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1 Introduction

The Bekenstein-Hawking area-entropy law universally applies to any self-consistent quan-

tum theory of gravity. Efforts to understand how the former constrains the latter have led

to a wealth of insights.

Five years ago Sen et al. [1–6] pointed out that the leading corrections to this law,

which are of order logA (where A is the area) are also universal in that they depend

only on the massless spectrum of particles and are insensitive to the UV completion of

the theory. The basic reason for this is that the effects of a particle of mass m can be

accounted for by integrating it out, which generates local higher derivative terms in the

effective action. These lead to corrections to the entropy which are suppressed by inverse

powers of m2A and cannot give logA terms.

The macroscopically computed logarithms serve as a litmus test for any proposed

enumeration of quantum black hole microstates which is more refined than the test provided

by the area law. Sen extensively analyzed a number of stringy examples all of which passed

the test with flying colors [7], and further noted that the macroscopic computation does not

match the loop gravity result. He also posed a matching of the logarithms as a challenge

for Kerr/CFT [8–11].

In this paper we show that the logarithms indeed match for one microscopic realiza-

tion [12, 13] of Kerr/CFT obtained by embedding a certain near-extremal five-dimensional

Kerr-Newman black hole into a string compactification.1 The microscopic dual is a two-

dimensional field theory defined as the IR fixed point of the worldvolume field theory on

a certain brane configuration with scaled fluxes. This IR limit is certainly nontrivial but

1The near-extremal regime sidesteps subtleties with logarithmic corrections at extremality.
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is not a conventional 2D CFT. Its properties are incompletely understood and have been

studied in a variety of approaches: see e.g. [14–20].

The example of Kerr/CFT we chose is the simplest possible case. In the simplest

examples considered by Sen, the macro-micro match has a somewhat trivial flavor: all

logs vanish in a certain thermodynamic ensemble, with logs generated on both sides of the

match by Legendre transforms to a different ensemble. However, later examples become

quite intricate and provide compelling tests of a variety of stringy constructions. In the five-

dimensional Kerr/CFT match herein, all logs vanish in a certain thermodynamic ensemble,

and the character of the match is as in the simplest of Sen’s examples. Non-trivial aspects

of our match reside in its reliance on the values of the Kerr/CFT central charges and

Kac-Moody levels which enter the microscopic computation. In particular, we find that

a necessary non-vanishing level of the current dual to the electric field is provided by a

Chern-Simons term which is crucially present in the effective action obtained from string

theory. While it is reassuring that the simplest case works, perhaps more challenging

matches such as the extremal 4D case may eventually provide more refined and compelling

tests of Kerr/CFT.

This paper is organized as follows. In section 2 we describe the black hole solution,

take its near horizon limit, and determine the corresponding quantum mixed state in the

CFT. In section 3 we begin by stating the result of [6] for the logarithmic corrections

to the Bekenstein-Hawking entropy and then proceed to compute them microscopically in

the dual theory for two different enhancements of the global symmetries. We match the

Bekenstein-Hawking entropy of the near extremal black hole to first order in the Hawking

temperature with the Cardy formula and, using the result of appendix A for the gauge

Kac-Moody level, we show that the logarithmic corrections also agree.

Previous work on logarithmic corrections to black hole entropy includes [21–31].

2 The five-dimensional Kerr-Newman black hole

We consider a charged and rotating black hole solution of five-dimensional Einstein gravity

minimally coupled to a gauge field. The dynamics of the latter is specified by the Yang-

Mills-Chern-Simons Lagrangian, so that the complete action is,2

S5 =
1

4π2

∫
d5x

(√
−g
(
R− 3

4
F 2

)
+

1

4
εabcdeAaFbcFde

)
. (2.1)

Specifically, we are interested in the following Kerr-Newman black hole solution to (2.1)

considered in [12],

ds2
5 = −(a2 + r̂2)(a2 + r̂2 −M0)

Σ2
dt̂2 + Σ

(
r̂2dr̂2

f2 −M0r̂2
+
dθ2

4

)
− M0F

Σ2
(dψ̂ + cos θ dφ̂) dt̂

+
Σ

4
(dψ̂2 + dφ̂2 + 2 cos θ dψ̂ dφ̂) +

a2M0B

4Σ2
(dψ̂ + cos θ dφ̂)2 , (2.2)

