
Sublinear Random Access Generators for
Preferential Attachment Graphs
Guy Even1, Reut Levi2, Moti Medina3, and Adi Rosén4

1 Tel-Aviv University
guy@eng.tau.ac.il

2 MPI for Informatics
rlevi@mpi-inf.mpg.de

3 MPI for Informatics
mmedina@mpi-inf.mpg.de

4 CNRS and Université Paris Diderot
adiro@liafa.univ-paris-diderot.fr

Abstract
We consider the problem of generating random graphs in evolving random graph models. In
the standard approach, the whole graph is chosen randomly according to the distribution of the
model before answering queries to the adjacency lists of the graph. Instead, we propose to answer
queries by generating the graphs on-the-fly while respecting the probability space of the random
graph model.

We focus on two random graph models: the Barabási-Albert Preferential Attachment model
(BA-graphs) and the random recursive tree model. We present sublinear randomized generating
algorithms for both models. Per query, the running time, the increase in space, and the number
of random bits consumed are Poly log(n) with probability 1 − 1/Poly(n), where n denotes the
number of vertices.

This result shows that, although the BA random graph model is defined sequentially, random
access is possible without chronological evolution. In addition to a conceptual contribution, on-
the-fly generation of random graphs can serve as a tool for simulating sublinear algorithms over
large BA-graphs.

1998 ACM Subject Classification F.2 ANALYSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY

1 Introduction

Consider a Markov process in which a sequence {St}t of states evolves over time. Suppose
there is a set P of predicates defined over the state space S. Namely, for every predicate
P ∈ P and state S ∈ S, the value of P (S) is well defined. A query is a pair (P, t) and the
answer to the query is P (St). In the general case, answering a query (P, t) requires letting
the process run for t steps until St is generated. In this paper we are interested in ways to
reduce the dependency on t required to answer a query (P, t).

We focus on the special case of generative models for random graphs, and in particular,
on the Barabási-Albert Preferential Attachment model [3] (which we call BA-graphs) and
the equivalent linear evolving copying model of Kumar et al. [9] as the equivalent recursive
copying model [1].

The question we address is whether one can design a randomized algorithm (called a graph
generator) that generates answers to adjacency list queries of BA-graphs without having to
generate the whole graph in advance. Such a generator outputs answers to adjacency list
queries as if it first picked the BA-graph at random and only then answered the queries.

© Even, Levi, Medina, and Rosén;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

60
2.

06
15

9v
2

 [
cs

.D
S]

 2
2

Fe
b

20
16

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Sublinear Random Access Generators for Preferential Attachment Graphs

Contributions. The computational resources of a graph generator are as follows: (1) the
number of random bits consumed per query, (2) the running time per query, and (3) the
increase in space per query. Our main result (Theorem 7) is a Las-Vegas randomized graph
generator for BA-graphs over n vertices that answers adjacency list queries. With probability
1− 1/Poly(n), the graph generator algorithm answers each query using Poly log(n) resources.

This result refutes (definitely for Poly log(n) queries) the recent statement of Kolda et
al. [8] that: “The majority of graph models add edges one at a time in a way that each
random edge influences the formation of future edges, making them inherently serial and
therefore unscalable. The classic example is Preferential Attachment, but there are a variety
of related models...”.

A trivial logarithmic lower bound is implied by entropy considerations. The entropy of
edges in BA-graphs is Θ(logn) per edge in the second half of the graph [23]. Hence it is
not possible to consume a sublogarithmic number of random bits per query in the worst
case. Similarly, to insure consistency (i.e., remember previous answers) one must use Ω(logn)
space per query.

In Theorem 4, we present a graph generator algorithm for random recursive trees [20]. In
recursive trees, the vertex set is [n] and each vertex i chooses a parent uniformly at random
from the set [i − 1]. A next-neighbor query deals with the problem of picking children
rather than picking a parent. Our graph generator for random recursive trees is a Las-Vegas
algorithm that uses Poly log(n) resources per query with probability 1 − 1/Poly(n). This
generator serves as a building block for the BA-graph generator.

Related Work. A linear time randomized algorithm for efficiently generating BA-graphs
appears in Betagelj and Brandes [4]. See also Kumar et al. [9] and Nobari et al. [17]. A
parallel algorithm appears in Alam et al [1]. See also Yoo and Henderson [24]. A external
memory algorithm was presented by Meyer and Peneschuck [15].

Applications. Many researchers deal with developing algorithms that perform well with
respect to random BA-graphs. Such algorithms often read only small portions of the graphs
and are evaluated by simulations. In such instances, it is wasteful to generate the whole
graph.

Examples of algorithms that read only small portions of the graph are sublinear approxim-
ation algorithms [19, 25, 16, 18]. These algorithms probe a constant number of vertices1. In
addition, local computation algorithms probe a small number of neighbors to provide answers
to optimization problems such as maximal independent set and approximate maximum
matching [6, 7, 21, 22, 2, 13, 14, 10, 11, 12]. Support of adjacency list queries is also useful
for simulating DFS and BFS over graphs that stop after a sublinear number of vertices are
scanned.

