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Abstract

We present a novel real-time approach for user-guided intrinsic decomposi-
tion of static scenes captured by an RGB-D sensor. In the first step, we
acquire a three-dimensional representation of the scene using a dense volu-
metric reconstruction framework. The obtained reconstruction serves as a
proxy to densely fuse reflectance estimates and to store user-provided con-
straints in three-dimensional space. User constraints, in the form of constant
shading and reflectance strokes, can be placed directly on the real-world
geometry using an intuitive touch-based interaction metaphor, or using in-
teractive mouse strokes. Fusing the decomposition results and constraints in
three-dimensional space allows for robust propagation of this information to
novel views by re-projection.We leverage this information to improve on the
decomposition quality of existing intrinsic video decomposition techniques
by further constraining the ill-posed decomposition problem. In addition to
improved decomposition quality, we show a variety of live augmented reality
applications such as recoloring of objects, relighting of scenes and editing of
material appearance.
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Live User-Guided Intrinsic Video For Static Scenes

Figure 1: We propose a novel approach for live, user-guided intrinsic video. First, we obtain a dense volumetric reconstruction of
the scene using a commodity RGB-D sensor. The reconstruction is leveraged to store reflectance estimates and user-provided
constraints in 3D space to inform the ill-posed intrinsic video decomposition problem. Our approach runs at real-time frame rates,
and we apply it to applications such as recoloring, material editing and relighting.

ABSTRACT

We present a novel real-time approach for user-guided intrinsic de-
composition of static scenes captured by an RGB-D sensor. In the
first step, we acquire a three-dimensional representation of the scene
using a dense volumetric reconstruction framework. The obtained
reconstruction serves as a proxy to densely fuse reflectance estimates
and to store user-provided constraints in three-dimensional space.
User constraints, in the form of constant shading and reflectance
strokes, can be placed directly on the real-world geometry using
an intuitive touch-based interaction metaphor, or using interactive
mouse strokes. Fusing the decomposition results and constraints in
three-dimensional space allows for robust propagation of this infor-
mation to novel views by re-projection. We leverage this information
to improve on the decomposition quality of existing intrinsic video
decomposition techniques by further constraining the ill-posed de-
composition problem. In addition to improved decomposition quality,
we show a variety of live augmented reality applications such as
recoloring of objects, relighting of scenes and editing of material
appearance.

1 INTRODUCTION

The ability to edit the appearance of the real world seen through
a mobile device or a head-mounted see-through display – such as
photorealistic recoloring and relighting of real scenes – is essential
for many augmented reality (AR) applications. Imagine a virtual re-
furnishing application that allows a user to roam around and explore
different color choices for real-world objects, or different placements
of virtual lights, directly in their living room.

To enable this, an AR system needs to jointly track its position and
reconstruct the geometry of the scene – initial solutions to this hard
problem exist. The much harder problem, however, is that the system
needs to solve a complex inverse rendering problem in real time.
Ideally, from monocular or RGB-D sensors alone, the AR device
has to estimate detailed models of surface reflectance and scene
illumination, in order to modify both through computer graphics
overlays. As of today, estimating fine-grained light transport models
in general uncontrolled scenes from only one on-board camera is
far from possible in real time.

Meka et al. [21] recently showed that intrinsic RGB video decom-
position [5, 34], a simpler yet still highly complex inverse rendering
problem, is feasible in real time. Making the simplifying assumption
of only diffuse surfaces, intrinsic decomposition factors the video,
per pixel, into its reflectance and shading component, enabling their
independent modification. However, intrinsic decomposition is ill-
posed [2], as the separation of reflectance color and illuminant color
is ambiguous. On heavily textured objects, this inherent ambiguity
leads to reflectance texture information being erroneously ‘baked’
into the shading. In addition, high-frequency shading effects are of-
ten misinterpreted as texture. Although regularization of reflectance
and shading can reduce such artifacts, they cannot be entirely re-
solved in the existing techniques. This leads to visual artifacts in the
targeted AR applications.

