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In this letter, we extend the tree-level Kawai–Lewellen–Tye (KLT) and Bern–Carrasco–Johansson
(BCJ) amplitude relations to loop integrands of gauge theory and gravity. By rearranging the prop-
agators of gauge and gravity loop integrands, we propose the first manifestly gauge- and diffeomor-
phism invariant formulation of their double-copy relations. The one-loop KLT formula expresses
gravity integrands in terms of more basic gauge invariant building blocks for gauge-theory ampli-
tudes, dubbed partial integrands. The latter obey a one-loop analogue of the BCJ relations, and both
KLT and BCJ relations are universal to bosons and fermions in any number of spacetime dimensions
and independent on the amount of supersymmetry. Also, one-loop integrands of Einstein–Yang–
Mills (EYM) theory are related to partial integrands of pure gauge theories. Finally, we briefly
report on preliminary two-loop evidence that the KLT formula can be extended to any loop order.

INTRODUCTION

A unified perspective on fundamental forces intertwin-
ing gravity with gauge interactions is suggested by string
theory: Gravitons arise as the massless vibration modes
of closed strings which are in turn formed by joining
the endpoints of open strings with gauge bosons among
their ground-state excitations. A prominent perturbative
manifestation of gravity’s resulting double-copy structure
was revealed by Kawai, Lewellen and Tye (KLT) in 1985:
The KLT formula [1] assembles the tree-level S-matrix of
closed strings from squares of color-stripped open-string
amplitudes. Accordingly, its point-particle limit relates
tree amplitudes of Einstein gravity (and its supersym-
metric extensions) to squares of gauge-theory partial am-
plitudes. The structure of the KLT formula turned out
to apply universally to tree-level amplitudes in a variety
of non-gravitational theories, opening up a double-copy
perspective on Born–Infeld theory and special Galileons
[2] as well as, surprisingly, even the open string [3–5].

It is remarkable that the double-copy structure appears
to extend to the quantum regime [6], as supported by
impressive constructions of multiloop supergravity am-
plitudes from gauge-theory input such as [7, 8]. The un-
precedented efficiency of this method gives rise to hope
that it allows to pinpoint the onset of ultraviolet di-
vergences in various supergravity theories, see e.g. [8].
So far, such double-copy constructions have been car-
ried out at the level of cubic diagrams which have to be
represented in a particular gauge of the spin-one con-
stituents and thereby obscure the diffeomorphism invari-
ance of gravity amplitudes. In this letter, we close this
gap and give the first manifestly gauge- and diffeomor-
phism invariant “KLT-like” double-copy formula for their
loop integrands. It does not depend on any particu-
lar gauge in arranging the cubic-diagram representation
of the gauge-theory integrands, and it takes a universal
form for bosons and fermions, regardless of the number
of spacetime dimensions and supersymmetries.

The double-copy approach to perturbative gravity re-
lies on a hidden symmetry of the gauge-theory S-matrix
– the duality between color and kinematics due to Bern,
Carrasco and Johansson (BCJ) [9]. Similar to the KLT
formula, the manifestly gauge invariant tree-level in-
carnation of this duality known as the BCJ relations

among color-stripped amplitudes was initially derived
from string theory [10] and turns out to also apply to
effective scalar theories including non-linear sigma mod-
els [5, 11]. Generalizations of BCJ relations to one-loop
integrands have already been given in a field-theory [12]
and string-theory [13] context, and we will provide an al-
ternative formulation which is tailored to play out with
a KLT formula for one-loop gravity integrands.

A convenient framework to complement the string-
theory perspective on double copies as well as KLT and
BCJ relations is the CHY formalism due to Cachazo,
Yuan and one of the current authors [14]. The CHY
prescription for loop amplitudes [15, 16] manifests their
relation with forward limits of tree-level building blocks
[17] where one sums over the polarization and color de-
grees of freedom of two extra legs with back-to-back mo-
menta [18]. Indeed, the implementation of forward limits
in [16, 17] led us to identify the main results of this work,
as will be detailed in the future [19]. Given the wide
range of double-copy theories, the results of this letter
can further reveal universal structural insights into the
quantum regime of perturbative field and string theory.
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FIG. 1: Decomposing n-gon integrals into n tree diagrams.
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MAIN RESULTS