2 Random Access Graph Generators

A access random graph generator for modelM and query types Q is a randomized algorithm
that returns answers to queries q ∈ Q with respect to a random graph G ∈ M. The term
random access means that the queries are not restricted (similar to read/write transactions to

1 Strictly speaking, sublinear approximation algorithms apply to constant degree graphs and BA-graphs
are not constant degree. However, thanks to the power-law distribution of BA-graphs, one can “omit”
high degree vertices and maintain the approximation. See also [21].

Even, Levi, Medina, and Rosén 3

Algorithm

Graph
Generator

random
bits

memory
(state)

queryanswer

Figure 1 A random access graph generator

a random access memory). Figure 1 depicts a graph generator; it is queried by an algorithm
and has access to (1) a local memory (the contents of this memory is often referred to as the
state of the graph generator), and (2) outcomes of independent unbiased random bits.

3 Query Model

In this section we consider a few types of queries that the graph generator needs to answer.
For adjacency-list queries, we assume that the neighbors of each vertex appear in a linked

list. The vertices in each list are ordered in ascending order (according to the vertex names).
In an adjacency-list query, the input is a vertex v. The answer is the next-neighbor of v in
the adjacency list of v. This means that the graph generator needs to remember the last
vertex in the adjacency list of v that has been reported as a response to a query for v, and
it answers with the next vertex in the list. Note that the first query for v returns the first
vertex in v’s list. After the whole list has been scanned, the response is “end-of-list”. Answers
to adjacency-list queries must be consistent. Namely, if u appears in v’s list, then v appears
in u’s list.

We also consider rooted directed in-trees. In these graphs each node (except the root)
has a single parent and a set of children. A parent query for v returns the parent of v if v
is not a root. The children of v are ordered in ascending order. A next-child query for v
returns the next child of v in this order.

4 Notation

Let [n] = {1, . . . , n}. Let G = (Vn, En) denote a directed graph where Vn = [n].2 We refer
to the endpoints of a directed edge (u, v) as the head v and the tail u. In the context of
preferential attachment graphs, edges are oriented from a high index to a low index.

A discrete distribution of length k is a vector p = (p1, . . . , pk) of nonnegative real numbers
such that

∑k
i=1 pi = 1. For a discrete distribution p of length k, a p-dice is a k-sided dice in

which the probability (when rolling the dice) of obtaining side i equals pi.

2 Preferential attachment graphs are usually presented as undirected graphs. We orient each edge from
the high index vertex to the low index vertex.

4 Sublinear Random Access Generators for Preferential Attachment Graphs

5 Random Graph Models

In this section we define two random graph models: the recursive tree model and the evolving
copying model. The Barabási-Albert Preferential Attachment graph model (BA-graphs) is
presented in Appendix A. The BA-graph model is equivalent to the evolving copying model.
We consider the special case in which each vertex is connected to the previous vertices by a
single edge.

Recursive tree model [20]. The recursive tree model is a random graph model, the support
of which is the set of directed in-trees over n nodes. Each in-tree G = (Vn, E) is rooted at
vertex 1. There are n− 1 edges, one edge emanating from each vertex v, where v 6= 1. The
edges are drawn independently as follows. Let u(2), . . . , u(n) denote independent random
variables, where each u(i) is uniformly distributed over [i− 1]. Each vertex i > 1 chooses a
random edge directed from i to u(i). We refer to u(i) as the u-parent of i.

Evolving copying model [9]. Let Zn denote the evolving copying model with out-degree
d = 1 and copy factor α = 1/2. We abuse notation and refer to the graph drawn by Zn also
as Zn. The process Zn draws a graph Zn = (Vn, E

′
n) inductively. The edge e′1 is a self-loop

e′1 = (1, 1), hence (V1, E
′
1) is well defined. Given the graph Zn−1 = (Vn−1, E

′
n−1), the next

edge e′n is drawn. The tail of e′n emanates from vertex n. The head of edge e′n is chosen as
follows.

Let bn ∈ {0, 1} be an unbiased random bit. Let u(n) ∈ [1 : (n − 1)] be a uniformly
distributed random variable. (All the random variables b1, . . . , bn and u(1), . . . , u(n) are
independent.) The head vi of e′n is determined as follows.

head(e′n) ,
{
u(n) if bn = 1
head(eu(n)) if bn = 0.

Let BAn denote the Barabási-Albert Preferential Attachment graph model defined
in Section A. The proof of the following claim appears in Appendix A.

I Claim 1 ([1]). The random graphs BAn and Zn are identically distributed.

6 A Graph Generator for Parent Queries in BA-graphs

In this section we present the BA-graph generator for parent queries that appeared in [9, 1].
A parent query consists of a vertex v, and the generator responds with the head of the

edge that emanates from v. The random procedure for generating the edges is listed as
Algorithm 1. A call to Procedure find-parent(j) returns the head of the edge that emanates
from vertex j. Note that the graph generator listed in Algorithm 1 has a state: it stores
pointers u(i) and bits b(i) previously computed.

7 Graph Generator for Recursive Trees

In this section we present a graph generator for the recursive tree model that deals with two
types of queries: parent-queries and next-child queries.

Let u−1(i) denote the set {j : u(j) = i}. We refer to the set u−1(i) as the u-children of i
and to u(j) as the u-parent of j. Each set u−1(i) is ordered in ascending order.