To alleviate this problem and enable live realistic editing of re-
flectance and lighting in augmented reality, we propose a novel
interactive scene-level approach for real-time intrinsic decomposi-
tion of static scenes captured by an RGB-D sensor. Our approach
is based on a volumetric representation of the scene that serves as a
proxy to store reflectance estimates and sparse user-provided con-
straints, such as constant shading and constant reflectance strokes,
directly in 3D. Based on the projection of this data into new camera
views, the intrinsic video problem can be temporally initialized and
supplied with additional constraints that guide the decomposition.
The constraints are intuitively provided directly on the real-world
geometry with a touch-based interaction metaphor that allows to
define strokes on the geometry or via live mouse interactions. By
providing shading and reflectance strokes, the user can interactively
improve the decomposition result to resolve ambiguities and obtain
higher quality results than with previous fully-automatic approaches.
Note that our approach can be used to decompose standard RGB
images, without geometry, in real time, since we can also directly
use 2D mouse strokes as constraints. In summary, our method is
based on the following main contributions:

• A volumetric scene representation to densely store the obtained
reflectance estimates, and user-provided strokes for constant
shading and reflectance in 3D,

• a real-time intrinsic decomposition approach that exploits these
constraints to solve the ill-posed decomposition problem,

• and prototype augmented reality applications such as live re-
coloring, material editing and relighting.



Figure 2: Our novel user-guided intrinsic video approach enables real-time applications such as recoloring, relighting and material editing.

2 RELATED WORK

Intrinsic image decomposition has a long history, stretching from
the seminal Retinex approach [18] all the way to the current day.
The key insight of Retinex, which helps to disambiguate shading
and reflectance, is that larger image gradients mostly correspond to
gradients in reflectance rather than shading. Therefore, thresholding
the image gradients can be used for disambiguating these two com-
ponents. This idea has been extended by using learned classifiers
instead of fixed thresholds [30], it has also been combined with
non-local cues for improving decompositions [13, 27], and closed-
form solutions have been proposed [36]. To further improve the
quality of intrinsic decompositions, additional, increasingly complex
priors have been proposed to constrain the solution space. Many
techniques assume that the reflectance distribution in a scene is
sparse [10, 13, 27, 28], i.e. that there are only a few different colors
visible at the same time, which can for example be determined using
clustering [12], efficient inference via dense conditional random
fields [3] or image flattening [4]. Barron et al. [1] even model and
estimate shape and illumination in addition to reflectance. Recently,
more advanced reflectance priors have been learned directly from
ground-truth intrinsic decompositions [38,40]. Image sequences can
also provide temporal constraints, for example when reflectance is
constant but shading varies temporally [16,17,20,33]. The additional
depth channel captured by consumer depth cameras has also been
exploited to provide additional constraints [8, 14, 19]. We also use a
depth camera for enabling scene-consistent temporal propagation of
reflectance estimates and user constraints that are densely stored in
the reconstructed scene geometry.

In many cases, the existing priors fail to achieve intrinsic decom-
positions of high quality. Annotations such as scribbles provided
by a user can help to guide the intrinsic decomposition towards the
desired solution [6, 26]. Previous approaches for off-line intrinsic
video decomposition also make use of scribbles to obtain higher
quality decomposition results. Ye et al. [34] use a scribble-based
technique for decomposing the first video frame, and Bonneel et
al. [5] allow strokes for any video frame and use them as necessary.
In contrast, Meka et al.’s real-time, live intrinsic video technique [21]
explicitly excludes scribbles as they cannot be provided in real time
at 30 Hz. In our work, we show how to make scribbles work in a live
setup by embedding them in a dense volumetric 3D reconstruction
of the scene that makes them independent of the current camera
viewpoint. In addition, we use the reconstruction as a proxy to fuse
and temporally propagate reflectance estimates.

Scene reconstruction based on commodity RGB-D sensors em-
ploys implicit surface representations [9, 11, 37], since they allow
to deal with the noisy depth data captured by commodity sensors.
The first online method for the reconstruction of a static scene using
a hand-held depth sensor was KinectFusion [15, 22]. The scene’s
geometry is approximated using a truncated signed distance field [9],

into which per-frame data is fused. Camera tracking is based on a fast
variant of the iterative closest point (ICP) algorithm [25] that uses
projective correspondences. Many approaches that extend Kinect-
Fusion have been proposed, with the focus on extending the scale
of the limited reconstruction volume [7, 22, 24, 29, 35]. The Seman-
ticPaint [31] approach combines dense volumetric reconstruction
with a learning-based segmentation strategy to obtain a semantic
decomposition of the scanned scene.

