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Properties of the I-mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak

dependence of the power threshold for the L-I transition on the toroidal magnetic field strength is found. During

improved confinement, the edge radial electric field well deepens. Stability calculations show that the I-mode

pedestal is peeling-ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations

linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality

increases. Across all investigated structure sizes (k⊥ ≈ 5 – 12 cm−1, with k⊥ the perpendicular wavenumber of

turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data

shows that they move poloidally toward the X-point and finally end up in the divertor. This might be indicative

that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density

profile.

I. INTRODUCTION

Improved confinement regimes are a crucial part of mag-

netic confinement fusion research due to their effectiveness

in obtaining high plasma stored energies at comparably low

heating levels compared to low confinement regimes [1–3].

While the high confinement mode (H-Mode) is characterized

by strong plasma edge gradients in both density and tempera-

ture, the so-called pedestal, the improved energy confinement

mode (I-mode) [3, 4] is made distinctive by the fact that a

pedestal only builds up in the temperature and not the density.

Owing to this selective confinement improvement, the I-

mode has some unique properties: first, the impurity confine-

ment time is low due to the absence of a particle transport

barrier [3], resulting in low values of the effective charge Zeff .

Second, the I-mode does not develop edge-localize modes

(ELMs) [5, 6], which makes it attractive from the point of

view of divertor power loads [7]. Other features of the I-

mode are that it can only be accessed if the power thresh-

old to obtain the H-mode PL−H is kept high, which can be

achieved by using unfavorable magnetic configurations or hy-

drogen plasmas [8, 9]. It has been observed on Alcator C-Mod

that the power threshold to access the I-mode from L-mode

PL−I depends less on the toroidal magnetic field strength Bt

than PL−H [10], which is nearly linearly dependent on Bt. Fur-

thermore, the I-mode is characterized by an edge instability

called the weakly coherent mode (WCM), which is coupled

to the geodesic acoustic mode (GAM) [11, 12]. The I-mode

confinement regime has been reported from Alcator C-Mod,

ASDEX Upgrade and DIII-D [3, 13, 14], while other devices

have experiments scheduled [10].
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Questions regarding the I-mode remain on the fact that

an energy transport barrier is formed while particle transport

stays L-mode like. Furthermore, the underlying instability of

the WCM and its importance for confinement have not yet

been resolved.

This paper reports on recent I-mode results from the AS-

DEX Upgrade tokamak (AUG). In section II, access condi-

tions and the confinement improvement are documented along

with peeling-ballooning stability considerations. Section III

presents the edge density turbulence behavior, which is shown

to be strongly intermittent and linked to the WCM, and also

observed by other diagnostics. A summary is given in Sec. IV.

II. ACCESS, CONFINEMENT AND STABILITY

As stated above, the threshold power to access the I-mode

PL−I has been observed to be linearly dependent on den-

sity [15] and only weakly dependent on the toroidal mag-

netic field strength Bt [10]. The power considered here is

Ploss = Pheat − dW/dt, with Pheat the absorbed heating power

and W the plasma stored energy.

To investigate the parameter dependence of PL−I on AUG,

slow power ramps have been carried out in discharges at dif-

ferent densities and magnetic field strengths (|Bt | = 1.8 –

3.0 T). The transition to I-mode is detected by the appear-

ance of the WCM in the power spectrum obtained from the

conventional reflectometer measurement [16]. Configurations

in upper single null (USN) and reversed Bt lower single null

(LSNrev) have been used, both having the ion ∇B drift point-

ing away from the active x-point, hence are unfavorable con-

figurations for H-mode access, as required to access the I-

mode.

Figure 1(a) shows the dependence of PL−I on the line-

averaged core density for both configurations and various

toroidal magnetic field strengths. Plasma currents are in the
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FIG. 1: (a) Power threshold PL−I for the transition from L-mode to I-

mode in AUG. An offset linear dependence on core density (ne,core) is

observed (nfit
e ). (b) The removal of the density dependence (PL−I/n

fit
e )

reveals a weak dependence of PL−I on the toroidal magnetic field

strength Bt.

range of Ip = 0.8 – 1.0 MA, which is a small variation (±11%)

compared to the variation in Bt (±25%). Although there is

a significant variation in magnetic field strength and equilib-

rium configuration (LSNrev / USN), the points show small

scatter. An offset-linear dependence is observed. The linear

fit nfit
e = 0.737ne,core − 0.896 (nfit

e , ne,core in 1019 m−3, dashed

line) has been obtained by fitting only the 2.35 T LSNrev and

2.50 T USN points and will be used to account for the density

dependence of PL−I in the following analysis.