A =
M0 sinh 2δ

2Σ

(
dt̂− 1

2
aeδ(dψ̂ + cos θ dφ̂)

)
, (2.3)

2This coincides with the bosonic sector of minimal supergravity in five dimensions.
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where we have defined the quantities

B = a2 + r̂2 − 2M0s
3c3 −M0s

4(2s2 + 3) , F = a(r̂2 + a2)(c3 + s3)− aM0s
3 ,

Σ = r̂2 + a2 +M0s
2 , f = r̂2 + a2 , (2.4)

and s ≡ sinh δ , c ≡ cosh δ. The geometry depends on three independent parameters

(a,M0, δ) and the physical quantities of the black hole, i.e., its mass, angular momentum

and electric charge, are given in terms of those parameters by

M =
3M0

2
cosh 2δ , JL = aM0 (c3 + s3) , Q = M0sc . (2.5)

In five dimensions, it is possible to have a second angular momentum, JR, but we set

JR = 0. Note that the SU(2)L angle is identified ψ̂ ∼ ψ̂ + 4π.

This black hole displays inner and outer horizons located at

r2
± = 1

2(M0 − 2a2)± 1
2

√
M0(M0 − 4a2) . (2.6)

At the (outer) horizon, the angular velocities are

ΩL ≡ Ωψ̂ =
4a

M0

1

(c3 − s3) + (c3 + s3)
√

1− 4a2/M0

, ΩR ≡ Ωφ̂ = 0 , (2.7)

and the electric potential is

Φ =
c2s− s2c+ (c2s+ s2c)

√
1− 4a2/M0

c3 − s3 + (c3 + s3)
√

1− 4a2/M0

. (2.8)

Finally, the Hawking temperature is given by

TH =
1

π
√
M0

√
1− 4a2/M0

c3 − s3 + (c3 + s3)
√

1− 4a2/M0

, (2.9)

and the Bekenstein-Hawking entropy is

SBH = π
√

2M0

√
(c6 + s6)M0 − 2(c3 + s3)2a2 + (c4 + c2s2 + s4)

√
M0(M0 − 4a2) . (2.10)

The black hole approaches extremality in the limit M0 → 4a2. In this limit, the

two horizons (2.6) coalesce at r+ = a and the Hawking temperature (2.9) vanishes. The

charges (2.5) become

Mext = 6a2 cosh 2δ , JL ext = 4a3 (c3 + s3) , Qext = 4a2sc , (2.11)

and the angular velocity (2.7) and electric potential (2.8) become

ΩL ext =
1

a(c3 − s3)
, Φext =

c2s− s2c

c3 − s3
. (2.12)

At extremality, the Bekenstein-Hawking entropy (2.10) reduces to

SBH ext = 8πa3(c3 − s3) . (2.13)

– 3 –
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In this paper we are interested in the near-extreme case so we introduce a small parameter

κ̂ that measures the deviation from extremality and write M0 = 4a2 + a2κ̂2. Substituting

this into (2.10) and keeping terms up to linear order in κ̂, the near extremal entropy is

SBH near ext = 8πa3(c3 − s3) + 4πa3(c3 + s3) κ̂+O(κ̂2)

=
π2

3
(6JL ext)

(
1

π

c3 − s3

c3 + s3
+

κ̂

2π

)
+O(κ̂2) . (2.14)

2.1 Near horizon, near extremal limit

Consider the coordinate transformation

t = 1
2 εΩL ext t̂ , r =

r̂2 − r2
+

ε r2
+

, ψ = ψ̂ − ΩL extt̂ , φ = φ̂ . (2.15)

Here, r+ is the location of the outer horizon given in (2.6) and ΩL ext is the extremal

angular velocity (2.12). Making this coordinate transformation in the five-dimensional

geometry (2.2), (2.3), with M0 fixed to its extremal value, M0 = 4a2, and letting ε → 0,

one obtains the extremal near horizon geometry given in [12].

