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ABSTRACT 

This paper is concerned with the connection between two classes of population 

variables: measures of population growth rate-the Malthusian parameter, the net repro- 

duction rate, the gross reproduction rate, and the mean life expectancy; and measures of 

demographic heterogeneity-population entropy. It is shown that the entropy functions 

predict the response of the growth rate parameters to perturbations in the age-specific 

fecundity and mortality schedule. These results are invoked to introduce the notion of 

environmental intensity. The intensity function, expressed in terms of the entropy parame- 

ters, is applied to give a comparative study of the effect of environmental factors on the 

dynamics of Swedish and French populations, 

INTRODUCTION 

The population variables studied in demographic theory as developed by 
Lotka [16], can be described in terms of two classes: (1) individual variables, 
namely, age-specific fecundity and mortality; and (2) aggregate variables 
such as the Malthusian parameter, net reproduction rate, gross reproduction 
rate, and mean life expectancy. A recurrent issue of both theoretical and 
practical import in demographic studies concerns the response of the aggre- 
gate variables to arbitrary perturbations in the values of the individual 
parameters. This response clearly depends on the shape of the fecundity- 
mortality function. Thus in order to assess these effects, one needs quanti- 
tative measures of the dispersion of the age-specific fecundity-mortality 
distribution. 

A class of functions characterizing these distributions was introduced in 
earlier work [5, 61. The generic term entropy was used to describe these 
functions on account of their connection to certain concepts in thermody- 
namic theory. In effect, these measures of heterogeneity of the age-specific 
fecundity-mortality distributions were obtained by showing that the Malthu- 
Sian parameter satisfies an extremal principle that is formally identical to the 
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minimization of free energy in statistical mechanics. This variational princi- 
ple was invoked to derive a precise correspondence between the parameters 
in demographic models and the concepts in thermodynamic theory. A 
detailed account of this development is given in [7] and [8]. 

This paper is concerned with certain perturbation properties of the 
demographic parameters. We show that the entropy functions predict both 
the magnitude and direction of the response of the classical population 
variables growth rate, reproduction rate, and mean life expectancy to arbi- 
trary perturbations in the individual age-specific parameters. 

The results we obtain for the four population variables considered can be 
summarized as follows: 

The Malthusian parameter r. This parameter represents the asymptotic 
growth rate of the population. We show that the response of r to arbitrary 
perturbations in the net fecundity distribution is given by the entropy of the 
probability distribution of the age of the reproducing individuals in the 
stable population. 

The net reproduction rate R. This parameter describes the increase in 
population per generation and represents the average number of offspring 
for individuals who from birth are subject to a given fecundity and mortality 
schedule. We show that the relative response of R to arbitrary perturbations 
in the net fecundity distribution is determined by the entropy of the net 
fecundity distribution. 

The gross reproduction rate FL This describes the average number of 
offspring born for individuals who throughout the reproductive period give 
birth to offspring according to the age-specific fecundity schedule. We show 
that the relative response of E to arbitrary perturbations in age-specific 
fecundity is determined by the entropy of the age-specific fecundity sched- 

ule. 
The mean life expectancy eO. This variable measures the average expecta- 

tion of life at birth. We show that the relative response of e, to arbitrary 
perturbations in the life table is determined by the entropy of the life table. 

These results, which predict the response of the growth rate parameters to 
perturbations, are important in the study of human populations in assessing: 

(a) The effect of mortality changes, such as the elimination of heart disease 
and cancer, on the mean life expectancy 

(b) The influence of fertility changes, such as the introduction of new 
contraceptive measures, on gross fecundity 

(c) The response of population growth rate due to the influx of new 
migrants 

Indeed, one item in this set of problems has been investigated by Keyfitz 
[14] in an application of the entropy of the survivorship curve. Keyfitz 
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showed that the response of the mean life expectancy to uniform changes in 
the shape of the survivorship curve was determined by the entropy of the 
survivorship curve and used this fact to give an empirical study of the effect 
of the elimination of cancer on mean life expectancy. 

