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Abstract. Velocity-space tomography of the fast-ion distribution function in a fusion

plasma is usually a photon-starved tomography method due to limited optical access

and signal-to-noise ratio of fast-ion Dα (FIDA) spectroscopy as well as the strive for

high-resolution images. In high-definition tomography, prior information makes up

for this lack of data. We restrict the target velocity space through the measured

absence of FIDA light, impose phase-space densities to be non-negative, and encode

the known geometry of neutral beam injection (NBI) sources. We further use a

numerical simulation as prior information to reconstruct where in velocity space the

measurements and the simulation disagree. This alternative approach is demonstrated

for four-view as well as for two-view FIDA measurements. The high-definition

tomography tools allow us to study fast ions in sawtoothing plasmas and the formation

of NBI peaks at full, half and one-third energy by time-resolved tomographic movies.

1. Introduction

It is often convenient to split ion distribution functions in magnetized fusion plasmas

into two parts. One part contains fast ions from fusion reactions or auxiliary heating

and the other part thermal ions. The latter is by definition described by a Maxwellian

distribution and thus fully determined by a temperature Ti, a density ni and a drift

velocity vi. As Ti and ni are nearly constant on a flux surface, bulk-ion measurements
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often refer to flux surface measurements of these fundamental parameters [1–4]. Fast-

ion velocity distribution functions are much more complex. They are not flux functions

due to the large drift excursions of fast ions, and they are in general 6D functions in

phase space. Nevertheless, the cyclotron motion in strongly magnetized plasmas implies

an approximate rotational symmetry which effectively reduces the dimensionality of

velocity space to two. Usually fast-ion measurements do not refer to measurements

of the fundamental high-dimensional fast-ion distribution functions but rather to

measurements of local 1D projections or other derived quantities such as the measured

spectra in collective Thomson scattering (CTS) [5–8], fast-ion Dα spectroscopy (FIDA)

[9–11], neutron emission spectrometry (NES) [12–15] and γ-ray spectrometry (GRS)

[16–19]. This is in contrast to bulk-ion measurements where the fundamental parameters

Ti, ni and vi are inferred from the spectra and presented as measurements whereas the

spectra themselves are of secondary interest.

Velocity-space tomography allows us to infer the fundamental 2D fast-ion velocity

distribution functions from measured spectra in analogy to bulk-ion measurements

[20–31]. The 2D velocity distribution function is spatially localized in a small

measurement volume which we take to be a single point in position space. The fast-

ion measurements depend on phase space in a complicated way illustrated by so-called

weight functions which have been formulated for FIDA [10,32], neutral particle analyzers

(NPA) [10], CTS [21], fast-ion loss detectors [33], NES [34, 35] and GRS [36, 37]. To

exploit the rich information about fast ions contained in the measurements by traditional

procedures, we need to consider hundreds of data points, e.g. spectral bins, together with

the corresponding weight functions. Further, the spectral measurements also depend on

nuisance parameters such as bulk-ion densities or temperatures.

Velocity-space tomography provides a way to process this wealth of information

at once by inverting the data. It provides a 2D image that is straightforward to

interpret, that is the best useful fit to hundreds of simultaneous measurements from

different diagnostics, that shows the fundamental quantity of interest rather than derived

quantities, and that accounts for nuisance parameters. The tomography approach also

allows an alternative way to compare fast-ion measurements and numerical simulations.

Traditionally, this is done by comparing the measurements with simulated measurements

in units particular to the diagnostic, e.g. the spectral density of the measured neutron

or photon fluxes (Dα, γ, or mm-wave). Velocity-space tomography allows us to use the

fundamental 2D velocity distribution function as a meeting ground between theory and

observation for any combination of fast-ion diagnostics [23, 29, 31].

Until now velocity-space tomography has relied on standard inversion methods such

as truncated singular value decomposition (TSVD), the maximum entropy method, and

variants of the Tikhonov regularization [24,25,27,28]. For measurements with high data

quality and signal-to-noise ratio, these inversion methods work well. We have previously

shown that it is possible to correctly reconstruct the injection energy in plasma heated

by neutral beam injection (NBI), and good agreement with TRANSP predictions was

found in the absence of strong magnetohydrodynamic (MHD) activity [24,27]. Fast-ion
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velocity-space redistribution patterns of sawtooth crashes could also be reconstructed

with confidence [26–31]. However, velocity-space tomography is usually a photon-

starved enterprise since the signal-to-noise ratio is often low compared with many other

tomography applications and the optical access to tokamak plasmas is limited. The

FIDA emission is weak compared with other components of the measured spectra, e.g.

the beam emission. In addition, the spectra are often polluted with strong background

contributions from bremsstrahlung and impurity line radiation. This hampers the

analysis in plasmas with high electron density or high impurity content. In conflict

with the limited amount of data, we strive for high-resolution images requiring the

inference of many unknowns. Consequently, the inversions based on standard methods

have been plagued by artifacts, for example non-zero phase-space densities at energies

larger than the NBI energy or negative phase-space densities, even though artifacts can

be minimized in optimized discharges usually based on L-mode plasmas with low density

and low heating power [24,26–28]. Artifacts can be attenuated by increasing the number

of measurement data points by installation of additional fast-ion diagnostics [22, 27].