The first type of query is a parent query. The answer to a parent-query with vertex j is
simply the vertex u(j). We denote the parent-query by find-u-parent(j). The second type of

Even, Levi, Medina, and Rosén 5

Algorithm 1 find-parent(j) - recursive BA-graph generator for parent queries.
Ensure: Fills two global arrays: array u[1 : n] of pointers initialized to nils and array b[1 : n]

of bits.
1: procedure find-parent(j)
2: if u(j) = nil then
3: Pick u(j) ∈ [1 : j − 1] and b(j) ∈ {0, 1} uniformly at random.
4: end if

5: x←

{
u(j) if b(j) = 1
find-parent(u(j)) if b(j) = 0.

6: return x

7: end procedure

query is a next-child query. Next-child queries scan the list u−1(i) of children one-by-one.
The answer to a next-child query with vertex i is the next vertex in the sorted list u−1(i).
We denote the next-child query by next-u-child (i).

The find-u-parent oracle. The oracle for u(j) works as follows: (1) if u(j) 6= nil then return
u(j). (2) if u(j) = nil then pick u(j) uniformly at random from [j − 1].

7.1 A naïve next-u-child oracle
In this subsection we describe a naïve next-u-child oracle whose time complexity is O(n). In
the next subsection we show how to improve the time complexity to Poly(logn).

Notation. We say that j is exposed if its parent has been determined, i.e., u(j) 6= nil. We
denote the set of all exposed vertices by F . We say that j was directly exposed if u(j) was
determined during the execution of next-u-child (i) query for i = u(j). We say that j was
indirectly exposed if u(j) was determined in the execution of find-u-parent(j). Let last(i)
denote the last child of i that was directly exposed.

As a result of answering and processing next-u-child and find-u-parent queries, the oracle
commits to various decisions (e.g., contiguous prefixes of sorted lists of children consisting of
directly exposed children and possibly non-contiguous indirectly exposed children). These
commitments include edges but also non-edges (e.g., vertices that cannot serve as parents of
j).

I Definition 1. Define the set Φ(j) , {i ∈ [j − 1] : last(i) = nil or last(i) < j} and let
ϕ(j) , |Φ(j)|.

I Claim 2. Conditioned on the event that u(x) = nil, all the vertices in Φ(x) are equally
likely to serve as u(x).

The naïve next-u-child oracle is listed as Algorithm 2. The algorithm updates two global
arrays of pointers u[1 : n] and last[1 : n]. Note that the find-u-parent oracle also updates
the u[1 : n] array. A query next-u-child (i) is processed by scanning the vertices one-by-one
starting from last(i) + 1. If u(x) = i, then x is the next child (i.e., x was previously indirectly
exposed and now it is exposed directly). If u(x) is nil, then we flip a coin c(x) in order to
decide if u(x) = i. The outcome of c(x) is 1 with probability 1/ϕ(x). If c(x) = 0, then we
proceed to the next vertex. The loop reaches its end with x = n+ 1 after all the vertices

6 Sublinear Random Access Generators for Preferential Attachment Graphs

have been scanned; in which case the children list of i has been completely exposed, and the
oracle returns n+ 1 (to indicate that list of children has been fully exposed).

The correctness of the naïve-next-u-child oracle is based on Claim 2. We note that the
description of the naïve oracle does not explain how ϕ(x) is computed (we elaborate on the
computation of ϕ later).

Algorithm 2 naïve-next-u-child (i)
Ensure: Fills two global arrays of pointers: u[1 : n] (shared and filled also by the find-u-

parent oracle) and last[1 : n]. Both are initialized to all nils.
1: procedure naïve-next-u-child (i)
2: if last(i) 6= nil then x← last(i) + 1
3: else
4: x← i+ 1
5: end if
6: while x ≤ n do
7: if u(x) = i then last(i)← x and return (x)
8: else if u(x) = nil then
9: Flip a random bit c(x) such that Pr[c(x) = 1] = 1/ϕ(x).

10: if c(x) = 1 then u(x)← i, last(i)← x and return (x)
11: end if
12: end if
13: x← x+ 1
14: end while
15: last(i)← n+ 1 and return (n+ 1)
16: end procedure

7.2 An Efficient next-u-child Oracle
Consider a situation that only two queries are issued: find-parent(j) followed by next-u-child (j).
Every vertex x ∈ [j + 1, n] may be a u-child of j (i.e., u(x) = j). From the point of view of
x ∈ [j+1, n] we have Φ(x) = [x−1] and Pr[u(x) = j] = 1/(x−1). Let Px denote the probabil-
ity of the event that vertex x is returned as the first u-child of j. Let Pnil denote the probability
of the event that j is a leaf without children. Then Px = 1

x−1 ·
∏x−1

`=j+1(1− 1
`−1) = j−1

(x−1)(x−2)
and Pnil = j−1

n−1 . It follows that, in this special setting, the next child of j can be chosen after
throwing a single dice with n+ 1− j sides. Moreover, the probabilities of each side (as well
as the cumulative probabilities) are easy to calculate.

The general situation is not as sweet because, due to previous processing of queries,
limitations are imposed on the choice of pointers u(x). There are two types of limitations:
(i) u(x) 6= nil, or (ii) u(x) = nil but the option of u(x) = j has been already excluded because
last(j) > x (i.e., j 6∈ Φ(x)).

