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Abstract 

Plenty of high-heat-flux tests conducted on tungsten monoblock type divertor target mock-ups 

showed that the threshold heat flux density for cracking and fracture of tungsten armor seems to 

be related to the dimension of the monoblocks. Thus, quantitative assessment of such size effects 

is of practical importance for divertor target design. In this paper, a computational study about 

the thermal and structural impact of monoblock size on the plastic fatigue and fracture behavior 

of an ITER-type tungsten divertor target is reported. As dimensional parameters, the width and 

thickness of monoblock, the thickness of sacrificial armor, and the inner diameter of cooling tube 

were varied. Plastic fatigue lifetime was estimated for the loading surface of tungsten armor and 

the copper interlayer by use of a cyclic-plastic constitutive model. The driving force of brittle 

crack growth through the tungsten armor was assessed in terms of J-integral at the crack tip. 

Decrease of the monoblock width effectively reduced accumulation of plastic strain at the armor 

surface and the driving force of brittle cracking. Decrease of sacrificial armor thickness led to 

decrease of plastic deformation at the loading surface due to lower surface temperature, but the 

thermal and mechanical response of the copper interlayer was not affected by the variation of 

armor thickness. Monoblock with a smaller tube diameter but with the same armor thickness and 

shoulder thickness experienced lower fatigue load. The predicted trends were in line with the 

experimental observations.  
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cracking, low cycle fatigue  
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1. Introduction 

Water-cooled full-tungsten monoblock equipped with a copper alloy cooling tube is the reference 

design concept adopted for the plasma-facing components (PFCs) of the vertical target for ITER 

divertor [1]. The ITER-type full-tungsten divertor PFC consists of ca. 2 meter-long longitudinal 

arrays of rectangular tungsten monoblocks as armor equipped with a penetrating cooling tube of 

CuCrZr alloy as heat sink which is joined to the monoblocks via a stress-relieving soft copper 

interlayer (see Figure 1). Currently, the ITER-type target PFC design is also considered as the 

baseline design concept for the European DEMO divertor while several novel design concepts 

are being developed as well in parallel [2].  

The alteration of armor material option for the ITER divertor from previously considered carbon 

composites to tungsten posed an engineering challenge with respect to the high-heat-flux (HHF) 

performance under transient thermal loads. For the ITER divertor the peak surface heat flux is 

expected to reach 20 MW/m² during a slow transient event (~10 s) and roughly 1 GW/m² during 

an edge localized mode (<1 ms). The design specifications imposed on the ITER divertor targets 

are 5000 stationary loading cycles at 10 MW/m
2
 and 300 heat pulses at 20 MW/m

2
. It is noted 

that the same requirements with regard to HHF performance were assumed tentatively for the 

design of European DEMO divertor target PFCs [3].  

Previous HHF test campaigns conducted on the ITER-type tungsten divertor PFC mock-ups 

demonstrated that the specifications were fulfilled for both the normal and transient loading 

conditions [4, 5, 6, 7, 8, 9, 10, 11]. However, it was also observed that at 20 MW/m² the tungsten 

armor often underwent macroscopic fracture exhibiting deep cracking from the surface down to 

the cooling tube within 1000 load cycles. Furthermore, formation of microscopic voids and 

interfacial cracks was found in the copper interlayer after the cyclic HHF tests at 20 MW/m².  

Recent computational studies [12, 13, 14] based on the finite element simulation of structural 

failure clarified the possible mechanism of the armor deep cracking and the microscopic damage 

of the interlayer observed after HHF tests of ITER divertor PFC mock-ups at 20 MW/m². 

According to these studies, the deep cracking of armor is the result of dramatically 

recrystallization of the armor surface causing softening and plastic fatigue of the surface layer, 

which can lead to crack initiation and growth assisted by the plastically induced local tensile 

residual stress at the crack tip. It was also shown that the large plastic strain variation (alternating 
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plasticity) of the copper interlayer is the most likely cause of the fatigue damage observed in the 

copper interlayer.  