However, often economic or technical constraints do not allow this. In high-definition

velocity-space tomography we make up for the lack of data through various types of

prior information. This not only improves results for the five-view FIDA diagnostic at

the tokamak ASDEX Upgrade [38], but it also allows the use of inversion techniques

for more common FIDA systems with two or three views. The attenuation of artifacts

through the use of prior information further allows an increased resolution of the images.

We discuss prior information for velocity-space tomography in section 2 and the

choice of the regularization strength using current inversion techniques in section 3.

Substantial improvements brought about by prior information are demonstrated in

sections 4 and 5. In section 6 we study fast-ion velocity distributions in NBI heated

plasmas and dynamics in sawtoothing plasmas using high-definition movies applying

our new techniques. Finally, we draw conclusions in section 7.

2. Prior information for velocity-space tomography

Velocity-space tomography entails the solution of an ill-posed problem in which we seek

F ∗ solving the matrix equation

WF ∗ = S (1)

where W and S are known [22]. F ∗ is the fast-ion velocity distribution function

discretized in n pixels, S holds m fast-ion measurements, and W is an m × n matrix

composed of weight functions. S and W are normalized by the uncertainties of the

measurements [23]. Noise in the measurements makes the rows of the matrix equation (1)

inconsistent, so that there is no solution irrespective of the choice of n (n = m, n < m,

or n > m). One might have hoped that one could instead solve the related least-squares

problem

F ∗
LS = argmin

F
‖WF − S‖2, (2)
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where F is an arbitrary fast-ion velocity distribution function and F ∗
LS is the least-

squares solution. However, this is also useless since the matrix W is ill-conditioned

and hence the solution F ∗
LS is not stable. This means that small perturbations in

S can lead to large perturbations in F ∗
LS which is therefore dominated by random

jitter. Nevertheless, we can construct a related well-conditioned problem by imposing

additional requirements that reflect prior assumptions about the solution and that

provide useful and stable solutions. This is called regularization. A popular

regularization method in plasma physics is the Tikhonov regularization [28, 39, 40] in

which we solve the minimization problem

F ∗ = argmin
F

{

||WF − S||22 + λ2||LF ||22

}

(3)

In equation 3, F ∗ minimizes the sum of the residual of the original ill-posed problem

(first term) and the norm of the additional requirement on the solution (second term).

A common choice is to require that the norm of the gradients in F ∗ is small, i.e. that

the solution is smooth. In this so-called first-order Tikhonov regularization, the penalty

matrix L is a matrix operator effecting a finite difference approximation of a gradient

[28]. We calculate the gradient in (v‖, v⊥)-space where parallel and perpendicular denote

directions with respect to the magnetic field [28]. The free regularization parameter λ

balances how well the solution should fit the noisy data and how much it should obey the

regularization constraint. Equation 3 shows that for small λ’s the residual of the original

problem dominates whereas for large λ’s the norm of the regularization constraint

dominates. The challenge now is to select λ leading to a useful and stable solution

as we will discuss in section 3. An equivalent formulation of Tikhonov’s minimization

problem in equation 3 is

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

0

)
∥

∥

∥

∥

2

. (4)

Our computations of Tikhonov solutions in the following will be based on the formulation

in equation 4 as it is most stable and best suited for numerical computations. Our

exposition will focus on Tikhonov regularization, but our methods are applicable to

other regularization methods as we will demonstrate for TSVD. The types of prior

information presented in the following subsections are summarized in table 1 together

with their benefits and risks. Each type of prior information can be optionally added

when appropriate.

2.1. Null measurements

FIDA measures Doppler-shifted Dα-light emitted when a fast deuterium neutral is

formed in a charge-exchange reaction from a fast deuterium ion and then decays from

the third to the second excited state [9]. In many experiments, there is an upper limit

to the observed Doppler shifts. Parts of a spectrum where no FIDA light is observed

above the noise floor are referred to as null measurements. The wavelength ranges of

null measurements are related to velocity-space regions through weight functions [32].
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Table 1. Prior information used in this article, their benefits and risks. Each prior is

optionally used when appropriate.

Prior Benefits Risks

L (1st-order) Good for smooth functions. Misses spikes and ridges.

F > 0 Always true, improves solu-

tions.

F < 0 could point to data

errors that are now missed.

F (E0, p0) = 0 Avoids artifacts in null-

measurement region.

Misses marginal densities of

fast ions in null-measurement

region. Possibly artifacts at the

boundary.

κ(E, p) Accounts well for NBI peaks. Misses any peak displacement.

Might introduce spurious

peaks.

Fsim Good at locating discrepancies

in velocity space.

Possible misinterpretation if

the absolute scaling is wrong.

We refer to such weight functions as null-measurement weight functions. If treated on

an equal footing with detections of FIDA light, null measurements already contribute

strongly to the reconstruction of the large-scale shape of the velocity distribution

function since they tend to decrease the reconstructed phase-space densities in the

velocity space covered by the null-measurement weight functions. For that reason the

FIDA system at ASDEX Upgrade was upgraded to measure red- and blue-shifted light

in all spectra so that the absence of FIDA light could be measured [27]. Still, inversions

are plagued by artifacts in velocity-space regions covered by null-measurement weight

functions where the phase-space densities should be negligible [24].