A. Definition of loop integrands: The key ingredi-
ent in our construction is a new representation of loop
integrands in gauge and gravity theories, first consid-
ered in [16] and [20]. The new representation can be ob-
tained by first rearranging any Feynman loop integrand
via partial-fraction relations and then shifting the loop
momentum, which will not change the integrated result
in dimensional regularization. At one-loop level, this pro-
cedure converts an n-gon integral into a sum of n terms,
where all the inverse “propagators” but one become lin-
ear in the loop momentum. For example, the n-gon scalar
integral in figure 1 can be written as

∫

2n−1 dDL

L2(L+k1)2. . .(L+k1+k2+ . . .+kn−1)2
=

∫

dDℓ

ℓ2

×

{

1

s1,ℓs12,ℓ . . . s12...n−1,ℓ
+ cyclic(1, 2, . . . , n)

}

(1)

with inverse propagators sij... ≡
1
2 (ki+kj+ . . .)2 and

sij...,ℓ ≡ ℓ · (ki+kj+ . . .) + 1
2 (ki+kj+ . . .)2 . (2)

The procedure can be applied to any one-loop amplitude
with local propagators, and the result can be identified as
tree diagrams involving two off-shell legs with momenta
±ℓ [17]. For non-supersymmetric theories, tree ampli-
tudes diverge in the forward limit, but the divergences
can be regulated using the prescription of [20], or that
of [17] in the CHY representation.
In this way, one can rewrite one-loop n-point gravity

amplitudes Mn in the new representation as

Mn =

∫

dDℓ

ℓ2
mn(ℓ) . (3)

We will refer to mn(ℓ) as the integrand for one-loop grav-
ity amplitudes– its n−1 propagators are linear in ℓ after
stripping off the overall 1/ℓ2, and it can be obtained from
a KLT formula to be spelt out below.

B. Partial integrands: The backbone of our KLT
formula for mn(ℓ) is a novel refinement of color-stripped
gauge-theory amplitudes A(1, 2, . . . , n). Given the rear-
rangement of loop integrals in (1), it is natural to col-
lect all terms with the loop momentum flowing from leg
i to i+1 (cf. figure 1) in the more basic building block
a(1, 2, . . . , i,−,+, i+1, . . . , n). Identifying k± ≡ ±ℓ, this
partial integrand can be viewed as a tree amplitude with
cyclic ordering (1, 2, . . . , i,−,+, i+1, . . . , n) in the for-
ward limit of two off-shell legs − and +. Hence, par-
tial integrands are individually gauge invariant, assuming
that forward-limit divergences are suitably regulated. By
definition, the sum of n such partial integrands gives the
complete integrand of one-loop color-ordered amplitudes:

A(1, 2, . . . , n) =

∫

dDℓ

ℓ2

n
∑

i=1

a(1, 2, . . . , i,−,+, i+1, . . . , n) .

(4)

In the following we propose BCJ relations among these
partial integrands a, and KLT relations that combine
them to the gravity integrands mn in (3).

C. One-loop BCJ relations: Having defined par-
tial integrands of the form a(π(1, 2, . . . , n),−,+) with
permutations π ∈ Sn, one defines a(α,−, β,+) for non-
adjacent legs − and + (with multiparticle labels such as
α = {α1, α2, . . . , αp}) via Kleiss–Kuijf relations of the
underlying (n+2)-point trees [21]. We conjecture that
they further satisfy universal BCJ relations like (n+2)-
point trees [9], leaving at most (n−1)! independent par-
tial integrands, even though additional relations may ex-
ist for special theories. These relations can be generated
by fundamental BCJ relations which involve changing the
position of one leg only. For instance, choosing + or 1
and defining k12...i ≡ k1 + k2 + . . .+ ki yields

n−1
∑

i=1

(ℓ · k12...i) a(1, 2, . . . , i,+, i+1, . . . , n,−) = 0 , (5)

and, by a similar use of momentum conservation,

n−1
∑

i=2

(k1 · k23...i) a(2, 3, . . . , i, 1, i+1, . . . , n,−,+)

= (ℓ · k1) a(2, 3, . . . , n,−, 1,+) . (6)

The BCJ relations should hold universally in D space-
time dimensions, for external bosons and fermions in the
adjoint representation of the gauge group and indepen-
dently on the extent of supersymmetry in a, ã.

