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The impact of the neoclassical background on turbulent impurity transport is investigated by
means of gyrokinetic simulations supported by fluid equations. The latter are derived, using a
Laguerre polynomials expansion of the first order neoclassical distribution function, and analyti-
cal expressions of the turbulent momentum flux and impurity transport coefficients are assessed.
Comparisons of gyrokinetic simulations including this neoclassical background (coupling between
the codes GKW and NEO) and the fluid model are used to identify the main mechanisms behind
the modification of the turbulent transport channels and benchmark the numerical implementa-
tion. These mechanisms include a modification of the parallel dynamics of the main ions and direct
contributions stemming from the asymmetry in the parallel velocity space of the neoclassical dis-
tribution function. The latter which is found dominant for turbulent impurity transport, increases
with increasing collisionality, R/LTi , R/Ln, impurity mass, safety factor and aspect ratio. These
contributions to momentum and impurity fluxes are also found to depend on the directions of the
toroidal magnetic field and plasma current.
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I. INTRODUCTION

Understanding impurity radial transport in magnetic
confinement devices is of importance to avoid detrimental
effects like impurity accumulations. In these devices, neo-
classical transport stemming from collisions in toroidal
geometry and turbulent transport stemming from fluctu-
ations in the electromagnetic potential at Larmor radius
scales coexist. The predicted impurity density profiles re-
sulting from an independent numerical treatment of neo-
classical and turbulent transport have been successfully
compared to experimental light and heavy impurity pro-
files in several cases [1–4]. Other recent studies reported
poor agreement between theory and experiments for im-
purity transport whether it is for tokamaks [5, 6] or stel-
larators [7, 8] where the respective weights of neoclassical
and turbulent transport are intrinsically different.

It has been realised recently that the cross-talk be-
tween the neoclassical and turbulent channels could be of
importance [9–11]. The impact of the neoclassical equi-
librium on turbulent momentum transport has been ex-
plored in details in [12–16] and found to be significant
compared to other sources of momentum flux [16] such as
the Coriolis drift and the flux surface up-down asymme-
try. Turbulent momentum and impurity transport being
not completely disconnected, in particular with respect to
the role of symmetry breaking mechanisms [17, 18], these
results motivated a study of the impact of the neoclassi-
cal equilibrium distribution function on turbulent impu-
rity transport. To this end, two approaches are adopted:
the derivation of a fluid model including this correction
and numerical simulations using the coupled codes NEO
[19, 20] and GKW[22].

The former approach allows us to underline physical
ingredients and qualitative behaviours with varying typ-

ical plasma parameters, the latter provides quantitative
results on this new turbulent impurity transport mecha-
nism. The objectives are twofold: highlight the param-
eter space for which the impact of the neoclassical equi-
librium on impurity transport is relevant and benchmark
the implementation of the neoclassical equilibrium in the
GKW code made in [16]. While the emphasis is on tur-
bulent impurity transport, similarities in deriving ana-
lytical expressions for the main ion and trace impurities
transport enable a simultaneous treatment of the tur-
bulent impurity and parallel momentum transport. We
underline that the present study focuses on the impact
of neoclassical flows on turbulence and does not consider
the impact of turbulence on neoclassical transport.

The paper is organised as follows. Section II com-
prises the definition of the neoclassical background in
use for the derivation of the fluid model as well as the
modified gyrokinetic equation. In section III the per-
turbed density, parallel velocity and temperature fluid
equations are expressed including the neoclassical back-
ground. From these equations the turbulent momen-
tum flux and the impurity transport coefficients are de-
rived. Gyrokinetic simulations are performed in section
IV and qualitative comparisons with the analytical ex-
pressions are performed to stress both the model and the
implementation of the neoclassical background in GKW.
Then simulations encompassing a large plasma parame-
ter space provide information on where the impact of the
neoclassical background correction on turbulent fluxes is
expected to be large. Finally, conclusions are given in
section V.
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II. NEOCLASSICAL BACKGROUND
CORRECTION TO THE GYROKINETIC

EQUATION

In this section, the gyrokinetic equation including the
neoclassical background distribution function is intro-
duced. An analytical solution of the drift-kinetic equa-
tion is used to describe the neoclassical deviation from
the Maxwellian background and decomposed into La-
guerre polynomials. The fluid model derived in section
IV only retains the first term of the decomposition (the
parallel neoclassical flow) but the implementation in the
gyrokinetic code GKW [16] can retain any number of La-
guerre polynomials, as set in the neoclassical code NEO.

A. Analytical first order neoclassical distribution
function

The solution to the first order (in ρ∗ = ρi/R with
ρi the ion Larmor radius and R the major radius of the
torus) drift kinetic equation can be decomposed as a sum
of Laguerre polynomials [23]:

Fneo,a = FM,a

mav‖

Ta

∞∑
j=0

ua,jL
3/2
j (x2) (1)

with the total distribution function Ftot described by:

Ftot = FM + Fneo (2)

with FM = n/(π3/2v3th) exp {−
[(
v‖ − vφ

)2 − v2⊥] /v2th} a

Maxwellian (with vφ = Bt/BR (ωφ(r)− Ω), Ω the frame
angular frequency and ωφ the plasma angular frequency
at a given radial position r, related to the lowest order
radial electric field dφ−1/dr [20, 21]). The subscript a
denotes a given species, n the density, m the mass, v‖
the velocity parallel to the magnetic field, T the tem-
perature, Bt the toroidal magnetic field strength, B the

magnetic field strength, R the major radius, L
3/2
j the

modified Laguerre polynomials and x = v/vth,a, with

vth,a =
√

2Ta/ma the thermal velocity. The coefficients
ua,j are defined by:

ua,j =
cj
na

∫
v‖L

3/2
j Fneo,ad3v (3)

with

cj =
3× 2jj!

(2j + 3)!!
(4)

Throughout the paper, ’neoclassical background’ will re-
fer to Fneo.

Usually two polynomials are kept in this expansion,
consisting of the parallel flow (U‖) and parallel heat flow

(q‖) [23–25], though particular physical problems require
higher number of polynomials [25]:

Fneo,a = FM,a

mav‖

Ta

[
U‖ −

2q‖

5pa

(
5

2
− x2

)]
(5)

with p the pressure. In this equation U‖ is not the total
flow and the lowest order toroidal flow is contained in the
Maxwellian as described above.