Although the ITER divertor PFCs were shown to fulfill the prescribed specifications with regard 

to HHF performance, it may be still desirable for the designers working on DEMO divertor PFCs 

to enhance the HHF performance as much as possible beyond the specification, since the current 

design efforts for DEMO reactors are subject to significant uncertainty with regard to operation 

scenarios and thus loads on divertor. Fabrication quality of materials and components is surely a 

critical factor, but the technical improvement has been a slow evolution process. An alternative 

approach would be to optimize the geometry, in particular, the dimension of PFCs.  

The typical cross-sectional dimension of the mock-ups used in the previous HHF tests conducted 

for ITER full tungsten divertor target qualification program was 28×28 mm². Beside this typical 

dimension, a smaller tungsten diverter has been tested intensively at the beginning of this century. 

Tungsten monoblock divertors  (monoblock dimension (w×h×t): 22×24×4 mm, d = 10 mm) 

manufactured by CEA and ENEA with W-1%La2O3  as well as the monoblocks manufactured  

by Plansee with thin tungsten lamellae of 0.2 mm survived 1000 cycles at 18 MW/m2 at 

unirradiated and  irradiated states [15]. The HHF conditions were performed with electron beam 

facility JUDITH and tested tungsten monoblocks did not show any degradation of the fatigue 

performance [15]. It seems that a smaller monoblock has a better material performance.  

However, due to the difference in testing conditions, material grades and designs, it is difficult to 

draw a clear conclusion on the impact of tungsten monoblock dimension. Therefore it is of great 

interest to perform numerical simulations for a better understanding of the impact of tungsten 

monoblock dimension and deliver quantitative predictions for the divertor design. In the 

literature, a design study of the ITER-like monoblock for optimizing dimensions was found [16] 

concerning the thermo-mechanical behavior of the materials. But their work was focused on the 

material behavior of the cooling tube. A rigorous numerical study on the impact of monoblock 

dimension concerning the thermo-mechanical and fracture behaviors of tungsten armor and 

copper interlayer seems to be missing.  

In this paper, a design-study is presented where the effect of monoblock size and armor thickness 

on the failure behavior of a reference ITER-type divertor target PFC is discussed. Comparative 

evaluations are delivered for different dimensions in terms of two major failure modes, namely, 

crack driving force in the armor and the fatigue lifetime of the interlayer.  
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2. Model for the finite element simulation  

 

Figure 1. Finite element model with mesh showing the symmetry quarter model of the reference 

divertor target PFC design considered in this study. w: monoblock width, t: monoblock thickness, 

h: monoblock height, a: armor thickness, b: side thickness of the armor, c: thickness of the 

recrystallized layer and d: cooling tube diameter.  

 

Parametric thermal and structural HHF simulations were carried out by means of finite element 

analysis (FEA). In Figure 1 the finite element model with mesh is illustrated showing the 

symmetry quarter part of the reference PFC model used. This model is the ITER-type monoblock 

design being considered for European DEMO divertor target as baseline option [16]. The model 

consists of the same constituent materials as in the ITER divertor target. For comparative 

estimations the dimensional parameters were selected as follows:  

The width of monoblock(w): 23 mm and 28 mm,  

The thicknesses of the monoblock (t): 4 mm and 12 mm,  

The sacrificial armor thickness (a): from 1 to 10 mm,  

The side thickness of the armor (b): 3 mm.  

The inner diameter of the cooling tube (d): 10 mm and 12 mm,  

 

The thicknesses of copper interlayer and copper alloy tube are fixed to 1 and 1.5 mm, 

respectively. These dimensional ranges basically cover the design space of the current ITER and 

DEMO divertor target PFCs.  
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For the FEA simulations commercial code ABAQUAS [17] was employed. Quadratic solid brick 

element (20 nodes) was used. A combined nonlinear isotropic and (Frederick-Armstrong type) 

kinematic hardening model and a kinematic hardening model were applied for copper and the 

copper alloy, respectively, while ideal plasticity was assumed for tungsten. Temperature-

dependent materials data were used. Selected materials parameters are listed in Table 1 [18, 19, 

20].  