Here we remedy such artifacts by analyzing the measurements in two stages. In

the first stage we identify regions in velocity space where null measurements suggest

phase-space densities below the detection limit of the diagnostic according to
∫

w0FtruedEdp = S ≤ ǫ (5)

where w0 is the null-measurement weight function, Ftrue is the unknown true fast-ion

velocity distribution function, S is the measured signal, and ǫ is the noise floor. As is

customary, w0 and Ftrue are given in energy-pitch coordinates (E, p), where E is the

energy of the fast ions and p is the pitch defined as p =
v‖

v
. v is the fast-ion speed, and

v‖ the velocity component anti-parallel to the magnetic field. The non-negativity of w0

and Ftrue would allow us to conclude from an absolutely certain null-measurement (i.e.

ǫ = 0) that Ftrue must be zero in the regions covered by the null-measurement weight

function. If noise is present, the strict argument does not hold. Nevertheless, we can still

assert that the velocity space covered by the null-measurement weight function contains

so few ions that they cannot be detected against the noise floor and thus neglect the

small phase-space densities in these regions. This stage does not require the solution

of an inverse problem and is thus very reliable if null-measurements can be told apart

from measurements of small FIDA intensities, i.e. if the measurement uncertainties can
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Figure 1. The coloured lines circumscribe the regions covered by null-measurement

FIDA weight functions for ASDEX Upgrade discharge #31557 where the five colours

represent the five views. These null-measurements suggest negligible fast-ion densities

for energies above the black line to the right. The vertical black line at 10 keV is defined

as the border between fast and thermal ions. The phase-space densities between the

black lines are found by tomographic inversion.
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Figure 2. Comparison of the target velocity space identified in figure 1 with a

TRANSP simulation of the fast-ion velocity distribution function [1016 keV−1m−3].

The simulation confirms the form of the null-measurement region with negligible phase-

space densities. The colorbar is linear and includes positive phase-space densities as

well as negative phase-space densities to allow comparisons with figures 4 and 5.

be quantified reliably. In the second stage we solve the tomography problem neglecting

the phase-space densities in the regions covered by null-measurement weight functions:

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

0

)
∥

∥

∥

∥

2

subject to F ∗(E0, p0) = 0. (6)

E0 and p0 are the energies and pitches covered by the null-measurement weight functions,

and F ∗(E0, p0) are the elements of the vector F ∗ that represent the null-measurement

region. This condition determines an upper energy boundary of the target velocity

space that we seek to reconstruct (figure 1). As weight functions are not bounded in
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energy, the target velocity space has also been judiciously restricted at some energy in

previous work. A common choice is 10-50 keV above the injection energy of 60 keV

or 90 keV as phase-space densities at larger energies are supposed to be small. Null-

measurement weight functions allow us to determine this upper boundary in energies

from the measurements in an optimal way that does not allow artifacts in the null-

measurement region and that minimizes the number of unknowns in the inversion. This

upper boundary is a strong function of pitch (figure 1). Neoclassical simulations by

TRANSP [41] agree very well with the shape of the null-measurement velocity space

(figure 2). Maxima of the velocity distribution function simulated by TRANSP appear

at 60 keV and at 30 keV, corresponding to the full and half injection energy, whereas

here no peak appears at 20 keV (one-third energy) as the TRANSP model removes

thermalized particles in this region due to the high temperature.

The null-measurement idea is based on the presence of a sharp transition to zero

in the fast-ion velocity distribution function. This is fulfilled in NBI discharges at the

highest injection energy. In experiments with ion cyclotron resonance heating, the fast-

ion distribution function is not expected to have a sharp transition within the energy

range accessible to FIDA, such that the null-measurement technique cannot be used

here. Nevertheless, we note that null measurements are often found in NES and GRS

measurements in plasmas with third harmonic ICRH at JET as these diagnostics can

easily detect MeV-range ions [14].

2.2. Non-negativity

One of the advantages of maximum entropy regularization is that it does not allow

negative phase-space densities. The TSVD and variants of the Tikhonov regularization

(one of which is inspired by Fisher information) do allow negative phase-space densities

and in fact inversions based on those methods often contain regions with small

negative phase-space densities. Negative phase-space densities have usually been ignored

[11,22–25,28–31]. In a recent study such negative densities were strongly attenuated by

a new approach [27]. It used fictitious measurements with pixel-sized weight functions

covering the most negative values in the inversions. These fictitious measurements were

given enough weight to iteratively force the phase-space densities to negligible, yet still

negative, values. Here we simply impose the constraint that the solution be non-negative

and solve the minimization problem

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

0

)
∥

∥

∥

∥

2

subject to F ∗ ≥ 0 (7)

using a standard non-negative least-squares algorithm [42]. The implementation as

constraint has the advantage that no assumptions about the negative regions are needed.

We will in the following also impose non-negativity and null-measurement constraints

together:

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

0

)
∥

∥

∥

∥

2

subject to

{

F ∗(E0, p0) = 0

F ∗ ≥ 0
. (8)
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2.3. Positions of neutral beam injection peaks

Often the fast-ion distribution function has peaks at full-, half and one-third NBI energy

which are difficult to reconstruct. We will show a reconstruction of all three NBI

peaks based on TSVD exploiting null-measurements in section 4. First-order Tikhonov

regularization, which penalizes steep gradients typical for NBI peaks, will tend to reduce

the peaks. The positions of the NBI peaks, if present, are actually very well known from

the geometry and energy of the beams. Three peaks are expected at E = (20, 30, 60) keV

and p = 0.6 for NBI Q3 in the plasma center. Here we encode the known geometry

of the NBI by using a 2D function κ(E, p) varying between 0.5 and 1 and solve the

minimization problem

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λκ(E, p)L

)

F −

(

S

0

)
∥

∥

∥

∥

2

subject to

{

F ∗(E0, p0) = 0

F ∗ ≥ 0
. (9)

This reduces the penalty by a factor of about two at the position of the NBI sources,

where we expect large gradients (figure 3), compared with the penalty elsewhere. In

this way no prior knowledge of the size of the peak is used, and in fact even a negative

peak would equally well be supported by κ(E, p).