In the following, only the first term is retained, that is
the neoclassical parallel flow U‖, to derive the fluid model
and underline the physical mechanisms behind turbulent
transport modifications via the neoclassical background.
The neglect of the parallel heat flow and higher order
terms in the fluid model is addressed in Appendix A by
comparing gyrokinetic simulations retaining from 1 to
5 Laguerre polynomials for the neoclassical background
distribution function.

In this paper, particular interest is given to impurity
(more specifically on roto-diffusion [17]) and momentum
transport as they both rely on parallel symmetry break-
ing [12, 17, 18]. To this end the neoclassical first order
distribution function is needed for impurities as well as
for the main ions. Following Eq. (25) and (27) of [24] to
express the neoclassical parallel flow in terms of the main
ions background gradients for trace impurity species, the
neoclassical background correction can be recast as:

Fneo,a = sBsJFM,aρ∗
ma

mi

Bt
Bp

v‖

vth,i

[
R

LTi

(1−Ka)

+
R

Ln
−R e

Ti

∂φ0
∂r

]
(6)

with a denoting either the impurity (I) or the main
ions (i), R/LT and R/Ln the normalised logarithmic
temperature and density gradients respectively, Bp the
poloidal magnetic field strength, r the minor radius, φ0
the zeroth order electrostatic potential, sB and sJ the
signs of the toroidal magnetic field and plasma current
respectively (positive values correspond to the counter-
clockwise direction when viewed from above), e the el-
ementary charge and Ka the dimensionless flow coeffi-
cient depending on collisionality and on the species a
[20, 24, 27]. In the following we consider ∂φ0/∂r to be
negligible. This is justified for cases with small centrifu-
gal effects and temperature anisotropies, which is the case
throughout this study.

The neoclassical deviation from the Maxwellian is first
order in ρ∗ but is enhanced by the impurity mass, the
ratio Bt/Bp ∼ q/ε and the Maxwellian background gra-
dients. Equation (6) already encapsulates all the impor-
tant dependencies numerically investigated in section IV.
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B. Gyrokinetic equation and neoclassical
background correction

The gyrokinetic equation for the distribution function
F of species a [28] is given by:

∂Fa
∂t

+
dX

dt
· ∇Fa +

dv‖

dt

∂Fa
∂v‖

= 0 (7)

with the following equations of motion:

dX

dt
= v‖b + vD + vE (8)

dv‖

dt
=

1

mav‖

dX

dt
· (ZeE− µ∇B) (9)

with vD denoting the ∇B, curvature and Coriolis drifts
and vE the E×B drift. Centrifugal and electromagnetic
effects are neglected in the derivation.

In the framework of the δf approximation (F = Fb+δf
with Fb the background distribution function, δf the per-
turbed distribution function with the ordering: δf/Fb �
1), valid at low ρ∗, this equation can be recast as:

∂δf

∂t
+

dX

dt
· ∇δf +

dv‖

dt

∂δf

∂v‖
= S (10)

with S the source term provided by the background dis-
tribution function Fb. To study deviations from the
Maxwellian background due to the neoclassical flows, one
can express Fb as in Eq. (2), that is, also considering the
neoclassical background Fneo described by Eq. (6). The
left hand side of the gyrokinetic equation being not mod-
ified by the neoclassical background distribution function
(it is only modified via the neoclassical electrostatic po-
tential entering in the nonlinear and the trapping terms),
we focus on the right hand side source term S. Though
retained in numerical simulations, the neoclassical elec-
trostatic potential is dropped in the rest of the derivation
(negligible contributions compared to the perturbed tur-
bulent electrostatic potential).

Rewriting S, using the definitions for the neoclassical
background yields:

S =
dX

dt
·
{

(Fneo,a + FM,a)
1

R

[
R

Lna

∇r +
R

LTa(
E

Ta
− 3

2

)
∇r − 2R∇ωφ

RBt
Bv2th,a

v‖ −
RZae∇〈δφ〉

Ta

]

−FM,a∇H −
Fneo
mav2‖

(Ze∇〈δφ〉 − µ∇B)

}
(11)

with E the species kinetic energy 1/2 ma

(
v2‖ + v2⊥

)
, δφ

the perturbed electrostatic potential, the brackets 〈〉 de-
noting the gyro-average and H defined to be the terms
in front of the Maxwellian in equation 6:

H = sBsJρ∗
ma

mi

Bt
Bp

v‖

vth,i

[
R

LTi

(1−Ka) +
R

Ln

]
Second derivatives as well as dominant terms such as
(R/LTi

)
2

enter through the ∇H term.
The slab-like geometry employed in [17, 28] is used and

the following definitions are recalled for completeness:

B = sBBey, ∇B = −B
R

ex, Ω = Ωez

with (ex, ey, ez) forming a right-handed orthogonal co-
ordinate system. Using these definitions dX/dt can be
written as:

dX

dt
= sBv‖ey +

sB
ZeBR

(
mav

2
‖ + µB

)
ex × ey

+ sB
ey ×∇〈δφ〉

B
+ sB

2mav‖

ZeB
Ωez (12)

In this simple slab-like geometry, the drifts depend only
on the direction of the toroidal magnetic field (sB)
whereas in more complex geometries they can also de-
pend on sJ . Finally, the perturbed quantities δf and δφ
are written as a sum over Fourier modes:

δA =
∑
k‖,kz

δÂk‖,kz exp
(
ik‖y + ikzz − iωt

)
(13)

with A being either f or φ, k‖ = ky and kz the par-
allel and perpendicular to the magnetic field wave vec-
tors respectively. From now on, the subscripts of the
Fourier amplitudes δÂ are dropped and only one mode
is considered. Using Eq. (11), (12) and (13), ne-
glecting Finite Larmor Radius (FLR) effects and using
ωD = −kzTa/(eBR), one arrives at the following expres-
sion for the source term S:

S = sB (Fneo + FM ) δφ̂
e

Ta

{
−Zk‖v‖ +

ωD
Ta

(
mav

2
‖ + µB

)
+2ωD

ma

Ta
RΩv‖ − ωD

[
R

Lna

+
R

LTa

(
E

Ta
− 3

2

)
−

2R2∇ωφ
v‖

v2th,a

]}
+ sBωD

e

Ta
δφ̂FM,a

∂H

∂r
− sBFneo

e

Ta

δφ̂

mav2‖[
ZaTav‖k‖ − ωD

(
mav

2
‖ + 2µB

)
− 2ωDRΩmav‖

]
(14)