Table 1. Materials data and parameters at selected temperatures [18, 19, 20].  

 Tungsten
1
(recrystallized

2
) CuCrZr

3
 Copper 

 20°C 400°C 1200°C 2000°C 20°C 500°C 20°C 400°C 

Young’s modulus (GPa) 398 393 256 285 127.5 106 115 95 

Yield stress (MPa) 1384 

(377) 

947 

(362) 

346 

(223) 

57     

(70) 

407 233 56 31 

Heat conductivity 

(W/mK) 

173 140 105 99 318 346 401 374 

Coefficient of thermal 

expansion (10
−6

/K) 4.5 4.63 4.98 5.43 16.7 18.4 16.7 18.2 

Material parameters entering the Frederick-

Armstrong constitutive model for CuCrZr and 

copper
4
. 

σ0
 

(MPa) 

356 238 3 3 

Q 

(MPa) 

- - 76 36 

b - - 8 25 

C(MPa) 41764 7549 64257 31461 

γ 521 352 888 952 
1
 Rolled and stress-relieved state. 

2
 The ultimate tensile strength of recrystallized tungsten is used as yield stress assuming a pre-

hardened state. 
3
 CuCrZr-IG (here IG - ITER Grade) alloy solution annealed, cold worked and aged condition 

4
 Softened by annealing at 700°C for 1 h. 

 

A typical full thermal history which a divertor target PFC would experience during fabrication 

and HHF loading was considered for the simulation. There are four distinct stages of temperature 

loading as illustrated schematically in Figure 2.  
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Fabrication: uniform cooling from stress-free temperature to room temperature (only once),  

Stand-by: quasi-uniform preheating from room temperature to coolant temperature (e.g. after 

maintenance),  

HHF loading: non-uniform heating at 10 or 20 MW/m
2
 (regular operation),  

Pulse-off duration: uniform cooling at coolant temperature (regular operation).  

The stress-free temperature was assumed to be 580 °C, which is the typical joining temperature 

in the HRP (Hot Radial Pressing) process, one of the potential fabrication techniques for PFCs 

[8].  

 

Figure 2. Schematic illustration of the thermal history considered for the simulation. 

 

The hydraulic boundary conditions assumed for the water coolant are as follows:  

Coolant temperature: 150 °C,  

Water pressure: 5 MPa,  

Water velocity: 16 m/s.  

These coolant hydraulic conditions are currently considered for the European DEMO divertor 

PFC [2]. The heat transfer coefficient was calculated using Sieder/Tate [21] and CEA/Thom [22] 

correlations (with swirl tape).  

The nodes on the both end sections of the tube were constrained to force a planar displacement in 

the longitudinal direction. For fracture mechanical computation a symmetry half model was used 

instead of the quarter model. 

3. Results and discussion  
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3.1. Thermal effect of monoblock dimension  

In Table 2 the maximum temperature values in the individual parts of the PFC assessed for four 

different monoblock dimensions (unit: mm, t=4/w=23; t=12/w=23; t=4/w=28; t=12/w=28) and 

two levels of HHF loading (10 and 20 MW/m²) are summarized. For brevity, the armor thickness 

a (5 mm) and the tube inner diameter d (12 mm) were fixed.  

It is seen that the width w has significant influence over the armor temperature in the near-

surface region while the thickness seems to have only minor influence. Decreasing the width 

from 28 to 23 mm leads to decrease of the maximum armor temperature roughly by 100 and 

200 °C at 10 and 20 MW/m
2
, respectively. This temperature decrease is primarily due to the 

shortening of heat conduction paths. The slight decrease of armor temperature in the thinner 

monoblock (t=4 mm) is attributed to the decrease in the ratio of the surface area being heated to 

the area of inner tube wall being cooled, since the number of gaps (0.25 mm) between 

monoblocks increases when the thickness is reduced. On the contrary, the dimension effect on 

temperature is strongly attenuated in the heat sink. The difference in the maximum temperatures 

among the four cases is not larger than 25 °C at the most.  

