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Abstract

Eigenmode analysis of geodesic acoustic modes (GAMs) driven by fast ions is
performed, based on a set of gyrokinetic equations. Resonance to the magnetic
drift of the fast ions can destabilize GAMs. A new branch is found in the family of
GAMs, whose frequency is close to the magnetic drift frequency of the fast ions. The
poloidal eigenfunction of this branch has bump structures in the poloidal direction
where the resonance of the magnetic drift with the mode is strong. The ion heating
rate by the GAMs is evaluated in the framework of quasi-linear theory. The heating
is localized poloidally around the resonance locations. Owing to the bumps in the
eigenfunction, the magnitude of the heating is much larger than that estimated
without the magnetic drift resonance.

Keywords:Geodesic acoustic mode, GAM, EGAM, energetic particle, eigenfunction,
eigenmode, energy channeling, ion heating

1 Introduction

The importance of geodesic acoustic modes (GAMs) on turbulent transport in magnet-
ically confined plasmas has been recognized [1, 2]. GAMs are driven by the coupling
of micro-turbulence [3, 4, 5], and/or by fast ions [6, 7, 8]. Experimental observations
show that GAMs induced by fast ions (EGAMs) have much larger amplitude compared
to those driven by turbulence [9, 10, 11, 12]. Thus, impacts of EGAMs on bulk plasmas
are expected to be significant. Numerical simulation reveals the nonlinear dynamics of
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EGAMs, such as coupling of EGAMs with turbulence [13], nonlinear saturation of EGAM
[14], frequency chirping [15] and subcritical excitation of GAMs due to self-nonlinear cou-
pling [16]. A process of energy channeling from energetic particles to bulk ions via GAMs
has been proposed (GAM channeling) [17], and experimental validations are progressing
[18, 19].

In the previous theory, resonance of GAMs with the transit motion of fast ions has
been investigated. Two kinds of EGAMs have been reported; one whose frequency is
the ordinary GAM frequency (cs/R, cs is the sound velocity, and R is the major radius
of plasma), and which is close to the transit frequency of fast ions [6, 20, 21, 22, 23,
24, 25, 26, 27]. Actually, several branches have been observed in experiments [11, 19].
The relation between the ordinary GAM branch and the EGAM has been studied, and a
selection rule has been reported [22, 23, 24]. When the energy of fast ions becomes large,
the magnetic drift motion of fast ions can exceed the effect of the transit motion. In such
a situation, resonance due to the magnetic drift motion of fast ions should be considered.

In this study, we report an eigenmode analysis of a new (third) branch of GAMs
driven by the resonance due to the magnetic drift motion of fast ions. The new branch
has a frequency close to the magnetic drift frequency of fast ions. The eigenfrequency and
the poloidal eigenfunction are obtained, based on gyrokinetic equation. The dispersion
relation obtained in this paper includes the the contributions from modes with arbitrary
poloidal mode numbersm, which is an extension of the previous studies where the included
modes are truncated to keep only m = ±1 [22]. The poloidal eigenfunction of the new
branch is shown to have bumps in the poloidal direction. The ion heating rate by the
GAMs is evaluated in the framework of quasi-linear theory. The heating rate is shown to
be localized poloidally around the resonance locations. The paper is organized as follows.
A model for analyzing EGAMs is given in Sec. 2. In Sec. 3, the theoretical formulation
of the dispersion relation is described, and the eigenfrequency and the eigenfunction are
investigated. In Sec. 4, the ion heating rate by the GAMs is evaluated by using the
obtained eigenfunctions within the framework of the quasi-linear theory. Summary is
given in Sec. 5.

2 Model

We consider a simple tokamak equilibrium with circular magnetic surfaces. The equilib-
rium magnetic field is given by

B =
B0

1 + ǫ cos θ

(

eζ +
ǫ

q
eθ

)

, (1)

where ǫ = r/R ≪ 1 is the inverse aspect ratio, r and R are the minor and major radii,
respectively, and q is the safety factor. The poloidal and toroidal angles are noted as θ and
ζ, and their unit vectors are eθ and eζ , respectively. We use the following normalization,

t → t
vT
R
, v⊥ →

v⊥
vT

, v‖ →
v‖
vT

, k → k
vT
Ωci

, E →
E

Ti

, Fj →
Fj

n0

,
eφ

Ti

→ φ,
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where vT =
√

Ti/mi is the ion thermal velocity, Ωci is the ion cyclotron frequency, and n0

is the background plasma density. The radial wavenumber of the GAM is expressed by
k, E is the kinetic energy of particles, Fj is the velocity distribution function of the mean
component of the j-th particle speacies, and φ is the electrostatic potential perturbation
of the GAM.