3 METHOD OVERVIEW

A high-level overview of our novel user-guided intrinsic video ap-
proach is shown in Fig. 2. First, we reconstruct a volumetric rep-
resentation of the scene using the RGB-D data captured by a com-
modity depth sensor. To this end, we employ a dense volumetric 3D
reconstruction approach [23] that obtains high-quality reconstruc-
tions of static scenes in real time (Sect. 4). In contrast to Nießner
et al. [23], we use this representation as a proxy to densely fuse
surface reflectance estimates instead of the input image colors. For
this, we simultaneously compute an intrinsic decomposition of the
color video stream during volumetric reconstruction, and fuse the
obtained reflectance estimates. The fused reflectance information
is used to further inform the underlying intrinsic video decomposi-
tion problem. In addition to the surface reflectance, we also store
user-provided constraints in the form of constant reflectance and
shading strokes. Such constraints can be provided using live mouse
input or using an intuitive touch-based interaction metaphor. In the
case of touch-based input, the user is automatically detected by a
foreground segmentation approach that utilizes the difference in
geometry and color between the reconstructed model and the cur-
rent input RGB-D frame. This allows us to detect touch-based user
interaction on real-world geometry and enables the user to inter-
actively place constraints in the scene (Sect. 5). We project these
constraints into novel views to further constrain the ill-posed in-
trinsic decomposition problem (Sect. 6). Our proposed approach
facilitates a variety of augmented reality applications, such as recol-
oring, material editing and relighting (Sect. 8). Finally, we present
the results of our technique (Sect. 7), discuss remaining limitations
(Sect. 9) and provide ideas for future work (Sect. 10).

4 VOLUMETRIC REFLECTANCE FUSION

As the user walks around a scene with an RGB-D camera, which
could for example be integrated into a head-mounted AR device,
we obtain a virtual model of the scene using large-scale dense volu-
metric reconstruction [23]. The captured depth maps are fused into
a high-quality model using a truncated signed distance field [9] (4
bytes per voxel). Memory is managed based on a space and time
efficient spatial hashing strategy. Internally, 3D space is discretized
into a set of discrete voxels, which are stored as blocks consisting
of 83=512 voxels each. We track the camera’s rigid motion using a



fast variant of the iterative closest point (ICP) algorithm that uses
projective correspondence lookups.

In contrast to Nießner et al. [23], we do not fuse the observed
color samples in the volume, but directly fuse surface reflectance
estimates (12 bytes per voxel). To this end, we decompose the si-
multaneously captured color image into its shading and reflectance
layers (Sect. 6). The surface reflectance is devoid of illumination in-
formation and is fused using temporal exponential averaging. Since
multiple per-frame reflectance estimates are averaged, sensor noise
and inconsistencies in the decomposition results are significantly
reduced. In addition to surface reflectance, we use the dense volu-
metric reconstruction to store additional user-provided constraints
based on a stroke identifier (1 byte per voxel). Storing the constraints
directly in 3D world space allows us to re-project them to arbitrary
novel camera views, and hence help to solve the ill-posed intrinsic
decomposition problem. In addition, we exploit the spatial neigh-
borhood information encoded in the volumetric grid to propagate
constraints in 3D space (see Sect. 5.2) to obtain a basic segmentation
of the scene. This is useful for applying constraints directly to larger
parts of the scene, and is used in several proposed AR applications
(see Sect. 8).