D. One-loop KLT relations: As our main result,
we conjecture that the gravity integrands mn(ℓ) in (3)
can be obtained as bi-linears of partial integrands a, ã
of (possibly different) gauge theories. This manifestly
gauge- and diffeomorphism invariant incarnation of the
double copy [6] matches the (n+2)-point tree-level KLT
relations with two additional legs k±=± ℓ,

mn =
∑

π,ρ∈Sn−1

a(+, π, n,−) S[π|ρ]ℓ ã(+, ρ,−, n) , (7)

where π, ρ are permutations of 1, 2, . . . , n−1. The all-
multiplicity KLT matrix S[π|ρ]ℓ identified in [22] has
been studied in the momentum-kernel formalism [23] and
allows for the recursive definition [5]

S[α, j|β, j, γ]ℓ = kj ·(ℓ+kβ)S[α|β, γ]ℓ , S[∅|∅]ℓ = 1 , (8)

with kβ = kβ1
+. . .+kβp

and β, γ = {β1, . . . , βp, γ1, . . . γq}
denoting the composition of multiparticle labels β and γ.
The KLT relations (7) should be valid for any (possibly
asymmetric) double copy of gauge theories whose partial
integrands satisfy the above one-loop BCJ relations.
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EXAMPLES

In this section, we provide evidence for one-loop BCJ
and KLT relations, using examples of (partial) integrands
a and mn in gauge theories and supergravities with max-
imal or half-maximal supersymmetry. Supergravity in-
tegrands with 24 supercharges can be obtained from the
double copy of a1/2 and ãmax. We exemplify the degen-
erations of the BCJ basis in these supersymmetric cases
below (n−1)! elements and leave explicit checks for the-
ories without supersymmetry to the future.

A. 4pt maximal: One-loop four-point amplitudes
of D-dimensional SYM with 16 supercharges are deter-
mined by the permutation invariant t8-tensor

t8(A,B,C,D) ≡ fmn
A fnp

B fpq
C f qm

D (9)

−
1

4
fmn
A fnm

B fpq
C f qp

D + cyc(B,C,D)

with polarization vectors emi , linearized field strength
fmn
i ≡ kmi eni − kni e

m
i and D-dimensional vector indices

m,n = 0, 1, . . . , D−1. The partial integrands include

amax(1, 2, 3, 4,−,+) =
t8(1, 2, 3, 4)

s1,ℓs12,ℓs123,ℓ
(10)

amax(1, 2, 3,−, 4,+) = t8(1, 2, 3, 4)

[

1

s1,ℓs12,ℓs4,ℓ
(11)

+
1

s1,ℓs12,ℓs3,ℓ
+

1

s1,ℓs14,ℓs3,ℓ
+

1

s4,ℓs14,ℓs3,ℓ

]

and a similar six-term formula for amax(1, 2,−, 3, 4,+).
One can check that the supergravity integrand

mmax
4 =

|t8(1, 2, 3, 4)|
2

s1,ℓs12,ℓs123,ℓ
+ perm(1, 2, 3, 4) (12)

adapted to 32 supercharges follows from the KLT formula

mmax
4 = −

∑

σ,ρ∈S3

amax(σ(1, 2, 3), 4,−,+) (13)

× S[σ(1, 2, 3)|ρ(1, 2, 3)]ℓ ã
max(ρ(1, 2, 3),−, 4,+) .

Note that the universal kinematic factor t8(1, 2, 3, 4) se-
lected by maximal supersymmetry only leaves one lin-
early independent partial integrand, going beyond the
naively six-dimensional BCJ basis of a(σ(1, 2, 3), 4,−,+).

B. 3pt half-maximal: The infrared regularization
prescription of [27] for SYM amplitudes in D ≤ 6 with 8
supercharges gives rise to three-point partial integrands

a1/2(1, 2, 3,−,+) =
ℓm

[

em1 (k2 · e3)(k3 · e2)+(1↔2, 3)
]

s1,ℓs12,ℓ

−
(e1 · e2)(k1 · e3)

s12,ℓ
−

(e2 · e3)(k2 · e1)

s1,ℓ
, (14)

where the bubble numerators sij(ei · ej)(ki · ep) compen-
sate for the divergent propagators s−1

ij , and the triangle

numerator vanishes upon ℓm → kmj . Kleiss–Kuijf rela-
tions [21] and momentum conservation yield

a1/2(+, 1, 2,−, 3) = 0 , (15)

such that the KLT formula with one factor of
ã1/2(ρ(1, 2),−, 3,+) in each term identifies a vanishing

supergravity integrand, m
1/2
3 (ℓ) = 0.