Suppose we toss a dice in attempt to answer the query next-u-child (j). The first
type of limitation implies that if the dice falls on side x and u(x) 6= nil, then either:
(1) (Success) u(x) = j, meaning that x was indirectly exposed and now becomes directly
exposed. (2) (Failure) u(x) 6= j, meaning that we should have skipped x. Interpreting this
event in terms of Algorithm 2, the outcome of the dice tells us that the coins c(y) are all
zeros for y < x. Hence we may continue by rolling a new dice for the candidate neighbors in
the interval [x+ 1, n].

Even, Levi, Medina, and Rosén 7

The second type of limitation implies that ϕ(x) < x− 1 which complicates the calculation
of Px. The rest of this section is devoted to alleviating this complication. One measure that
we take is the following restriction on queries.

I Assumption 1. We impose the restriction that, for every j, the first next-u-child (j) query
for every j must be preceded by a find-u-parent(j) query. Thus, one may not inquire about
the children of j before its parent is known.

The graph generator satisfies the assumption by issuing a “synthetic” find-parent(j) query
before querying for the first child of j. We use the assumption to infer that last(j) 6= nil
implies that u(j) 6= nil.

Let last−1(j) denote the vertex i such that last(i) = j, if such a vertex i exists; otherwise
last−1(j) = nil. Note that if last−1(j) = i, then u(j) = i.

I Definition 2. Let K denote the set of roots in the forest induced by the edges {(i, last(i)) :
last(i) 6= nil}. Formally,

K , {i : last(i) 6= nil and last−1(i) = nil}

I Observation 1. Under Assumption 1, K ⊆ F (where F , {x : u(x) 6= nil}).

Proof. If x ∈ K, then last(x) 6= nil, and hence at least one next-u-child (x) query was issued.
By the assumption, the first nuc(x) query was preceded by find-parent(x) query. Hence
u(x) 6= nil, and x ∈ F . J

The following lemma proves that {Φ(x)}x is a nondecreasing chain. It characterizes a
sufficient condition so that ϕ(x + 1) − ϕ(x) ≤ 1. It also characterizes a necessary and
sufficient condition for Φ(x+ 1) = Φ(x).

I Lemma 3. For every x ∈ [n− 1]:

1. Φ(x) ⊆ Φ(x+ 1) ⊆ Φ(x) ∪ {x, last−1(x)}.
2. Φ(x+ 1) = Φ(x) iff x ∈ K.
3. Suppose last(i) 6= nil implies last(last(i)) 6= nil, for every i. Then ϕ(x+ 1)− ϕ(x) ≤ 1.

Proof. By definition, Φ(x) ⊆ Φ(x+ 1). Suppose i ∈ Φ(x+ 1) \ Φ(x). There are two cases:
(i) i = x and last(i) < x + 1, or (ii) i < x and last(i) = x. Hence, i ∈ {x, last−1(x)}, and
Item 1 follows.

To prove Item 2, assume that Φ(x) = Φ(x+ 1). By Item 1, this holds iff x /∈ Φ(x+ 1) and
last−1(x) /∈ Φ(x+ 1). If x /∈ Φ(x+ 1), then last(x) ≥ x+ 1, and, in particular, last(x) 6= nil.
If last−1(x) /∈ Φ(x + 1), then last−1(x) = nil, and thus x ∈ K, as required. Conversely, if
x ∈ K, then last(x) 6= nil and last−1(x) = nil. But last(x) 6= nil implies that last(x) is a child
of x, hence last(x) > x, and therefore, x 6∈ Φ(x+ 1). In addition, last−1(x) is nil and cannot
be in Φ(x+ 1), and Item 2 follows.

Finally, to prove Item 3 we need to show that it is not possible for both x and last−1(x)
to belong to Φ(x+ 1). Indeed, if last−1(x) ∈ Φ(x+ 1), then there exists a vertex i such that
last(i) = x. The assumption states that last(x) = last(last(i)) 6= nil. However, x ∈ Φ(x+ 1)
implies last(x) = nil, a contradiction. J

In the spirit of Item 3 in Lemma 3, the next-u-child oracle keeps the following invariant.

I Invariant 1. For every vertex i, last(i) 6= nil implies that last(last(i)) 6= nil.

8 Sublinear Random Access Generators for Preferential Attachment Graphs

Let a first-u-child (j) denote the first next-u-child (j) query. The invariant can be achieved by
performing a sequence of calls to first-u-child per each next-u-child . (We prove in Theorem 4
that this cascade of first-u-child calls contains at most O(logn) queries with probability
1− 1/Poly(n)).

Therefore, if the invariant holds, then by Lemma 3:

ϕ(x+ 1)− ϕ(x) =
{

0 if x ∈ K,
1 if x /∈ K.

(1)

We are now ready to describe how the next-u-child (j) oracle is implemented (see Al-
gorithm 4 for a listing). As in Algorithm 2, we use the convention that if j does not have
anymore children, then next-u-child (j) returns n+ 1 and also last(j) = n+ 1.

Define the interval I = [a, b] that contains the answer to next-u-child (j) as follows. Let
a = last(j) + 1 if last(j) 6= nil; otherwise a = j + 1. Let b denote the smallest indirectly
exposed child of j if one exists (i.e. b = min{` > last(j) | u(`) = j}); otherwise b = n+ 1.

I Observation 2. Let x ∈ [a, b). If u(x) 6= nil, then u(x) 6= j. Hence, the next child of j is
in the set {b} ∪ (I \ F).