These perturbation results can be invoked to introduce the notion of 
environmental intensity. Factors such as epidemics, famines, improved nutri- 
tion, and health care induce changes in the age-specific fertility and mortal- 
ity schedules and consequently changes in the growth rate parameters. The 
intensity of these environmental factors can be expressed, using the pertur- 
bation results, in terms of the entropy functions and the change in the 
growth rate parameters. This measure of environmental intensity is impor- 
tant in studying the dynamics of evolutionary change in populations subject 
to different environmental forces. This paper applies this notion of environ- 
mental intensity to give a comparative study of the dynamics of Swedish and 
French populations. 

This paper is organized as follows: Section 1 describes the individual 
variables that appear in demographic theory and the aggregate variables, 
which are functions of the individual parameters. We distinguish explicitly 
between the classical population parameters-growth rate and net reproduc- 
tion rate-which are integral to the Lotka theory and the new class of 
population parameters called entropy, derived from the demographic models 
introduced in [5] and [6]. In Section 2, we study the response of the classical 
population variables to arbitrary perturbations in the age-specific fecundity 
and mortality schedule and show that this response is completely determined 
by the entropy functions. In Section 3 we introduce the notion of environ- 
mental intensity and use the perturbation results to define this quantity. A 
comparative study of the environmental effects on evolutionary change in 
Sweden and France is given in Section 4. 

1. THE POPULATION PARAMETERS 

1.1. THE INDIVIDUAL PARAMETERS 

The age composition of a population that neither gains nor loses by 
migration and lives in a stable environment is determined by the individual 
parameters-age-specific fecundity m(x) and age-specific mortality p(x). 
The dynamics of the age distribution a(~, t) are given by 

g +g = -/.L(x)u(x,t) 

The boundary conditions are 

~(0, t) = /omm( x) u( x, t) dx 

(1.1) 

(1.2) 

u(a,O> =f(u) (1.3) 
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where f(a) denotes the initial age distribution. 
The age-specific survivorship I(X) is given by 
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(1.4) 

1.2. THE AGGREGATE PARAMETERS 

The aggregate parameters are functions of age-specific fecundity and the 
mortality schedule. We will distinguish between two classes of aggregate 
parameters. The first class consists of the growth rate and the net reproduc- 
tion rate, which are derived from the Lotka theory [16], which is based on 
the dynamics of the age distribution. The second class consists of the 
entropy functions, which are derived from the dynamics of the distribution 
of genealogies [5, 81. 

Growth and Reproduction Rate Parameters. The models which form the 
basis of the Malthusian parameters revolve around the notion of a stable age 
distribution. This notion describes the state of the population when the 
relative proportion of individuals in each age class is constant. 

The Malthusian parameter r is the rate of increase of the population at 
the stable age distribution. This parameter r can be shown, using the 
dynamical system described by (l.l), to be the unique real root of the 
equation 

J”exp(-rx)f(x)m(.x)dx=l (1.5) 
0 

The net reproduction rate R, which is the rate of growth of population 
numbers per generation, is given by the expression 

R=Jo”l(X)m(x)dx (1.6) 

This number is precisely the area under the net maternity function V(x) = 
I( x)m( x) and represents the number of offspring who from birth are subject 
to the fecundity schedule m(x) and survivorship schedule I(x). 

The expressions for the gross reproduction rate and mean life expectancy 
can be derived from R. 

The gross reproduction rate is the average number of offspring born to 
individuals who pass through the entire childbearing span giving birth to 
offspring according to the schedule m(x). This number i?i is given by 

1 
cc 

m= m(x) dx 
0 

(1.7) 
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The quantity Z can be considered the rate of increase per generation of a 
population with fecundity schedule m(x) and a mortality schedule given by 
f(x) =l. 

The mean life expectancy e, is the average expectation of life at birth. 
This quantity is given by 

e, = 
/ 
?(x) dx 

0 
(1.8) 

The number e, can be considered the rate of increase per generation of a 
population with mortality schedule I(x) and a fecundity schedule m(x) = 1. 

The Entropy Parameters. The models that constitute the basis of the 
entropy parameters revolve around the notion of a genealogy [7, 81. A 
genealogy describes the set of descendants and ancestors of a given individ- 
ual, these ancestors and descendants being indexed by the age at which they 
produce offspring. 