The threshold power for the L-I transition normalized to the

fit obtained above, PL−I/n
fit
e , is depicted in Fig. 1(b). In this

representation, the points used to fit the data from Fig. 1(a)

(2.35 – 2.50 T) scatter around unity. The dependence of PL−I

on Bt can thus be observed if a significant portion of points

at other magnetic field strenghts lie above or below unity.

This is the case for Bt < 2 T, where most of the points are

below unity. In contrast, all the points at Bt ≈ 3.0 T are

above unity. A power law fit is shown as the dashed line,

which has a dependence of B0.39±0.10
t (1σ confidence inter-

val), and is thus statistically significant. The 95% confidence

interval is shown as grey dashed lines above and below the

fit. Any trend that could fit into this interval would be Bt-

dependent. The same conclusion is obtained if a regression

is done with all data points of the form PL−I ∝ nαe B
β
t , yield-

ing PL−I = 0.26n1.36
e B0.39

t . Inside the available density range,

both offset-linear fit and regression give comparable values

for PL−I. However, an extrapolation to larger densities would

yield a considerably different result. Experiments to extend

the dataset toward higher densities than in Fig. 1(a) are sched-

uled to clarify this point. The results above indicate that there

is indeed a weak magnetic field strength dependence of PL−I in

AUG, in agreement with results from Alcator C-Mod [10]. It

should be noted that this dependence is substantially weaker

than the one for the L-H transition, which is B0.80±0.03
t [17].

Furthermore, these results show that the density dependence

of the L-I transition, which is at least linear, is slightly stronger

than the density dependence of the high-density branch of the

L-H transition (PL−H ∝ n0.72
e , see Ref. [17]).

The results presented above indicate that the magnetic field

strength does indeed play a role in the L-I transition. However,

based on this observation, it is unclear if and to what extent the

L-I transition has commonalities with the well-characterized

L-H transition, where PL−H ∝ B0.8
t . Nevertheless, both I-mode

and H-mode owe their improved confinement to strong edge

pedestals. Since at the L-H transition, pedestal dynamics and

turbulence suppression play a major role, it is important to

look in detail into the L-I transition and the fluctuations of the

subsequent I-mode, which is done in the following.

Typical time traces of a discharge at Bt = 2.5 T going from

L-mode through I-mode (starts at 2.23 s) and into H-mode (at

2.59 s) are presented in Fig. 2. In (a), the auxiliary heating is

shown. During the whole time window, a central electron cy-

clotron resonance heating (ECRH, dashed) power of 750 kW

is applied. At 2.1 s, one neutral beam injection (NBI, solid

black) source is added. The power Ploss is shown in purple.

After the NBI is switched on, Ploss increases. Panel (b) de-

picts the core and edge line-average densities, which increase

slightly when the NBI is added, but show little variation dur-

ing I-mode. The edge ion and electron temperatures Ti and Te

and their gradients −∇Ti and −∇Te are depicted in panels (c)

and (d). After having almost reached saturation in the L-mode

following the turn-on of the NBI, both Ti,e and −∇Ti,e increase

throughout the whole time window of the I-mode, which re-

sults in the well-known edge pedestal in these quantities. The

rate of increase changes abruptly at roughly 2.59 s, when the

plasma enters into H-mode. Figure 2(e) shows the confine-

ment improvement factor H98(y, 2), which is usually below

0.6 for L-mode and above 0.8 in H-mode. In the I-mode phase

of the discharge, it increases up to values of H98(y, 2) ≈ 0.85.

Since the normalized gradients (R/LTe,Ti) of the core profiles

remain unchanged due to profile stiffness, the edge pedestal is

responsible for the higher core temperatures and thus for the

significant increase in H98(y, 2). This increase is accompanied

by a deepening of the edge radial electric Er field minimum,

shown as solid points. More information on Er is presented

later. The appearance of the WCM is depicted in Figs. 2(f-h).