Proof. Assume, towards a contradiction, that u(x) = j. Then x is either directly or indirectly
exposed. If x is indirectly exposed, then b ≤ x. If x is directly exposed, then a > x. Hence
x 6∈ [a, b), a contradiction. J

Consider a random process for finding next-u-child (j) in which |[a, b)\K| coins are tossed
sequentially. The probability that the coin for x ∈ [a, b) \K gets one is set to 1/ϕ(x). We
stop as soon as a one is encountered or on b if all coins are zeros. Let x denote the vertex we
stopped on. We then declare x to be the next u-child of j. If x ∈ (F \K), then x cannot be
a child of j so we proceed with the interval [x+ 1, b].

The advantage of this process over the process in which coins are tossed for vertices
in [a, b) \ F is that the probabilities of the coins behave nicely. Namely, they decrease
harmonically starting from 1/ϕ(a) and ending in 1/(ϕ(a) + |[a, b) \K| − 1). Indeed, Eq. (1),
implies that if i is the smallest vertex in I \K, then ϕ(i) = ϕ(a).

Thanks to this harmonic decrease in ϕ(x) for x ∈ [a, b) \K, we can simulate this process
by a single toss of a dice. The dice has s , |[a, b) \K| sides, numbered 0 to s− 1. The i side
(for 0 ≤ i < s− 1) has probability Pi = 1

ϕ(a)+i ·
∏i−1

`=0(1− 1
ϕ(a)+`) = ϕ(a)−1

(ϕ(a)+i)(ϕ(a)+i−1) . The
last side has probability Ps−1 =

∏s−2
`=0(1− 1

ϕ(a)+`) = ϕ(a)−1
ϕ(a)+s−2 .

The outcome h of tossing this s-sided dice needs to be mapped to the vertex in I \K of
rank h. This can be obtained by an order statistics tree over [n+ 1] \K.

Data structures. We need the following data structures (all of which can be obtained using
standard data structures). (1) Management of incremental arrays (for u(i), last(i), last−1(i)
of “touched” vertices) which require space that is O(logn) per element. The arrays should
support updates and access in O(logn) time. (2) Order statistics tree for managing [n+1]\K
using O(q logn) space (where q denotes the number of queries so far). The tree should
support access, delete and insert in O(logn) time. (3) Computation of ϕ(a) by a computation
of |[a − 1] − Φ(a)|. For this one can use a sweep-line approach for intersections of a
vertical line with horizontal intervals because i ∈ [a − 1] \ Φ(a) iff i < a ≤ last(i). Hence
|[a− 1]− Φ(a)| = α− β, where α equals the number of intervals [i, last(i)], and β = |{i | i <
a}| − |{i | a ≤ last(i)}|.

Even, Levi, Medina, and Rosén 9

Efficient tossing of dice. We sketch how standard techniques lead to a Las-Vegas algorithm
that tosses dice using at most O(logn) random bits and O(log2 n) running time with
probability 1− 1/Poly(n). The probabilities of each side of the dice are determined by ϕ(a),
which is computable in O(logn) time. To determine the outcome of a toss of the dice, we
randomly pick a number ρ uniformly in [0, 1]. The bits in the binary representation of ρ are
flipped one by until the side of the dice is determined. This requires applying binary search
on the cumulative probabilities

∑j2
`=j1

P`, where j1 and j2 are the boundaries of the binary
search. These cumulative probabilities can be computed in O(logn) time.

I Theorem 4 (Graph Generator for the Recursive Tree Model). The graph generator for the
recursive tree model with respect to parent and next-child queries is a Las-Vegas algorithm
that requires the following resources per query with probability 1− 1/Poly(n): running time
O(log4n), number of random bits O(log3 n), and O(log2 n) space.

Proof. We refer to high probability as 1− 1/Poly(n). All the statements below occur with
high probability. Maintaining Invariant 1 may create a cascade of queries. As the height of a
recursive tree is logarithmic [20], this cascade is of O(logn) length. Hence the increase in
the number of queries due to synthetic queries is by a factor of O(logn). Tossing a single
dice requires O(logn) random bits. The binary search of the cumulative probabilities takes
O(log2) time. Due to drawing a node x ∈ F \K, a dice has to be further tossed. The harmonic
behavior of the marginal probabilities implies that every single toss creates a sequence of
O(logn) tosses. Thus each original query requires O(log3 n) random bits (cascade, further
dice tosses, and single toss). The space per query (either synthetic or original) is O(logn).
Hence, the space per original query is O(log2 n). Every query (synthetic or original) requires
a constant number of accesses to the data structures. Each access takes O(logn) time. Hence
the running time is dominated by the number of synthetic queries O(logn), times the binary
search for cumulative tosses O(log2 n), times the additional cube tosses O(logn). Hence the
running time is O(log4 n). J

8 Reduction from next-neighbor oracle to successor oracle

In this section we present a tool that is used in the generator for BA-graphs.
Consider a heap T = (V,E) rooted at r, where V ⊆ [n] in which the key of every vertex

is its name. The heap structure means that the directed edges in E satisfy the rule that
(x, y) ∈ E implies that x > y. For an edge (x, y) we refer to x as a child of y and y as a
parent of x (in short, y = p(x)). We assume that the children of a node v are sorted in
ascending order. We do not have complete access to T , instead, we have access to an oracle
next-child (v) that returns the next-child of v (if none, returns nil). Thus, after seeing the i
smallest children of v, the query next-child (v) outputs the child of v ranked i+ 1.