C. 5pt maximal: The (D ≤ 10)-dimensional bosonic
components of the five-point results in pure-spinor super-
space [24] yield local and gauge invariant expressions [25]

amax(1, 2, 3, 4, 5,−,+) =
N ℓ

12345

s1,ℓs12,ℓs123,ℓs1234,ℓ

−
t8(12, 3, 4, 5)

s12s12,ℓs123,ℓs1234,ℓ
−

t8(1, 23, 4, 5)

s23s1,ℓs123,ℓs1234,ℓ
(16)

−
t8(1, 2, 34, 5)

s34s1,ℓs12,ℓs1234,ℓ
−

t8(1, 2, 3, 45)

s45s1,ℓs12,ℓs123,ℓ

with pentagon numerator

N ℓ
12345 = ℓm

[

em1 t8(2, 3, 4, 5) + (1 ↔ 2, 3, 4, 5)
]

(17)

− 1
2

[

t8(12, 3, 4, 5)+(12↔13, 14, 15, 23, 24, 25, 34, 35, 45)
]

and two-particle field-strength fmn
12 in t8(12, 3, 4, 5),

em12 ≡ em2 (k2 · e1)− em1 (k1 · e2) +
1
2 (k

m
1 − km2 )(e1 · e2)

fmn
12 ≡ km12e

n
12 − kn12e

m
12 − s12(e

m
1 en2 − en1 e

m
2 ) . (18)

In the full single-trace integrand (4), the propagators
(ℓ−k12...j)

2 quadratic in ℓ can be recovered from (16)
by the following property of the vector pentagon:

N ℓ→0
12345 −N ℓ→k1

12345 = t8(12, 3, 4, 5) + (2 ↔ 3, 4, 5) (19)

The supergravity integrand mmax
5 following from the

KLT relation (7) is checked to reproduce the 5! pen-
tagon diagrams and 10 · 4! box diagrams expected from
the BCJ duality and double-copy [6, 24, 26]. Note that
the naively 24-dimensional BCJ basis of partial inte-
grands is again degenerate by maximal supersymmetry –
the gauge invariant organization of [24] leaves three lin-
early independent kinematic factors, two permutations of
Atree

YM(1, 2, 3, 4, 5) and one ℓ-dependent invariant.

D. 4pt half-maximal: In the four-point SYM inte-
grands of [27], all the non-trivial tree-level diagrams in-
volving leg 1 are absorbed into the gauge invariant quan-
tities C1|ijk, C

m
1|ij,k, C

mn
1|i,j,k defined in the reference,

a1/2(1, 2, 3, 4,−,+) =
C1|234

s1,ℓ
−

ℓmCm
1|23,4

s1,ℓs123,ℓ
−

ℓmCm
1|34,2

s1,ℓs12,ℓ

+
ℓmℓnC

mn
1|2,3,4 − ℓm

[

s23C
m
1|23,4 + (23 ↔ 24, 34)

]

2s1,ℓs12,ℓs123,ℓ
. (20)

This expression is valid in D ≤ 6 and arises from solely
the hypermultiplet running in the loop. Contributions
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from additional vector multiplets can be obtained by lin-
ear combinations of (20) and its maximally supersym-
metric counterpart (10). BCJ relations and reflection
properties can be checked through the permutations

Cm
2|13,4 = Cm

1|32,4 + km4 C1|324 (21)

Cm
2|34,1 = Cm

1|34,2 +
[

Cm
1|23,4 + km4 C1|234 − (3 ↔ 4)

]

Cmn
2|1,3,4 = Cmn

1|2,3,4+2
[

k
(m
3 C

n)
1|23,4+k

(m
3 k

n)
4 C1|234+(3↔4)

]

+ 2iηmnǫpqrstue
p
1e

q
2k

r
3e

s
3k

t
4e

u
4 ,

up to the fingerprints of the D = 6 box anomaly in the
last line. The ℓ-dependent invariants such as ℓmCm

1|23,4

(beyond the maximally supersymmetric t8(1, 2, 3, 4))
leave several linearly independent partial integrands,
and it would be interesting to track the anomaly from

ℓmℓnC
mn
1|2,3,4 in the KLT formula for m

1/2
4 (ℓ).