Using equation 6 and neglecting gradients of the equilib-
rium magnetic field and of the dimensionless flow coeffi-
cient Ka, one obtains for ∂H/∂r:

R
∂H

∂r
= sBsJ

ma

mi
ρ∗
Bt
Bp

v‖

vth,i

[
(1−Ka)

(
R2

Ti

∂2Ti
∂r2
−(

R

LTi

)2
)

+
R2

n

∂2n

∂r2
−
(
R

Ln

)2
]

(15)
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In the present study,Bt/Bp and the collisionality are as-
sumed to vary slowly with the minor radius and their
radial gradients are neglected in Eq. (15) (but are re-
tained in the numerical simulations). These terms could
have a significant impact close the plasma edge and can
be added straightforwardly to the fluid model if need be.
It is recalled here that the fluid model does not retain
the poloidal variations of the neoclassical flows (low field
side model), which is another difference with the numer-
ical simulations.

III. IMPACT OF THE NEOCLASSICAL
BACKGROUND ON IMPURITY AND

MOMENTUM TRANSPORT: FLUID MODEL

In this section, a fluid model is derived by taking mo-
ments of Eq. (14) as in [17, 28] and the turbulent im-

purity and momentum fluxes are computed. Analytical
dependencies of the neoclassical background induced tur-
bulent transport are then highlighted.

A. Fluid equations

Using a Maxwellian closure, one can write the first
three moment equations in the form:

ña

(
sBωN +

2

Z

)
− ṽa

(
k‖,N − 4xa

u

Z

)
+

2

Z
T̃a = −φ̂ Te

Ta

{
sBsJρ∗

Bt
Bp

ma

mi

[
R

LTi

(1−Ka) +
R

Ln

]
(
−u′ + 3u− Z

xa
k‖,N

)
− R

Lna

+ 2

}
(16)

ṽa

(
sBωN +

4

Z

)
−
(
ña + T̃a

)(k‖,N
2
− 2

Z
xau

)
= −φ̂ Te

Ta

{
−Z

2
k‖,N + 2xau− xau′ + sBsJ

xa
2
ρ∗
Bt
Bp

ma

mi
[(1−Ka)(

R2

Ti

∂2Ti
∂r2

− R

LTi

2

+
R

LTi

(
7− R

Lna

+ 2
R

LTa

))
+

(
R2

n

∂2n

∂r2
− R

Ln

2

+
R

Ln

(
7− R

Lna

+ 2
R

LTa

))]}
(17)

T̃a

(
3sBωN +

14

Z

)
+

4

Z
ña − 2ṽa

(
k‖,N −

4

Z
xau

)
= −φ̂ Te

Ta

{
4− 3

R

LTa

− sBsJρ∗
Bt
Bp

ma

mi

[
R

LTi

(1−Ka) +
R

Ln

]
[
Z

xa
k‖,N − 7u+ 2u′

]}
(18)

with xa = vth,i/vth,a and the following normalisations
and notations:

k‖,N = k‖
vth,a
ωD

, φ̂ =
e

Te
δφ̂, ωN =

ωR + iγ

ωD
(19)

γN =
γ

ωD
, ωD = −kzTa

eBR
, u =

RΩ

vth,i
(20)

u′ =
R2

vth,i

∂ωφ
∂r

(21)

ωR and γ are the real frequency and growth rate respec-
tively of the mode. Setting neoclassical corrections to
zero, i.e. ρ∗ → 0, one recovers equations of [17]. In
Eq. (16), (17) and (18), new terms involving the velocity
space integrals of v‖Fneo contribute as new sources for
the moments of the distribution function δf . For even
moments such as density and temperature, these terms

stem from drifts which are odd in v‖ such as the Coriolis
drift, the parallel streaming and the E ×B advection in
the background toroidal rotation gradient. On the other
hand, for odd moments such as the perturbed parallel
velocity, even parity of the drifts are now required for
a nonzero contribution of the neoclassical background.
These drifts are now the E × B advection in the back-
ground density and temperature gradients, the curvature
and ∇B drifts. In other words adding the first order neo-
classical background to the standard Maxwellian involves
new terms related to symmetry breaking mechanisms (u′,
u, k‖) directly in the perturbed density and temperature
equations. This leads for instance to the generation of a
nonzero roto-diffusion directly from the perturbed den-
sity equation without any coupling with the perturbed
parallel velocity equation.

It is also shown that the gradient of the neoclassical
flows, i.e. second derivatives and (R/LTi

)
2

terms enter
only in the pertubed parallel velocity equation. It is then
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expected to have more impact on the turbulent momen-
tum flux than on the turbulent impurity transport (in
the case of low coupling, i.e. k‖,N − 4xa

u
Z ∼ 0).

To highlight the physical ingredients responsible for
modifications of the turbulent momentum and impurity
fluxes via the neoclassical background, we consider the
cases k‖,N − 4xa

u
Z = 0 and T̃ = 0. The former condi-

tion is relevant for sufficiently small values of u and u′

(for which the related k‖ will be small). On the contrary

the condition T̃ = 0 is artificial and justified a posteriori
via gyrokinetic simulations showing no effect of the neo-
classical equilibrium on thermo-diffusion. Furthermore
it does not prevent the study of the main mechanisms
at play. The T̃ = 0 condition can be relaxed to obtain
interesting dependencies on the mode frequency (section
IV). Cases with k‖,N−4xa

u
Z 6= 0 will also be investigated

via numerical simulations in section IV. With these two
assumptions, the fluid model equations are:

ña

(
sBωN +

2

Z

)
= −φ̂ Te

Ta

{
2− R

Lna

− sBsJρ∗
Bt
Bp

ma

mi[
R

LTi

(1−Ka) +
R

Ln

]
u′
}

(22)

ṽa

(
sBωN +

4

Z

)
= −sBsJ φ̂

Te
Ti

ρ∗xa
2

ma

mi

Bt
Bp
{(1−Ka)[

R2

Ti

∂2Ti
∂r2

−
(
R

LTi

)2

+
R

LTi

(
7− R

Lna

+ 2
R

LTa

)]
+

R2

n

∂2n

∂r2
−
(
R

Ln

)2

+
R

Ln

(
7− R

Lna

+ 2
R

LTa

)}
(23)

These two equations are interesting as they describe in
the most reduced way the impact of the neoclassical back-
ground on the turbulent fluxes aside from a modification
of the symmetry of the eigenfunction (k‖ = 0). This is
particularly suitable for impurity transport (as traces)
which is the main topic of this study. For momentum
transport, the neoclassical background necessarily induce
a nonzero k‖ which then limits the extent of Eq. (23).
This feature is discussed in section IV.