20 40 60 80
E [keV]

-0.5

0

0.5

p 
[-

]

0.5

0.6

0.7

0.8

0.9

1

Figure 3. The known positions of the beam injection peaks are encoded by using

a 2D regularization given by κ(E, p) [-]. The total regularization strength is given

by λκ(E, p). The half- and one-third energy injection peaks merge due to the low

resolution.

2.4. Numerical simulations as prior information

In previous studies of velocity-space tomography based on three to five FIDA views or

a mix of FIDA and CTS views, it was possible to find useful and stable inversions and

hence provide measurements of the fast-ion velocity distribution function and derived

quantities such as the fast-ion density [26, 28]. However, if fewer views are available

or if the signal-to-noise ratio is unfavourable, this is sometimes out of reach. Here

we propose a new goal of the tomography approach for such highly photon-starved

situations. Rather than inferring the full 2D velocity distribution function, we only seek

to infer the distribution of any discrepancy between a numerical simulation and the
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measurement in velocity space. Firstly, this is a simpler task that is possible with fewer

views as we will show. Secondly, deviations from a numerical simulation is often what

we are actually interested in. For example, the TRANSP code accounts for neoclassical

transport and likely provides a good picture of the distribution function in MHD

quiescent discharges. In MHD active discharges, we often observe discrepancies from

such neoclassical simulations. The discrepancies are attributed to anomalous transport

in addition to the neoclassical transport which still serves as a baseline. To locate

the distribution of any disagreement in velocity space, we penalize differences from the

simulated velocity distribution function Fsim and solve the minimization problem

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λκL

)

F −

(

S

λκLFsim

)
∥

∥

∥

∥

2

subject to

{

F ∗ ≥ 0

F ∗(E0, p0) = 0
.(10)

For very small λ’s the inversion is underregularized and is dominated by random jitter

as in the previously discussed Tikhonov problems. For very large λ’s the solution is

overregularized, but here the inversion then approaches the numerical simulation as

equation 10 shows. The problem is now again to select λ assigning an appropriate

balance between the measurements and the simulation which we will discuss in section 3.

The solution F ∗ represents our estimate of the 2D velocity distribution function

considering the simulation and the measurements. As our goal is to locate discrepancies

between simulation and measurements in velocity space, we calculate

∆F ∗ = F ∗ − Fsim (11)

which shows how the simulation should be modified according to the measurements.

Examples will be shown in sections 5 and 6.

3. Standard inversions and the choice of the regularization parameter λ

The number of measurement data points and the number of unknowns in fast-ion

velocity-space tomography is fairly small compared with many other tomography

problems. Quick automatic inversion of FIDA spectra based on a library of

approximate weight functions after each plasma discharge is therefore possible and

will be implemented in future work. For that purpose the regularization parameter

λ must be computed automatically from the data. In traditional tomography, two

popular methods among many are the L-curve method [43,44] and the generalized cross-

validation (GCV) method [45]. The L-curve method has been applied to velocity-space

tomography previously [28]. The GCV method seeks to minimize the prediction error by

asserting that an arbitrary measurement Si should be predicted well by the regularized

solution based on the other measurements in S and that orthogonal transformations of

S should not affect the choice of the regularization parameter λ [45]. Recall that the

Tikhonov solution F ∗ = F ∗(λ) is a function of the regularization parameter λ and that,

for the unconstrained problem (equation 4), we can write F ∗(λ) = W#(λ)S where the

matrix W#(λ) defines the solution. Then λ minimizes the GCV function

G(λ) =
‖WF ∗(λ)− S‖22

(trace(I −WW#(λ)))2
, (12)
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where I is the identity matrix.
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Figure 4. Unconstrained first-order Tikhonov tomographic inversions of FIDA

measurements in five views in ASDEX Upgrade discharge #31557 in units

[1016 keV−1m−3]. The regularization parameter λ is chosen by two different methods:

(a) L-curve. (b) GCV.

Figure 4 shows two unconstrained first-order Tikhonov inversions of FIDA

measurements in ASDEX Upgrade discharge #31557. The level of regularization was

respectively selected by the L-curve method and the GCV method. The discharge and

the five-view FIDA measurements have been discussed previously [28]. The plasma was

heated by NBI with the 2.5 MW source Q3 at 60 keV. The five-view FIDA measurements

here and throughout the paper were made in the center of the plasma. Figure 2 shows

a corresponding TRANSP simulation.

The unconstrained inversion with first-order Tikhonov regularization and L-curve

regularization parameter selection in figure 4(a) shows the usual characteristics for this

method. The inversion is smooth, and the overall shape, including the anisotropy and

the location of the merged 20 keV and 30 keV NBI peaks, is close to our expectation.

However, there are also limitations of the unconstrained inversion. First, the NBI peak

at full injection energy (60 keV) does not appear. It is known that the sharp NBI

peaks tend to be attenuated by first-order Tikhonov regularization [28]. Second, there

are substantial phase-space densities at energies well in the null-measurement region.