They show edge frequency spectra (ρpol = 0.997, with ρpol the

normalized poloidal flux radius) from the conventional reflec-

tometer [16]. While the L-mode spectrum (f) exhibits a flat

part at low frequencies up to about 50 kHz and then a spec-

tral fall-off, the I-mode spectra (g) and (h) show the WCM. At

the beginning of the I-mode the WCM is barely visible above

the broadband turbulence spectrum (g), but it can achieve a

considerable power above the background when the I-mode
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FIG. 2: Time traces of AUG #33043, which goes from L-mode

through I-mode into H-mode (indicated on top). (a) heating power,

(b) line-averaged electron densities, (c) pedestal top electron and ion

temperatures, (d) edge electron and ion temperature gradients, and

(e) confinement factor H98(y, 2) and radial electric field minimum

value. (f-h) Density fluctuation spectra measured at the times indi-

cated by the arrows show the appearance of the WCM in I-mode.

The colored blocks in (e) mark the time windows when Er profiles

are measured (cf Fig. 3).

reaches a high H98(y, 2), which is usually close to the I-H tran-

sition (Fig. 2(h)). For this discharge the reflectometer was in

frequency stepping mode to obtain radial fluctuation profiles

in 50 ms time windows. Since the WCM is radially local-

ized, the time point at which the WCM is first observed is

not necessarily the time instant when it first actually appears.

The plasma may have entered the I-mode up to 50 ms before

2.23 s.

During the confinement improvement in I-mode, the afore-

mentioned pedestal has a pronounced effect on the radial pro-

file of the radial electric field Er due to the change in ∇pi, as

can be observed in Fig. 2(e) and in more detail in Fig. 3. All

profiles were inferred from the measurement of the perpen-

dicular propagation velocity of density fluctuations v⊥ with

Doppler reflectometry via Er = v⊥B. The assumption of a

negligible phase velocity of the turbulence vph compared to

the E × B velocity, vph ≪ vE×B, has been used. This as-

sumption has been shown to be valid in the edge region of the

plasma [18–22], while some exceptions have been reported

from the core [23–25]. Since the results presented here are

from the edge plasma, the assumption is justified.

In Fig. 3, eleven radial Er profiles are shown. The color
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FIG. 3: Evolution of the edge radial electric field (Er) profile in L-

mode (2.00 – 2.25 s) and throughout I-mode (2.25 – 2.59 s). At

t = 2.59 s, the transition to H-mode takes place. The effects of NBI

torque input and the ion pressure gradient on Er are opposite and

indicated by the arrows.

of each profile marks its respective time window, indicated by

colored blocks in Fig. 2(d). The profile at 2.00 – 2.10 s is

taken before the NBI is switched on (cf Fig. 2). At 2.10 s, the

NBI is switched on, which results in an increase in toroidal

rotation, and according to radial force balance [26], in a suc-

cessively more positive Er (indicated by arrow “NBI torque”)

in the core region until 2.25 s. As the minimum of Er stays

roughly constant at −4.5 kV/m, this results in an increased Er

shear at ρpol ≈ 0.99. The first Er profile to show a signifi-

cantly deeper minimum is observed right after the I-mode has

set in, at 2.30 – 2.35 s. If the radial electric field shear plays

a role in the L-I transition, the above suggests that it is the

inner (negative) shear of the Er well which governs the dy-

namics, since the outer (positive) shear does not change. Sub-

sequently, the edge Er profile becomes deeper as the I-mode,

i.e. ∇pi (indicated by arrow in Fig. 3), evolves. At 2.59 s, the

Er minimum is about −14 kV/m, and the H-mode starts. It

should be noted that although the Er shear might be different,

the value of Er,min ≈ −14 kV/m is comparable to the value

obtained for L-H transitions in favorable configurations [27].

The slow evolution of the edge Er well is correlated with the

slow evolution of the pedestal and in consequence the confine-

ment improvement factor H98(y, 2). This is in agreement with

results that show that a sheared radial electric field has sub-

stantial impact on turbulence (see Ref. [28–30] and references

therein) and thus can contribute to obtain stronger pedestals.

Assuming a constant width of the Er well, its depth is a proxy

for the flow shear [22], which will be investigated in the fol-

lowing.