Here, we are interested in reaching the near horizon geometry of the black hole close,

but not exactly at, extremality. This is the analog of the so-called near-NHEK limit for

4D Kerr considered in [9]. In order to do this, we still make the coordinate transforma-

tion (2.15), but now parametrize deviations from extremality with a parameter κ defined by

M0 = 4a2 + a2ε2κ2 . (2.16)

Then the metric (2.2) gives rise to

ds2
5 =

Mext

12

[
−r(r + 2κ)dt2 +

dr2

r(r + 2κ)
+ dθ2 + sin2 θdφ2

+
27J2

L ext

M3
ext

(
πTL(dψ + cos θ dφ) + (r + κ)dt

)2]
(2.17)

in the ε→ 0 limit. Here, we have defined

TL ≡
1

π

c3 − s3

c3 + s3
. (2.18)

This notation will be clarified in the next subsection. The location of the horizon in (2.17)

is at r = 0 and the associated surface gravity is κ. We denote the corresponding Hawking

temperature by

TR ≡
κ

2π
. (2.19)

When we identify κ with the parameter κ̂ introduced in (2.14), the metric (2.17)

corresponds to the near horizon geometry of the black hole (2.2) close to extremality in

the following complementary sense as well. Making the coordinate transformation (2.15)

with ε = 1 and expanding the metric components in (2.2) to leading order in r ∼ κ̂� 1 we

obtain (2.17) with κ = κ̂. In the rest of the paper we make this identification throughout.
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The gauge field corresponding to the near horizon, near extremal geometry is obtained

by accompanying the coordinate transformation (2.15) with the gauge transformation

A → A− dΛ , with Λ ≡ Φext t̂ . (2.20)

Then the gauge field (2.20) becomes

A = −1

2
aeδ tanh 2δ

(
dψ + cos θdφ+ e−2δ(r + κ)dt

)
(2.21)

in the ε→ 0 limit.

2.2 Frolov-Thorne temperatures

We now move on to compute the Frolov-Thorne temperatures corresponding to the near-

extremal Kerr-Newman black hole, by adapting the strategy of [9] to our present context.

Consider a scalar field

ϕ = e−iωt̂+imψ̂ R̂(r̂)S(θ)T (φ̂) (2.22)

on the the black hole background (2.2), with charge q under the gauge field (2.3). Zoom-

ing into the near horizon region requires performing the coordinate transformation (2.15)

combined with the gauge transformation (2.20). The charged scalar (2.22) thus becomes

ϕ = eiqΛe−inRt+inLψ R(r)S(θ)T (φ) (2.23)

with

Λ =
2Φext

εΩL ext
t , m = nL , ω =

1

2
εΩL ext

(
nR +

2

ε
nL −

2qΦext

εΩL ext

)
. (2.24)

Now, the scalar field is in a mixed quantum state whose density matrix has eigenvalues given

by the Boltzmann factor e
− 1
TH

(ω−mΩL+qΦ)
, where TH is the Hawking temperature (2.9).

Identifying

e
− 1
TH

(ω−mΩL+qΦ)
= e
− 2nL
TL
−nR
TR
− q
TQ (2.25)

and using (2.24) we find the following Frolov-Thorne temperatures:

TR =
2

εΩLext
TH =

2a

επ
√
M0

(c3 − s3)
√

1− 4a2/M0

c3 − s3 + (c3 + s3)
√

1− 4a2/M0

, (2.26)

TL = − 2

ΩL − ΩLext
TH =

2a

π
√
M0

(c3 − s3)

c3 + s3 + (c3 − s3)
√

1− 4a2/M0

, (2.27)

TQ =
1

Φ− Φext
TH =

1

2π
√
M0

c3 − s3

s2c2
. (2.28)

Near extremality, M0 is given by (2.16) and (2.26)–(2.28) become, in the ε→ 0 limit,

TR =
κ

2π
, TL =

1

π

c3 − s3

c3 + s3
, TQ =

1

4πa

c3 − s3

s2c2
. (2.29)

Recall that both TR and TL have already appeared in our discussion: the former as the

Hawking temperature (2.19) of the near-horizon, near-extremal metric (2.17) and the latter

as a parameter, (2.18), in that metric. The present analysis elucidates the names given

previously to those quantities.
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3 Logarithmic correction to entropy

The logarithmic correction to the microcanonical entropy of a non-extremal, rotating

charged black hole in general spacetime dimension D has been computed by Sen in [6].