The perturbed velocity distribution function to the GAM fluctuations, δf (j), can be
expressed as δf (j) = J0(kv⊥)φ

∂Fj

∂E
+ g(j), where j represents the particle species, bulk ion

or fast ions, and J0 is the zeroth order Bessel function. Here the first term on the right
hand side is the adiabatic response to potential fluctuations, and the second term is the
non-adiabatic response. The non-adiabatic component g(j) is expressed as g(j)(v, r) =

G
(j)
ω (v, θ)e−iωt+ikr + c.c., and G

(j)
ω satisfies a linear gyrokinetic equation [28],

(ω + iωt∂θ − ωd sin θ)G
(j)
ω = −ωJ0(kv⊥)φω

∂Fj

∂E
. (2)

Here, the transit frequency is denoted by ωt = v‖/q, and ωd = k
(

v‖
2 + v⊥

2/2
)

is the
magnetic drift frequency associated with the geodesic curvature. Assuming adiabatic
electrons, the quasi-neutrality condition is given as

∑

j

〈

J0G
(j)
ω

〉

− φω = τ (φω − φω,0) , (3)

where the bracket
〈

· · ·
〉

=
∫

· · · d3v represents a velocity integral, τ = Ti/Te is the
normalized ion temperature, and φω,0 is the magnetic surface-averaged φω. The detailed
derivation of Eq. (3) is given in Appendix A. The properties of the new branch of EGAM
is investigated from Eqs. (2) and (3) in the following sections.

The velocity distribution function of the bulk ions Fi is assumed to be Maxwellian,
Fi = π−3/2e−Ei . For transparency of the analysis, the fast ions’ distribution, Fh, is taken
as

Fh =
nh

2πu2
0

δ(u− u0)δ(Λ− Λ0), (4)

where nh is the density of energetic particles normalized by n0, u0 is the speed of the fast
ions normalized by the ion thermal velocity, and Λ is the pitch angle defined as the parallel
velocity normalized by the total velocity [27]. This distribution corresponds to the limit
that the width of the pitch angle ∆Λ is much smaller than Λ0. In reality, this condition
corresponds to a case before the slowing down and the pitch angle scattering. We also
assume that the fast ions are passing particles, holding the condition, Λ0 >

√

r/R.

3 Eigenmode analysis

In this section, a new branch of EGAMs is shown. Equation (2) has two kinds of reso-
nances in accordance with the transit frequency and the drift frequency of the fast ions.
Their frequencies are introduced as ωh ≡ ωt(u0,Λ0), ωD ≡ ωd(u0,Λ0), which are functions
of the velocity and the pitch angle of the fast ions. Thus, the dominant resonance depends
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on the velocity and the pitch angle of the fast ions. We can consider two limiting cases;
(i): In the limit that the transit frequency of the fast ions is much larger than the drift
frequency, ωh ≫ ωD, the resonance due to the transit frequency becomes important, and
the solution with ω ∼ ωh appears [6, 7, 22, 24]. (ii): In the limit that the resonance due
to the drift frequency becomes dominant, ωh ≪ ωD, a new solution with a frequency close
to the drift frequency of the fast ions appears, ω ∼ ωD. We focus on the limiting case
(ii) where the resonance due to the magnetic drift frequency becomes important. In the
following, the eigenfrequency is assumed to satisfy the condition, ω ∼ ωG ∼ ωD ≫ ωh.
The assumptions in this paper can be summarized by the conditions for the speed and
pitch angle of the fast ions and for the radial wavenumber of the EGAM as

u0 ≫
∣

∣

∣

2Λ0

kq(1 + Λ2
0)

∣

∣

∣
, (5)

|Λ0| >
√

r/R, (6)

|k| ∼
2ωG

u2
0(1 + Λ2

0)
. (7)

We assume that the radial wavelength of the GAM is much larger than the ion gyro-
radius, and use an ordering in the small parameter k ≪ 1. The resonance due to the
magnetic drift frequency, ωD sin θ, is inhomogeneous in the poloidal direction, while the
transit frequency is homogeneous. Thus, the poloidal inhomogeneity of the eigenfunction
becomes prominent when the magnetic drift resonance is dominant, so that the mode
truncation is not suitable for the new branch. The contributions from modes with ar-
bitrary poloidal mode numbers are calculated without assuming the amplitude of the
poloidal harmonics

∣

∣φm/φ0

∣

∣ ∼ O(km). This is an extension of previous studies where
the eigenfunction is assumed to follow the above ordering, and is truncated to keep only
m = ±1 [22, 24].