5 LIVE USER INTERACTION

After reconstruction of the scene’s geometry, the user can interact
with the scene using live mouse input or a touch-based interaction
metaphor to provide constraints to further inform the ill-posed in-
trinsic decomposition problem. Constraints are given in the form
of constant reflectance and constant shading strokes. We use the
dense volumetric reconstruction of the scene as a proxy to store
the constraints directly in world space on a per-voxel level (using a
stroke identifier attribute). For example, the user can place a constant
shading stroke on a wall to alleviate the texture copy problem en-
countered in previous approaches, where high-frequency reflectance
is often erroneously copied to the shading layer. In addition to these
constraints, the user input is used in the proposed live AR applica-
tions (see Sect. 8), where it enables recoloring, material editing and
relighting. The user can for example simply touch a chair to assign a
different color to it, or change the material of any object in the scene.
In summary, all supported interactions are:

• Constant Shading Stroke: All surface points belonging to
the same stroke are enforced to share the same shading value.
Multiple independent strokes of this type can be used.

• Constant Reflectance Stroke: This constraint enforces all
associated surface points to share the same reflectance color.
Multiple independent strokes of this type can be defined.

• Recoloring Stroke: The reflectance of all associated surface
points is set to a fixed user-specified color. Using this stroke
type, users can paint an arbitrary reflectance map.

All strokes optionally support a region filling strategy that allows
to directly select a complete subset of the scene. The propagation
of stroke attributes is based on spatial connectivity and reflectance
similarity, as detailed below.

5.1 Detection of Touch Points
Once scene reconstruction is finished, the integration of further ge-
ometry is stopped to allow the user to interact with the obtained
reconstruction of the scene by placing constraints. Interactions
are based either on live mouse input or a touch-based interaction
metaphor. Touch-based interaction requires the user to closely in-
teract with objects that are in plain view of the camera (see Fig. 3).
This might throw off the camera tracker, since the motion of the
user violates the assumption that the scene is static. To alleviate
this problem, we automatically detect the pixels that correspond

Figure 3: The user’s hand is detected as foreground based on the
difference between the input depth image and the reconstructed scene.
Touch points are detected (bright red) and propagated based on
spatial connectivity and reflectance similarity.

to the user and exclude them from tracking. To this end, we prune
correspondences in the ICP alignment strategy if the distance be-
tween points is larger than εdist=15 cm or the normals deviate more
than εnorm = 14 degrees. After alignment, all outliers in the input
depth map are considered foreground. In the next step, we determine
touch points based on the spatial proximity of the background and
skin-colored foreground pixels [32]. For every detected touch point,
we mark all voxels that fall within a small spherical neighborhood,
similar to a 3D brush. The radius of the sphere can be controlled by
the user. In the case of live mouse input, we use the rendered depth
map to back-project the strokes to 3D space.

5.2 Spatial Constraint Propagation

To enable fast and convenient editing, we provide the user the option
to automatically propagate constraints to appropriate spatial subre-
gions. For each stroke, we compute the average reflectance value
of all influenced voxels and store it for further processing. We then
perform a data-parallel flood fill to all neighboring voxels that have
a sufficiently similar reflectance in RGB color space to the stored
value. Note that the flood fill implicitly takes the connectivity of the
sparse voxel grid into account.

6 SCENE-LEVEL INTRINSIC VIDEO DECOMPOSITION

The majority of intrinsic video decomposition techniques suffer
from the texture copy problem, leading to residual texture in the
shading layer. This is because it is highly challenging to correctly
disambiguate texture into its reflectance and shading components in
the absence of additional constraints. A number of intrinsic decom-
position techniques have therefore resorted to user interaction in the
form of strokes to provide additional constraints [5,6,26,34]. Unlike
these methods, we propose to use live mouse interactions or a touch-
based interaction metaphor directly in 3D space for intuitive editing
of the intrinsic decomposition. User input is stored densely based
on the obtained scene reconstruction. In addition, we fuse computed
reflectance estimates using the volume. At run time, reflectance es-
timates and constraints are projected to novel views to constrain
the ambiguous intrinsic decomposition problem towards a higher
quality solution. Previous constraint-based approaches run off-line
and require long computation times. In contrast, our approach runs
at real-time frame rates, thus making it usable in the augmented
reality context.



6.1 Variational Intrinsic Video Decomposition
We cast finding the optimal intrinsic decomposition D∗ as a general
non-linear energy minimization problem:

D∗ = argmin
D

E(D) (1)

D =
[
. . . ,r(x)>, . . . ,s(x), . . .

