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Summary. A quantitative analysis of the time and voltage depen- 
dence of outward-rectifying K + currents (IK*.out) in guard cells 
from Vicia faba is described using the whole-cell patch-clamp 
technique. After step depolarizations from 75 mV to potentials 
positive to -40  mV, time-dependent outward currents were pro- 
duced, which have recently been identified as K + channel cur- 
rents. This K + current was characterized according to its time 
dependence and its steady-state activation. ]K+.out could be de- 
scribed in terms of a Hodgkin-Huxley type conductance. Activa- 
tion of the current in time was sigmoid and was well fitted by 
raising the activation variable to the second power. Deactivating 
tail currents were single exponentials, which suggests that only 
one conductance underlies this slow outward K + current. Rates 
of channel closing were strongly dependent on the membrane 
potential, while rates of channel opening showed only limited 
voltage dependence leading to a highly asymmetric voltage de- 
pendence for channel closing and opening. The presented analy- 
sis provides a quantitative basis for the understanding of IK+.out 
channel gating and/K+,out channel functions in plant cells. 
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Introduction 

Voltage-gated outward-rectifying K+-selective 
channels (IK+, out) have recently been found in patch- 
clamp studies of various higher plant cells 
(Schroeder, Hedrich & Fernandez, 1984; Iijima & 
Hagiwara, 1987; Schauf & Wilson, 1987; Schroe- 
der, Raschke & Neher, 1987; Bush et al., 1988; 
Moran et al., 1988; Hedrich & Schroeder, 1989). 
Detailed investigations of IK+,o,t channels in guard 
cells and pulvini have shown that ion transport 
properties of these channels correlate closely with 
physiological K § release during closing of stomata 
in leaves (Schroeder et al., 1987; Schroeder, 1988) 
and leaf movements (Moran et al., 1988). 

* Present address: Jerry Lewis Research Center, UCLA 
School of Medicine. 

Properties of the K ~ conductance in the algal 
cell Nite l la  such as the cation selectivity sequence 
(Sokolik & Yurin, 1986) are similar to the perme- 
ability sequence of IK, o,~ channels described in 
guard cells (PK+ > PRb+ > PNa- > PLi * >> Pcs ~) 
(Schroeder, 1988). The efflux of K + ions in algal 
cells occurring during action potentials (Gaffey & 
Mullins, 1958; Mummert & Gradmann, 1976) has 
been attributed to a K + conductance (for reviews 
see  Hope & Walker, 1975; Tazawa, Shimmen & 
Mimura, 1987). This action-potential-associated al- 
gal K § conductance has been ascribed to outward- 
rectifying K + channel currents in the plasma mem- 
brane (e.g., Findlay & Coleman, 1983; Bertl & 
Gradmann, t987; f o r  review see  Tazawa et al., 
1987). 

Action potentials have important physiological 
functions both in algal cells (for reviews see  Hope & 
Walker, 1975; Tazawa et ai., 1987) and in higher 
plant cells (for reviews see  Sibaoka, 1966; Simons, 
1981). The initial depolarization of algae action po- 
tentials is Ca 2+ and C1 dependent (Findlay, 1961; 
Mullins, 1962; Beilby, 1982; Williamson & Ashley, 
1982; for review see  Tazawa et al., 1987). The CI-- 
dependent depolarization has been investigated us- 
ing a Hodgkin-Huxley approach (Beilby, 1982). It 
has been implied that an outward-rectifying K + 
conductance controls the repolarization of action 
potentials (Gaffey & Mullins, 1958). A quantitative 
description of the time dependence of the outward- 
rectifying K + conductance has, however, been 
hampered by complications inherent to voltage- 
clamp recordings with conventional microelec- 
trodes in plant cells (see Findlay & Hope, 1976). 
Nevertheless, in some cases, voltage-clamp record- 
ing in algae have been feasible. In the spherical algal 
cell H y d r o d i c t y o n  a f r i canum,  voltage-clamp re- 
cordings of the time- and voltage-dependent activa- 
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tion of the outward-rectifying K + conductance were 
obtained (Findlay & Coleman, 1983). These K + cur- 
rents correspond closely in their time and voltage 
dependence to IK+,out channel currents character- 
ized in guard cells, reflecting sigmoidal activation 
and exponential-like deactivation on a slow time 
scale (see Fig. 1) (Schroeder et al., 1987). The 
whole-cell patch-clamp technique (Marty & Neher, 
1983) applied to single, isolated guard cell proto- 
plasts circumvents problems inherent to microelec- 
trode recordings and allows well-defined voltage- 
clamp recordings of IK+,om. Using this technique, a 
quantitative analysis of the time and voltage depen- 
dence of IK+, out currents is conducted in this report, 
which may serve as a basis for studies of IK*,out 
channel functions. 