The equilibrium distribution of the genealogies is given by a probability 
measure whose marginal distribution expressed in terms of the age of 
reproducing individuals in the stable population is given by 

p(x) =exp(-rx)I(x)m(x) 

Here r is the Malthusian parameter defined by (1.5). 
The asymptotic rate of increase per unit time of the number of typical 

genealogies is given by the quantity 

H= _ lOmp(x)lodp(x)l dx 
k?xp(x) dx 

(1.9) 

This number is the ratio of the entropy of the probability distribution p(x) 
and the mean age of childbearing in the stable population. This mean age, 
denoted by T, is called the generation time. The quantity H is bounded if T 
is finite; we have (see the appendix) 

H< (l+logT)/T 

The rate of increase per generation of the number of typical genealogies is 
the quantity HR given by 

(1.10) 
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where 
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4x1 =/(x)4x)/R 

Expression (1.10) is the entropy of the net fecundity distribution q(x). 
The quantity HR is bounded provided 

a=/omxq(x) dx 

is finite. We have (see appendix) 

HR <l+loga 

The expressions for the entropy of the fecundity distribution and the life 
table can be derived from HR. 

The entropy of the fecundity distribution H,,, is given by 

(1.11) 

where FI is given by (1.7). This quantity describes the dispersion of the 
fecundity distribution and can be considered to measure the entropy of the 
net fecundity distribution for a population with a fecundity distribution 
m(x) and a life table I(x) =l. 

Tne entropy of the life table is given by 

H, = -/“%$og!i.$dx 
0 

(1.12) 

where e, is given by (1.8). This expression measures the heterogeneity in the 
age-specific survivorship curve. The quantity H, can be considered as de- 
scribing the entropy of the net fecundity distribution for a population with a 
fecundity distribution m(x) = 1 and a life table I(x). 

2. PERTURBATfON THEORY 

The parameters that emerge from the dynamics of the age distribution 
determine population numbers. The parameters that emerge from the dy- 
namics of the genealogies determine the rates at which population numbers 
fluctuate when deviations from the stable age distribution occur [6]. 

We will show in this section that the entropy functions measure the effect 
of fluctuations in another sense: The entropy functions determine the 
response of the population parameters to arbitrary perturbations in the 
shape of the fecundity and mortality distributions. 
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2.1. PERTURBATIONS OF THE FECUNDITY-MORTALITY PATTERNS 

We will consider continuous perturbations of the net fecundity distribu- 
tion. We denote by u and b the lower and upper limits, respectively, of the 
age of reproduction, and we consider a continuous function g(x), where 

_ E<g(x) <e fora<xgb 

We consider perturbations in V(x) given by the function 

V*(x) =v(x)l+g(x) 

The change 6V(x) in the net reproductive function is 

W(x) =V(x)[V(x)“‘“‘-1] 

Hence, we have 

Wx) =~(x)[exp[g(x)log~(x)l-11 

(2.1) 

(2.2) 

Expression (2.2) describes the change in the net maternity function due to 
perturbations given by (2.1). Throughout the analysis in Section 2, we 
assume that the following condition holds: 

Condition A. There exists a k > 0 such that either (i) V(x) > 1 + k for 
a<x<bor(ii) V(x)<l-k foradxdb. 

Condition A implies that V(x) # 1 and hence that log V( x) does not 
change sign in the interval a Q x < b. Condition A is fulfilled by most 
human populations. 

Expressions similar to (2.2) exist if the continuous perturbations in V(x) 
are restricted to the fecundity and mortality distributions, respectively. The 
changes &r(x) and 61(x) due to continuous perturbations in the fecundity 
and mortality distributions, respectively, are given by 

am(x) =m(x){exp[g,(x)logm(x)l-l) (2.3) 

61(x) =I(x){exp[g,(x)logf(x)l -11 (2.4) 