3.1 Derivation of the dispersion relation

In this subsection, the dispersion relation of the EGAMs which includes the magnetic
drift resonance is derived from Eq. (3). The velocity integrals of the responses of the bulk
ions and of the fast ions to the GAM potential are calculated.

First, the response of the bulk ions to the GAM potential, G
(i)
ω , is described. For the

bulk ions, the transit frequency is assumed to be much larger than the magnetic drift
frequency, ωt(vTh) ≫ ωd(vTh). Thus, only the resonance due to the transit frequency,
which leads to the ion Landau damping, is considered for the bulk ions. The response
G

(i)
ω is obtained from Eq. (2) as [28]

G(i)
ω = J0Fi

∞
∑

m=−∞

φme
imθ

∞
∑

l=−∞

Cm,le
ilθ, (8)

where Cm,l is expressed as

Cm,l =
∞
∑

p=−∞

(−1)pilJp(δ)Jl−p(δ)
ω

ω − (m+ p)ωt

. (9)
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Here, δ = ωd/ωt is an effect of the finite orbit width, which is treated as a smallness
parameter. The coefficient Cm,l has resonances with respect to the harmonics of the transit
frequency, which corresponds to the Landau damping. It is noted that the order of Cm,l

follows Cm,l ∼ O(δl). Here, we keep the terms up to δ2, and consider the contributions of
modes with arbitrary poloidal mode numbers without assuming the ordering for φm. In
this approximation, the lowest order terms of the finite orbit width effect are included,
which corresponds to the process of φm coupling to its side-band modes, φm±1. If one
truncates the poloidal mode number atm = ±1, the previous theory is reproduced [22, 24].
The coefficient Cm,l can be approximated as

Cm,l=0 ≈

(

1−
δ2

2

)

ω

ω −mωt

+
δ2

4

{

ω

ω − (m− 1)ωt

+
ω

ω − (m+ 1)ωt

}

, (10a)

Cm,l=±1 ≈ i
δ

2

{

ω

ω −mωt

−
ω

ω − (m± 1)ωt

}

. (10b)

The order of Cm,|l|>1 in δ is higher than δ2, which we neglect. The velocity integral of the
response of the bulk ions, Eq. (8), is calculated as

〈

J0G
(i)
ω

〉

=
∞
∑

m=−∞

φme
imθ

∞
∑

l=−∞

Im,le
ilθ, (11)

where Im,l is defined as

Im,l=0 =
〈

J2
0FiCm,l=0

〉

= −

(

1−
k2

2

)

qω

m
Z
(qω

m

)

−
k2q2

4
(αm−1 + αm+1 − 2αm) , (12a)

Im,l=±1 =
〈

J2
0FiCm,l=±1

〉

= i
kq

2
(βm±1 − βm) , (12b)

and Im,|l|>1 is defined as zero. Here, Z(x) is the plasma dispersion function. The functions
αm and βm for m 6= 0 are introduced as

αm =
(qω

m

)2

+

{

(qω

m

)3

+
qω

m
+

m

2qω

}

Z
(qω

m

)

, (13a)

βm =
qω

m
+

{

(qω

m

)2

+
1

2

}

Z
(qω

m

)

. (13b)

These functions at m = 0 are defined as αm=0 = −3/2 and βm=0 = 0.