Another quantity of interest is the depth of recrystallized zone where the material’s yield stress is 

considerably reduced by softening. Cold-worked tungsten is known to undergo recrystallization 

roughly at 1300 °C. Taking this into account, recrystallized layer depth c is estimated to range 

from 1 mm (w=23 mm) to 1.5 mm (w=28 mm) at the mid-position of the armor top surface. Of 

course, c becomes larger when the armor thickness is increased.  For simplicity, c is set to be 1 

for all cases at 20 MW/m
2
. 

Table 2. Maximum temperature (°C) in the individual parts of the PFC assessed for four different 

monoblock dimensions and two levels of HHF loading.  

 Load 

(MW/m²) 

Monoblock dimension (mm) 

t=4, w=23 t=12, w=23 t=4, w=28 t=12, w=28 

W armor 
10 859 863 962 970 

20 1723 1730 1943 1950 

Cu interlayer 
10 336 342 350 356 

20 506 514 524 531 
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CuCrZr tube 
10 301 306 313 319 

20 432 439 445 452 

3.2. Mechanical effect of monoblock dimension on tungsten armor failure  

At 10 MW/m², the maximum temperature of the armor is so low (< 970 °C) in all cases that the 

yield stress remains high enough to avoid plastic yield and the whole armor behaves elastically. 

At 20 MW/m², however, the armor surface temperature by far exceeds the recrystallization limit 

leading to drastic decrease of yield stress and thus to considerable plastic flow in the top surface 

layer.  

Figure 3 shows the incremental evolution of plastic deformation at the armor top surface during 

the first five HHF loading cycles at 20 MW/m
2
. Plotted are accumulated equivalent plastic strain 

values computed at two selected surface positions, namely, at the center (left) and the edge (right) 

of the axial mid-line as indicated in Figure 1. Plastic strain values obtained for four different 

monoblock dimensions are compared.  

 

Figure 3. Incremental evolution of plastic deformation at the armor top surface during the first 

five HHF loading cycles (at 20 MW/m²).  

Figure 3 shows significant dimension effect, in particular, with respect to monoblock width at 

both positions. It is clearly found that the armor surface with the larger width (w=28 mm) 

experiences much larger cyclic plastic straining in terms of both total magnitude and increment 

(amplitude). Furthermore, at the edge position of the surface, also the monoblock thickness t has 
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considerable impact on both the magnitude and the increment of plastic strain, which increase as 

the thickness increases from 4 to 12 mm. On the contrary, the thickness t has negligible effect at 

the center position.  

The incremental steps of accumulated equivalent plastic strain reflect the amplitude of individual 

plastic strain components at the corresponding load cycles and as such are the measure of plastic 

fatigue load. Plastic fatigue lifetime of the armor surface can be estimated taking the stabilized 

plastic strain increment. This lifetime may be interpreted as the number of HHF load cycles to 

the initiation of a surface crack with the critical size being large enough for the crack to extend 

further by fatigue crack growth during subsequent HHF loading. It has been shown that such a 

macroscopic armor cracking mechanism is theoretically possible at 20 MW/m², where plastically 

induced local tensile stress field at the crack tip plays a key role in crack growth [12]. Therefore, 

it is highly desired to mitigate the plastic fatigue of armor surface to impede armor cracking.  

Table 3 summarizes the calculated equivalent plastic strain range (%) and corresponding fatigue 

lifetime at 20 MW/m
2
 estimated at the center and edge position on the mid-line of the armor top 

surface. The material data (fatigue curve of recrystallized tungsten) used for lifetime estimation 

was obtained at room temperature where tungsten is brittle. Thus, the estimates of life given here 

are obviously conservative (underestimated fatigue life) and should be regarded only indicative 

of the trend. It is also noted that each lifetime indicates the number of load cycles to be counted 

after armor surface has gotten fully recrystallized. To reach a fully recrystallized microstructure 

by a cumulative overheating effect through slow transient events, whose duration time amounts 

only a few seconds per pulse, the armor surface would need many load cycles additionally at 20 

MW/m².  