Given access to the oracle next-child (v), we construct two (derivative) oracles. The oracle
next-sibling (v) is implemented by executing next-child (p(v)). The oracle first-child (v) is
implemented by calling next-child (v) only once.

Our goal is to design an oracle, called a successor oracle, that outputs the vertices of T
in ascending order. The successor oracle may use only next-child oracles (and its derivatives
next-sibling and first-child). A listing of the oracle is listed as Algorithm 3. The oracle has
a state called the front. The front is simply a subset of vertices and is initialized to the root
{r}. In each call, the oracles outputs the smallest vertex m in front. The front is updated
by: (1) inserting the smallest child of m (if m is not a leaf) and the next sibling of m (if m
is not the largest child of m), and (2) removing m.

10 Sublinear Random Access Generators for Preferential Attachment Graphs

The following lemma summarizes the properties of the successor oracle.

I Lemma 5. The successor oracles listed as Algorithm 3 outputs the vertices of the heap in
ascending order. The size of its state after k queries (i.e., the number of vertices in front) is
at most k + 1.

The remainder of the section is devoted to proving Lemma 5.

I Definition 6. Let trail (v) denote the path from the root r to p(v) followed by the sequence
of siblings of v that are not larger than v in ascending order. Let list denote the set of
vertices that have been already output by the successor oracle.

The following claim implies that if list 6= V , then front is not empty. Thus the algorithm
lists all the vertices.

I Claim 3. If v 6∈ (front ∪ list), then there exists a vertex u ∈ front such that u < v.

Proof. Assume, towards a contradiction, that the claim does not hold, and let v denote a
vertex with the shortest trail among the vertices that refute the claim. By the minimality of
the length of trail (v), it follows that trail (v) \ {v} is contained in front ∪ list. Let u denote
the predecessor of v along trail (v). If u ∈ front, then u < v, a contradiction. If u /∈ front,
then when u moved from front to list, the vertex v was added to front, a contradiction. J

Claim 3 implies that Algorithm 3 outputs the vertices in ascending order.

I Corollary 1. In every stage, min(front) = min(V \ list).

Proof. Let v = min(V \ list). If v 6∈ front, then by Claim 3 there exists an even smaller u in
front, a contradiction. J

The following claim bounds the size of front.

I Claim 4. In every state, |front| ≤ |list|+ 1.

Proof. By induction on |list|. Every step removes a vertex from front and adds at most two
new vertices. J

Algorithm 3 successor(T) - oracle that supports a successor query in heap T .
Ensure: Maintains a set front ⊆ V that is initialized to front = {r}, where r is the root of

the tree.
1: m← min(front).
2: front← front ∪ {first-child (m),next-sibling (m)} \ {m}.
3: return m

9 A Graph Generator for BA-Graphs

In this section we present a generator for BAn graphs. The generator consists of two parts:
an oracle that generates parents and an oracle for incoming edges (i.e., neighbors from the
right). Both oracles are based on oracles presented in previous sections.

Even, Levi, Medina, and Rosén 11

Generator

oracle
successor
{Tj}nj=1

Filter
(`, u(`))

?∈ Ti

Edge
Colors

{b(j)}nj=1

oracle
next-child

UT

state
{frontj}nj=1

state
{Sj}nj=1

successor(i)

`

next-child (j)

`

next-child (j)

`

Figure 2 Generator for next-neighbor queries in BAn (the generator is input a query for a
next-neighbor of vertex i from the right)

Generating parents. Queries for the first neighbor of v is implemented by the find-parent
Procedure in Algorithm 1.

9.1 Generating incoming edges
In this section we describe how queries for neighbors of a vertex are computed after the first
neighbor. The first neighbor (i.e., left neighbor) of each vertex v in BAn corresponds to
edge from v to its parent. The remaining neighbors (i.e., right neighbors) require revealing
incoming edges in ascending order (the order is from small neighbors to large ones, or from
left to right, if one imagines that the vertices are placed along a horizontal line in ascending
order).

The subtree Ti. Consider the recursive tree UT, the edges of which are {(i, u(i))}i∈V .
Color an edge blue if b(i) = 1, and red if b(i) = 0. Vertex j is a right neighbor of i if there is
a path p in UT from i to j such that: (1) the last edge in p is blue, and (2) all but the last
edge in p are red. We refer to such a path as an r∗b-path. Let Ti denote the subtree of i that
is spanned by r∗b-paths ending in i. Note that each Ti satisfies the premises of Section 8.
Namely, each Ti can be viewed as a heap storing the neighbors of i.

When applied to Ti, the successor oracle described in Section 8 computes the successor
vertex in Ti which is exactly the next right neighbor of i in BAn. Hence, to support a
next-neighbor query for right neighbors of i, all we need is to implement a next-child query
for Ti.

Figure 2 depicts how a query for the next-neighbor (from the right) of vertex i is
implemented. To answer this query, the generator forwards the query successor(i) to the
successor oracle described in Algorithm 3. To process the successor(i) oracle, a next-child (j)
query is forwarded to the next-child -oracle over UT. Note that the next-child -oracle is
unaware of the colors of the edges. This is where the Filter comes into play: responses ` from
the next-child -oracle over UT such that ` is not a neighbor of i in BAn are not forwarded.
Instead, the Filter issues a new next-child (j) query until a neighbor (or nil) is returned. Note
that ` is a neighbor of i iff (`, u(`)) ∈ Ti. Namely, if the path from ` to i is an r∗b-path. This
can be verified by (u(`) = i and b(`) = 1) or (b(`) = 0).