Here we plot up to 20 keV above the full injection energy. As already mentioned,

TRANSP/NUBEAM predicts almost zero phase-space densities in the null-measurement

region (figure 2), which further corroborates the hypothesis that the inferred phase-space

densities are artifacts. Third, small patches of unphysical negative fast-ion phase-space

densities appear, in this case in the null-measurement region. These three features of

the inversions are very likely artifacts since they also appear erroneously in inversions

of synthetic data where the true solution is known [22, 24, 28].

The GCV method tends to regularize less than the L-curve method (figure 4(b)) and

roughly produces a regularization level as was sometimes judiciously selected [11,24,27].
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The full energy beam injection peak (60 keV) does not appear but there is a clear ridge

of large phase-space densities between the expected locations of the beam injection

peaks. The ridge does not extend to energies larger than 60 keV as expected. The form

of the ridge is consistent with the presence of fast ions that are slowing down due to

collisions with electrons, i.e. they loose energy without significant pitch angle scattering.

Nevertheless, as the critical energy is about 60 keV, collisions with thermal ions are also

important leading to pitch-angle scattering as is apparent in figure 4. The unphysical

negative regions are larger than for the L-curve method. A peak appears at p = −0.5

which is not expected according to the TRANSP simulation (figure 2) and is likely an

artifact.

In velocity-space tomography, the regularization parameter has up to now been

set either by judicious choice or by the L-curve method. The choice of regularization

parameter or of a method to calculate it remains an open problem as one never knows

a priori which method works best. Our criteria for good reconstruction of velocity-

space distribution functions in NBI heated plasma are that there are no significant

negative phase-space densities, that there are no significant phase-space densities far

above the beam injection energies, that the distribution function is smooth and that

the beam injection peaks are reconstructed well. Neither the L-curve nor the GCV

method is consistently superior. Both methods are fairly robust but do not always

work. The L-curve method can be applied irrespective of the incorporated prior

information. However, the GCV method requires the existence of a regularized inverse

matrix mapping the measurement space to the solution space, and so it is not directly

applicable to the non-negative least-squares problem formulation or maximum entropy

methods. Here we apply either method, depending on what works best for the given

problem. For inversions not using a TRANSP simulation as prior information we will

choose the regularization parameter λ by the GCV method applied to the unconstrained

least-square problem (figure 4b), and then solve the non-negative least-squares problem

with that λ. However, we apply the L-curve method for the inversions using the

TRANSP simulations as prior information.

4. High-definition inversions using prior information

In this section we show that prior information based on non-negativity, null

measurements and the NBI geometry improves inversions substantially. The effect

of prior information based on a numerical simulation is presented in section 5. The

inversions in this section represent an estimate of the 2D fast-ion velocity distribution

functions based on measurements alone. The inversions in section 5 represent an

estimate based on measurements and simulations or, more interestingly, of how a given

simulation needs to be modified to match best with the measurements.

Figure 5(a) shows a first-order Tikhonov inversion with non-negativity constraint

according to equation 7. The non-negativity constraint improves the inversions without

any visible disadvantages compared with the unconstrained inversions in figure 4. By
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Figure 5. First-order Tikhonov tomographic inversions based on five-view FIDA

measurements in ASDEX Upgrade discharge #31557. The units are [1016 keV−1m−3].

Various types of prior information are used. (a) Non-negativity: F ∗ ≥ 0. (b) Null-

measurement constraints: F ∗(E0, p0) = 0. (c) F ∗ ≥ 0 and F ∗(E0, p0) = 0. (d) F ∗ ≥ 0,

F ∗(E0, p0) = 0 and known peak locations: κ(E, p).

virtue of the constraint, there are no negative regions. Erroneous phase-space densities in

the null-measurement region are reduced compared with the unconstrained inversions.

The full energy beam injection peak is almost invisible, but there is a clear drop in

phase-space densities above the full NBI energy. A possibly spurious peak at p = −0.5

is present as also observed in figure 4(b).

Figure 5(b) shows a first-order Tikhonov inversion with the null-measurement

constraint according to equation 6. The inversion shows a clear peak at full injection

energy and a clear ridge consistent with ions slowing down due to collisions with

electrons. By virtue of the constraint, the phase-space densities in the null-measurement

region are zero. Regions of erroneously negative phase-space densities are present at this

regularization level. It is unclear if the two peaks appearing at negative pitches are real

or if they are artifacts. The peak at p = −0.5 also appears as in figures 4(b) and 5(a).

Figure 5(c) shows a first-order Tikhonov inversion with non-negativity and null-
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measurement constraints according to equation 8. By construction there are no artifacts

in the null-measurement region and there are no negative phase-space densities. The

white patches of very low fast-ion density circumscribed by larger fast-ion densities

seem physically unlikely and would suggest that slightly more regularization would

benefit the solution. The non-negativity constraint also tends to attenuate positive

peaks because it reduces high-frequency components of the inversion and hence negative

as well as positive extrema. The peak at full injection energy is present but weaker than

in figure 5(b), and the ridge connecting the beam injection peaks is weaker than in

figure 5(b). The two small peaks at negative pitches are attenuated compared with

figure 5(b).