]>, (2)

where the vector D contains all unknowns, i.e. log-space reflectance
r(x)∈R3 and shading s(x)∈R for all pixels x∈Ω⊂N2. The em-
ployed intrinsic video decomposition energy E is based on several
objective functions:

E(D) = Efit(D)+wrEreg(D)+wuEuser(D)+wsEstab(D). (3)

The objective functions model the reproduction of the input image
Efit, spatio-temporal regularization Ereg, integration of the user con-
straints Euser, and temporal stabilization Estab. The constant weights
wr=1, wu=1000 and ws=10 control the influence of the different
objectives. In the following, we discuss all terms in more detail.

Reproduction of the Input Image The fitting objective Efit
enforces that the decomposition reproduces all N pixels of the input
color image I . We formulate this constraint in the log-domain for
linearity:

Efit(D) = ∑
x∈Ω

∥∥i(x)−
(
r(x)+ s(x)

)∥∥2. (4)

Here, i(x)= lnI (x)∈R3 is the logarithm of pixel color at pixel
x, r(x)= lnR(x) is the reflectance and s(x)= lnS (x) the shading
value of the same pixel.

Spatio-Temporal Regularization For regularization, we fol-
low the approach of Meka et al. [21] and employ a combination of
four different terms:

Ereg(D) = wpEp(D)+wgEg(D)+wmEm(D)+wcEc(D). (5)

Since many man-made scenes contain a small, distinct number of
reflectance values, we enforce sparsity based on a p-norm constraint:

Ep(D) = ∑
y∈N (x)

ωcs(x,y) · ‖r(x)− r(y)‖p
2 , (6)

where ωcs(x,y) = exp(−15 · ‖c(x)− c(y))‖2) measures the chroma
similarity of two adjacent pixels. Spatio-temporal coherence is in-
corporated based on a global prior Eg that takes long-range chroma
similarity into account. The prior Em enforces `2-spatial smoothness
of the shading layer at chroma boundaries. Finally, a soft constraint
on chroma similarity Ec keeps the chroma of the reflectance image
close to the chroma of the input. For a detailed discussion of the
terms E•, the sparsity norm `p and parameters ω•, we refer to Meka
et al. [21].

Incorporation of User Constraints One of the main contri-
butions of our work is a novel approach for incorporating the user
constraints, in the form of constant reflectance and constant shading
strokes, directly into the optimization problem:

Euser(D) = ∑
Si∈S

∑
x∈Si

wi(x) · |s(x)−ŝi|2+

∑
Ri∈R

∑
x∈Ri

wi(x) · ‖r(x)−r̂i‖2 . (7)

Here, S is the set of shading strokes, and Si the set of pixels be-
longing to the i-th shading stroke. ŝi is the representative unknown

shading value associated with the i-th stroke. The same notation
holds for the reflectance strokes Ri∈R. Note that ŝi and r̂i are un-
known auxiliary variables. For the i-th stroke, we define a per-pixel
stroke weight wi(x) to fade out the influence of the strokes (squared
fall-off) close to their boundary.

Stabilization of Reflectance Estimates Another important
contribution of our work is to densely fuse the obtained reflectance
estimates into the volumetric scene representation. This allows to
enforce temporal coherence and further inform the intrinsic decom-
position problem. To this end, we propose the following novel stabi-
lization constraint:

Estab(D) = ∑
x∈Ω

B(x) ·
(
r(x)− rmodel(x)

)2. (8)

The background mask B(x) (one for background, zero for fore-
ground) prunes any potentially dynamic foreground pixels. It en-
courages the per-pixel reflectance values r(x) to be close to the
fused mean reflectance rmodel(x) stored in the volumetric scene
model. This per-pixel mean reflectance is computed by extracting
the reflectance-colored isosurface of the volumetric scene represen-
tation via ray marching.