Materials and Methods 

GUARD CELL ISOLATION 

AND W H O L E - C E L L  RECORDINGS 

The method used for guard cell protoplast isolation was the same 
as described elsewhere (Schroeder, 1988). This method for enzy- 
matic purification of guard cell protoplasts from Vicia faba 
("Griinkeimige Hangdown") produced high yields in seals be- 
tween patch pipettes and the plasma membrane and allowed re- 
cordings of stable IK*,out currents. The ability of protoplasts to 
swell during light exposure was tested as an indication of their 
physiological integrity (see Raschke et al., 1988). The whole-cell 
recording technique was applied as described in detail in pre- 
vious reports (Schroeder et al., 1987; Schroeder, 1988). In the 
present study, all whole-cells were selected for effective access 
resistances of -< 10 M12. Experiments were performed at temper- 
atures of 22 -+ I~ 

SOLUTIONS 

The composition of the bathing medium was (in mM): 10 K- 
glutamate, 2 MgCI2, 1 CaC12, 1 KOH, 10 MES (2-(N-morphalino) 
ethanesulfonic acid), pH 5.5. The composition of the pipette 
solution, which equilibrates with the cytoplasm was (in raM): 100 
K-glutamate, 2 MgCl2, 1 EGTA, 5 KOH, 10 HEPES, 2 MgATP, 
pH 7.2. Solutions were adjusted to final osmolalities of 480 mmol 
kg -~ (bath solution) and to 530 mmol kg -~ (internal solution) by 
addition of D-mannitol and verification with a vapor pressure 
osmometer (Wescor 5100C). 

DATA RECORDING AND ANALYSIS 

Data were low-pass filtered at 200 or 400 Hz with eight-pole 
bessel characteristics and were subsequently sampled at five 
times the filter cutoff frequency and stored on a PDP 11/73 com- 
puter (INDEC, Sunnyvale, CA) operating on line. Programs 
were developed for on-line reading and off-line analysis of data 
sequences. For a quantitative description of activation and deac- 
tivation time courses of K + currents, arbitrary functions were 

fitted to the data by the nonlinear Marquardt algorithm of itera- 
tive least squares (Marquardt, 1963). As fit routines were de- 
signed to fit 60 data points, running averages of the data were 
made prior to fitting. All data values and error bars reflect the 
mean _+ SD. 

Results 

We have shown previously that guard cell proto- 
plasts respond to depolarizing and hyperpolarizing 
voltage-clamp pulses by developing outward- and 
inward-rectifying potassium currents through po- 
tassium-selective channels (Schroeder et al., 1984, 
1987). The steady-state ion-transporting properties 
of both of these K + currents have been described in 
detail in order to assess their importance for K + 
transport during guard cell movements (Schroeder, 
1988). The object of the experiments reported here 
was to investigate in detail the kinetics of the slowly 
activating outward K + currents (IK+,out). 

SIGMOID ACTIVATION OF IK+ ,out 

In Fig. 1A, whole-cell K + currents were recorded in 
response to voltage pulses of 1-sec duration. The 
sigmoidal rise of IK-,out at potentials (Vpul~e) more 
positive than -40 mV and the exponential decay of 
whole-cell currents at the end of the pulse (Vta~ = 
-115 mV) were clearly resolved. It was generally 
observed that the outward-rectifying K + currents 
reached steady-state levels within 2 sec of depolar- 
ization. Furthermore, it has been demonstrated pre- 
viously that IK+,out showed no significant signs of 
inactivation, even during depolarizations longer 
than 10 min (Schroeder, 1988). 