B. Turbulent fluxes

Using the same definitions for the turbulent particle
(Γ) and momentum (Π) fluxes as in [17]:

Γ =
1

4
n0vth,i

Te
Ti

∑
kz,k‖

kzρi exp(2γt)=(φ̂†ñ) (24)

Π =
sB
4
n0vth,i

Te
Ti

∑
kz,k‖

kzρi exp(2γt)=(φ̂†ṽ‖) (25)

and using Eq. (22) and (23) for given kz and k‖, one
obtains:

ΓZ =
sB
4
nZvth,i

(
Te
Ti

)2

kzρi exp (2γt)
|φ̂|2

|ωN + 2
Z |2

γN

{
2− R

LnZ

− sBsJρ∗
Bt
Bp

mZ

mi

[
R

LTZ

(1−Ka) +
R

Lni

]
u′
}

(26)

Πi =
sJsB

4
nvth,i

(
Te
Ti

)2

kzρi exp (2γt)
|φ̂|2

|ωN + 4|2
γN

(
ρ∗
2

Bt
Bp

{
(1−Ka)

[
R2

Ti

∂2Ti
∂r2

−
(
R

LTi

)2

+
R

LTi

(
7− R

Lni

+ 2
R

LTi

)]

+

[
R2

ni

∂2ni
∂r2

−
(
R

Lni

)2

+
R

Lni

(
7− R

Lni

+ 2
R

LTi

)]})
(27)

For further comparisons with the momentum flux com-
puted in GKW, a sB has been added to Eq 25 to match
the corresponding definition in the code.

The terms proportional to ρ∗ in Eq. (26) and (27) are
the contributions to the impurity and momentum fluxes
driven by the neoclassical background. The momentum
flux driven by the neoclassical background depends on
the second order derivatives of the temperature and den-
sity. As for the impurity particle flux, it can be further
decomposed into a convective and a diffusive part (see

e.g [33]):

Γz = nZ
D

R

(
R

Lnz

+ CT
R

LTz

+ Cuu
′ + Cp

)
(28)

with D the diffusivity, CT the thermo-diffusion coeffi-
cient, Cu the roto-diffusion coefficient and Cp the curva-
ture pinch. In the case of trace impurities this relation
is strictly linear with respect to the gradients R/Lnz

,
R/LTz

and u′. From Eq. (26) and (28) one can then
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express the transport coefficients Cu and Cp:

CNCu = sBsJρ∗
Bt
Bp

mZ

mi

[
R

LTi

(1−KI) +
R

Lni

]
(29)

Cp = −2 (30)

The superscript NC denotes the contribution of the neo-
classical background to the roto-diffusion in contrast to
the standard contributions stemming from toroidal rota-
tion u and its gradient u′. Thermo-diffusion is not dis-
cussed analytically as coupling with the perturbed tem-
perature equation has been neglected [34].

As already discussed, CNCu does not require a coup-
ing between the perturbed density and parallel velocity,
unlike the roto-diffusion driven by a Maxwellian back-
ground. Furthermore this expression highlights impor-
tant dependencies on plasma parameters. Indeed CNCu
increases with collisionality (due to the neoclassical par-
allel flow coefficient Ka), R/LTi

, R/Ln, mz and Bt/Bp ∼
q/ε. Finally, the direction of the toroidal magnetic field
and plasma current, made explicit in Eq. (6) via sB and
sJ , is expected to change the direction of CNCu and the
neoclassical background induced momentum flux.

In summary, using the following hypotheses: one
Laguerre polynomial to describe the neoclassical back-
ground, slab-like geometry, fluid moments, no FLR ef-
fects, k‖,N − 4xau/Z ∼ 0 , T̃ = 0, ∇Ka = 0, no poloidal
variations of the neoclassical flows, one arrives at the fol-
lowing results:

• The neoclassical background induced roto-diffusion
coefficient CNCu increases with the following param-
eters: R/Ln, R/LTi

, 1−Ka and the species mass.

• The turbulent momentum flux features quadratic
relations with R/LTi

and R/Ln.

• Radial second derivatives of the density and tem-
perature backgrounds are important ingredients in
the momentum flux generation via the neoclassical
background radial gradient.

• Both Πi and CNCu are increasing with increasing
safety factor q and decreasing ε (due to the term
Bt/Bp) and are expected to be dependent on the
plasma current and/or toroidal magnetic field di-
rections.

In the next section these points are investigated by means
of gyrokinetic simulations.

IV. GYROKINETIC SIMULATIONS AND
NEOCLASSICAL BACKGROUND CORRECTION

To compare predictions of Eq. (27) and (29) with nu-
merical simulations, the flux tube, local version of GKW
is used. The neoclassical background Fneo is computed

using NEO and is then added to the Maxwellian back-
ground used in GKW (the neoclassical electrostatic po-
tential is also taken into account). A description of the
NEO-GKW coupling can be found in [16].

First, the quantitative impact of the neoclassical back-
ground on the turbulent momentum flux and roto-
diffusion is numerically assessed for two trace impurities
(Carbon and Tungsten) at increasing collisionalities. The
distinction between k‖ = 0 and k‖ 6= 0 cases is under-
lined. Then a complete investigation of the parametric
dependencies (including the collisionality, R/Ln, R/LT ,
q/ε, the impurity mass and the signs of the toroidal mag-
netic field and plasma current) is performed and the nu-
merical results are compared to Eq. (27) and (29). Fi-
nally, the impact of second derivatives and mode frequen-
cies on the neoclassical background induced momentum
flux and roto-diffusion are explored.