Table 3 Calculated equivalent plastic strain range [%] (corresponding fatigue lifetime*) at 20 

MW/m² estimated at the center and edge position on the mid-line of the armor top surface. Each 

lifetime indicates the number of load cycles to be counted after armor has been fully 

recrystallized for which many load cycles will be additionally needed at 20 MW/m².  

 

Dimension (mm) t=4, w=23 t=12, w=23 t=4, w=28 t=12, w=28 

Edge 0.039 (511) 0.084 (37) 0.188 (2) 0.247 (1) 

Center 0.028 (1561) 0.027 (1611) 0.181 (2) 0.176 (3) 
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*
The lifetime was assessed using the fatigue data of tungsten at room temperature [20] which 

yields conservative estimates. 

 

It is found that the fatigue lifetime at the armor surface does exhibit a very strong dependence on 

the monoblock dimension. The combination of smaller cross section width (w=23) and smaller 

axial thickness (t=4 mm) leads to significantly increased fatigue resistance. The difference in 

fatigue life between the monoblocks with the largest and the smallest size amounts a factor of 

500. Taking the preceding load cycles needed for recrystallization into account, the risk of armor 

surface cracking due to slow transient HHF loads does not seem to be a critical issue for the 

small size monoblock inasmuch as such a specification is considered as adopted for the ITER 

divertor.  

Assuming that a surface crack with a critical size has once been created by a certain cause, the 

impact of slow transient HHF loads on crack growth would be an important issue with respect to 

the structural integrity of the armor. In this context, the influence of monoblock size on the crack 

driving force is of interest.  

Figure 4 shows the J-integral values at the tip of a crack initiated at the armor surface and 

extending in the vertical direction. The J-integral values are plotted for a range of crack length 

from 0.5 to 2.5 mm and for four different combinations of monoblock width and thickness. The 

left graph shows the J-integral values estimated at the symmetry plane while the right one at the 

free surface edge. The J-integral values indicate the maximum crack tip loads being reached 

during stationary cooling following each HHF pulse at 20 MW/m². Both graphs clearly exhibit a 

significant impact of monoblock dimension, in particular, the monoblock width w at both 

positions. At the free surface edge of the crack, the monoblock thickness t affects the J-integral 

as well. It is found that armor failure by deep cracking would not be a critical concern anymore, 

provided that the monoblock size can be reduced down to t=4 mm and w=23 mm. In this case, 

the crack is expected to cease to grow at the depth of 1.5 mm at the most where J-integral (crack 

tip extension energy) begins to go below the value of critical fracture energy.  
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Figure 4. J-integral values at the tip of a crack initiated at the armor surface and extending in the 

vertical direction (left: at the symmetry plane, right: at the free surface edge).  

On the contrary, the trend of J-integral assessed for the larger monoblock dimensions implicates 

that the ITER-type monoblock with the width of w=28 mm will likely be subjected to high risk 

of armor cracking leading to deep self-castellation up to the interlayer. This feature has already 

been observed in several previous HHF tests [4, 5, 6, 7].  

Moreover, it turned out that the monoblock size had a considerable structural effect on the plastic 

deformation behavior of the soft copper interlayer. Figure 5 shows the evolution of accumulated 

equivalent plastic strain in the copper interlayer during the first five HHF load cycles at 10 and 

20 MW/m², respectively, plotted for four different combinations of width and thickness. All 

strain values were calculated at the mid-point of the line formed by intersection of the 1
st
 and 2

nd
 

planes of symmetry in the interlayer. It is clearly seen that the cyclic increment as well as the 

magnitude of plastic strain are modified by the monoblock dimensions.  

The assessed values of plastic strain range and fatigue lifetime are summarized in Table 4. The 

PFC with the smallest dimension (t=4 mm, w=23 mm) exhibits the most beneficial effect while 

the largest dimension leads to the highest plastic fatigue risk. This trend is in line with that of the 

armor fatigue and cracking behaviors discussed above. Differently from the armor failure case, 

however, it seems that the monoblock thickness (t) has more impact than the width (w) on the 

plastic fatigue of the interlayer. The fatigue lifetime of the interlayer fulfills the ITER 

specification at both 10 and 20 MW/m². It should be noted that the plastic strains were calculated 

at a position in the inner bulk. Near the free surface edge of the bond interface, the local plastic 
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strain will be strongly increased resulting in strong reduction of local fatigue lifetime. This result 

is estimated with fatigue curve fitted with experimental data. If a design curve (lifetime divided 

by 20) is applied, the predicted lifetime will not fulfil the ITER specifications. 