E. MHV maximal: BCJ numerators for one-loop
MHV amplitudes in N = 4 SYM have been given at all
multiplicities [29] in terms of Xi,j ≡ 〈1| 6 ki 6 kj |1〉 [30].
The four- and five-point partial integrands read

aMHV(1, 2, 3, 4,−,+) =
δ8(Q)

∏4
j=2〈1j〉

2

X2
2,3

s1,ℓs12,ℓs123,ℓ
(22)

aMHV(1, 2, . . ., 5,−,+) =
δ8(Q)

∏5
j=2〈1j〉

2

{ X3,2X
2
4,5

s23s1,ℓs123,ℓs1234,ℓ

+
X4,3X

2
2,5

s34s1,ℓs12,ℓs1234,ℓ
+

X5,4X
2
2,3

s45s1,ℓs12,ℓs123,ℓ
(23)

+
X2,4X2,3Xℓ,5 +X2,5X2,3X4,5 +X3,5Xℓ,2X4,5

s1,ℓs12,ℓs123,ℓs1234,ℓ

}

,

with the standard super-momentum conserving delta
function δ8(Q) [28], and the n-point generalization can
be straightforwardly extracted from [29]. We have
checked up to n=10 explicitly, and expect to have a all-
multiplicity proof, that our one-loop KLT formula (7)
reproduces the MHV supergravity integrands of [29].

IMPLICATIONS FOR EINSTEIN–YANG–MILLS

Given the one-loop KLT relations (7) between am-
plitudes of pure (super-)gravity and pure gauge theo-
ries, it is natural to investigate their minimal coupling
within Einstein–Yang–Mills (EYM) theories. At tree
level, EYM amplitudes were related to partial amplitudes
of pure Yang–Mills theory [31, 32], and this section is de-
voted to one-loop extensions of such relations.

A. Partial integrands for EYM: In analogy to (4),
one can decompose the single-trace sector of one-loop
EYM amplitudes with insertions of m external gravitons

{p} = {p1, p2, . . . , pm} into partial integrands aEYM,

AEYM(1, 2, . . . , n; {p}) =

∫

dDℓ

ℓ2
(24)

×
n
∑

i=1

aEYM(1, 2, . . . , i,−,+, i+1, . . . , n; {p}) ,

where any propagator in the second line is rendered lin-
ear in ℓ via (1). With the convention that (24) only
tracks the propagation of gauge multiplets in the loop,
any aEYM can be obtained from the forward limit of
a tree-level EYM amplitude with single-trace ordering
(1, 2, . . . , i,−,+, i+1, . . . , n). Extensions of (24) to in-
corporate graviton propagators are related to trees with
additional pj and go beyond the scope of this work.

B. One-loop amplitude relations: The forward
limit of the tree-level amplitude relations such as [31]

Atree
EYM(1, 2, . . . , n; p) =

n−1
∑

j=1

(e · k12...j)

×Atree
YM(1, 2, . . . , j, p, j+1, . . . , n) (25)

for a single graviton implies the one-loop identity

aEYM(+, 1, 2, . . . , n,−; p) = −(e · ℓ) a(+, 1, 2, . . . , n,−, p)

+

n−1
∑

j=1

(e · k12...j) a(+, 1, 2, . . . , j, p, j+1, . . . , n,−) (26)

among partial integrands. The polarizations of the grav-
ity multiplet stem from tensor products of the vector em

in (25) and (26) with the constituents of Atree
YM and a,

and gauge invariance follows from the BCJ relation (6).
The maximally supersymmetric four-point instance can
be easily checked to descend from three box integrals:

Amax
EYM(1, 2, 3; p) = t8(1, 2, 3, p) (27)

×

∫

8 dDL (e · L)

L2(L+k123)2(L+k23)2(L+k3)2
+ cyc(1, 2, 3) .

A similar identification of legs (1, n) → (+,−) can be
performed to promote the results of [32] with additional
graviton insertions to loop level, resulting for instance
in the two-graviton example (28) in the appendix. Such
amplitude relations take a universal form, irrespective of
the supersymmetries preserved by a or aEYM, and a CHY
derivation will be given in [19]. It would be interesting to
convert the multitrace results of [32] into one-loop contri-
butions to EYM amplitudes with graviton propagators.