The following electrostatic simulations are performed
using the Cyclone base case [30] at the normalised
poloidal wave number kθρi = 0.42 (peak of the ITG lin-
ear growth rate spectrum). Parameters for this case are
recalled in Table I. Circular flux surfaces are specified us-
ing the Miller geometry [31] in both NEO and GKW. The
normalised ion Larmor radius ρi/R employed through-
out the paper is set to 2.5×10−3 which is a typical value
found in medium sized tokamaks. In this work, the direct
impact of collisions on the turbulent fields is modelled
in GKW with the pitch-angle scattering operator. The
main ions are deuterium nuclei and electrons are treated
kinetically.

R/LTi R/LTe Te/Ti R/Ln q ŝ ε

6.9 6.9 1 2.2 1.4 0.8 0.18

TABLE I: Cyclone parameters used in linear simulations. ŝ cor-
responds to the magnetic shear (ŝ = r/q∂q/∂r).

To compute the first order neoclassical distribution
function a total of 5 Laguerre and 17 Legendre polynomi-
als are used together with the linearised Fokker-Planck
collision operator in NEO. The same number of polyno-
mials is kept in GKW. NEO simulations at five radial
locations are used to compute the radial derivative of
the neoclassical distribution function, with the values of
R/Ln and R/LTi

at the central point corresponding to
the values in Table I. To start with, the second order
derivatives are chosen to be zero.

Convergence tests of the linear simulations have been
performed, yielding the following gridsizes: nµ = 16,
nv‖ = 64, ns = 30, nx = 21 for the number of points
in the magnetic moment, parallel velocity, parallel direc-
tion, and radial wavenumbers respectively.

The following definition of the normalised quasilinear
ion parallel momentum flux is employed for qualitative
comparisons with Eq 27:

ΠN = Πi
R

nemiv2th,iρ
2
∗

1

|φ|2
(31)
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FIG. 1: Normalised ion momentum flux versus the normalised
ion-ion collisionality with and without the neoclassical background
correction.

where Πi is the contravariant flux surface averaged radial
flux:

Πi =

〈∫
d3vsBmv‖vE · ∇rδf

〉
s

(32)

A first set of linear simulations, varying the ion-ion colli-
sionality is performed in Fig. 1 and 2 to assess the impact
of the neoclassical background on the turbulent ion mo-
mentum flux and the impurity transport coefficients. The
normalised toroidal rotation u = RΩ/vth,i has been set to
zero together with its gradient u′ = −R2/vth,i (∂ωφ/∂r)
(for the main ions and kinetic electrons), insuring no
symmetry breaking mechanisms aside from the one in-
troduced via the neoclassical background. A set of or-
thogonal background gradients is applied to several trace
impurities (similarly to [32]) including a nonzero u′ to
compute transport coefficients. The effects on two dis-
tinct trace species, namely for carbon and tungsten, are
investigated. In both figures, 1 and 2, the neoclassical
correction Fneo is applied to all of the species, that is the
main ions (Deuterium), electrons and the trace impurity
species.

In Fig. 1 the ion momentum flux is shown to be strictly
zero with Fneo = 0, i.e. no neoclassical background cor-
rection, as expected from the choice of parameters (no
toroidal rotation and corresponding gradient for the main
species). An increase with the ion-ion collisionality is ob-
served when Fneo 6= 0 stemming from the collisionality
dependence of the neoclassical poloidal flow. At low col-
lisionalities a nonzero residual turbulent ion momentum
flux remains, consistent with [13, 14] where contributions
of Fneo to the turbulent ion momentum flux in different
collisionality regimes are also discussed. No reversal of
the momentum flux is observed for this case (no back-
ground E × B rotation, the only source of momentum
flux is the neoclassical background) in agreement with
the results presented in [13].

FIG. 2: (color online) Transport coefficients Cp (triangles), CT

(pentagrams) and Cu (circles) versus the normalised ion-ion col-
lisionality for carbon (a) and tungsten (b) trace impurities. The
curvature pinch Cp has been rescaled in the first panel. Simula-
tions with/without the neoclassical background correction are rep-
resented with solid/dashed lines. Typical core and edge collision-
ality windows found in present tokamaks are also highlighted.

In Fig. 2, the roto-diffusion in the case Fneo = 0 is
again strictly zero (absence of symmetry breaking inher-
ent to this convective mechanism [17]). Including the
neoclassical background correction yields a nonzero Cu,
increasing with the collisionality, similarly to the ion mo-
mentum flux. The curvature pinch Cp also presents mod-
ifications due to Fneo but not as marked as for the roto-
diffusion coefficient. For carbon, Cu can become com-
parable to the thermo-diffusion coefficient at high col-
lisionality, but remains smaller than Cp. For tungsten,
however, Cu can be comparable in magnitude to the cur-
vature pinch due to the mass dependence in the neo-
classical background distribution function. This strong
effect on tungsten convection could be experimentally
relevant at the edge of NBI heated plasmas where the
collisionality is high and the toroidal rotation gradient u’
typically around unity, making the roto-diffusion contri-
bution dominant. It is also recalled here that the am-
plitude of the roto-diffusion coefficient generated by the
neoclassical equilibrium does not depend solely on col-
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FIG. 3: Roto-diffusion coefficient Cu for trace carbon versus the
normalised ion-ion collisionality. Neoclassical background correc-
tions are applied to either the main ions (Fneo,i) or to the trace
impurities (Fneo,I).

lisionality and other regimes where this mechanism is
quantitatively important may exist. Finally, no modi-
fications of the thermo-diffusion coefficient are observed
in the range of collisionalities used. The correction on
Cp being small and the one on CT being negligible com-
pared to the changes introduced on Cu, special emphasis
is given to the latter. It is important to note however
that the small corrections on the curvature pinch yield
a reduced inward convection, leading to a concomitant
effect (increasing outward roto-diffusion and reduced in-
ward Cp) on the impurity peaking factor R/LnZ

.
To shed some light on the mechanisms at play, the

neoclassical background corrections are now applied to
the main ions and the trace impurities separately (Fig 3).
It is recalled that to derive the analytical expressions for
CNCu and the turbulent momentum flux, the neoclassical
background has been applied only to the trace impurities
or the main ions respectively.