Finally, figure 5(d) shows a first-order Tikhonov inversion with non-negativity and

null-measurement constraints and known NBI geometry according to equation 9. Two

NBI peaks as well as the ridge connecting them appear. No clear artifacts, such as

peaks or low-density patches at unexpected locations, appear in this inversion, and

by construction there are again no artifacts in the null-measurement region and there

are no negative phase-space densities. In the NBI peak region the regularization is

comparatively weak so that high-definition features appear. In the regions far from the

peaks the solution is smooth due to the stronger regularization. Overall, this inversion

resembles the TRANSP simulation from figure 2 the most. This use of prior information

will likely make inversions possible at many other tokamaks, where fewer fast-ion data

than at ASDEX Upgrade is available.

5. Inversions using numerical simulations as prior information

Inversion techniques can be used to identify differences between theory and observation

in velocity space. This could give clues on which physics is not adequately described in

the simulation or which systematic error confounds the measurements. For this goal it is

advantageous to use the numerical simulation as prior information. Figure 6 illustrates

two different ways to locate differences between measurements and simulation in velocity

space. Figure 6(a) shows a true distribution function Ftrue which we would like to know

but which in an experiment is never known. Here we assume a modified TRANSP

simulation. We have added the negative Gaussian function shown in figure 6(b) to the

known TRANSP simulation Fsim (figure 2). This selective reduction in phase-space

density is a toy model for an assumed anomalous transport phenomenon localized in

velocity space which is not modelled in the TRANSP simulation Fsim. Hence figure 6(b)

shows the difference

∆Ftrue = Ftrue − Fsim. (13)

The goal is now to reconstruct ∆Ftrue, given synthetic measurements of Ftrue in five

FIDA views and Fsim. We add 5% Gaussian noise to each synthetic measurement which

is a realistic noise level for FIDA measurements at ASDEX Upgrade. The discrepancy

between measurement and simulation ∆F ∗ is calculated according to equation 11
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without and with using the TRANSP simulation as prior information, i.e. respectively

using equations 9 and 10. Figure 6(c) shows ∆F ∗ for the case without the TRANSP

simulation as prior. In the region of the true difference, ∆F ∗ is negative and has

approximately correct amplitudes. However, ∆F ∗ is dominated by large negative

values at the beam injection peaks reflecting the difficulty in reconstructing the NBI

peaks. The reconstructed difference ∆F ∗ therefore does not resemble the true difference

∆Ftrue. Figure 6(d) presents ∆F ∗ for the case where the TRANSP simulation has been

used as prior information (equation 10). In this case the approximate location of the

discrepancy between the true distribution and the TRANSP simulation is found based on

experimentally accessible quantities. However, artifacts are present and the amplitudes

in the reconstruction are too low by about 30%. The success of this approach does

not depend strongly on the position of the discrepancy in velocity space for the five-

view FIDA system as we illustrate in figure 7. Each case shows the true location of

the discrepancy and the reconstruction using the simulation as prior information. The

approximate location of the discrepancy is in each case identified as the region with the

lowest amplitudes.

Many FIDA systems have two or three viewing directions rather than the five

available at ASDEX Upgrade. DIII-D has three FIDA views [46,47] and MAST [48,49],

NSTX [50], EAST [51], and LHD have two views [52, 53]. . In figure 8 we reconstruct

the six cases from figure 7 using just two FIDA views to show that this approach could

be useful for other machines. The approximate location of the ∆Ftrue is reconstructed

in each case, even though the amplitudes of negative phase-space densities are not

reconstructed as well as for the five-view case. The reconstruction of ∆F ∗ does not

require as many measurements as the reconstruction of F ∗ since the simulation provides

cogent prior information about the approximate basic shape. Hence this alternative

approach to tomographic reconstruction should be highly useful for FIDA systems

with few viewing directions as is common on many machines. Further, the approach

should also work for many combinations of fast ion diagnostics installed on many

machines [23, 29, 31], for example based on FIDA and CTS at LHD [54, 55], CTS,

FIDA, NPA, NES, and GRS at ASDEX Upgrade [5, 7, 11, 56–62], NES, GRS and

NPA at JET [14, 15, 63], CTS, GRS, NES, NPA and possibly fast-ion charge-exchange

recombination spectroscopy at ITER [64–69]. We will demonstrate this method for the

two-view FIDA case using experimental data in the next section.
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Figure 6. First-order Tikhonov tomographic inversions using a simulation as prior

information. The units are [1016 keV−1m−3]. (a) Ftrue which is a modified TRANSP

simulation with selective ejection of particles. (b) ∆F = Ftrue − Fsim. (c)+(d)

Inversion ∆F ∗ = F ∗ − Fsim based on synthetic measurements of Ftrue with 5%

Gaussian noise for a five-view FIDA system (c) without and (d) with the TRANSP

simulation as prior information.
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Figure 7. ∆F ∗ = F ∗ − Fsim where F ∗ is calculated as in figure 6(d). In each

subfigure the black dotted line shows the true location of the discrepancy. The units

are [1016 keV−1m−3]. The colorbar is different for each plot.
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Figure 8. As figure 7, but using only two FIDA views. The angles of the lines-of-sight

to the magnetic field are φ = [73◦, 153◦]. The colorbar is different for each plot.
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6. Studies of neutral beam injection and sawtooth dynamics

Prior information allows us to study the formation and presence of NBI peaks at full,

half, and one-third injection energy and the fast-ion dynamics associated with sawteeth.