We are now ready to state the performances of our generator.

12 Sublinear Random Access Generators for Preferential Attachment Graphs

I Theorem 7 (Graph Generator for BA-Graphs). A single adjacency list query to the BAn

generator has time complexity O(log5 n), uses O(log4 n) random bits and stores O(log3 n)
additional bits with high probability.

Proof. Recall that Algorithm 3 involves using the Filter. The Filter issues next-u-child
queries until an edge of the “right” color is returned. Note that the deterioration in
performance due to the Filter is bounded O(logn) queries whp. The reason is that the
probability of a run of edges of the “wrong” color in UT whose length is c · logn is bounded
by n−c. Thus the theorem follows from Theorem 4. J

10 Extension to Out-Degrees Greater than 1

As observed by Bollobás and Riordan [5], one can generate a directed graph over Vn according
to the preferential attachment model with out-degree d > 1 by generating a graph with nd
vertices using BAnd and then identifying the vertices v1, . . . , vd to form v′1 and vd+1, . . . , v2d

to form v′2, and so on. Consequently, it is not hard to see that our graph generator for
BA-graphs can be easily extended to d > 1. This implies that the resource required per
query is O(d · Poly log(nd)) with probability 1− 1/Poly(nd).

Acknowledgment. We thank Yishay Mansour for raising the question of whether one can
locally generate preferential attachment graphs.

References
1 Md. Maksudul Alam, Maleq Khan, and Madhav V. Marathe. Distributed-memory parallel

algorithms for generating massive scale-free networks using preferential attachment model.
In International Conference for High Performance Computing, Networking, Storage and
Analysis, SC’13, Denver, CO, USA - November 17 - 21, 2013, pages 91:1–91:12, 2013.

2 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1132–1139, 2012.

3 Albert-László Barabási and Reka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

4 Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Phys-
ical Review E, 71(3):036113, 2005.

5 Béla Bollobás and Oliver Riordan. The diameter of a scale-free random graph. Combinat-
orica, 24(1):5–34, 2004.

6 Guy Even, Moti Medina, and Dana Ron. Best of two local models: Local centralized and
local distributed algorithms. CoRR, abs/1402.3796, 2014.

7 Guy Even, Moti Medina, and Dana Ron. Deterministic stateless centralized local algorithms
for bounded degree graphs. In Algorithms - ESA 2014 - 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings, pages 394–405, 2014.

8 Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C. Seshadhri. A scalable generative
graph model with community structure. SIAM J. Scientific Computing, 36(5), 2014.

9 Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins,
and Eli Upfal. Random graph models for the web graph. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 57–65, 2000.

10 Reut Levi, Guy Moshkovitz, Dana Ron, Ronitt Rubinfeld, and Asaf Shapira. Constructing
near spanning trees with few local inspections. CoRR, abs/1502.00413, 2015.

Even, Levi, Medina, and Rosén 13

11 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local algorithms for sparse spanning graphs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, pages 826–842,
2014.

12 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Brief announcement: Local com-
putation algorithms for graphs of non-constant degrees. In Proceedings of the 27th ACM
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR,
USA, June 13-15, 2015, pages 59–61, 2015.

13 Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms
to local computation algorithms. In Automata, Languages, and Programming - 39th In-
ternational Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I,
pages 653–664, 2012.

14 Yishay Mansour and Shai Vardi. A local computation approximation scheme to maximum
matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques - 16th International Workshop, APPROX 2013, and 17th International
Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, pages
260–273, 2013.

15 Ulrich Meyer and Manuel Penschuck. Generating massive scale-free networks under resource
constraints. In Proceedings of the Eighteenth Workshop on Algorithm Engineering and
Experiments, ALENEX 2016, Arlington, Virginia, USA, January 10, 2016, pages 39–52,
2016.

16 Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local
improvements. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual
IEEE Symposium on, pages 327–336. IEEE, 2008.

17 Sadegh Nobari, Xuesong Lu, Panagiotis Karras, and Stéphane Bressan. Fast random graph
generation. In Proceedings of the 14th international conference on extending database tech-
nology, pages 331–342. ACM, 2011.

18 Krzysztof Onak. New sublinear methods in the struggle against classical problems, Septem-
ber 2010.

19 Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-
time algorithm for approximating the minimum vertex cover size. In SODA, pages 1123–
1131, 2012.

20 Boris Pittel. Note on the heights of random recursive trees and random m-ary search trees.
Random Struct. Algorithms, 5(2):337–348, 1994.

21 Omer Reingold and Shai Vardi. New techniques and tighter bounds for local computation
algorithms. CoRR, abs/1404.5398, 2014.

22 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 7-9, 2011. Proceedings, pages 223–238, 2011.

23 Martin Sauerhoff. On the entropy of models for the web graph.
24 Andy Yoo and Keith Henderson. Parallel generation of massive scale-free graphs. arXiv

preprint arXiv:1003.3684, 2010.
25 Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approximation

algorithms for maximum matchings and other optimization problems. SIAM J. Comput.,
41(4):1074–1093, 2012.