Figure 4 illustrates that the confinement improvement fac-

tor H98(y, 2) correlates with a deeper Er well. In the plot, data

from Charge Exchange Recombination Spectroscopy (CXRS)

and Doppler Reflectometry (DR) are combined. For conve-

nience |Er,min| is shown. L-mode (black) and H-mode data

(blue, favorable configurations) are well separated. L-mode
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FIG. 5: Peeling-ballooning stability diagram showing results for L-

mode (black), I-mode (red) and H-mode (blue). The experimental

value is given by the points while the respective stability boundaries

are given as lines. While in H-mode, the experimental point is close

to the stability boundary, the I-mode is peeling-balloning stable. For

L-mode, no stability boundary is found, even when increasing the

pedestal parameters by a factor of three.

radial electric field minima can attain values up to −5 kV/m,

while H-modes lie in the range −15 to −40 kV/m. The gap be-

tween the two confinement regimes is filled with I-mode data

points. While this gap is reasonably well defined for the Er

values, it is not as clear for the confinement improvement fac-

tor H98(y, 2): here, L-mode and H-mode data points are also

mostly separated, but the I-mode overlaps significantly with

H-mode in the range H98(y, 2) = 0.7 – 0.9.

It has been shown for Alcator C-Mod that the I-mode

is peeling-ballooning stable, i.e. type-I ELMs do not oc-

cur [5, 6]. Figure 5 shows an MHD stability diagram calcu-

lated with the Mishka code [31] for an AUG discharge com-

parable to the one above (AUG #29741), also going from L-

mode into I-mode and then into H-mode. The plot is described

by the normalized pressure gradient α, following the defini-

tion of Ref. [32], and the flux-surface averaged edge current

density 〈 j‖〉. The lines show the stability boundaries for I-

and H-modes. Following Ref. [33], they denote the bound-

ary where γ/vA = 0.04 is fulfilled. Here, γ is the growth rate

for different toroidal mode numbers n and vA is the Alfvén

speed. This criterion robustly determines the region where

mode growth is found. For L-mode, no stability boundary is

found, even when increasing the pedestal parameters by a fac-

tor of three. Above and to the right of the boundaries peeling-

ballooning modes are unstable, i.e. ELMs should occur if

the edge parameters are in that region. Within uncertainties,

the H-mode plasma edge parameters are close to the stability

boundary. This agrees with the experimental observation of

type-I ELMs in the H-mode phase of the discharge. In con-

trast, both the L-mode and I-mode parameters are deeply in

the stable region of the diagram. Hence, just as the L-mode,

the I-mode is peeling-ballooning stable, and no type-I ELMs

are expected, which is consistent with the I-modes found so

far in ASDEX Upgrade.

III. DENSITY TURBULENCE BURSTS

In ASDEX Upgrade, the I-mode edge exhibits strong and

intermittent density fluctuation bursts, which are observed by

several diagnostics [13, 34]. While the background density

turbulence level is reduced in I-mode compared to L-mode,

these bursts can have fluctuation amplitudes stronger than

those in L-mode. They last for roughly 2–10 µs and they

have been shown to be connected to the WCM. In Ref. [34],

structures of roughly 5 mm size have been investigated and a

generation mechanism including the radial temperature gradi-

ent has been suggested. Extending these previous studies, the

properties of these bursts at larger sizes and their observation

by other diagnostics will be presented in the following.

A. Characterization

Figure 6 depicts for comparison two turbulence amplitude

time traces of 10 ms length measured with Doppler reflectom-

etry in the L-mode phase (a) and in the I-mode phase (b) of

a plasma discharge. The Doppler reflectometer was used at

fixed frequency, measuring at ρpol ≈ 0.99, which is close to

the v⊥ minimum, as observed in the comparable discharge of

Figs. 2 and 4. The perpendicular wavenumber of the den-

sity fluctuations probed is k⊥ = 12 cm−1. In the L-mode

(Fig. 6(a)), there is a background fluctuation level, and indi-

vidual fluctuation events are comparably regular and of low

amplitude. In contrast, in the I-mode (Fig. 6(b)), the fluctu-

ation amplitude is in general lower, and it exhibits strong ir-

regularly spaced bursts, which are significantly stronger than

any fluctuations in L-mode (a). These intermittent events last

about 2 – 10 µs.

