean Technical Efficiency, DEA vs. SFA 
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68  The DEAP computer programs is available on The Centre for Efficiency and Productivity Analysis 
http://www.uq.edu.au/economics/cepa/software.htm 
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Table 4.6 Average Technical Efficiency of 83 Countries by DEA, 1961-1994 

Country CRS VRS Country CRS VRS Country CRS VRS
Zimbabwe 0.834 0.908 Bangladesh 0.896 1.000 Greece* 0.930 0.987 
Zambia 0.836 0.900 Madagascar 0.896 0.969 Nicaragua 0.931 0.986 
Kenya 0.845 0.936 Ireland* 0.900 0.955 Guyana 0.933 0.954 
Colombia 0.852 0.973 Ecuador 0.901 0.986 Sweden* 0.938 0.980 
Brazil 0.853 0.984 Honduras 0.902 0.965 Italy* 0.940 1.000 
Venezuela* 0.854 0.948 Thailand 0.904 0.992 Switzerland* 0.941 0.973 
Pakistan 0.855 0.972 Egypt 0.906 0.999 Paraguay 0.941 0.984 
India 0.857 1.000 U.K.* 0.906 0.986 Malaysia* 0.943 0.999 
Mexico* 0.859 0.969 Portugal* 0.907 0.962 New Zealand* 0.944 1.000 

Peru 0.859 0.957 Syrian Arab 
Rep. 0.909 0.966 Malawi 0.945 0.976 

South Africa 0.860 0.945 Dominican 
Rep. 0.910 0.991 Botswana* 0.949 0.967 

Morocco 0.860 0.945 Philippines 0.910 0.996 Netherlands* 0.950 1.000 

Tanzania 0.861 0.940 United 
States* 0.910 1.000 Denmark* 0.950 0.993 

Iran, Islamic 
Rep. 0.866 0.957 Finland* 0.914 0.961 Japan* 0.950 1.000 

Algeria 0.868 0.920 Bolivia 0.914 0.967 Ghana 0.951 0.981 
Angola 0.874 0.914 Indonesia 0.916 0.999 Cameroon 0.964 1.000 

Tunisia 0.880 0.931 Germany* 0.917 1.000 Trinidad and 
Tobago* 0.971 0.983 

Iraq 0.880 0.943 Mozambique 0.917 0.946 Uganda 0.976 1.000 
Sri Lanka 0.883 0.946 France* 0.918 0.999 Cyprus* 0.980 0.998 
El Salvador 0.885 0.969 Nigeria 0.919 0.996 Zaire  0.997 1.000 

Turkey 0.885 0.976 Norway* 0.920 0.952 Central African 
Rep. 0.998 0.999 

Swaziland 0.886 0.918 Senegal 0.922 0.980 Israel* 0.999 1.000 

Chile* 0.887 0.958 Jamaica 0.923 0.960 Belgium and 
Luxembourg* 1.000 1.000 

Costa Rica* 0.890 0.968 Jordan 0.924 0.948 Benin 1.000 1.000 
Guatemala 0.892 0.972 Canada* 0.924 0.992 Mauritius* 1.000 1.000 

Australia* 0.893 1.000 Fiji 0.925 0.935 Papua New 
Guinea 1.000 1.000 

Uruguay* 0.893 0.975 Spain* 0.926 0.990 Suriname 1.000 1.000 

Argentina* 0.895 1.000 Austria* 0.927 0.974 Mean 
Efficiency 0.915 0.974 

                                                                                                                                                          
69 Coelli and Rao (2003) argue that VRS technology is too sensible to aggregate cross-sectional data.   
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Given the finding that efficiency varies significantly across countries, an obvious issue 

is whether these differences are associated with agricultural productivity. This present paper 

examines global agricultural productivity trends using data from 83 countries for the years 

between 1961 and 1994. The seven series in Fig. 4.10 show agricultural productivity indices 

from 1961 to 1994 for the different regions. From the figure, it is evident that Europe has a 

higher agricultural productivity level by 1994, followed by Oceania and Asia. Europe, 

Oceania, and Asia exhibit higher growth than the global growth levels in agricultural 

productivity. Africa and North America retain their position as the lowest groups. This 

provides evidence to refute the result of declining agricultural productivity in less developed 

countries by Fulginiti and Perrin (1993, 1998). The findings of the agricultural productivity 

level are that African countries made some progress in the 1960s, suffered a regression during 

the 1970s, and recovered after the mid-1980s, supporting by previous findings by Block 

(1995), Lusigi and Thirtle (1997), as well as Fulginiti et al. (2003), 

 

Fig. 4.10 Logarithm of Agricultural Productivity, 1961-199470 

2.4

2.8

3.2

3.6

4.0

4.4

1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991 1994

Africa
All countires
Asia
Europe
North America
Oceania
South and Central America

Year

Lo
ga

rit
hm

 o
f A

gr
ic

ul
tu

ra
l P

ro
du

ct
iv

ity

 
Coelli and Rao (2003) point out that those countries in Asia and Africa with the lowest 

mean technical efficiency scores in 1980 achieved the largest increases in mean technical  