A The Barabási-Albert Preferential Attachment Model [3]

Notation. Let deg(vi, G) denote the degree of the vertex vi in G (both incoming and
outgoing edges). Similarly, let degin(vi, G) and degout(vi, G) denote the in-degree and out-

14 Sublinear Random Access Generators for Preferential Attachment Graphs

degree, respectively, of the vertex vi in G. The normalized degree distribution of G is a vector
∆(G) with n coordinates, one for each vertex in G. The coordinate corresponding to vi is
defined by

∆(G)i ,
deg(vi, G)

2 · |E| .

Note that
∑n

i=1 ∆(G)i = 1.
We also define the in-degree distribution ∆in(G) by

∆in(G)i ,
degin(vi, G)
|E|

.

Definition of the Model

We denote the random process that generates a directed graph over Vn according to the
preferential attachment model by BAn. The random process BAn generates a sequence of
n directed edges En , {e1, . . . , en}, where the tail of ei is vi, for every i ∈ [n]. (We abuse
notation and let BAn = (Vn, En) also denote the graph generated by the random process.)
We refer to the head of ei as the parent of vi.

The process BAn draws the edges sequentially starting with the self-loop e1 = (v1, v1).
Suppose we have selected BAj−1, namely, we have drawn the edges e1, . . . , ej−1, for j > 1.
The edge ej is drawn by tossing a dice with sides {1, . . . , (j − 1)}. The dice is a ∆(BAj−1)-
dice. Let i denote the outcome of rolling the dice, then the parent of vj is set to vi, namely,
ej = (vj , vi).

Note that the out-degree of every vertex in BAn is exactly one, with only one self-loop in
v1. Hence BAn (without the self-loop) is an in-tree rooted at v1.

Proof of Claim 1.

Proof. The proof is by induction on n. To prove the induction step, assume that BAn−1
and Zn−1 are identically distributed. All we need to prove is that the next edges en and e′n
in the two processes are also identically distributed.

The head of en is chosen according to the degree distribution ∆(BAn−1). Since the
out-degree of every vertex is one,

deg(vi, BAn−1)
2(n− 1) = 1

2 ·
(

1
n− 1 + degin(vi, BAn−1)

n− 1

)
.

Thus, an equivalent way of choosing the head of en is as follows: (1) with probability 1/2,
choose a random vertex uniformly (this corresponds to the 1

2 ·
1

n−1 term), and (2) with
probability 1/2 toss a ∆in(BAn−1)-dice (this corresponds to the 1

2 ·
degin(vi,BAn−1)

n−1 term).
To complete the proof, it suffices to prove that, conditioned on the event that bn = 0,

the head of e′n is chosen according to the in-degree distribution ∆in(BAn−1). Indeed, the
out-degrees of all the vertices in Vn−1 are all the same (equal one). Hence, choosing a vertex
according to the in-degree distribution ∆in(BAn−1) is identical to choosing a uniformly
distributed random edge in BAn−1 and then taking its head. Thus, when bn = 0, the head
of e′n is selected according to the in-degree distribution, and the claim follows. J

B Listing of the next-u-child (j) oracle

Even, Levi, Medina, and Rosén 15

Algorithm 4 next-u-child (j)

Ensure: Fills data structures: arrays u[1 : n], last[1 : n], last−1[1 : n]. Heap Hx of indirectly
exposed u-children for each vertex x. Order statistics tree for [n + 1] \K. Ability to
compute ϕ(x).

1: procedure next-u-child (j)

2: a←

{
last(j) + 1 if last(j) 6= nil
j + 1 if last(j) = nil.

3: b←

{
min{` > last(j) : u(`) = j} if ∃` > last(j) : u(`) = j

n+ 1 otherwise.
4: repeat
5: s← |[a, b] \ (K \ {b})|
6: Cs,a ← an s-sided dice where:

Pi = ϕ(a)− 1
(ϕ(a) + i)(ϕ(a) + i− 1) (for 0 ≤ i < s− 1)

Ps−1 = ϕ(a)− 1
ϕ(a) + s− 2 .

7: h← outcome of tossing the dice Cs,a.
8: x← vertex ranked h in {i ∈ [n+ 1] \K | i ≥ a}.
9: if u(x) = nil then u(x) = j, last(j)← x, last−1(x) = j, update (K), return (x)
10: else if u(x) = j then . x = b

11: last(j)← x, last−1(x) = j, update (K), return (x)
12: else if x = n+ 1 then last(j)← n+ 1, return (n+ 1) . x = b

13: else if u(x) /∈ {nil, j, n+ 1} then a← x+ 1. . x ∈ F \K
14: end if
15: until forever
16: end procedure

	1 Introduction
	2 Random Access Graph Generators
	3 Query Model
	4 Notation
	5 Random Graph Models
	6 A Graph Generator for Parent Queries in BA-graphs
	7 Graph Generator for Recursive Trees
	7.1 A naïve next-u-child oracle
	7.2 An Efficient next-u-child Oracle

	8 Reduction from next-neighbor oracle to successor oracle
	9 A Graph Generator for BA-Graphs
	9.1 Generating incoming edges

	10 Extension to Out-Degrees Greater than 1
	A The Barabási-Albert Preferential Attachment Model BA99
	B Listing of the next-u-child(j) oracle