The sigmoid activation and exponential deacti- 
vation of transmembrane K + currents was first de- 
scribed by Hodgkin and Huxley (1952) in the squid 
giant axon by a scheme of the form: 

IK + = /'tP IK+,max (1) 

where n is the activation variable and IK§ max is the 
completely activated current. The value of the ex- 
ponent p can be interpreted as the number of inde- 
pendent membrane-bound gating particles, which 
control the opening of IK +, out channels (Hodgkin & 
Huxley, 1952). The sigmoidal rise of IK+,out in Fig. 
1A indicates that p > 1. To determine the value of p, 
currents elicited by steps from the holding potential 
(VH = -75 mV) to Vpulse = -20 to +81 mV were 
fitted by the equation: 

/K~ out = I L -[- IK+[1 -- exp ( - t / r . ) ]  P (2) 
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Fig. 1. Recordings of outward (/K+,out) and inward K* currents 
across the plasma membrane of a single guard cell protoplast 
with 105 mM K + (I00 mM K-glutamate + 5 mM KOH) in the 
cytoplasm and 11 mM K + (10 mM K-glutamate + 1 mM KOH) in 
the bath (see insert top left. (A) The superposition of 14 sequen- 
tial recordings of K + currents in response to individual voltage 
pulses. Each voltage pulse started at the upward pointing arrow 
and terminated at the downward pointing arrow. The applied 
voltages (Vpu~e) are shown to the right of elicited currents. Up- 
ward deflecting traces have been previously shown to corre- 
spond to K + efflux and downward deflecting traces correspond 
to K* influx through K + channels (Schroeder et al., 1987). The 
group of more rapidly deactivating tail currents at the end of the 
pulse, Vt~il = -115 mV, corresponds to deactivation of I~+.o,t. 
Between each pulse the membrane was held at -75 mV (VH) for 
12 sec. B shows the plot of K + current measurements at the end 
of the pulse in A as a function of the pulse potential 
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where IL is a leakage component  contributed by the oo 
whole-cell  membrane resistance (Rm ~ 10 Gf~), IK+ r 
is the steady-state current  after activation and z, E 
represents the activation time constant.  The time -~ 
course of activation of  IK+ o,t was fitted by Eq. (2), c o 
with Ii~,+ yn and p as free running parameters. The -'=u 
data were best described by Eq. (2) when the value .> 
of the parameter p was approximately 2 (2.05 + 0.4, '5 - -  r 

n = 20). Therefore, in Eq. (2), the parameter p was 
fixed to p = 2. Figure 2 demonstrates that the acti- 
vation of IK+, out is well described by Eq. (2) for p = 
2. The activation time constants ~-n plotted as a 
function of  the membrane potential (Fig. 3) reflect 
that z~ is only slightly dependent on the membrane 
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Fig. 2. Nonlinear least squares fit of the Hodgkin-Huxley Eq. (2) 
for p = 2 to IK+ oot currents. Membrane potentials during the 
pulse (I'm) and activation time constants ('r,,) are indicated to the 
right of each trace. Crosses represent the data points, which 
were obtained by computing the running average in the vicinity 
of each cross and continuous lines show the fitted curves 
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Fig. 3. Voltage dependence of activation time constants deduced 
b y  fitting of Eq. (2) forp  = 2 as shown in Fig. 2 (n = 5 cells, error 
bars -+ SO) 
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Fig. 4. (A-C) Deactivat ing currents  recorded in response  to hy- 
perpolarization from a holding potential of  VH = +80 inV. Con- 
t inuous lines show the fit of  single exponent ials  to the data 
(crosses).  Tail potentials (Vm) and time cons tants  (zn for p = 2 in 
Eq. (3)) are indicated for each trace. (Note that the time scales 
are different in A, B, and C). Data points for t = 0 were not taken 
into account  when  exponent ials  were fitted to the data 

potential, r~ values showed a variability from cell to 
cell. In each cell, activation time constants r ,  de- 
creased with growing depolarizations indicating 
that the voltage dependence (Fig. 3) was significant. 