                                                 
70 In Fig 4.7, there is a slump in all curves between 1979 and 1980, which is due to the change of FAOSTAT 
frameworks.  
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efficiency over the period 1980-2000. Fig. 4.11 plots the mean technical efficiency scores of 

the entire set of countries over the 15 year period. It indicates that the overall mean technical 

efficiency changes in Asian and African countries are rather disappointing. Over the 15-year 

period, there is, overall, a 2.34% increase in African countries and a 0.70% increase in Asian 

countries in mean technical efficiency. At a global level, African countries have the lowest 

level of productivity and a slightly positive productivity trend. Asian countries currently have 

lower level of agricultural productivity, but, in terms of technical progress, these regions are 

well on their way to closing the persistent productivity gap. This result confirms the earlier 

findings of a wide productivity gap between developed and developing countries. Fig. 4.12 

shows the growth rate of technical efficiency of 83 countries over two sub-sample time 

periods. It is worth noting that there is weak evidence for convergence or catch-up in 

efficiency levels in agriculture. Furthermore, the results suggested a stronger tendency for 

convergence over the period 1961-1980 in agricultural technical efficiency across countries, 

while a convergence tendency between 1980 and 1994.  

 

Fig. 4.11 Mean Technical Efficiency of 83 Countries, 1980 – 1994 
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Fig. 4.12 The Relationship between Growth Rate of Technical Efficiency and Initial 

Technical Efficiency Levels of 83 Countries         
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Fig. 4.13 Logarithm of Agricultural Productivity, 1961-1994 
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Fig. 4.14 Mean Technical Efficiency, 1961-1994 

.56

.60

.64

.68

.72

.76

1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991 1994

All countries
High income countries
Less income countries
Lower middle income countries
Upper middle income countries

Year

M
ea

n 
le

ve
l o

f T
ec

hn
ic

al
 E

ff
ic

ie
nc

y

 
Notes: GNI per capita is the World Bank’s main criterion for classifying countries. For example, 

economies are considered upper middle-income economies if their per capita GNI is higher than the 

World Bank’s operational threshold for 15-year IBRD loans and lower than the threshold for high-

income economies.  
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Furthermore, the hypothesis about positive correlation efficiency between efficiency 

levels and agricultural productivity is confirmed by these samples. This implies that the 

empirical evidence in Fig. 4.13 does exhibit a degree of catch-up in productivity levels 

between developed and developing countries. The five series graphed in Fig. 4.14 illustrates 

that the technical inefficiency production function has a strong influence on the level and trend 

of agricultural productivity in the sample.  The result indicates that developing countries with 

lower agricultural productivity can reach higher levels through improvements in efficiency. 

The continuing development of international trade policy serves as the evidence bridging the 

agricultural productivity gap. 

 

4.5 Conclusion 

One objective of this chapter focuses on the technical efficiency of both developing 

and developed countries in agriculture. The paper examines the impact of stochastic 

production frontiers on technical efficiency and agricultural productivity in 83 countries over 

the period 1961 – 1994.  

The results support the idea that legal origin remains an important factor in shaping 

initial agricultural productivity. The negative estimate for trade openness and positive 

estimates for civil liberty variables imply that countries with better trade and institutional 

policies tend to be more technically efficient. Average technical efficiencies for developed 

countries are higher than those for developing countries. 

The other objective focuses on whether annual frostdays robustly matter for technical 

efficiency in agriculture. Two determinants, climate and geography of technical efficiency are 

statistically significant. The estimates indicate that countries’ relative agricultural technical 

efficiency scores are higher because of favorable climate and geography.  
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CHAPTER 5 

CONCLUSION  

 

First, by the skill, dexterity, and judgment with which its labour is 

generally applied; and , secondly, by the proportion between the number of those 

who are employed in useful labour, and that of those who are not so employed. 

Whatever be the soil, climate, or extent of territory of any particular nation, the 

abundance or scantiness of its annual supply must, in that particular situation, 

depend upon those two circumstances. The abundance or scantiness of this supply 

too seems to depend more upon the former of those two circumstances than upon 

the latter. 

 
Adam Smith (1776) 

 

Modern economists started building up economic models based on Adam Smith 

roughly half century ago. In the initial years thereafter, economists dealt with theoretical 

economic growth models. Numerous publications dealt with empirical studies while the 

computing difficulties were globally solved three decades later. Furthermore, seminal 

publications have examined economic performance recently.    

This dissertation provides insights into the annual hard frosts and economic growth 

nexus. The relevance of the dissertation’s findings of this dissertation is strengthened by the 

use of econometric methodologies. 

The threshold technique and model uncertainty analysis provide robustness results that 

climate plays different roles in tropical and temperate countries in its impact on the economic 

growth model. The application of the quantile regression model in the field of the economic 
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growth model clearly provides an additional advantage. The agricultural technical efficiency 

model developed in this dissertation has demonstrated its relevance in supporting the climate 

in determining efficient technology.  

Therefore, the results presented in this work provide a more reliable and appropriate 

indication that climate is one of the key determinants of an economy. The findings of this 

study are valuable in establishing the strategic framework for promotion policies, which 

should be adopted by governing bodies responsible for development planning. Accordingly, 

governing bodies should invest in human capital and accomplish efficient trade policies which 

are so important to developing countries.  

Every study is by its nature limited; however, these several findings are expected to 

make a small contribution to the fast-growing empirical studies on economic development. 
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