Here g,,,(x) and g,(x) are the analogues of g(x). 
We now analyze the effect of perturbations of type (2.2)-(2.4) on the 

different aggregate parameters. Our analysis exploits the methods of func- 
tional differentiation. An excellent introduction to these methods suitable 
for demographers is developed in Arthur [l]. Arthur was concerned with the 
response of the Malthusian parameter to changes in the shape of the 
fecundity-mortality distribution and derived closed-form expressions for 
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the changes in this growth rate parameter. These results extended the work 
of earlier researchers [4, 12, 131. The analysis in this paper applies the 
method of functional differentiation to obtain analogous closed-form expres- 
sions for the growth rate parameters. We then consider perturbations of the 
form described by (2.2)-(2.4) and, by invoking the mean value theorem for 
integrals, show that the responses of the growth rate parameters are com- 
pletely determined by the entropy functions originally derived from the 
study of the model based on the genealogies. 

2.2. THE MALTHUSIAN PARAMETER AND ENTROPY 

The Malthusian parameter is the unique real root r of the equation 

/hexp(-rx)V(x)dx=l 
0 

(2.5) 

By differentiating (2.Q we obtain 

/“exp( - rx) W( x) dx = Grj’x exp( - rx) V(x) dx (2.6) 
(1 0 

We have from (2.6) 

Sr = /i’exd - rx> W x) dx 
T (2.7) 

where T = l,“xp( x) dx is the mean generation time and 

p(x) =exp(-rx)V(x) (2.8) 

The closed-form expression (2.7) was originally derived in [l]. 
The connection between the Malthusian parameter and entropy is derived 

by analyzing (2.7) using the continuous perturbations given by (2.2). We 
note from (2.2) and (2.7) that 

6r=$jbexp(-rx)V(x){exp[g(x)logV(x)]-I} dx (2.9) 
0 

By condition A, log V(x) # 0, and hence expression (2.9) becomes 

6r=j T bp(x)log~(x) exp[dx)log~(x)l-1 dx 
[ l%V(X) 1 (2.10) 

(I 
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ThUS 

where 

(2.11) 

(2.12) 

Since p(x) > 0, we conclude from condition A that p( x)log V(x) does not 
change sign in the interval a < x < b. We can now apply the mean value 
theorem to the right-hand side of (2.11). We conclude that there exists a 
number 7, a Q 17 < b, such that 

where 

(2.13) 

(2.14) 

Write 

Now consider the expression for Sr given by (2.13) and let r* denote the 
perturbed Malthusian parameter and Ar = r* - r. Using (2.13) and (2.14) 
and expanding F(n) in terms of 6, we obtain 

bp( x)lOgl/( X) dx 
T (2.15) 

Write 

@=-j 
hp(x)logV(x) dx 

n T 

This expression is called the reproductive potential. We have from (1.9) that 
the following identity holds; 

r=H-Q (2.16) 
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Hence from (2.15) and (2.16) 
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dr 
ia 6_O= -@=r-H (2.17) 

Equation (2.17) asserts that the changes in the Malthusian parameter due to 
small age-specific perturbations in the life cycle are determined by the 
entropy of the fecundity-mortality distribution. 

For 6 small, (2.17) becomes 

Ar ---(P6=(r-H)6 (2.18) 

2.3. THE NET REPRODUCTION RATE AND ENTROPY 

The net reproduction rate R is given by 

R=/%(x) dx 
LI 

(2.19) 

To assess the effect of continuous perturbations in V(x) on R, we use (2.2) 

and obtain 

SR=/bV(x)[exp{(gx)logV(x)} -11 dx 
(I 

(2.20) 

Thus 

6R =/bV(x)logV(x)[ exp[g(;;;;;x)l -‘] dx (2.21) 
0 

By applying the mean value theorem as in (2.13), we observe that there exists 
an n, a Q q G b, such that 

6R= F(q)lbV(x)logV(x) dx 
a 

(2.22) 

where F(x) is given by (2.12). 
Write g(n) = 6 and let AR = R* - R, where R* denotes the new value of 

R that results from the perturbation. By a repeat of the argument given in 
Section 2.2 we have 

/,“V( x)log V( x) dx 

],“V( x) dx 
(2.23) 
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We have, from the expression for HR given by (l.lO), the following identity: 

logR=H,-cP, (2.24) 

From (2.23), we obtain, using (2.24), 

4log R) 
dc? 