 

Figure 5. Accumulated equivalent plastic strain in the copper interlayer with respect to HHF (10 

(left), 20 MW/m
2
 (right)) cycle numbers as a function of tungsten monoblock dimensions. The 

markers in the picture are only used for selected data point for a better illustration. 

 

 

Table 4 Equivalent plastic strain range [%] (corresponding plastic fatigue lifetime
*
) of the copper 

interlayer. 

Dimension (mm) t=4, w=23 t=12, w=23 t=4, w=28 t=12, w=28 

10 MW/m
2
 

0.16 

(2.3×10
4 

cycles) 

0.20 

(1.6×10
4
) 

0.18 

(1.9×10
4
) 

0.22 

(1.4×10
4
) 

20 MW/m
2
 

0.39 

(5.0×10
3
) 

0.46 

(3.6×10
3
) 

0.42 

(4.2×10
3
) 

0.48 

(3.4×10
3
) 

*
Fatigue lifetime was estimated using the experimental low cycle fatigue data of copper in [20].  

 

3.2 Impact of the sacrificial armor thickness  

Sacrificial armor thickness (a) is an important design parameter as it directly affects the surface 

layer temperature of the tungsten armor. The sacrificial armor thickness decreases continuously 

during fusion operation as a result of surface erosion. If the initial thickness of a is defined too 
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large, the surface region of the armor would be overheated leading to undesired recrystallization 

and thus loss of original properties. On the other hand, the armor should have a sufficiently large 

initial thickness in order to provide a sufficiently long erosion lifetime. Therefore, assessment of 

thermal and structural impact of the sacrificial armor thickness is an important design concern.  

Figure 6 shows the maximum temperature at the armor surface as a function of armor thickness 

ranging from 1 to 10 mm under two different HHF loads, 10 and 20 MW/m². For 20 MW/m², the 

temperature values at the center of the armor surface are also plotted for comparison. Radiative 

cooling effect was also taken into account. The monoblock width (w), thickness (t) and tube 

inner diameter (d) were fixed at 23 mm, 4 mm and 12 mm, respectively. As expected, the surface 

temperature increases nearly proportionally with the armor thickness. At 10 MW/m
2
, the 

maximum surface temperature is still below the recrystallization temperature (1300 °C) of 

typical tungsten materials for the whole armor thickness range considered. At 20 MW/m
2
, the 

overall surface temperature begins to exceed the recrystallization temperature when the thickness 

is increased larger than 4 mm. At the thickness of 7 mm, the surface temperature is reaching 

nearly 2000 °C which seems unacceptably high. From the vertical temperature profile the depth 

of recrystallized layer can be roughly estimated. Assuming a sufficiently long heating duration 

accumulated at 20 MW/m
2
, the recrystallized depth increases from 0 to 6 mm for the whole 

thickness range. The in-plane temperature gradient on the surface decreases monotonically as the 

armor thickness increases.  
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Figure 6 Maximum temperature at the armor surface plotted for a range of sacrificial armor 

thickness a (monoblock width w: 23 mm, monoblock thickness t: 4 mm, tube inner diameter d: 

12 mm). 

Figure 7 shows the maximum temperature in the copper interlayer and the CuCrZr tube, 

respectively, as a function of armor thickness ranging from 1 to 10 mm under two different HHF 

loads (10 and 20 MW/m²). As in Figure 6, the width w, thickness t and tube diameter d were 

fixed at 23 mm, 4 mm and 12 mm, respectively. It is seen that the variation of armor thickness 

has no major impact on the heat sink temperature. 
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Figure 7. Maximum temperature in the copper interlayer and the cooling tube plotted for a range 

of sacrificial armor thickness a (monoblock width w: 23 mm, monoblock thickness t: 4 mm, tube 

inner diameter d: 12 mm).  