His result applies to the near extremal black hole considered in this paper, which has a

small but non zero Hawking temperature. Equation (1.1) in [6] for the correction to the

microcanonical entropy reads

Smc

(
M, ~J, ~Q

)
= SBH

(
M, ~J, ~Q

)
+ log a

(
Clocal −

D − 4

2
− D − 2

2
NC −

D − 4

2
nV

)
(3.1)

where NC =
[
D−1

2

]
is the number of Cartan generators of the spatial rotation group and

nV is the number of vector fields in the theory. Clocal arises from one loop determinants of

massless fields fluctuating in the black hole background and vanishes in odd dimensions.

The remaining contribution in (3.1) comes from zero modes and Legendre transforms.

Plugging D = 5, NC = 2 and nV = 1 into (3.1) we have

Smc = SBH − 4 log a , (3.2)

with, for the case at hand, SBH given by (2.10).

3.1 Microscopic computation

We now change gears and compute the logarithmic correction to the entropy of the mi-

croscopic theory dual to the Kerr-Newman black hole. In [12] this solution was embedded

into string theory and the microscopic dual thereby shown to be the infrared fixed point

of a 1+1 field theory living on the brane intersection. This fixed point is a possibly non-

local deformation of an ordinary 1+1 conformal field theory which preserves at least one

infinite-dimensional conformal symmetry. While the string theoretic construction implies

the existence of the fixed point theory, it exhibits a new kind of 1+1 D critical behavior and

is only partially understood. The near horizon geometry (2.17) has a SL(2, R)R × U(1)L
isometry subgroup coming from the isometries of the AdS2 submanifold and the unbroken

U(1)L ⊂ SU(2)L rotation isometry respectively. Various infinite-dimensional enhancements

of this global isometry, involving different boundary conditions, have been extensively con-

sidered in the literature, and may be relevant in different circumstances or for different

computations. See [20] for a recent discussion. We consider two of them which turn out to

both give the same log corrections.3

3.1.1 V irR × V irL

In this subsection we consider a CFT in which the global symmetries are enhanced as

SL(2, R)R ×U(1)L → V irR × V irL , (3.3)

where V irL and V irR are left and right moving Virasoro algebras with generators Ln and

L̄n respectively. L0 generates ψ rotations and L̄0 generates AdS2 time translations.

3Had they been different, the matching of logarithmic corrections would have singled one out.
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We put the CFT on a circle along ψ − t and consider the ensemble

Z(τ, τ̄) = Tr e2πiτL0−2πiτ̄ L̄0 . (3.4)

We assume that

4πτ = βL − βR + i(βL + βR) (3.5)

and 4πτ̄ = βL − βR − i(βL + βR). Standard modular invariance of this partition function

is Z(τ, τ̄) = Z(−1/τ,−1/τ̄). The microscopic dual to the Kerr-Newman black hole we are

considering in this paper has an additional SU(2) × U(1) global symmetry, corresponding

to the SU(2) rotation isometry and the U(1) gauge symmetry. Turning on the associated

chemical potentials, the partition function becomes

Z(τ, τ̄ , ~µ) = Tr e2πiτL0−2πiτ̄ L̄0+2πiµiP
i

(3.6)

and it obeys the modular transformation rule

Z(τ, τ̄ , ~µ) = e−
2πiµ2

τ Z

(
−1

τ
,−1

τ̄
,
~µ

τ

)
. (3.7)

Here µi are left chemical potentials associated with the left moving conserved charges P i

and µ2 ≡ µiµjk
ij with kij the matrix of Kac-Moody levels of the left moving currents. In

our case i, j run from 1 to 2 but, for the sake of generality, we temporarily assume they

run from 1 to n. This partition function is related to the density of states, ρ, at high

temperatures by

Z(τ, τ̄ , ~µ) =

∫
dEL dER dnp ρ(EL, ER, ~p) e

2πiτEL−2πiτ̄ER+2πiµip
i
, (3.8)

where EL, ER, p
i are the eigenvalues of L0, L̄0, P

i respectively. For small τ , (3.7) im-

plies that

Z(τ, τ̄ , ~µ) ≈ e−
2πiµ2

τ e−
2πiEvL
τ

+
2πiEvR
τ̄

+
2πiµip

i
v

τ . (3.9)

Then, inverting (3.8), we obtain the following expression for the density of states:

ρ(EL, ER, ~p) '
∫
dτdτ̄ dnµ e

2πi

(
−µ

2

τ
−E

v
L
τ

+
EvR
τ̄
−ELτ+ERτ̄−µipi

)
, (3.10)

where we have assumed that the vacuum is electrically neutral, piv = 0. This integral may

be evaluated by saddle point methods. The integrand reaches an extremum at

τ0 =

√
4EvL

4EL − P2
, τ̄0 = −

√
EvR
ER

, µ0i = −kijpj
√

EvL
4EL − P2

, (3.11)

where the matrix kij is the inverse of kij and P2 ≡ pipjkij . The leading contribution to

the entropy is obtained by evaluating (3.10) at the saddle (3.11). This gives

S = log ρ0 = 2π
√
−EvL (4EL − P2) + 2π

√
−EvR (4ER) . (3.12)

– 7 –
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Putting

EvL = EvR = − c

24
, EL −

P2

4
=
π2

6
c T 2

L , ER =
π2

6
c T 2

R , (3.13)

we have

S =
π2

3
c TL +

π2

3
c TR . (3.14)

The analysis of [12, 20] yields c = 6JL ext and using the values for TL, TR obtained in (2.29),

we see that (3.14) matches the near-extremal Bekenstein-Hawking entropy (2.14) to linear

order in κ. This extends the match of [12] from the extremal to the near-extremal regime.

The logarithmic correction ∆S to the leading entropy (3.12) is generated by Gaussian

fluctuations of the density of states (3.10) about the saddle (3.11):

∆S = −1

2
log

detA
(2π)n+2

, (3.15)

where A is the determinant of the matrix of second derivatives of the exponent in the

integrand of (3.10) with respect to τ , µi, τ̄ . We find

detA =
(2π)n+2

16
(−EvL)−

n+1
2 (4EL − P2)

n+3
2 (−EvR)−

1
2 (4ER)

3
2 det kij . (3.16)

We now fix n = 2 for the left moving SU(2)×U(1) current algebra corresponding to SU(2)

rotations and the gauge field. The SU(2) ×U(1) charges are p1 = 0 (because JR = 0) and

p2 ∝ Qext. The U(1) Kac-Moody level k22 ≡ kQ is given in appendix A, the SU(2) level

is k11 ≡ kJ ∝ c [32], and k12 = k21 = 0. Taking into account (2.11), we thus have the

following scalings,

EvL , E
v
R , EL − P2/4 , ER ∼ a3 , kQ ∼ a , kJ ∼ a3 . (3.17)

Bringing (3.17) to (3.15), (3.16), we obtain

∆S = −5 log a . (3.18)

3.1.2 Û(1)R × V irL

In this subsection we consider a warped CFT, in which the global symmetries are enhan-

ced as

SL(2, R)R ×U(1)L → Û(1)R × V irL . (3.19)

Here Û(1)R is a left moving Kac-Moody algebra whose zero mode R̃0 generates the right

sector time translations in AdS2 and V irL is a left moving Virasoro algebra whose zero

mode L̃0 generates the left sector U(1)L rotational isometry. The symmetry algebra of our

warped CFT is [
L̃m, L̃n

]
= (m− n)L̃m+n +

c

12
(m3 −m)δm+n ,[

R̃m, R̃n

]
=
kR
2
mδm+n ,

[
L̃m, R̃n

]
= −nR̃m+n ,

– 8 –
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where L̃m and R̃m are the Virasoro and Kac-Moody generators respectively. Putting the

theory on a circle along ψ, the partition function at inverse temperature β and angular

potential θ is given by Z(β, θ) = Tr e−βR̃0+iθL̃0 . On the other hand, in [18] it was shown

that by redefining the charges as

Ln = L̃n −
2

kR
R̃0R̃n +

1

kR
R̃2

0δn , Rn =
2

kR
R̃0R̃n −

1

kR
R̃2

0δn , (3.20)

and putting the theory on the same circle but in the different ensemble4

Z(τ, τ̄) = Tr e2πiτL0−2πiτ̄R0 , (3.21)

the partition function obeys the usual CFT modular invariance:

Z(τ, τ̄) = Z(−1/τ,−1/τ̄) . (3.22)

Assuming

4πτ = βL − βR + i(βL + βR) (3.23)

and 4πτ̄ = βL− βR − i(βL + βR) we may then proceed as in the previous section replacing

L̄0 with R0 everywhere starting from equation (3.6) onwards. We thus arrive at the same

results for the leading entropy and its logarithmic correction.