=-cP,=logR-H, 
8=0 

(2.25) 

Expression (2.25) asserts that the relative change in the net reproduction rate 
due to arbitrary perturbations in the net maternity function is determined by 
the entropy of the net maternity distribution. 

Expression (2.25) can be written 

AR 
-=--_R8=(logR-HR)8 R (2.26) 

These expressions are analogous to expression (2.18), which is valid for the 
Malthusian parameter. 

2.4. GROSS REPRODUCTION RATE AND ENTROPY 

The gross reproduction rate Zi given by (1.7) satisfies the identity 

logKz=H,-a,,, (2.27) 

where H,,, is the entropy give by (1.11) and Q,,, is the expression 

Qm = _ /,“m( x)1% m( x) dx 
/h( x> dx 

The argument given in Section 2.3 can be repeated with the new perturbed 
function given by (2.3). We obtain a result analogous to (2.29, namely, 

d(log Ei) 

da 6-O 
=-@,,,=lognl-H,,, (2.28) 

This result asserts that the relative change in the gross reproduction rate due 
to arbitrary perturbations in the net fecundity distribution is determined by 
the entropy of the fecundity distribution. 
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Hence for 6 small, we have 

Aiii 
-=-@,S=(logz+H,)S 
m 

(2.29) 

2.5. MEAN LIFE EXPECTANCY AND ENTROPY 

The mean life expectancy e,,, given by (1.Q satisfies the identity 

loge,=H,-iP, (2.30) 

where H, is the entropy given by (1.12) and @, is the expression 

a 

I 
= _ !cY(x)log~(x) dx 

hY( xl dx 

The perturbation of the survivorship distribution is given by (2.4). An 
argument similar to that in Section 2.3 yields 

41% eo ) 
d8 

=-Q,=loge,-H, 
8=0 

Hence for S small we have 

Ae 
o=-Q,a=logeo-H, 
e. 

(2.31) 

(2.32) 

Relation (2.32) was shown by Keyfitz [14] to hold for age-independent 
perturbations [the case g(x) = 61. See also [ll], [17], and [18] for discussions 
and applications of this case. 

Relation (2.32) states that the relative change in the mean life expectancy 
due to arbitrary perturbations in the survivorship curve is determined by the 
entropy of the survivorship curve. 

3. THE FORCES OF EVOLUTIONARY CHANGE 

The evolutionary changes in the demographic parameters in large human 
populations are due to two main forces: natural selection and environmental 
action. Natural selection occurs if there are differences in the age-specific 
fecundity and mortality of the types constituting the populations. The 
changes in growth rates due to selective forces are determined by the amount 
of genetic variation for fertility and mortality that exists within the popula- 
tions. The dynamics of these changes in age-structured populations have 
been extensively studied; see Charlesworth [2]. 
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The term environmental action refers to the changes in growth rate due to 
environmental factors such as famines, epidemics, wars, improved health 
care, and nutrition. The changes in growth rate due to environmental action 
are conditioned by the demographic heterogeneity within the population. 
The perturbation results we have derived describe the effect of these forces 
on the different growth rate parameters. 

3.1. THE INTENSITY OF SELECTION AND ENVIRONMENTAL ACTION 

Crow [3] introduced a notion called the “intensity of selection” to 
characterize the force that determines evolutionary change under natural 
selection in populations with nonoverlapping generations. This intensity 
measure can be separated into mortality and fertility components and thus 
provides a means of relating the effect of genetic differences in mortality and 
fertility in determining the evolutionary change in growth rate for demo- 
graphically homogeneous populations. 

We propose an analogue of the notion of selective intensity for heteroge- 
neous populations whose dynamics are determined by the action of environ- 
mental factors. The dynamics of the change in the growth rate parameters 
due to environmental action are given by (2.18), (2.26) (2.29), and (2.32). 
These equations predict the changes in the growth rate parameters that result 
from an environmental perturbation whose mean effect is given by 6. 