Figure 7 shows a contour plot of the temporal evolution of

the probability density function (PDF) from L-mode, through
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FIG. 6: Comparison of turbulence amplitude behavior in (a) L-mode

and (b) I-mode. In I-mode, a low turbulence level and strong bursts

are observed, while the L-mode exhibits a higher turbulence level.

Reprinted with permission from [34].
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L-mode through I-mode into H-mode. The time windows from

Fig. 6(a) and (b) are indicated on top. Reprinted with permission

from [34].

the I-mode, and into H-mode. The fluctuation amplitudes have

been normalized to the value of the L-mode standard devia-

tion σL. Two dominant effects can be observed: The strong

intermittent density bursts cause a tail of the PDF at values

above 10σL. In contrast, lower turbulence amplitudes are ef-

fectively reduced in I-mode. The fact that the occurrence of

fluctuations at comparably small amplitudes is reduced while

the occurrence of fluctuations at large amplitudes is increased

is an interesting observation, and will be further investigated

below.

As stated above, the WCM is an intrinsic feature of the I-

mode in Alcator C-Mod [11, 35] and AUG [12]. Fig. 8(a)

shows three time traces of the Doppler reflectometer ampli-

tude signal relative to the time when a burst arrives (t = 0)

for different I-mode discharges. They differ in that the heat-

ing method is ECRH only (2.2 MW) in #30865 and a com-

bination of ECRH (0.7 MW) and NBI (2.0 MW) in #29741

and #29744. In each case, events can be observed just be-

fore the last density burst occurs. The temporal separation of

the precursor events ∆t corresponds to a frequency of roughly

f = 90 kHz. Figure 8(b) depicts the three corresponding spec-

tra from conventional reflectometry, where the WCM can be

seen. In all cases, fWCM ≈ 100 kHz, which is comparable

to the precursor frequency in (a). The small difference is due

to slightly different radial measurement locations of the two
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FIG. 8: (a) Turbulence amplitude signal from Doppler reflectom-

etry showing precursor activity connected to the intermittent den-

sity bursts. The precursor frequency 1/∆t, where ∆t is the time

between precursor events, corresponds to the WCM frequency ob-

served by conventional reflectometry (b). ECRH only (#30865) and

ECRH+NBI (#29741, #29744) shown.

diagnostics. The above indicates a possible connection be-

tween WCM and the bursts reported here. However, a causal

connection between WCM and bursts cannot be shown here,

since no energy transfer measurements are available with the

current AUG confinement region turbulence diagnostics.

Assuming a linear dispersion relation ω = vk, the WCM

frequency fWCM in Fig. 8(b) can be translated into a corre-

sponding wavenumber by kWCM = 2π fWCM/v⊥, where v⊥
is the perpendicular velocity of density fluctuations. For all

cases, this yields values of kWCM ≈ 1.0–1.5 cm−1, which is

comparable to the value obtained from measurements at Al-

cator C-Mod (kWCM = 1.3 ± 0.5 cm−1) [11]. Hence, the

wavenumber ranges of the WCM and the bursts are substan-

tially different. One may speculate that a reason why the

WCM is nonetheless reflected at high k⊥ could be that the

WCM modulates the turbulence level of the small-scale struc-

tures. Another possible explanation is that the WCM becomes

asymmetric due to wave steepening, and thus higher k⊥ are

contained in the spectrum of the WCM. In order to assess the

importance of different structure sizes, measurements at dif-

ferent k⊥ are presented in the following.

B. Dependence on structure size

The density bursts presented above have been measured at a

comparably high wavenumber, k⊥ ≈ 12 cm−1, i.e. small struc-

ture sizes of roughly 0.5 cm wavelength. Typically, density

transport is assumed to be dominated by larger structures [36],

which generally also have higher amplitudes. In order to in-

vestigate the existence of the intermittent I-mode density fluc-

tuations at larger scales, specific discharges comparable to the

one presented in Fig. 2 have been performed. The perpendicu-

lar wavenumber measured with the Doppler reflectometer has

been scanned between k⊥ ≈ 5 – 10 cm−1, extending the previ-

ously investigated scales substantially. As in Fig. 2, Doppler

reflectometer measurement locations are in the Er minimum

(ρpol ≈ 0.995). Due to the density gradient, they have a radial

extent of roughly 2 mm [37].