D E C A Y  OF C U R R E N T S  

Deactivating tail currents were elicited by steps 
from Vpul+e ~ +80 mV to Vtail = +4 to - 160 mV (see 
Schroeder  et al., 1987). These tail currents were 
fitted to sums of exponentials of the form 

IK+,tail = E/~+0 exp(-t/,cn)v (3) 
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Fig. 5, The deact ivat ion t ime cons tan ts  derived from tail current  
fits are plotted as a function o f  g r a i l  ( n  = 5 cells, error bars +- sD) 

where IK§ were the initial values of exponentials. 
In 80% of the fits (n = 60), IK+,tail was described best 
by a single exponential  (Fig. 4). This was also the 
case for tail potentials more positive than the 
threshold of activation ( - 4 0  mV), although the 
Hodgkin-Huxley model would predict the sum of 
two exponentials with time constants z, and z,/2 
(Hodgkin & Huxley,  1952). Possibly two separate 
time constants could not be distinguished as the 
predicted two time constants lie close together and 
as tail currents had a small signal-to-noise ratio in 
the depolarized range (see Fig. 4A). The underlying 
model predicts that rn values of activation and deac- 
tivation should be equivalent at a given potential. In 
the range of  0 mV, deactivation and activation time 
constants converged. The voltage dependence of 
deactivation time constants is shown in Fig. 5 for p 
= 2. it is apparent  that the deactivation of IK+,out is 
strongly dependent  on the membrane potential. 

T H E  S T E A D Y - S T A T E  V O L T A G E  D E P E N D E N C E  

OF IK +, out 

The data in Fig. 1B indicate the range of membrane 
potentials at which IK+ out was activated. The volt- 
age dependence of this gating process must be de- 
termined with precision to understand the role of 
IK+o,t activation. The steady-state activation curve 
of IK+ out was obtained by applying longer pulses 
than those shown in Fig. 1A (4-sec or 10-sec dura- 
tion) to ensure that IK+ out channel currents had pla- 
teaued. The Hodgkin-Huxley (1952) scheme for 
steady-state activation for p = 2 has the form n 2 = 
GK+/GK+,max where n~ = the steady-state value of 
the activation variable, GI{+ represents the K + con- 
ductance (chord conductance) of the membrane at a 
given potential and G•§ max is the maximum K + con- 
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Fig. 6. The steady-state activation curve for 1K*,out. The degree 
of activation n~ was determined by computing GK+/GK+ . . . .  The 
data points were fitted by a Boltzmann distribution (continuous 
linet (n = 5 cells, error bars _+ SD) 

ductance. Conductance values GK+ and GK-,max 
were determined with respect to the K + equilibrium 
potential of - 5 3  mV. The conductance of /K§ 
saturated approximately at potentials more positive 
than +50 inV. Figure 6 shows n 2 as a function of the 
membrane potential determined in five cells. A 
Boltzmann distribution was fitted to the averaged 
values. The fitted equation was: 

1 

n2 = [1 + exp((V0.5 - Vm)/S)] 2 (4) 

where V0.5 represents the potential for n~ = 0.5 (n 2 
= 0.25) and S is the slope factor. Best fits were 
obtained for V0.5 = - 7  mV and S = 21 mV. 

RATE CONSTANTS FOR CHANNEL OPENING 

AND CLOSING 

The Hodgkin-Huxley model can be used to obtain a 
kinetic scheme for the transition of single /K%out 
channels from closed states to the open state (Arm- 
strong, 1969). For  p = 2, a three-state model with 
two closed states and one open state can be de- 
duced: 

2 c~ n ~ n  

C2~ ....... ' C j <  ~ 0. (5) 
/3~, 2 / 3 .  