Next, the response of the fast ions to the GAM potential, G
(h)
ω , is described. For the

fast ions, the magnetic drift frequency is assumed to be much larger than the transit
frequency, ωD ≫ ωh. For the transparency of the argument, the resonance of the transit
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frequency is neglected, and only the resonance due to the magnetic drift frequency is
considered. In this limit, the response G

(h)
ω can be obtained from Eq. (2) as

G(h)
ω = −

ω

ω − ωd sin θ
J0

∂Fh

∂E
φω(θ). (14)

The response function of the fast ions features a resonance due to the magnetic drift. This
resonance gives the new unstable branch. Keeping the resonance due to the magnetic drift,
the velocity integral of Eq. (14) is obtained as

〈

J0G
(h)
ω

〉

=
∞
∑

m=−∞

φme
imθ

∞
∑

l=−∞

Hle
ilθ, (15a)

Hl =

∮

2nhJ0(kv⊥,h)
2k

ω sin θe−ilθ

(ω − ωD sin θ)2
dθ

2π
. (15b)

The integral Hl resonates at ω = ωD sin θ, which gives an unstable branch of the EGAM.
The eigenequation is derived by substituting Eqs. (11) and (15a) into Eq. (3) as

∞
∑

m=−∞

[

τ + 1−
∞
∑

l=−∞

(Hl + Im,l) e
ilθ

]

φme
imθ − τφω,0 = 0. (16)

Equation (16) can be rewritten in a matrix form as

∞
∑

ν=−∞

Dµ,νφν = 0, (17a)

Dµ,ν = τδµ,ν (1− δµ,0)− δµ,ν − (Hµ−ν + Iν,µ−ν) , (17b)

where µ is an integer (µ = −∞, · · · ,∞), and δµ,ν is the Kronecker delta. The first term
in Eq. (17b) stems from the electron dynamics, the second term is the contribution of the
adiabatic response of the bulk ions, and the third term with Iν,µ−ν and Hµ−ν come from
the non-adiabatic responses of the bulk and the fast ions, respectively. The magnetic drift
resonance and the Landau damping are included self-consistently, which are included in
Hµ−ν and Iν,µ−ν respectively. The dispersion relation is obtained as

detDµ,ν = 0. (18)

If one truncates the poloidal mode number at |m| = 1, the dispersion relation without
the contribution of the fast ions reproduces the results reported in [28, 29]; solutions with
the ordinary GAM frequency and the ion sound wave branches are obtained. Here, the
ordinary GAM frequency, ωG, is approximated as

ωG =

√

√

√

√

(

7

4
+

1

τ

)

[

1 +
46τ 2 + 32τ + 8

(7τ + 4)2 q2

]

, (19)

in the large safety factor limit [28].
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3.2 Eigenfrequency and eigenfunction

The dispersion relation, Eq. (18), and the eigenequation, Eq. (17a) are solved numerically,
and the eigenfrequency and eigenfunctions are described in this section.

Figure 1 illustrates the eigenfrequency as a function of the velocity of the fast ions. The
real part of the eigenfrequency has solutions with Reω ≈ ωG, ωD. The solution with the
magnetic drift frequency appears owing to the magnetic drift resonance, which is the new
solution in the family of the GAMs. The frequency of the unstable branch is close to ωD

when ωD < ωG, and it converges to ωG when ωD > ωG. The frequency of the stable branch
changes from ωG to ωD, with the increase of the fast ions. The growth rate of the unstable
branch has a maximum value at ωD = ωG. The GAMs are found to be destabilized by the
magnetic drift resonance of the fast ions. It should be noted that, in the previous studies,
the effect of the magnetic drift of the fast ions is included perturbatively to modify the
resonance due to the transit motion of the fast ions, and the magnetic drift resonance
is not considered. The parameter dependence of the eigenfrequency of the branch with
ω ∼ ωG is discussed in Appendix B.

The poloidal eigenfunction is calculated by φω =
∑

m φme
imθ, where φm is obtained

from the eigenequation Eq. (17a). The poloidal eigenfunction of the electrostatic potential
is shown in Fig. 2(a). The real part of the eigenfunction has bumps where the magnetic
drift resonance is satisfied, in addition to the sin θ dependence as is predicted by the
previous studies. The imaginary part of the eigenfunction appears near the resonance
locations, which indicates a phase shift. The characteristic features such as the bump
structures and the phase shift exist in the upper part of the poloidal cross section because
positive kr is assumed. In the case of negative kr, the characteristic features appears
in the bottom part of the poloidal cross section. The poloidal mode spectrum of the
eigenfunction is shown in Fig. 2(b). The eigenfunction has much larger poloidal harmonics
than that assumed in the previous studies as |φm|/φ0 ∼ km, which is owing to the bump
structures of the eigenfunction. The distance between the resonant locations corresponds
to m ≈ 3 in the case of Fig. 2(a), so that there is a peak at m = 3 in 2(b). The poloidal
structure of the density fluctuations of the electrons, the bulk ions and the fast ions can
be calculated as

n(e)
ω = τ (φω − φω,0) , (20a)

n(i)
ω = −φω +

〈

J0G
(i)
ω

〉

, (20b)

n(h)
ω =

〈

J0G
(h)
ω

〉

. (20c)