Figure 9 shows probability density functions (PDFs) of the

turbulence amplitude at different k⊥. In Fig. 9(a), the evolution

of the PDF during increasing I-mode confinement is depicted
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FIG. 9: PDFs of density fluctuation amplitudes obtained at ρpol =

0.99 and for different structure sizes, k⊥ ≈ 10 cm−1 (a), k⊥ ≈ 7 cm−1

(b), k⊥ ≈ 5 cm−1 (c). For all structure scales, the PDF develops a

heavy tail in I-mode at increasing H98(y, 2), which reflects the obser-

vation of increased density fluctuation events.

for a perpendicular wavenumber of k⊥ ≈ 10 cm−1. The legend

indicates both the time point during the discharge and the cor-

responding confinement improvement factor H98(y, 2). Note

that for 2.01–2.11 s, the plasma is still in L-mode, which is

used as the reference. The trend seen in Fig. 6(c) is recovered:

as the plasma enters the I-mode, the PDF becomes broader

while it decreases at low fluctuation amplitudes (blue line).

During improving I-mode confinement, there is a reduction

of amplitudes between 0.03 and 0.08 (arbitrary units), while

those at higher amplitudes (> 0.08) increase. The structures

with the largest fluctuation amplitudes are observed during the

best confinement of H98(y, 2) = 0.93, consistent with results

presented above and in a previous study on AUG [34].

In Fig. 9(b), larger structures have been measured by us-

ing a different angle of incidence of the Doppler reflectome-

ter. Although the discharge is subsequent to the one presented

in (a), the legend is omitted since H98(y, 2) differs by 0.02 at

most, which underlines the good reproducibility of the dis-

charge. For the L-mode case, the PDF is broader at small

amplitudes than in Fig. 9(a). This shows that more turbulence

power is at smaller wavenumbers, which is a well-known fact

from decades of density turbulence measurements [38]. In-

termittent density events are also observed at this k⊥ window

with amplitudes even larger than in the higher k⊥ window in

Fig. 9(a). This trend is continued in Fig. 9(c) (k⊥ ≈ 5 cm−1),

where the PDF also develops a strong tail toward large am-

plitudes in I-mode. Note that also the PDF is broader at low

amplitudes, indicating more turbulence power than at smaller

scales (Figs. 9(a) and (b)).

Building on previous results [34], it can be stated that the

strong and intermittent density events are not only seen when

small structures are probed, but also at comparably large struc-

tures, k⊥ ≈ 5 cm−1, which corresponds to structures larger

than 1 cm. At large structure sizes they are even more pro-

nounced.

C. Temporal evolution

In order to study the influence of the observed bursts on

density transport, the above observations are compared to

other diagnostics which preferably measure in the scrape-

off layer or the divertor. The time-delay between the oc-

curence of the burst in the confinement region and its im-

pact in the SOL/divertor can give information on where the

bursts are generated. To study the causality of the observed

bursts, related measurements from absolute extended ultravi-

olet (AXUV) diode based bolometer diagnostic [39] are ana-

lyzed. The AXUV bolometer channels have a temporal res-

olution of 5 µs and are sensitive to radiation in the range of

1 eV – 10 keV. The measurement depends on a combination

of density, temperature, and impurity concentration. There are

256 channels installed at AUG, covering the whole poloidal

cross-section. These characteristics make the AXUV bolome-

ters well suited to serve as a two-dimensional comparison

with other measurements, in this case the intermittent density

bursts observed by Doppler reflectometry.

Figure 10 shows the poloidal cross section of AUG in-

cluding the plasma equilibrium. Solid grey lines are closed

flux surfaces and show the contours of constant normalized

poloidal flux between ρpol = 0.1 and 1.0 (separatrix), spaced

evenly in 10 levels. The black cross indicates the measure-

ment of the Doppler reflectometer, which is at ρpol ≈ 0.99.