CONCLUSIONS AND FURTHER DIRECTIONS

In this letter, we have identified partial integrands as
basic gauge invariant building blocks for one-loop gauge-
theory amplitudes; they arise naturally from the new rep-
resentation of one-loop amplitudes [16, 20], such as (1) of
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n-gon integrals, and can be derived using forward limits
of tree amplitudes, or CHY representations [17]. These
partial integrands inherit BCJ relations (5), (6) from tree
level, and similar relations for partial integrands of one-
loop Einstein–Yang–Mills amplitudes (25). Most impor-
tantly, they are suitable for constructing one-loop gravity
integrands through our main result (7), a one-loop gener-
alization of the KLT formula [1] valid for the gravitational
double copies of a wide range of gauge theories.

The one-loop KLT formula is manifestly gauge- and
diffeomorphism invariant, and it holds regardless of any
particular representation of gauge-theory partial inte-
grands. Once a gauge-theory amplitude has been ex-
pressed in accordance with the duality between color and
kinematics [9], one can view the formula (7) as reorganiz-
ing the cubic diagrams in the double-copy representations
of [6] into gauge invariant building blocks. In absence of
duality-satisfying representations, however, (7) yields su-
pergravity integrands which have been previously out of
reach. In order to take maximal advantage of the KLT
formula, it remains to systematically develop integration
routines for rearranged loop integrals in mn (see [20] for
an example). Also, it should be feasible to reinstate
the standard propagators quadratic in the loop momenta
through an algorithmic procedure. On the other hand, it
is highly desirable to directly extract physical informa-
tion, such as unitarity cuts or ultraviolet divergences of
one-loop amplitudes, from the new representation of the
integrands.

Although the discussion has been adapted to the one-
loop case, we expect that the notion of partial inte-
grands and their KLT composition to permutation in-
variant gravity integrands extends to any loop order. For
instance, we have identified all two-loop four-point par-
tial integrands in maximal SYM, obtained from double
forward limits of eight-point tree amplitudes [33]. These
naturally lead to a new proposal for maximal supergrav-
ity integrands through the corresponding KLT formula,
which is similar to that of eight-point trees. We leave it
to future work to verify the proposal and to gather more
evidence for higher loops and multiplicities.

ACKNOWLEDGEMENTS

We would like to thank Nima Arkani-Hamed, Marcus
Berg, Igor Buchberger, Henrik Johansson, Carlos Mafra,
Dhritiman Nandan, Jan Plefka, Lorenzo Tancredi, Piotr
Tourkine, Congkao Wen, Ellis Ye Yuan and in particu-
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APPENDIX: EYM WITH TWO GRAVITONS

Starting from the relations for single-trace EYM tree
amplitudes with two gravitons [32], we relabel two gluon
legs (1, n) → (+,−) with momenta k± = ±ℓ to obtain

aEYM(+, 1, 2, . . . , n,−; p, q) =

n−1
∑

1=i≤j

(ep · k12...i)(eq · k12...j)

× a(+, 1, 2, . . . , i, p, i+1, . . . , j, q, j+1, . . . , n,−)

+ (ep · ℓ)(eq · ℓ)a(−, p, q,+, 1, 2, . . . , n)

+ (ep · ℓ)(eq · p)
[

a(−, q, p,+, 1, . . . , n) + a(q,−, p,+, 1, . . . , n)
]

− (ep · ℓ)
n−1
∑

j=1

(eq · k12...j)a(−, p,+, 1, . . . , j, q, j+1, . . . , n)

− (eq · p)
n−1
∑

j=1

(ep · k12...j)
[

a(+, 1, 2, . . . , j, p, j+1, . . . , n, q,−)

+ a({q�+, 1, 2, . . . , j}, p, j+1, . . . , n,−)
]

−
1

2
(ep · eq)

[

n
∑

i=1

(p · ki)a({q, p�+, 1, . . . , i−1}, i, i+1, . . . , n,−)

+ (p · ℓ)a(q, p,+, 1, . . . , n,−)
]

+ (p ↔ q) , (28)

where {β�γ} denotes the shuffle product. This reduces
partial integrands (24) for one-loop EYM amplitudes
with two graviton insertions to partial integrands (4) of
gauge-theory amplitudes.
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