The voltage-dependent  transition rates for 
channel opening an and for channel closing/3, were 
calculated from the measured values for n~ (Fig. 6) 
and zn (in Figs. 2-5) by the equations (Hodgkin & 
Huxley,  1952): 

o~ = n~/z~ (6) 

fin = (1 - n~)/r,. (7) 
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Fig. 7. Semilogarithmic plot of activation rates % and deactiva- 
tion rates /~, as a function of the membrane potential (fitted 
curves: see text) 

Figure 7 shows the rate constants O~n and 3~ as de- 
rived from the steady-state activation curve (n~) 
and from the fits of  activation and deactivation time 
constants zn. The voltage-dependent rate constants 
of channel opening % and channel closing 3n were 
fitted by the equations 

c~n = an0 exp[(Vm - V~)/S%] 

/3n = /3n0 exp[(Vh - Vm)/Sfi~] 

(8) 

(9) 

where %o and/3n0 are scaling factors, Vh determines 
the voltage dependence of  both rate constants and 
S %  and S/3n give the steepness of the voltage de- 
pendence of  the parameters.  Curves in Fig. 7 show 
the fit of  these equations with the parameters: %o = 
1.9 sec 1,/3~0 = 4.3 sec -1, Vh = 0 mV, Sc~ = 95 mV 
and S/3n = 31 mV. The resulting oe~,/Sn curve was 
highly asymmetrical  (Fig. 7, semilog plot). 

It should be noted that the three-state kinetic 
model (Eq. (5)) represents a simplified gating 
scheme. In single-channel recordings, additional 
fast flickering closed states were observed,  which 
led to brief closures of  open channels for durations 
in the msec range, as deduced from kinetic analysis 
of single-channel currents (Schroeder,  unpub- 
lished). Therefore ,  the kinetic scheme (Eq. (5)) 
should be regarded as a reduced model, which suc- 
cessfully describes the slow time course of whole- 
cell outward K § currents.  The derived model may 
serve as a basis for a quantitative understanding of 
macroscopic, Ii~+ out currents and their function in 
plant cells. 

Discuss ion 

USE OF GUARD CELLS FOR THE STUDY OF IK+,out 

Isolated guard cell protoplasts maintain their physi- 
ological functioning such as swelling when exposed 
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to light and retaining biochemical mechanisms 
involved in stomatal movements (for review see 
Raschke et al., 1988). Therefore, these cells appear 
suited for detailed investigation of cell biological 
and biophysical processes. The well-defined volt- 
age-clamp conditions of whole-cell recordings in 
this study have permitted a detailed quantitative de- 
scription of the voltage and time dependence of out- 
ward-rectifying K + currents. 

Using microelectrodes in algae, Findlay and 
Coleman (1983) have recorded K + current activa- 
tion and deactivation in response to similar voltage- 
step protocols used here. These microelectrode 
studies in Hydrodictyon africanum show the prop- 
erties of the time-dependent outward-rectifying K + 
conductance to be very similar to IK+,out channels 
studied here. This similarity can be taken as an indi- 
cation that isolation procedures used in the present 
study have not significantly altered IK+,out channel 
properties. Recently, patch-clamp studies with vari- 
ous plant cells have indicated the existence of time- 
and voltage-dependent outward-rectifying K § cur- 
rents in all cells investigated (for reviews see 
Tazawa et ai., 1987; Hedrich & Schroeder, 1989; 
see also Introduction). Therefore, a quantitative un- 
derstanding of IK*,out channel kinetics may be of 
general significance. 

VOLTAGE AND TIME DEPENDENCE 

OF IK+ ,out CHANNELS 

The steady-state activation curve of 1K+,out (Fig. 6) 
showed half-maximal activation at - 7  mV and satu- 
ration for potentials more positive than +50 inV. It 
was observed that IK+.out exhibited a sigmoidal on- 
set upon depolarization and an exponential decay 
upon hyperpolarization. The data consistently 
showed that the sigmoid activation could be accu- 
rately modeled when the power of the activation 
variable p was 2 (Fig. 2). The deactivation of IK+,out 
was well described by a single exponential (Figs. 4 
and 5). These findings suggest that a single 
Hodgkin-Huxley conductance underlies the macro- 
scopic IK+,out and that its kinetics can be described 
mathematically by a first order reaction with two 
closed channel states and one open state (Eq. (5)). 
This was further supported by the previous finding 
that the slow onset and decay of lK-,out could be 
reconstructed by averaging single K § channel cur- 
rents with one open conducting state (Schroeder et 
al., 1987). A recent study of the large conductance 
K + channels in membrane vesicles from Acetabu- 
laria resulted in a three-state model (Bertl, Klieber 
& Gradmann, 1988). It should be noted that in addi- 
tion to time-dependent activation, an instanta- 
neously rectifying component was found in proto- 