Furthermore, selected lines of sight (LOS) of the AXUV

bolometer analyzed in Fig. 11 are indicated. It should be

noted that the bolometer channels are toroidally separated

from the Doppler reflectometer by approximately 130◦. The

setup allows time delays between characteristic events to be

estimated. Moreover, channel DVC 3 (orange) will be used

to determine whether the bolometry is sensitive to the bursts

in the confinement region. Since turbulent structures are nor-

mally elongated along the magnetic field lies with k‖ ≪ k⊥, it

is not expected that the toroidal separation should play a sig-

nificant role in the following analysis. Apart from diagnostic

geometry, the connection between a position close to the DR

measurement but in the SOL at ρpol = 1.01 and the divertor

is indicated. The connection length is Lc1 ≈ 12 m (blue, low

field side (LFS)).
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FIG. 10: Plasma geometry with Doppler reflectometer measurement

location (DR) and AXUV bolometer lines of sight indicated. The

respective signals are shown in Fig. 11.

Three subsequent turbulence bursts from discharge #29744

starting at t0 = 2.43535 s are depicted in Fig. 11 as observed

by Doppler reflectometry and the bolometer channels men-

tioned above. In (a), the three bursts measured by Doppler

reflectometry exhibit fluctuation levels significantly above the

background level. Just before the main bursts, the smaller pre-

cursor events which have the frequency of the WCM are seen

as in Fig. 8. Vertical dotted and dashed lines indicate the on-

set of the precursor and the maximum of the turbulence burst,

respectively. In Fig. 11(b), time traces of the bolometer lines

DDC 27 (outer divertor leg) and DDC 28 (inner divertor leg)

show a clear correlation to the turbulence amplitude signal.

A time delay of roughly 45 µs is detected with respect to the

edge fluctuation amplitude, both of onset and of maximum

value of the two divertor bolometer channels. The time delay

for the maximum of the second burst in Fig. 11 is indicated

examplarily by the horizontal arrows. The connection length

is roughly 12 m for the outer divertor (indicated in blue in

Fig. 10). Since the LOS of DDC 27 and 28 go through the

whole plasma (cf. Fig. 10), the time traces of two additional

channels (DHC 42 and 43), going through the plasma edge

and monitoring the upper divertor, are shown in Fig. 11(c).

Also in these channels, the radiation increase related to the

density bursts is clearly visible. It is interesting to note that

the channel observing the outer strike line (DHC 42, multi-

plied by a factor 3 in the figure) shows substantially less sig-

nal increase than the channel further outside (DHC 43). This

could be due to local effects in the divertor, which increase the

radiation and are triggered by the turbulence burst.

Figure 11(d) shows a LOS which measures exclusively the

divertor (DVC 48), and one LOS which does not observe the
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FIG. 11: Zoom to three subsequent density bursts starting at

t0 = 2.43535 s as observed by Doppler reflectometry (a) and bolom-

etry (b-d). The different bolometer lines of sight are indicated in the

poloidal cross-section in Fig 10.

divertor at all, but crosses the position of the Doppler reflec-

tometer measurement (DVC 3). While DVC 3 shows no clear

correlation to the density bursts from (a), DVC 48 is strongly

affected by them, again with a time delay of roughly 45 µs.

This shows that even though the density bursts observed by

Doppler reflectometry in the edge region have high ampli-

tudes, they are still not detected by bolometry directly and

in the confinement region. Instead it is rather the effect of

the bursts in the divertor which gives a strong response in the

bolometry signal. All bolometer LOS except DVC 3 show a

net increase in the time window shown in Fig. 11. This is due

to the fact that the time between the density bursts is compara-

bly short (about 225 µs), and the radiation event in the divertor

has not yet completely subsided when the next burst arrives.

Hence, the radiation due to the bursts accumulates. About

700 µs after the time window shown in Fig. 11, the bolometer

signal has returned to the level at the beginning of Fig. 11.

The fact that the bolometer measurement is a combina-

tion of density, temperature, and impurity concentration pro-

hibits a clear statement on the origin of the bolometer sig-

nal increase. However, the squared density dependence of

the bolometer signal indicates that the events are most likely

caused by a density increase in the divertor.

The time delay ∆t between turbulence burst observation
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and divertor response has to be compared to the ion sound

speed cs ≈
√

Te/mi. In order to calculate a correspond-

ing parallel velocity of the structures, it is assumed that the

density burst leaves the confined plasma at the height of the

Doppler reflectometer measurement position. The low-field-

side connection length calculated from 1 cm outside the sep-

aratrix to the divertor is Lc1 ≈ 12 m. This gives a velocity of

v = 12 m/45 µs ≈ 270 km/s, which is four times the ion sound

speed at an assumed electron temperature of Te = 90 eV.