We therefore define the environmental intensity 6 by the equation 

8=-(l/Q)Ar (3.1) 

The intensity 6 can be separated into mortality and fertility components. 
The intensity of the environmental factor as 
component is given by 

measured by the mortality 

(3.2) 

Here e, is the mean life expectancy. The function @,, we recall, is related to 
the entropy H, of the survivorship curve by the identity 

Q, = H, -loge, 

The intensity of the environmental factor as measured by the fertility 
component is given by 

(3.3) 

where i+i is the gross reproduction rate. The function @, is related to the 
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entropy H,,, of the fertility distribution by 

‘D, = H, -1ogZ 

We will use these measures of environmental intensity to make a compara- 
tive study of Swedish and French populations during the period 1928-1965. 

We should note that a set of criteria based on the demographic parame- 
ters r and H have been derived to determine, from local trends in the 
demographic variables, the nature of the evolutionary force, selection or 
environmental action, acting on the population [lo]. These criteria suggest 
that the dominant factors determining evolutionary change in France and 
Sweden during the period 1928-1965 is environmental action. We will not 
discuss these criteria in this article. Other considerations, such as the large 
variations in demographic variables, suggest an environmental cause. We will 
therefore simply assume for illustrative purposes that the dominant mecha- 
nism during this episode is due to environmental forces and use (3.1)-(3.3) 
to evaluate the intensity of these forces and compare the evolutionary trends 
in the two populations. 

4. DEMOGRAPHIC TRENDS IN FRENCH AND 
SWEDISH POPULATIONS 

The data for the Swedish and French populations are based on the 
age-specific fecundity and mortality schedule given in Keyfitz and Flieger 
[15]. Tables 1 and 2 give the values for the parameters r, H, Q’, 
e,, ii?, H,, H,,,, @,,Q, for the period 1928-1968 based on these data. These 
tables are adapted from [9]. 

The data in Keyfitz and Flieger are given in five-year intervals. The 
population parameters have been interpolated to refer to one-year intervals. 
The data refer only to the female populations. Thus, e, is the mean life 

TABLE 1 

Demoarahic Data, Sweden, 1928-1965 

1928-32 66.44 0.93 0.241 1.774 4.437 1.701 -0.0060 0.0520 0.0580 
1933-37 68.45 0.83 0.214 1.877 4.440 1.690 -0.0090 0.0520 0.0610 

1938-42 70.73 0.93 0.186 1.629 4.445 1.556 -0.0046 0.0521 0.0566 
1943-47 72.40 1.22 0.167 1.444 4.449 1.643 0.0046 0.0525 0.0479 

1948-52 74.92 1.12 0.138 1.529 4.454 1.642 0.0026 0.0536 0.0510 

1953-57 76.28 1.09 0.125 1.518 4.459 1.604 0.0019 0.0531 0.0512 

1958-62 77.22 1.08 0.117 1.492 4.464 1.568 0.0017 0.0524 0.0506 
1963-68 77.93 1.18 0.112 1.400 4.467 1.565 0.0048 0.0528 0.0480 
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TABLE 2 

Demographic Data, France, 1928-1968 

e0 iii @I C 4 Hn, r H @ 

1929-33 62.20 1.09 0.287 1.539 3.843 1.625 -0.0025 0.0528 0.0554 
1934-38 64.62 1.02 0.258 1.591 3.910 1.611 -0.0037 0.0526 0.0564 
1938-45” _ _ _ _ - - 

1945-47 66.13 1.35 0.253 1.290 3.938 1.590 0.0049 0.0504 0.0456 
1949-53 71.89 1.38 0.176 1.242 4.099 1.571 0.0086 0.0506 0.0421 
1954-58 74.55 1.32 0.148 1.284 4.163 1.561 0.0074 0.0504 0.0429 
1959-63 76.22 1.37 0.131 1.232 4.202 1.547 0.0092 0.0504 0.0412 
1964-68 77.21 1.37 0.123 1.221 4.223 1.536 0.0096 0.0506 0.0410 

aNo data were given in Keyfitz and Flieger for France during the period 1938-1945. 

expectancy of females and Zr is the mean number of female offspring 
produced by each mother during her lifetime. 

4.1. TRENDS IN THE ENTROPY PARAMETERS 

Several general observations can be made concerning the data in Tables 1 
and 2. The appendix gives bounds on the parameters. These bounds indicate 
the range of values these parameters may assume. 