6.2 Data-Parallel Optimization
Our goal is to compute the intrinsic decomposition of the RGB-D
video stream at real-time frame rates. We therefore require a fast
and efficient strategy to solve the underlying non-linear optimization
problem. We propose a highly efficient, data-parallel, iteratively
reweighted least squares (IRLS) solver that allows computing the
optimum of the energy E (see Equation 3) at real-time rates. In con-
trast to Meka et al. [21], our decomposition objective does not have
a sparse Jacobian, but contains dense blocks due to the incorporation
of the user constraints Euser (see Equation 7). This is because every
per-pixel unknown belonging to the same stroke has a derivative
with respect to the unknown per-stroke auxiliary variable. Therefore,
the data-parallel solver proposed in previous work is not sufficient
to achieve real-time frame rates, since the workload is not equally
distributed between different threads.

To tackle this problem, we propose an iterative flip-flop strategy
that solves two simpler optimization problems in alternation. Given
an initial estimate of the per-pixel shading and reflectance, we first
optimize for the auxiliary variables. Since the auxiliaries only appear
in the least-squares objective Euser, the optimum has a closed-form
solution, and can be obtained as the average of all associated per-
pixel values that belong to the same stroke. After this, we fix the
new values for the auxiliaries, and optimize for a new decomposition
using a data-parallel IRLS solution strategy. As the auxiliaries are
constant during this step, the Jacobian is again sparse, leading to
high performance. We assume convergence after 7 iteration steps.
Internally, the IRLS solver divides the problem into small rectangu-
lar sub-domains and uses a data-parallel variant of the alternating
Schwarz procedure [39]. Each iteration solves the local problems in
shared memory and exchanges data with neighboring domains using
global memory. We apply this optimization using a coarse-to-fine
strategy (5 levels) for faster convergence. Starting from the coarsest
level, we solve the coarse scale version of the problem to obtain an
approximate solution. We then upsample this solution to the next
finer level and use it for initialization.

7 RESULTS

We demonstrate our approach in a live setup. We use a PrimeSense
Carmine 1.09 close-range RGB-D sensor to obtain two 640×480
video streams of color and depth at 30 Hz. After acquiring an initial
geometric model of the scene using dense volumetric reconstruction,
the decomposition quality is improved using strokes that enforce
constant reflectance and shading.



Figure 4: Constant reflectance strokes improve the decomposition by moving the high-frequency shading of the cloth to the shading layer.

Figure 5: Temporal reflectance constancy. We track five rectangular regions and compute the average albedo difference over time per region. Our
approach uses fused reflectance estimates to further constrain and jump-start the intrinsic decomposition process. Therefore, it obtains a higher
temporal reflectance consistency than the approach of Meka et al. [21].

Decomposition Results Current state-of-the-art intrinsic de-
composition approaches, which do not rely on additional user input,
suffer from the texture-copy problem. Texture-copy refers to tex-
ture variation being misinterpreted as shading, see Fig. 6 (top). Our
approach allows to resolve this problem via the incorporation of
constant shading strokes into the decomposition problem, see Fig. 6
(bottom). Without user input, it is difficult to disambiguate between
blocks of varying intensity, and current state-of-the-art approaches
fail in this regard. By adding user constraints, the optimization
approach better resolves the inherent ambiguities of the intrinsic
decomposition problem, and we obtain a cleaner shading layer.

In addition, the decomposition of regions with high-frequency
shading variation can be easily improved using a constant reflectance
stroke, as can be seen in Fig. 4. The clothing contains several dark
creases that wrongly end up in the reflectance layer in the absence of
interaction. With an appropriate stroke, directly on the 3D geometry,
our approach mitigates this issue and ensures constant reflectance
over the cloth.

Runtime Performance For the reconstruction of the static
scene geometry, we use a voxel resolution of 1 cm. Camera tracking
takes 2 ms and reflectance fusion 0.6 ms. To project the user con-
straints into the image, we use ray marching, which takes 14 ms to
compute the stroke map. Overall, our scene-level intrinsic decompo-
sition runs at real-time frame rates. We use 5 hierarchy levels with 7
IRLS iterations on each. Each non-linear IRLS iteration performs 7
PCG steps internally. After each non-linear iteration, we perform a
flip-flop step to update the auxiliary variables (Sect. 6.2). Intrinsic
decomposition takes in total 22 ms per frame. While performing
the 3D reconstruction of the scene, we achieve an average frame
rate of 25 Hz. After the static reconstruction is completed, the frame
rate increases to more than 30 Hz. All timings are computed on a
commodity Nvidia GTX Titan graphics card.