However, since the Doppler reflectometer measurement is lo-

cal, the density burst could have occurred earlier at another

toroidal and poloidal position, such that the present consider-

ation only gives an upper limit to the parallel velocity. In this

context, it should be noted that while all bursts observed by

Doppler reflectometry are also observed by the bolometer, the

opposite is not true. This is probably due to the toroidal and

poloidal localization of the Doppler reflectometer measure-

ment. Nevertheless, the above shows that the density burst is

observed first inside the separatrix, and later in the divertor.

Hence the burst has been generated in the plasma edge [34],

and not in the divertor. This is important in particular con-

sidering that the bursts are connected to the WCM, both of

which are related exclusively to the confined plasma of the

I-mode regime.

IV. SUMMARY AND CONCLUSIONS

An overview of recent observations related to the I-mode

confinement regime on the ASDEX Upgrade tokamak has

been given. It has been shown that there is a weak toroidal

magnetic field strength dependence (∝ B0.39
t ) of the L-I tran-

sition power threshold PL−I. Based on this observation, it is

unclear whether the physics behind the L-I transition and the

L-H transition could have commonalities. Nevertheless, after

the transition to I-mode, the edge radial electric field (Er) well

increases in magnitude, which is correlated with a stronger

Er shear, as is observed generally in H-mode. The increased

Er shear is also correlated with the confinement improvement

factor H98(y, 2). In contrast to H-mode, the I-mode is peeling-

ballooning stable, as shown through stability analysis using

the Mishka code.

There is a pronounced reduction of low fluctuation ampli-

tude activity. However, during the I-mode, strong density tur-

bulence bursts are observed, which are stronger than L-mode

fluctuations. These I-mode density bursts cause a heavy-tail

PDF. Furthermore, they are connected to the weakly coherent

mode (WCM), as seen in the time delay of precursor events.

They exist at all structure sizes investigated (k⊥ = 4.8 –

12.0 cm−1) and the largest structures (k⊥ ≈ 5 cm−1) show the

strongest amplitudes. Furthermore, the intermittent events are

observed several tens of microseconds later in the divertor.

The combination of strong density perturbation amplitudes,

even at large sizes, and the divertor impact, is an indication

that the bursts could indeed play a role in inhibiting the edge

density pedestal to develop. The link to the WCM underlines

the intimate connection of the density bursts to the I-mode

confinement regime.
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[25] T. Happel, A. Bañón Navarro, G. D. Conway, C. Angioni, M.

Bernert, M. Dunne, E. Fable, B. Geiger, T. Görler, F. Jenko,

R. M. McDermott, F. Ryter, U. Stroth, and the ASDEX Upgrade

Team, Phys. Plasmas 22, 032503 (2015).

[26] K. Ida, Plasma Phys. Control. Fusion 40, 1429 (1998).

[27] P. Sauter, T. Pütterich, F. Ryter, E. Viezzer, E. Wolfrum, G. Con-

way, R. Fischer, B. Kurzan, R. McDermott, S. Rathgeber, and

the ASDEX Upgrade Team, Nucl. Fusion 52, 012001 (2012).

[28] H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids 2, 1

(1990).

[29] K. H. Burrell, Phys. Plasmas 4, 1499 (1997).

[30] P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).

[31] A. Mikhailovskii, G. Huysmans, W. Kerner, and S. Sharapov,

Plasma Phys. Rep. 23, 844 (1997).

[32] J. W. Connor, R. J. Hastie, H. R. Wilson, and R. L. Miller, Phys.

Plasmas 5, 2687 (1998).

[33] A. Burckhart, M. Dunne, E. Wolfrum, R. Fischer, R. McDer-

mott, E. Viezzer, M. Willensdorfer, and the ASDEX Upgrade

Team, Nuclear Fusion 56, 056011 (2016).

[34] T. Happel, P. Manz, F. Ryter, P. Hennequin, A. Hetzenecker, G.

Conway, L. Guimarais, C. Honoré, U. Stroth, E. Viezzer, and
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