Fig 3 underlines two features of the neoclassical back-
ground corrections. When it is applied to the main ions
only (Fneo,i) a small but non zero roto-diffusion is ob-
tained, stemming from the nonzero k‖ introduced via the
neoclassical background. On the other hand, when it is
applied to the trace impurities only (Fneo,I), the modifi-
cation to the roto-diffusion stems from the E×B advec-
tion in the background rotation gradient as described in
Eq. (29) (in this case, the parallel symmetry of the eigen-
function is strictly preserved). The latter mechanism, not
present for a Maxwellian background due to the parity
in v‖, is the dominant one compared to changes in the
main ions parallel dynamics (k‖ 6= 0) and provides the
most efficient way of generating a nonzero roto-diffusion.
The turbulent momentum flux induced by the neoclassi-
cal background is only obtained via Fneo,i due to its in-
trinsic link with symmetry breaking mechanisms. These
results support the separation made between main ion
and trace impurities dynamics to derive the analytical
expressions of section III.
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FIG. 4: Roto-diffusion coefficient Cu for trace carbon (a) and
normalised turbulent ion momentum flux (b) versus the normalised
ion-ion collisionality for cyclone base case, with u = 0.2 and u′ =
0.7, with Fneo = 0 (dashed line) and Fneo 6= 0 (full line). The
fluxes resulting from the sum of the standard case of Fig 1 and 2
and the Fneo = 0 case are indicated with a dotted line.

Simulations with typical values of normalised toroidal
rotation u = 0.2 and corresponding gradient u′ = 0.7 are
shown in Fig 4 to compare the modifications introduced
by the neoclassical background to results obtained for
a Maxwellian background. To this end, the same scan
in collisionality for carbon trace impurities is performed
including or not the neoclassical equilibrium correction
(applied to all species).

As expected, Cu and ΠN are not zero even with
Fneo = 0, due to the finite values of u and u′. The
impurity and momentum fluxes driven by the neoclas-
sical background are comparable to those driven by the
finite rotation, provided the collisionality is large enough.
Furthermore, the contributions driven by the neoclassical
background and the finite rotation are nearly additive, as
demonstrated by summing the fluxes obtained for cases
at u = 0 and u′ = 0 (Fig 1) to the Fneo = 0 cases where u
and u′ are different from zero. This justifies the analyses
on cases with u = u′ = 0.
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FIG. 5: (color online) Roto-diffusion versus 1−KI for R/LTi
= 2

(blue circles), R/LTi
= 5 (red triangles) and R/LTi

= 10 (black
pentagrams). Simulations are performed at two values of R/Ln,
R/Ln = 0 (solid lines) and R/Ln = 4.4 (dashed lines). The back-
ground gradients are modified in NEO only.

A. Parametric dependencies

We now scrutinize the qualitative dependencies of CNCu
and the neoclassical background induced momentum flux
with plasma parameters, underlined in the model of sec-
tion III. In the following, each of the analytical depen-
dencies are investigated in numerical simulations, vary-
ing plasma local parameters independently. Two types
of simulations are performed, considering the modifica-
tions of the parameters only in NEO (thus modifying the
neoclassical background only) or consistently modifying
parameters in NEO and GKW. These two approaches are
denoted by NEO and NEO+GKW in the figure legends.
The fixed parameters are set to the values specified in
Table I.

First the qualitative trends obtained analytically with
1−Ka (collisionality), R/LTi

and R/Ln are investigated
by varying these quantities in NEO only. Ki and KI are
the flow coefficients (extracted from NEO simulations)
for the main ions and the impurities respectively. In Fig
5, the roto-diffusion coefficient is shown for a scan in colli-
sionality at three values of R/LTi (2,5,10) and two values
of R/Ln (0,4.4). It is recalled that Eq. (29) predicts a
linear dependence of Cu on 1−KI . The slope is directly
proportional to R/LTi and shifted by R/Ln. These qual-
itative results are recovered in Fig 5 where an increase
of the slope is observed with increasing R/LTi (it can be
shown that this increase is directly proportional to the
increase in R/LTi

at constant R/Ln). Furthermore, cases
at R/Ln = 0 show a reversal of the roto-diffusion con-
comitant with a reversal of 1−KI . At R/Ln = 4.4, this
reversal of Cu is no longer observed due to the upshift in-
troduced via the non-zero background density gradient.
This upshift also preserves the slopes which are only pro-
portional to R/LTi

.
A similar investigation for the turbulent momentum

flux variations with respect to the collisionality, R/Ln
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FIG. 6: Normalised turbulent momentum flux versus 1 − Ki for
R/LTi

= 2 (blue circles), R/LTi
= 5 (red triangles) and R/LTi

=
10 (black pentagrams). Simulations are performed at two values
of R/Ln, R/Ln = 0 (solid lines) and R/Ln = 4.4 (dashed lines).
The ∇H term has been artificially removed and the background
gradients are modified in NEO only.

and R/LTi
is performed in Fig 6. The results are now

shown against 1−Ki and analysed using Eq 27. The term
∇H has been artificially removed (no second derivatives

and no (R/LTi
)
2

terms) to unravel the analytical linear
trends. Again the slopes of the numerically computed
momentum flux are directly proportional to R/LTi

and
shifted upward for increasing R/Ln. In contrast to the
roto-diffusion, the momentum flux is always positive due
to the flow coefficient Ki < 1. It can be noted that this
flux does not converge toward zero with 1−Ki. This be-
haviour is due to the nonzero k‖ generated by the neoclas-
sical equilibrium, which increases with R/LTi

and R/Ln
and not taken into account into Eq 27.

In Fig 7 the impact of ∇H in the turbulent momen-
tum flux is now assessed (second derivatives are still set
to zero) at two collisionalities, νiia/vth,i = 2.4 × 10−5

and at νiia/vth,i = 2.4 × 10−2. It is shown that, in
qualitative agreement with Eq 27, the momentum flux
is linear with R/LTi

provided ∇H is set to zero and fea-
tures a quadratic dependency in the opposite case where
∇H 6= 0, even triggering a sign reversal at high R/LTi

and low collisionalities. This behaviour is observed in
both collisionality regimes.

The background gradients are now scanned consis-
tently in both codes, thus taking into account their direct
impact on the turbulence drive. This is performed at two
collisionalities (Fig 8 and 9). The parameter space in-
vestigated features both Ion temperature gradient (ITG)
and trapped electron modes (TEM).