0) 

Q 
/ 

= _ k’~(x)log~(x) dx 

lciY x> dx 

The parameter a, measures the proportional rate at which the mean life 
expectancy e, changes as a result of the environmental factor. The data for 
both France and Sweden show a strong correlation between e, and Q,. The 
parameter e, increases continuously whereas @, decreases. The decrease in 
Qp, expresses the fact that the survivorship curve tends toward a more 
rectangular form. The rectangular form corresponds to the case where the 
mean life expectancy and the maximum life expectancy coincide. In this 
instance 0, assumes the value zero. 

Related expressions for Cp, and an analysis of the range of values that a, 
may assume are discussed in Goldman and Lord [ll] and Mitra [17]. 

(2) 

a, = _ lOmm(x)logm(x) dx 
K’dx) dx 

The parameter Q,,, measures the proportional rate at which the gross fertility 
Ei changes as a result of the environmental factors. The irregular temporal 



174 LLOYD DEMETRIUS 

trends in iii and Q,, in contrast to the monotonic changes in e, and Q1, 
indicate that the environmental forces that condition fertility vary irregularly 
with time. Changes in fertility are dependent primarily on social custom and 
norms, which vary considerably over time. Mortality changes, on the other 
hand, are determined primarily by medical care and nutrition. The mono- 
tonic trends in e,, and a, indicate that these environmental agents exert a 
constant and uniform effect on the age-specific mortality. 

(3) 

H,= _jYg,,,!p, 
0 

The parameter H, is a measure of the variance of the mortality distribution. 
The irregular trend in H, in both countries indicates that the external factors 
such as better health care and nutrition, which cause the increase in mean 
life expectancy, do not act uniformly over all age classes. The changes in 
mean life expectancy arise quite probably from the elimination of infectious 
diseases that affect younger people and also from a reduction in cardiovascu- 
lar diseases, which normally affect older cohorts. 

(4) 

The parameter H, is a measure of the variance of the fertility distribution. 
The steady monotonic decrease in H, in both populations corresponds to 

the increased concentration of childbearing into a short period of years. 
Childbearing that is concentrated at a single age will correspond to an 
entropy value of zero. 

4.2. TRENDS IN ENVIRONMENTAL INTENSITY 

Tables 3 and 4 give the changes in r, e,, and Z together with the measure 
of environmental intensity 6, S,, 8, for Sweden and France. 

The following features of the data need emphasis. 

(1) 

6=-Ar/Q 

The intensity 6 is a measure of the force of the environmental factors in 
terms of their effect on demographic change in r. The data indicates an 
irregular change in this intensity for both Sweden and France. The intensity 
in Sweden at each period exceeds that in France. This implies that the 
environmental agents such as improved health care and nutrition exert a 
stronger effect in Sweden than in France. 
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TABLE 3 

Measures of Environmental Intensity 

Sweden 

Period Ar 

1928-33 - .0030 .0517 2.01 - ,126 

1933-38 .0044 - ,012 2.28 - ,156 

1938-43 .0092 - ,162 1.67 - .127 

1943-48 - .0020 .041 2.52 - .208 

1948-53 - ,007 .137 1.36 - ,131 

1953-58 - ,002 ,039 0.94 - .098 

1958-63 .003 - ,061 ,071 - ,078 

- .lO .060 

.lO - ,064 

.29 ~ ,191 

- .lO ,056 

- .03 ,017 

- .Ol ,006 

.lO - .062 

TABLE 4 

Measures of Environmental Intensity 

France 

Period Ar 6 Ae, 8, Ai% aIn 

1928-34 - .0012 .0216 2.42 ~ ,135 - .07 .042 

1934-45 .0086 - ,152 1.51 - ,091 .33 - .203 

1945-49 .0037 - ,081 5.76 - .344 .03 -.017 

1949-54 - .0012 .028 2.66 - .210 - .06 ,035 

1954-59 .0018 - .042 1.67 ~ .151 .05 - ,029 

1959-65 0004 - ,009 .099 - ,099 .Ol - ,005 

It is of interest to note that the intensity for Sweden assumes its 
maximum value in (1938-1943) and for France in (1934-1945). These 
periods correspond to the war years, which would evidently exert a strong 
effect on both mortality and fertility. 