plasts from Dionaea m,scipttla (lijima & Hagiwara, 
1987). In outside-out patches from guard cells, a 
second outward K + channel conductance state was 
found, which had a very low open probability and a 
small channel conductance (~5 pS with 210 mM K ~ 
internal and 35 mM K + external; J. Schroeder, ,n- 
published). The contribution of these low conduc- 
tance channels was estimated to be small in the 
present study. Recent studies of outward-rectifying 
K + channels in frog atrium showed very similar 
slow kinetics to those of IK, o~, channels. These 
atrium K* channels were shown to play a major role 
during action potential repolarization (Hume et al., 
1986; Simmons, Creazzo & Hartzell, 1986). 

A quantitative description of channel opening 
rates (an) and closing rates (fin) was obtained from 
the Hodgkin-Huxley model. The resulting voltage 
dependence of an and/3n was highly asymmetrical 
(Fig. 7). This asymmetry may be explained by gat- 
ing particles, which sense little of the transmem- 
brane potential drop during activation, while gating 
particles sense a larger portion of the transmem- 
brane potential during deactivation (Benz & Conti, 
1981). Interestingly, in the squid axon Hodgkin and 
Huxley (1952) found an assymetry in the gating of 
K + currents which was inverse to that found in 
guard cells. 

PHYSIOLOGICAL SIGNIFICANCE OF IK+ out 

The major physiological function of IK+,out as a 
K + release pathway for guard cells during closing of 
gas exchange pores (stomata) in leaves has been 
studied and discussed in detail in previous reports 
(Schroeder et al., 1984; Schroeder et al., 1987; 
Schroeder, 1988). It is well established that conduc- 
tance changes during action potentials in algae 
(Cole & Curtis, 1938) are accompanied by an efflux 
of K + ions (Gaffey & Mullins, 1958; Mummert & 
Gradmann, 1976). K + efflux during action potentials 
has been attributed to an outward-rectifying K + 
conductance, which may play a role in repolariza- 
tion. 

Quantitative knowledge of the kinetics of IK+, out 
obtained in this study make it possible to examine 
its putative role during action potential repolariza- 
tion. IK+,out is activated by depolarizations positive 
to approximately -40  mV and half activated at - 7  
mV. Hence, IK+,out channels will open during the 
depolarization phase of the action potential. Higher 
plant action potentials remain more depolarized 
than 0 mV for durations of approximately several 
hundred milliseconds (see Sibaoka, 1966). The time 
constant for IK+ out activation at this potential is ap- 
proximately 350 msec, meaning that a substantial 
portion of IK+, out will be activated during each action 
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potent ial .  /K+.out ac t iva t ion  will ini t iate repolariza-  
t ion,  which in tu rn  will lead to an exponen t ia l  decay 
of IK+, oot. Unfo r tuna t e ly ,  ac t ion-potent ia l - l ike  depo- 
lar izat ions  in guard cells could only  be recorded on 
few occas ions  (J.I. Schroede r  & R. Penner ,  u n p u b -  

l i s h e d ) .  H o w e v e r ,  dur ing  cu r r en t - c l amp  recordings  
in H y d r o d i c t y o n  a f r i c a n u m ,  repolar iza t ion  t imes 
were recorded ,  which c losely  resemble  IK+, out kinet-  
ics (F ind lay  & Co leman ,  1983). 

In  conc lus ion ,  the ex i s tence  of an IK+ out type 
c o n d u c t a n c e  has been  indica ted  in every  plant  cell 
s tudied to date.  The  quan t i t a t ive  descr ip t ion  of the 
ou lward- rec t i fy ing  K + channe l  cur ren t s  p resen ted  
here gives a b iophys ica l  basis  for IK§ out channe l  
ac t ion  and  may  prov ide  a model  for s tudying  plant  
ac t ion  potent ia l  repolar iza t ion .  Fu tu re  voltage- 
c lamp record ings  of  pu ta t ive  depolar iz ing  inward  
cur ren t s  in higher  p lant  cells will be required  to un-  
de r s t and  depola r iz ing  m e c h a n i s m s  with accuracy .  
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