NBI peaks are here reconstructed by TSVD which is well-suited for fine-scale features

at the expense of the appearance of some jitter. The target velocity-space is restricted

using null-measurements. The beam positions are not used as prior information here,

and neither is the TRANSP simulation. Negative phase-space densities are present in

the TSVD, but they are fairly small and simply ignored as usual for TSVD. The TSVD

study confirms the positions of the NBI peaks which we will use as prior information in

the Tikhonov inversions of fast-ion dynamics in sawtoothing plasma.
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Figure 9. Inversions by TSVD with null-measurement constraint after NBI Q3 was

turned on in discharge #33138 at t = 0.4 s. A movie is provided as supplementary

material to this paper (Movie 1). NBI peaks at full, half, and one-third energy are

gradually formed. The units are [1016 keV−1m−3].

In discharge #33138, FIDA measurements in five views were made just after

switching on NBI Q3 to study the appearance of the beam injection peaks in the

plasma center. The time resolution of the measurements was 2.5 ms. Figure 9 shows six

inversions after the NBI was switched on at t = 0.4 s. A movie showing the formation

of the three NBI peaks in 50 frames is provided as supplementary material to this paper

(Movie 1). The same level of regularization is used for all frames. The NBI peaks

at full, half, and one-third injection energy appear reliably at the expected pitch and

energies at 20 keV, 30 keV and 60 keV. Even though three peaks do not always appear

in inversions, the well-understood locations and the large-scale coherence suggest that

the peaks are not artifacts but are supported by the FIDA measurements. Figure 10
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Figure 10. TRANSP simulation [1016 keV−1m−3] as in figure 9 after NBI Q3 was

turned on in discharge #33138 at t = 0.4 s. NBI peaks at full, half, and one-third

energy appear in the simulation.
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Figure 11. Measured (full lines) and simulated (dashed lines) increases in the fast-

ion density for p ∈ [0.3, 0.7] and five 10 keV wide energy intervals in ASDEX Upgrade

discharge #33138 right after the NBI is switched on. The fast-ion densities are obtained

by integration of the high-definition tomographic inversion in the specified regions in

velocity space. The fast-ion densities in the regions containing NBI peaks grow faster.

shows that a TRANSP simulation of the discharge also predicts the formation of three

peaks in agreement with the measured result.

To study the increase of fast-ion density in time at selected positions in velocity

space due to switching on the NBI, we integrate the inversion in p ∈ [0.3, 0.7] and in

five 10 keV wide energy intervals (figure 11). The fast-ion density builds up quickly and

steadily for the intervals containing the NBI peaks at 20, 30 and 60 keV whereas the

intermediate intervals from 32 to 52 keV increase more slowly in agreement with the
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TRANSP simulation. Simulations and measurements agree very well for the intervals

containing the 20 keV and 30 keV NBI peaks whereas the 60 keV interval is predicted

to be slightly less populated. The TRANSP simulation shows larger fast-ion densities

at 42-52 keV than at 32-42 keV as these intervals are fuelled mostly by slowing down

of 60 keV ions and there is some pitch angle scattering. The inversion does not show

this behaviour. It should be noted that TSVD showing NBI peaks typically also have

undulations elsewhere, which may bias a comparison between the different energy curves.

All in all, the TRANSP simulation agrees fairly well with the measurements, and both

show the formation of three NBI peaks at the expected locations.
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Figure 12. High-definition first-order Tikhonov tomographic inversions based on

four-view FIDA measurements in ASDEX Upgrade discharge #32323. The units are

[1016 keV−1m−3]. 100 frames are supplied in a sawtooth crash movie attached as

supplementary material to the paper (Movie 2). The crash occurs at t = 2.23 s.

Now we turn to study fast-ion dynamics in the sawtoothing plasma by high-

definition first-order Tikhonov inversions using all methods discussed in section 2. First

we will use null-measurements, non-negativity, and the NBI peak positions, but not the

TRANSP simulation, in pure inversions of the data. Then we will use the TRANSP

simulation as prior information and locate the distribution of discrepancies between

the measurements and the TRANSP simulation. Previous inversions focussed on the

redistribution due to the crash [26–31] whereas we here study the dynamics in the

entire sawtooth period. In this discharge only four views had a time resolution of 2.5 ms

whereas the fifth view had a time resolution of 25 ms as the camera did not allow faster

data acquisition in this discharge, and hence we only use four views here. Figure 12

shows first-order Tikhonov inversions with prior information from non-negativity, null-

measurements and the position of the NBI peaks but not from any simulation. The
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same level of regularization is used for all frames. Figure 12 covers one sawtooth cycle,

and figures 12(a) and (f) are right after crashes. A movie showing 100 frames covering

two sawtooth cycles is supplied as supplementary material to this paper (Movie 2).

The 2D velocity distribution function is strongly depleted at the sawtooth crashes and

builds up due to the continuous fuelling by the NBI particle sources at 20 keV, 30 keV

and 60 keV between the crashes. The 60 keV peak almost disappears right after the

crashes. It gradually builds up as the fast-ion density increases during the sawtooth

cycle. The ridge between the beam injection peaks also becomes stronger during the

sawtooth cycle.
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Figure 13. The measured (full lines) and simulated (dashed lines) total fast-

ion densities and the fast-ion densities in selected pitch ranges in ASDEX Upgrade

discharge #32323.
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Figure 14. The measured fast-ion densities in selected pitch and energy ranges in

ASDEX Upgrade discharge #32323. The red and blue curves also appear in figure 13

and are here split into different energy intervals. (a) 0.25 < p < 0.75. (b) p > 0.75.