(2) 

Mortality 8, contributes a greater fraction to the total intensity than fertility 
a,,,. This is true in both countries except for the year 1943 in Sweden and 
1945 in France. The large postwar increase in fertility in France corresponds 
possibly to the increased desire to have children to compensate for the large 
mortality incurred during the war. 

The generally large contribution of mortality to the total intensity sug- 
gests that factors such as health care and nutrition, which control mortality, 
exert a stronger effect on the population than factors such as birth control 
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that determine fertility. The monotonic changes in e, and Cp, for both 
countries support the idea of the preponderance of the mortality component 
in determining evolutionary change. 

CONCLUSION 

A class of entropy functions was introduced in demographic theory by 
considering demographic models in which we focused on the set of genealo- 
gies generated by the individuals in the population. It has been shown that 
these entropy functions characterize the response of the classical demo- 
graphic parameters-growth rate, net reproduction rate, mean life ex- 
pectancy, and gross reproduction rate-to fluctuations in the age-specific 
fecundity and mortality distributions. These relations have been applied to 
provide quantitative measures of the intensity of environmental factors in 
terms of the changes in the demographic variables. These intensity measures 
provide a means of assessing the impact of environmental factors on 
evolutionary change. 

APPENDIX. BOUNDS ON ENTROPY 

We prove the following two results: 
(A) Let p(x) =exp(- rx)f(x)m(x) 
write 

T= O” J 4 x> dx 
0 

where T is the mean age of childbearing in the stable population. Let 

H= - ~omP(x)log~(x) dx 
T 

If T is finite, then H is bounded and 

H< l+logT 
\- T 

(B) Let q(x) = I(x)m(x)/R 
write 

(A.11 

cY= imxq( x) dx and HR = - jomq( x)log q( x) dx 
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If a is finite, then HR is bounded and 
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HR <l+logcy (A.21 

The proofs of (A.l) and (A.2) follow from the following well-known proposi- 
tion. 

PROPOSITION 1 

Let f(x) and g(x) be probability distributions and suppose that 

- 0mf(410ggtx)dx $ 

exists and is finite. Then 

- 0,/(xYogf(4 dx 1 

exists, and 

-jomf(xYogf(4 dx< -~mf(x)logg(x) dx 

Proof. Defineg(x)/f(x)=Owhen f(x)=g(x)=O.Sincelogb<b-1, 
we have 

g(x) 
fw’Ogf(x) -rg(x)-f(x) 

Hence 

Now 

g(x) 
-f(x)logf(x) =f(xYog- - f(x) f(x)logg(x) 

We conclude that 

-jnmf(x)logf(x) dx< -/o”f(x)logg(x)dx 
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Proof of (A.l). To infer (Al) from Proposition 1, we consider the 
distribution 

g(x) =+eXp( -$.) 

For any probability distribution p(x), we are given that T is finite, and 

$ 
m 

- p(x)logg(x)dx=(l+logT) <cc 
0 

Hence 

-@x)logp(x)dx<l+logT 

and we conclude that 

H< l+logT 
\ T 

Proof of (A.2). To infer (A.2), we consider the distribution 

g(x) =iexp( -z) 

where (Y is assumed to be finite. We have that 

/ 

m 
- q(x)logg(x) dx=l+loga 

0 

Hence, using Proposition 1, 

and the proof is complete. 
Analogous bounds for H, and H, exist. 

quences of (A.2). We observe the following: 
(C) If /Fxr(x) dx = /L? is finite, then 

These are immediate conse- 

is bounded 
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and 

H/ G I + log( P/e0 > 

(D) If jgmxm( x) dx = y is finite, then 
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(A.31 

H, = - 
/ 

m 4x1 m(x) 
m logm dx is bounded 

0 

and 

H, <l+log(y/Fi) (A.41 

Similar bounds for Q, and @, follow from the application of (A.3) and (A.4) 
to the identities (2.30) and (2.27). 

We have 

and 

@, < 1+ log( P/e:) (A.9 

a, <l+log(y/m*) (A@ 
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