It is observed that roto-diffusion at low collisionality
(Fig 8a) is increasing with R/Ln but slightly decreasing
with R/LTi

(negative 1 −KI). In contrast, at high col-
lisionality (Fig 8b), it is increasing with both R/Ln and
R/LTi

(positive 1−KI). These results including now the
variations of the turbulence drive (gradients modified in
GKW as well), are still in qualitative agreement with Eq
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is modified in NEO only.

29.

As for the turbulent momentum flux, it is increasing
with R/Ln and R/LTi in both collisionality regimes (Fig
9a, 9b). This behaviour is no longer consistent with
Eq.(27) and likely due to a dominant effect of the drive

countering the (−R/LTi
)
2

stemming from the neoclassi-
cal background radial gradient.

In Fig 10, a scan in the impurity mass is performed up
to MI = 184 for Z = 10 and Z = 40. It is recalled that
no toroidal rotation is used in these simulations, thus
centrifugal effects are absent in these results.

The model predicts a linear dependency with the mass
and none with the charge Z. It is seen that this linear
trend is recovered in the simulations and a small impact
of Z (compared to the mass dependency) is observed es-
pecially for high mass impurities. Applying the neoclassi-
cal equilibrium correction to the impurities only (Fneo,I)
also leads to a change of Cu with Z which is therefore
not due to the modification of the parallel dynamics of
the main ions.

In Fig 11 and 12 the dependency of the roto-diffusion
on the safety factor q and inverse aspect ratio ε are inves-
tigated. These dependencies arise from the term Bt/Bp
in the neoclassical flows, which is equivalent to q/ε in
circular geometry at low ε. The scan in ε is performed
in such a way that each parameter is kept constant with
respect to Table I.

Roto-diffusion Cu is shown to increase linearly with q
(Fig 11), which is consistent with the model predictions
when this parameter is varied in NEO only. In contrast,
the dependency with 1/ε is roughly linear and the slope
is different from the one obtained with q. This is ex-
plained by the fact that changing ε also modifies the flow
coefficient KI due to the variation of the trapped par-
ticle fraction. Variying q and ε in GKW as well yields
the same qualitative behaviour, that is an increase of Cu
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FIG. 8: Coefficient CNC
u versus R/Ln and R/LTi

at νiia/vth,i =
2.4 × 10−5 (a) and νiia/vth,i = 2.4 × 10−2 (b). The black line
denotes the limit between TEM and ITG modes.

with the safety factor and the aspect ratio.

On the other hand the behaviour of the turbulent mo-
mentum flux is a bit different with respect to these pa-
rameters (Fig 12). While linear dependencies are recov-
ered when changing q and ε in NEO only, modifying q in
GKW yields a near constant turbulent momentum flux
in the parameter range, due to a concomitant reduction
of the mean parallel wave vector. Overall, it is shown
that ΠN induced via the neoclassical background is in-
creasing with the aspect ratio 1/ε and roughly constant
for typical values of the safety factor q.

Finally, the impact of the directions of the toroidal
field and plasma current (sB , sJ) on the turbulent mo-
mentum and impurity fluxes is investigated. Indeed these
directions affect directly the neoclassical flows, and hence
the neoclassical background (NEO), but also the drift ve-
locities (GKW). In the description of section II, a simple
slab-like geometry has been used, thus not considering all
the sign dependencies in the drifts present for more com-
plex geometries. The sign conventions used are the same
as those in NEO, that is, positive values corresponding to
the counter-clockwise direction when viewed from above.

In Fig 13(a) and (b), a scan in collisionality is per-
formed with different set up of plasma current and
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toroidal magnetic field signs. It is shown that CNCu is
dependent on the direction of the toroidal magnetic field
and plasma current, leading to either positive (outward)
or negative (inward) contributions. In contrast, the tur-
bulent momentum flux depends on the sign of the plasma
current only.

To summarise, the neoclassical background induced
roto-diffusion CNCu increases with increasing collisional-
ity, R/Ln and R/LTi

(only at high collisionalities for the
latter, where 1 − KI is positive), safety factor, aspect
ratio, impurity mass and is either inward or outward de-
pending on the respective sign of the plasma current and
toroidal magnetic field. As for the turbulent momen-
tum flux, it increases with increasing collisionality, R/Ln,
R/LTi , aspect ratio and is dependent on the sign of the
plasma current only.

B. Impact of second derivatives and mode
frequencies

Throughout this paper we have considered only one
poloidal wave number (kθρi) and the profiles used in
NEO were produced such that the second derivative of
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FIG. 10: Roto-diffusion coefficient versus the impurity mass for
Z = 10 and Z = 40, taking into consideration the neoclassical
background correction on the trace impurities only (Fneo,I , dashed
lines) or on all species (Fneo,i,I , solid lines).

temperature and density profiles were set to 0. In the
following the impact of second derivatives and poloidal
wave number on the neoclassical background induced tur-
bulent momentum and impurity transport is investigated
for a low collisionality case (νiia/vth,i = 2.4× 10−5). To
study these dependencies, some assumptions used to de-
rive 27 and 29 are reconsidered. Indeed second deriva-
tives only enter the perturbed parallel velocity equation.
Hence considering uncoupled equations via the condition
k‖,N − 4xau/Z ∼ 0 yields no effect of such derivatives on
the impurity flux in contrast to the momentum flux. To
introduce second derivatives and the poloidal wave num-
ber dependency into the turbulent transport coefficients
(impurity flux), the assumptions k‖,N − 4xau/Z ∼ 0 and

T̃ = 0 must be relaxed, to couple the density fluctuation
equation either to the temperature fluctuations or to the
parallel velocity fluctuations.