As is shown in Fig. 3 (a), the electron density fluctuation has bumps similar to those in
the electrostatic potential, and bumps for the fast ions are localized near the resonance
locations. The time evolutions of the density fluctuations are shown in Fig. 3 (b)-(d),

where the time evolution is calculated by Re
[

n
(j)
ω e−iωt

]

. The phase shift can be seen near
the resonance locations.
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Fig. 1: Dependence of (a) eigenfrequency and (b) growth rate against the velocity of fast
ions. The calculation is performed by using the following set of parameters; q = 3, τ =
0.5, kr = 0.12, nh = 0.015,Λ0 = 0.1.
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Fig. 2: (a) Poloidal eigenfunction in the case of q = 3, τ = 0.5, kr = 0.12, nh = 0.015,Λ0 =
0.1, u0 = 5. The eigenfunction without the energetic particle effect is also shown as a
dashed curve. The eigenfunction has bumps and the imaginary part appears near the
resonance locations. (b) Poloidal mode decomposition of eigenfunction. The dotted line
shows km, which corresponds to amplitudes of the poloidal modes assumed in previous
studies.

4 Discussions on impacts on background plasmas

In this section, effects of the ωD-branch on the background plasmas such as ion heating
and turbulence are discussed.

The GAMs heat the bulk ions through the ion Landau damping. The ion heating
rate, P , is evaluated within the framework of the quasi-linear theory. By using the
eigenfunctions obtained above, P is expressed by the product of the electric field, Eω,
with the current, Jω, as

P = Re
[

Eω · J∗
ω +E∗

ω · Jω

]

,

= −2Re
[〈

ωtδf
(i)
ω

〉

∂θφ
∗
ω

]

− 2Im
[〈

ωdδf
(i)
ω

〉

φ∗
ω sin θ

]

. (21)

The poloidal structure of P is illustrated in Fig. 4. The dotted line in Fig. 4 shows the
heating rate evaluated without the deformation due to the magnetic drift resonance. The
localized ion heating around the resonance locations is owing to the bump structures of
the eigenfunction. The poloidal angle averaged heating rate which is normalized by the

energy loss of the bulk plasma, Wpτ
−1
E , can be estimated as

∮

Pdθ/(2π)
(

Wpτ
−1
E

)−1
= 0.37

when τE = 100, where Wp is the stored energy and τE is the energy confinement time
normalized by vT/R. In this manner, the ion heating effect of a large amplitude GAM
can not be neglected with respect to the total energy balance of the bulk plasmas.

The ωD-branch accompanies a sheared poloidal flow with similar to the standard GAM,
which has a suppression effect on turbulence. One of characteristics of the branch with
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rate evaluated without the deformation due to the magnetic drift resonance. Here, the
heating rate is calculated by using φω,0 = 1. The poloidal structure has sharp peaks near
the resonance locations.
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ω ≈ ωD is that the eigenfrequency is proportional to the radial wavenumber. Thus, the
radial group velocity is much large compared to the standard GAM branch, and the radial
group velocity is comparable to the radial phase velocity as ∂kω ≈ ω/k ∼ u2

0. Noting that
the unit of this velocity is vTρi/R. Therefore, the effects of this branch on turbulence and
on bulk ion propagate to distant locations in the radial direction. It is noted that there
is a report that the turbulence transport increases with the excitation of the EGAM [13].
Thus, detailed researches are necessary to understand such phenomena by considering
the nonlocal radial structure of the EGAM and the coupling with turbulence, which is a
future work.