Figure 13 compares measured total fast-ion densities as well as fast-ion densities

in selected pitch intervals with a TRANSP simulation. Here we have added drifting

Maxwellian distribution functions to the fast-ion TRANSP simulation as one always

measures the complete ion velocity distribution function. The tails of the Maxwellian
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here make a significant contribution due to the very high ion temperatures of up to

10 keV with sawtoothing time traces. The fast ion densities are obtained by integration

of the inversions over all energies and over pitches in the selected intervals. The measured

and simulated total fast-ion densities are similar right after the crashes. However,

the measured total fast-ion density increases less than the simulated one during the

sawtooth cycle. For p > 0.75 the measurement and the TRANSP simulation show

clear sawteeth in good agreement though the TRANSP simulation is consistently lower

than the FIDA measurement. For the intermediate pitch range 0.25 < p < 0.75 the

agreement is also good, but here the TRANSP simulation is consistently higher than

the FIDA measurement. For |p| < 0.25 the measurements show no evidence of sawteeth,

whereas the simulation shows clear sawteeth. We stress that variations in measured

signals are much more reliable than their absolute values, and hence we are confident

in the presence or absence of sawteeth in the time traces. The previous velocity-space

tomography studies of sawtooth crashes have consistently found that fast ions with

pitches close to zero are much less affected by the crash than ions with pitches close

to one which is consistent with our results [26–31]. Figure 14 subdivides the p > 0.75

interval as well as the 0.25 < p < 0.75 interval into three energy intervals. Sawtoothing

time traces are evident at all energies, and we find no strong selection in energy.
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Figure 15. Reconstruction of the velocity-space distribution of the differences between

the measurements and the TRANSP simulation ∆F ∗ = F ∗ − Fsim [1016 keV−1m−3]

according to equation 10. Here the TRANSP simulations was used as prior information

in the inversion. The crash occurs at t = 2.23 s. A movie is supplied as supplementary

material to this paper (Movie 3).

In figure 15 we examine the results from figure 13 and 14 by reconstructing the

difference ∆F ∗ = F ∗ − Fsim between the TRANSP simulation and the high-definition
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Figure 16. As for figure 15, but using only two FIDA views. The angles of the

lines-of-sight to the magnetic field are φ = [14◦, 73◦].

inversions using the TRANSP simulation as prior information. As above we have

added a drifting Maxwellian to the TRANSP simulation to account for the thermal

ions. We use the available four FIDA views. A movie covering two sawtooth cycles

is supplied as supplementary material to this paper (Movie 3). The results obtained

by using and not using the TRANSP simulation as prior information are consistent.

The inversions and the simulations agree relatively well right after the crashes. The

differences then grow during the sawtooth cycle in the region where the TRANSP

simulation underpredicts the measurements (p > 0.75) as well as in the region where the

TRANSP simulation overpredicts the measurements (p < 0.75). Finally, in figure 16

we repeat the tomographic reconstructions of the difference ∆F ∗ = F ∗ − Fsim from

figure 15, but only using two FIDA views as available on many other machines. Salient

large-scale features such as the regions of overprediction and underprediction as well as

the approximate location of the extrema are well reconstructed using only two views.

However, the detailed shape of ∆F ∗ is somewhat different, and there is a tendency to

find larger discrepancies.

7. Conclusions

Velocity-space tomography is usually a highly photon-starved enterprise since the optical

access to tokamaks and hence the number of simultaneous measurements is limited

and since the signal-to-noise ratio of the measurements is often low compared with

many other tomography applications. At the same time, we would like to infer the

2D velocity distribution function in high resolution and hence need to infer as many
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unknown parameters as the measurement data support. Here we make up for the lack

of measurements by using additional prior information. The inversions are substantially

improved by using three types of prior information: 1. The non-negativity of phase-

space densities. 2. The measured absence of FIDA light restricting the target velocity

space. 3. The velocity-space position of NBI peaks.

An inversion based on truncated singular value decomposition using null-

measurements but not the other types of prior information reconstructs the three NBI

peaks at full, half and one-third energy at the expected locations, and their appearance

after switching on an NBI could be studied resolved in time. We could further study the

dynamics of the fast-ion velocity distribution function in a sawtoothing plasma resolved

in time in unprecedented detail. TRANSP simulations underpredict the measurements

for p > 0.75 and overpredict the measurements for p < 0.75. Measurements show no

evidence of sawteeth for p < 0.25 in disagreement with the TRANSP simulation. The

time-resolved tomographic inversion movies efficiently summarize up to 50,000 data

points using all presented prior information.

Lastly, we demonstrate an alternative approach to velocity-space tomography. We

infer the 2D fast-ion distribution function considering the measurements as well as a

simulation. In this case tomographic inversion uses the simulation as prior information.

If the measurements and the simulation are inconsistent, the most likely velocity-space

distribution of the discrepancies can then be found by subtracting the simulation from

the inversion with the simulation as prior information. This could not be achieved with

the pure velocity-space tomography approach, which does not use the simulation, even

with five FIDA views. The experimental results obtained with this alternative approach

are consistent with results obtained by velocity-space tomography that does not use the

simulation as prior information. Experimental results obtained with this approach using

only two FIDA views suggest that velocity-space tomography methods can be applied

to two-view FIDA systems which are common on many machines.
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