Figure 8 shows the incremental evolution of plastic deformation at the armor top surface during 

the first five HHF loading cycles at 20 MW/m². Plotted are accumulated equivalent plastic strain 

values computed at two selected surface positions, namely, at the center (left) and the edge (right) 

of the axial mid-line as indicated in Figure 1. Plastic strain values obtained for five different 

thicknesses of the sacrificial armor are compared. The graphs show that plastic strain at the 

armor surface increases monotonically as the thickness of the sacrificial armor increases. For 

armor thickness smaller than 4 mm, only negligibly small plastic strain is produced by the initial 

load, but the armor surface readily enters into a purely elastic state due to the shakedown effect 

and remains further elastic in the rest period of the HHF loading cycles.  
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Figure 8. Evolution of accumulated equivalent plastic strain at two armor surface positions (left: 

center, right: edge) during the first five HHF loading cycles at 20 MW/m². The markers in the 

picture are only used for selected data point for a better illustration. 

 

 

In Table 5 the saturated plastic strain range (equivalent strain) and the predicted fatigue lifetime 

at the center and the edge position on the armor surface under cyclic HHF loads of 20 MW/m² 

are summarized for seven different armor thicknesses. These are conservative estimations based 

on room temperature fatigue life data. As expected from Figure 8, armors with a thickness 

smaller than 4 mm are predicted not to experience any plastic fatigue failure at all. According to 

these results, it seems that for PFCs with an armor thickness up to 6 mm there would be no 

critical risk of failure with regard to cracking and fracture of the armor.  However, it should be 

noted that plastic straining at the surface of a divertor with a larger armor thickness occurs at a 

higher temperature, at which tungsten is more ductile and thus the estimation listed in Table 5 is 

more conservative with increasing the armor thickness. Therefore no single correlation between 

the armor thickness (> 4 mm) and its lifetime can be made before the material data for evaluating 

the thermo-mechanical fatigue of W is available. 

Table 5. Equivalent plastic strain range (%) and predicted LCF fatigue lifetime
*
 at two armor 

surface positions (center and edge of the mid-line) under HHF load at 20 MW/m². Results are 
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comapred for five different armor thicknesses (monoblock width w: 23 mm, monoblock 

thickness t: 4 mm, tube inner diameter d: 12 mm). 

 center edge 

Armor thickness  Δεp(%) Nf (cycles) Δεp(%) Nf (cycles) 

1, 3, 4 (mm) 0 No failure 0 No failure 

5 0.019 5227 0.032 889 

6 0.043 329 0.048 242 

7 0.082 39 0.076 52 

10 0.25 1 0.21 1 

*
LCF lifetime is predicted using the LCF data of tungsten at room temperature [20].  

Figure 9 shows the incremental evolution of accumulated equivalent plastic strain in the copper 

interlayer during the first five HHF loading cycles at 10 (left) and 20 (right) MW/m
2
. The rate of 

plastic strain accumulation slightly increases with the thickness up to 3 mm, and then decreases 

slightly beyond 3 mm. If the armor thickness is reduced to 3 mm due to erosion, the risk of 

plastic fatigue in the copper interlayer will be increased. However, the difference is small 

(especially at 10 MW/m
2
) indicating that the structural impact of the armor thickness on the 

fatigue of the copper interlayer is not significant.  

 

 

Figure 9. Accumulated equivalent plastic strain in the copper interlayer during the first five HHF 

loading cycles at 10 (left) and 20 (right) MW/m² plotted for different armor thicknesses 



18 
 

(monoblock width w: 23 mm, monoblock thickness t: 4 mm, tube inner diameter d: 12 mm). The 

markers in the picture are only used for selected data point for a better illustration. 

 

3.3. Impact of the cooling tube diameter  

Two options of cooling tube inner diameter were investigated (10 and 12 mm). It is noted that 

these two diameters have been the most widely adopted size of PFC cooling tube including ITER. 