5 Summary

Eigenmode analysis of EGAMs is performed, based on a set of gyrokinetic equations.
Resonance to the magnetic drift of the fast ions is shown to destabilize GAMs. A new
branch is found in the family of GAMs, whose frequency is close to the magnetic drift
frequency of the fast ions. The poloidal eigenfunction of this branch has bump structures
and phase shift in the poloidal direction where the resonance of the magnetic drift with
the mode is strong. The ion heating rate by the GAMs is evaluated in the framework of
quasi-linear theory. The heating is localized poloidally around the resonance locations.
Owing to the bumps in the eigenfunction, the magnitude of the heating rate is much
larger than that estimated without the magnetic drift resonance.
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A Derivation of charge quasi-neutrality

The derivation of the quasi-neutrality condition, Eq. (3) is explained. The quasi-neutrality

condition can be written as
∑

j ej
〈

δf
(j)
r

〉

= 0, where ej is the electric charge of the j-th

species and δf
(j)
r is the perturbed distribution function written in the real coordinate, and

the summation is performed with respect to the electron, bulk ion and fast ions. δf
(j)
r is
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written as [28]

δf (j)
r = −φ∂EFj + ge−ik⊥·ρ, (22)

where ρ = b × v, and b is the unit vector in the direction of the magnetic field. By
comparing the expression of δf (j) with that of δf

(j)
r , the distribution function in the real

coordinate can be rewritten as

δf (j)
r = δf (j)e−ik⊥·ρ − φ∂EFj

(

1− J0(k⊥v⊥)e
−ik⊥ρ

)

. (23)

The quasi-neutrality condition can be expressed in the gyro-center coordinate by using
Eq. (23) as

∑

j

ej
〈

J0(kv⊥)δf
(j)
〉

+
∑

j

ej
〈 (

1− J0(kv⊥)
2
)

∂EFj

〉

= 0. (24)

The second term of Eq. (24) for the bulk ions can be calculated as
〈 (

1− J0(kv⊥)
2
)

∂EFj

〉

= −
(

1− I0(k)e
−k
)

, (25)

where I0(k) is the zeroth order modified Bessel function. Equation (3) is obtained by
substituting the expression of δf (j) into the quasi-neutrality condition. Here, it should be
noted that we assume nh ≪ 1, and we neglect the term corresponding to the polarization
density of the fast ions and keep terms related to the resonance.

B Eigenfrequency of the branch with ω ∼ ωG

The analytical expression of the eigenfrequency of the ωG-branch is derive in order to
compare the results reported in [22, 23]. We considere a situation, ω ≫ ωD, q ≫ 1, which
is similar condition discussed in [22, 23]. In this limit, the responses of the bulk ions and
the fast ions, Eqs. (11), (15a) can be simplified as

〈

J0G
(i)
ω

〉

≈
[

〈

J2
0

〉

+
k

ω
sin θ +

7k2

4ω2
sin2 θ + · · ·

]

φω, (26)

〈

J0G
(h)
ω

〉

≈
2nhJ

2
0kω sin θ

ω

(

1 +
2ωD

ω
sin θ + · · ·

)

φω. (27)

Combining these responses with Eq. (3), the following relation is obtained.

φω ≈

[

1 +
1

τ

{

k

ω
+ k2

(

ω2
G,0

ω2
sin2 θ −

1

2

)

+
2nhJ

2
0kω sin θ

ω

(

1 +
2ωD

ω
sin θ + · · ·

)

}]

φω,0,(28)

where ωG,0 =
√

7/4 + 1/τ . Averaging the both side of this relation over the poloidal
angle, the following dispersion relation is obtained.

1−
ω2
G,0

ω2
−

4nhJ
2
0kωD

k2ω2
= 0. (29)
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Then, the analytical expression for the ωG-branch can be written as

ω =
√

ω2
G,0 + nhu2

0CEP , (30)

where the numerical factor CEP is obtained as CEP = 2J2
0 (1 + Λ2

0). The numerical factor
becomes CEP = 3/2 in the previous studies such as [22, 23], where the distribution of the
fast ions are assumed to follow a shifted Maxwellian. The both expressions are similar
characteristics. It is noted that the difference of the numerical factors stems from the
assumption of the fast ions’ distribution function. The dependence of the frequency of
the ωG-branch on the density of the fast ions are shown in Fig. 5.
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Fig. 5: Dependence of eigenfrequency of ωG-branch against the density of fast ions. The
calculation is performed by using the following set of parameters; q = 10, τ = 0.5, kr =
0.001,Λ0 = 0.1. The dashed magenta line corresponds to the analytical expression Eq.
(30).
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