Reflectance Initialization In addition to the user constraints,
we also densely fuse surface reflectance estimates using the volumet-
ric reconstruction of the scene. This allows to project the reflectance
estimates to arbitrary novel views, which can be used to further
constrain and jump-start the intrinsic decomposition process. The
technique of Meka et al. [21] initializes the reflectance layer in
every frame with the input RGB image, which could be far from
the correct reflectance values. In contrast, our approach only uses

Input RGB frame Reflectance Shading

w/o interaction (σshading=56.6)

ours, w/ interaction (σshading=6.4)

Figure 6: Intrinsic decomposition results for a color chart. Without
interaction, the shading image suffers from texture-copy. Our approach
improves the decomposition by using a constant shading stroke. This
reduces the intensity variation of the shading layer (smaller standard
deviation σshading).

this initialization for the first frame, and for subsequent frames syn-
thesizes an initial reflectance map based on the projection of the
fused reflectance estimates to the novel view. Occluded regions are
initialized based on the corresponding input RGB values. Our novel
temporal stabilization term also helps to stabilize the decomposition
results, see Fig. 5. We track five rectangular regions and compute
the average albedo difference per region over time. As can be seen,
our approach obtains a higher temporal reflectance stability than
Meka et al. [21] (average norm of albedo variation: 0.0187 instead
of 0.0241). We refer to the accompanying video for the complete
sequence. Another benefit of fusing reflectance estimates is that we
obtain a complete colored 3D model that is devoid of shading infor-
mation, see Fig. 8, which is in contrast to the color reconstructed by
state-of-the-art volumetric reconstruction techniques [23].

Comparison to the State-of-the-Art We compare our ap-
proach to the existing off-line intrinsic video approaches by Ye et
al. [34] and Bonneel et al. [5], which also use user-provided strokes
for constraining the result, as well as Meka et al.’s fully automatic
real-time approach [21]. As these approaches operate on monocular
color video alone (without depth), we compare the decomposition



Input Image Ye et al. [34] Bonneel et al. [5] Meka et al. [21] Our Result

Reflectance

Shading

Figure 7: Comparison to state-of-the-art intrinsic video decomposition techniques on the ‘girl’ dataset. Our approach matches the real-time
performance of Meka et al. [21], while achieving the same quality as previous off-line techniques [5,34] (see zooms).

Figure 8: Our approach reconstructs the reflectance of the scene.

Figure 9: Photorealistic recoloring of a shirt using our approach.

quality on the ‘girl’ dataset in Fig. 7, without using any geometry
reconstruction and only 2D strokes within our approach. This com-
parison shows that our approach obtains comparable decompositions
to state-of-the-art off-line approaches [5, 34], but at real-time frame
rates. Our decomposition quality improves on Meka et al.’s real-time
approach which does not consider user input, especially in regions
with high texture variation, such as the logo on the shirt (see inset
in Fig. 7). Additional user constraints clearly help to resolve the
inherent ambiguities of the intrinsic decomposition problem. Un-
like existing methods, our approach works best with RGB-D video
streams, as strokes are placed directly on 3D geometry and can be
projected to novel views of the scene for initializing them. Since our
approach runs live, the user can reexamine the decomposition result
at any time, and place additional strokes if required.

8 INTERACTIVE APPLICATIONS

Our method enables a wide variety of interactive applications. In
the following, we show several examples, such as photorealistic
recoloring, material editing and geometry-based relighting.

Photorealistic Recoloring and Material Editing We sup-
port interactive and intuitive recoloring and material editing of real-
world objects. Using the presented color-based volumetric segmen-
tation strategy, the complete geometry of the object that should be
modified is first segmented. Since the segmentation is computed in
3D, we can segment the entire object, even if it is not completely
visible from the current view. The selected 3D geometry is projected
to novel views to obtain the 2D mask that is later on used to modify
the appearance of the object. For recoloring, we replace an object’s

Input RGB frame Recolored reflectance map Recoloring result

Color Pick-up

First Touch

Second Touch

Result

Figure 10: Interactive object recoloring. The reflectance of the light
green chair is first picked up (left), and then transferred to the blue
chair while preserving its brightness (middle and right).