Three different combinations of dimensions were evaluated as listed in Table 6 (case 1, 2 and 3). 

In the case 3, the height h and the width w are reduced in order to keep the same sacrificial armor 

thickness and armor shoulder thickness as in case 1 so that purely the effect of tube diameter can 

be identified. In case 2, only the tube diameter is reduced compared with case 1, thus the armor 

thickness becomes larger than in case 1 and case 3 accordingly.  

In Table 6 the maximum temperatures in the individual parts of the PFC under 20 MW/m
2
 are 

compared between the three dimension cases.  

 

Table 6. Maximum temperature (°C) at different parts of the divertor for different inner 

diameters and dimensions of tungsten monoblock at 20 MW/m
2
. 

 Case 1) Ø=12 mm  

h=25 mm, w=23 mm 

Case 2) Ø=10 mm  

h=25 mm, w=23 mm 

Case 3) Ø=10 mm  

h=23 mm, w=21 mm  

Tungsten armor 1723  1930 1683 

Copper interlayer 506 520 509 

CuCrZr tube 432 447 434 

 

Figure 10 shows the incremental evolution of accumulated equivalent plastic strain at two 

positions (left: center, right: edge) on the armor surface for the first five HHF loading cycles at 

20 MW/m
2
. Plastic strains are compared for the three cases of dimension combinations as 

described in Table 6. The case 2 exhibits the largest magnitude and increment of plastic strain 

whereas the case 3 results in the smallest plastic strain and strain amplitude. This trend implies 

that the driving force of plastic fatigue at the armor surface is proportional to surface temperature 

regardless of how the dimensional parameters are actually combined. For a given armor 
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thickness, smaller diameter looks advantageous than larger one with respect to fatigue load on 

the armor surface.  

 

Figure 10. Evolution of accumulated equivalent plastic strain at two positions (left: center, right: 

edge) on the armor surface for the first five HHF loading cycles at 20 MW/m
2
. The markers in 

the picture are only used for selected data point for a better illustration. 

 

 

Figure 11 shows the incremental evolution of accumulated equivalent plastic strain in the copper 

interlayer at 20 MW/m
2
. Plastic strains are compared for the three dimension cases. Obviously, it 

seems that the difference in dimensions (e.g. tube diameter) considered here is not big enough to 

cause any remarkable impact on the plastic deformation of the copper interlayer.  
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Figure 11. Evolution of accumulated equivalent plastic strain in the copper interlayer for the first 

five HHF loading cycles at 20 MW/m
2
. The markers in the picture are only used for selected data 

point for a better illustration. 

 

4. Conclusions 

In this paper, an extensive computational study was presented about the structural impact of the 

dimensional parameters on the failure behavior of an ITER-type divertor target PFC under HHF 

loads of 10 and 20 MW/m
2
. As variable dimensional parameters the width and the thickness of 

the tungsten monoblock, the thickness of sacrificial armor and the inner diameter of the cooling 

tube were considered. The key findings are summarized in the following:  

1.  Decreasing the width and thickness of monoblock leads to a lower risk of deep cracking 

in the armor and plastic fatigue in copper interlayer. To reduce the risk of deep cracking, 

it is much more efficient to decrease the width of monoblock than the thickness of 

monoblock.  

2. Decreasing the thickness of tungsten armor leads to a lower temperature at the top surface, 

thus a smaller plastic strain accumulation at the top surface (at 20 MW/m
2
), but it has no 

significant impact on the thermo-mechanical behavior of the copper interlayer.  
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3. Decreasing the inner diameter of the tube remaining the same armor thickness and the 

shoulder thickness leads a decrease of plastic strain accumulation at top surface of 

monoblock.  

According to the parametric predictions of this work, monoblock with a smaller size turned out 

to experience lower failure rates in terms of both brittle cracking of tungsten and plastic fatigue 

of copper interlayer compared to larger ones. This trend is generally in line with the previous 

experimental observations. Dedicated HHF test campaigns are foreseen in near future to verify 

the present computational predictions in the framework of European DEMO divertor project.  
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