It should be noted that the enhancement (3.19) is somewhat unusual in the context of

warped AdS3 [17]. A third more natural enhancement SL(2, R)R×U(1)L → V irR× Û(1)L
in that context is also possible [20]. However, this case may not be treated as (3.19) above

because the arguments of [18] do not apply to the case when the identification in the

bulk (along ψ) is precisely anti-aligned with the action of L0 (along t). It is an impor-

tant outstanding problem in Kerr/CFT to generalize the arguments of [18] to accomodate

this case.

3.2 Match of the macroscopic and microscopic computations

We have already exhibited the match, in the near-extremal regime, of the bulk and mi-

croscopic results for the leading term of the entropy of the five-dimensional Kerr-Newman

black hole under consideration: the Cardy formula (3.14) reproduces the near-extremal

Bekenstein-Hawking entropy (2.14).

We will now show that the logarithmic corrections also agree. In order to furnish a

sensible comparison, one must ensure that both results are given in the same ensemble.

This is not the case for the macroscopic, (3.2), and microscopic, (3.18), results given above.

The former assumes the entropy to be a function of the energy Q[∂t̂] conjugate to the

asymptotic time which features in the full black hole solution (2.2), while the latter is

instead a function of the energy Q[∂t] conjugate to the near horizon time which appears

4A change of ensemble may result in different logarithmic corrections to the entropy. However, as

explained in appendix B, the change of ensemble corresponding to the charge redefinitions (3.20) here does

not imply any change in the logarithmic correction to the entropy.

– 9 –



J
H
E
P
0
4
(
2
0
1
7
)
0
9
0

in (2.17). The transformation between the macroscopic and microscopic density of states

requires a Jacobian factor (appendix B),

ρbulk =
δQ[∂t]

δQ[∂t̂]
ρ . (3.24)

Now, from the change of coordinates (2.15) and the expression for the extremal angular

velocity in (2.12), we see that this Jacobian scales like

δQ[∂t]

δQ[∂t̂]
∼ a . (3.25)

Thus

∆Sbulk = ∆S + log a , (3.26)

which indeed is satisfied by (3.2) and (3.18).
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A Computation of kQ

In this appendix we compute the level kQ of the U(1) Kac-Moody algebra associated with

the gauge field Aµ. We do not perform a full asymptotic symmetry group analysis here.

We expect that with appropriate boundary conditions on the gauge field this Kac-Moody

is consistent with the rest of the asymptotic symmetries used in section 3. Here we are

particularly interested in deriving the scaling of the level kQ with a.

Thus we assume the U(1) current algebra is generated by

Λη = η(ỹ) , (A.1)

where ỹ = πTL ψ. In modes, the generators

pn = −2πTL e
−inỹ/(2πTL) , (A.2)

satisfy the algebra

[pm, pn] = 0 . (A.3)

Using the formulas in [33], one can compute the central extension in the corresponding

Dirac bracket algebra. We find:

{Qpm , Qpn} = −im 24π2T 2
Lae

δ tanh 2δ δm+n . (A.4)
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The central extension comes entirely from the Chern-Simons term in the action (2.1).

Passing to the commutators { , } → −i[ , ] we obtain the current algebra,

[Pm, Pn] =
kQ
2
mδm+n , (A.5)

with level given by

kQ = 12 (2πTL)2 aeδ tanh 2δ . (A.6)

B Change of ensemble

Under a charge redefinition, ~q = ~q (~q ′), the density of states, ρ(~q), transforms with the

appropriate Jacobian factor as

ρ′(~q ′) =
∂(q1, q2, . . .)

∂(q′1, q
′
2, . . .)

ρ(~q) . (B.1)

The leading piece of the entropy S = log ρ typically scales like aD−2 for large q ∼ a and

is therefore independent of the change of ensemble. However, the logarithmic correction,

which scales like log a, often picks up contributions from the Jacobian factor above. We

have seen this explicitly in section 3.2 where the Jacobian (3.25) scales with a.

Another instance of a change of ensemble was mentioned in relation to the charge

redefinitions in (3.20). In this case the Jacobian is

∂(L0, R0)

∂(L̃0, R̃0)
= 2

R̃0

kR
= 2

√
R0

kR
. (B.2)

However, kR ∝ c ∼ a3 [20] and R0 ∼ a3 so in this instance the Jacobian does not scale with

a and therefore the logarithmic correction to the entropy is left intact by this particular

change of ensemble.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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