Figure 11: We modify the shading layer to convert plaster to metal.

color in the computed reflectance map of the current frame’s decom-
position by a user-defined color. For material editing, we apply a
tone-mapping filter (as used by Ye et al. [34]) on the shading layer
within the mask region. The modified layer is then recombined with
the other intrinsic layer to obtain the final output, see Fig. 9. By sim-
ply touching an object, the user can also choose to pick up a color
from the environment. This color can then be used to recolor other
objects, as illustrated in Fig. 10. Instead of modifying the reflectance
layer, we can also apply a tone mapping function to the shading
layer to change the appearance of an arbitrary object’s material. This
enables us for example to manipulate the appearance of a plaster
cast such that it looks like metal, see Fig. 11.



Figure 12: Dynamic geometry-based relighting. A virtual shading image is generated by rendering the scene geometry under a new light source.
The resulting shading map is blended with the shading layer before recombining it with the reflectance to obtain a relighting effect.

Geometry-Based Relighting In addition to modifications of
the reflectance layer, we also present geometry-based relighting via
modification of the shading layer. To this end, the user can place
virtual light sources in the scene, which interact with it. We use
the reconstructed 3D geometry in conjunction with the virtual light
sources to generate a new shading image. The scene geometry is
extracted using ray marching, and the synthetic shading map is
computed by a fragment shader. We blend the shading layer of our
decomposition with the newly synthesized shading map, and then
recombine the new shading layer with the reflectance map to obtain
a compelling relighting effect, as shown in Fig. 12.

9 LIMITATIONS

We demonstrated that high-quality user-guided live intrinsic de-
composition enables new scene modification applications. Still, our
approach has a few limitations. The geometric model of the scene is
currently obtained beforehand in a pre-process, since it is required
as the basis for foreground/background segmentation. In the future,
alternative segmentation strategies can be developed.

Our approach can only improve the decomposition quality of
static scene geometry, since the user constraints are placed in 3D, and
tracked based on a rigidly reconstructed scene model. Tracking the
dynamic time-dependent motion of non-rigidly deforming surfaces
to also be able to add and propagate constraints in such regions can
be further investigated.

The improvement in decomposition quality via user constraints is
of local nature, since the placed strokes only influence the decompo-
sition result in a small surrounding neighborhood. Therefore, similar
to other stroke-based approaches, a lot of such constraints might be
required to completely correct an initially very erroneous decompo-
sition result. Fortunately, this is rarely the case and constraints are
only required to deal with highly textured regions of the scene to
alleviate the texture copy problem.

Our simple touch-based interaction strategy also sometimes leads
to erroneous detections; more robust touch detection strategies are
left for future work. Constraint propagation based only on color
and spatial proximity can lead to suboptimal segmentation results.
This could be alleviated by the integration of a more sophisticated
semantic segmentation strategy [31].

10 CONCLUSION

We presented a novel real-time approach for user-guided intrinsic de-
composition of static scenes. Users can improve the decomposition
quality based on live mouse input or an intuitive touch-based interac-
tion metaphor that allows to place decomposition constraints directly
in 3D space. The constraints are projected to 2D and used to further
constrain the ill-posed intrinsic decomposition problem. We also use

the dense reconstruction as a proxy to fuse the obtained reflectance
estimates. Our novel stabilization term applies constraints based
on the projected fused reflectance estimates leading to temporally
more coherent decomposition results. The intrinsic decompositions
obtained by our approach show state-of-the-art quality at real-time
frame rates. In addition, we demonstrated video editing tasks such
as recoloring, relighting and material editing based on the obtained
decompositions.

We believe that the presented live setup is the foundation for many
augmented reality applications, such as virtual refurnishing, which
would allow the user to explore different color and design choices
for real-world objects directly in their living room.
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