In Fig 14 the impact of second derivatives on CNCu
and ΠN is shown for the Cyclone base case, varying the
parameters αn and αTi

defined below:

αn =
R2

n

∂2n

∂r2
(33)

αTi
=
R2

Ti

∂2Ti
∂r2

(34)

The neoclassical correction has been applied either to
the trace impurities or to the main ions. It appears that,
as found in the fluid model, second derivatives have no
impact on Cu in cases where k‖,N − 4xau/Z = 0, that is
when the corrections are applied only to the trace species.
Introducing the correction on the main ions generates a
nonzero k‖ which then leads to a linear dependency with
the second derivatives. It is also observed that the slopes
of the linear dependencies of Cu with αn and αTi

are
different, due to the 1−Ka in front of the αTi

term (see
Eq 17 ). The same observations can be made for the
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FIG. 11: Roto-diffusion versus the safety factor q (a) and the
inverse aspect ratio ε (b).

turbulent momentum flux (Fig 14(b)). Furthermore, the
dependencies are not symmetric with respect to αn,T .
The generated roto-diffusion and momentum flux crosses
zero for positive values of the second derivatives and at
much higher values for αT than for αn. This is expected
from Eq. (27) and due to the compensation of the terms
(R2/Ti, n)∂2Ti, n/∂r

2 and −(R/LTi,n)2.
Looking now at the poloidal wave number dependency,

the condition T̃ = 0 is relaxed and yields the following
roto-diffusion coefficient (using Eq 16 and 18):

Cu = fCu
ρ∗
Bt
Bp

mI

mi

[
R

LTi

(1−KI) +
R

Ln

]
(35)

with:

fCu = 1−
12ωR

ωDZ|3ωN+ 14
Z |2

+ 40

Z2|3ωN+ 14
Z |2

1 + 24

Z2|3ωN+ 14
Z |2

(36)

In Fig. 15, Cu and the coefficient fCu are computed and
shown versus the poloidal wave number at νiia/vth,i =
2.4×10−5. The trace impurities used in these simulations
have mI/mi = 10 and Z = 1 or 10. This change in
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FIG. 12: Normalised turbulent momentum flux versus the safety
factor q (a) and the inverse aspect ratio ε (b).

Z allows us to disentangle regimes where fCu ∼ 1 and
fCu 6= 1.

Going from Ion Temperature gradient (ITG) to
Trapped Electrons mode (TEM) instabilities, i.e. chang-
ing the sign of the mode frequency ω̂R, the coefficient
fCu decreases together with the neoclassical background
correction induced roto-diffusion. This behaviour is par-
ticularly strong for low Z impurities (extreme case here
Z = 1). The amplitude of this reduction is limited at
larger Z yielding a coefficient fCu ∼ 1 regardless of the
main instability type. In the ITG spectral range, the
roto-diffusion follows the trend of fCu

, i.e. it increases
with the poloidal wave number for Z = 1 and decreases
for Z = 10. It is important to note that the fluid model
for which fCu is derived is not tailored for TEM stud-
ies as it does not encompass trapped particles dynam-
ics. However it allows one to assess that, qualitatively,
the roto-diffusion introduced by the neoclassical back-
ground corrections is expected to be of similar amplitude
in the ITG/TEM domain for modest to high Z impurities
whereas it is expected to be lower for low Z impurities
in the TEM regime which is confirmed numerically.
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FIG. 13: Roto-diffusion coefficient and normalised turbulent mo-
mentum flux versus the normalised ion-ion collisionality for differ-
ent combinations of the signs of the toroidal magnetic field and
plasma current.

V. CONCLUSIONS

The impact of the neoclassical background on turbu-
lent fluxes has been investigated via both gyrokinetic sim-
ulations and a fluid model making use of a Laguerre poly-
nomials expansion of the first order neoclassical distribu-
tion function. While important results already found in
the literature for neoclassical background induced tur-
bulent momentum flux are recovered (residual turbulent
momentum flux at low collisionality, collisionality depen-
dence), a new impurity transport mechanism is high-
lighted. Numerical simulations and analytical expres-
sions were used to identify the origin of the dependencies
of this mechanism with plasma parameters and to bench-
mark the implementation of the neoclassical background
in the gyrokinetic code GKW [16].

It is found that two main mechanisms are contributing
to the generation of roto-diffusion via the neoclassical
background. One is linked to the change of the par-
allel symmetry of the turbulent eigenfunction through
equilibrium corrections on the main ions. This mech-
anism is also responsible for modifications of the tur-
bulent momentum fluxes [13, 14]. The second one,
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FIG. 14: Roto-diffusion Cu (a) and normalised ion momen-
tum flux (b) versus parameters αn,Ti

= (R2/n, Ti)∂
2n, Ti/∂r

2

at νiia/vth,i = 2.4 × 10−5. Results are shown for neoclassical
background corrections applied to the trace impurities alone (plain
lines) and to all species (dashed lines).

which is found dominant for turbulent impurity trans-
port compared to the former, is non-zero contributions
from the velocity space integrals of v‖Fneo of the impu-
rities, stemming from the asymetry in the parallel ve-
locity space of the first order neoclassical distribution
function. For roto-diffusion, this implies the parallel
streaming, Coriolis drift and E × B advection in the
toroidal rotation background gradient entering the per-
turbed fluid density equation. These integrals generate a
nonzero roto-diffusion even in the absence of a coupling
between the impurities density and parallel velocity fluc-
tuations which is a new feature compared to the stan-
dard Maxwellian background. For momentum transport
it implies the integrals related to the ∇B and curvature
drift, the E × B advection in the temperature and den-
sity background gradients and their second derivatives,
entering the perturbed fluid parallel velocity.

In an ideal set of parameters (no toroidal rotation and
corresponding gradient) and for turbulent trace impu-
rity transport only, these two distinct mechanisms can
be decoupled, applying the neoclassical background ei-
ther on the main ions or the trace impurities. In this
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FIG. 15: Coefficient fCu (Eq. (36)) (a) and the roto-diffusion co-
efficient Cu (b) versus the normalised poloidal wave number. ITG
and TEM instabilities for the most unstable mode are also delim-
ited.

framework, the fluid model is found to qualitatively re-
produce the numerical simulations. Furthermore, it is
shown that the second mechanism yields a roto-diffusion
coefficient that increases with increasing collisionalities,
R/LTi

, R/Ln, impurity mass, q/ε and that is related
to the second derivatives of the density and tempera-
ture profiles. It is therefore expected to have strong im-
pact for modest to high mass impurities (provided turbu-
lent transport is non-negligible compared to neoclassical
transport), in presence of internal transport barriers or
towards the edge of tokamak plasmas.

Finally, the impact on roto-diffusion is dependent on
the direction of the plasma current and toroidal magnetic
field, yielding either inward or outward contributions.
This fingerprint of the impact of the neoclassical back-
ground on impurity turbulent transport could be used for
an experimental identification.
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Appendix A: Impact of the numbers of Laguerre
polynomials

The quantitative impact of the number of Laguerre
polynomials in assessing the roto-diffusion induced by the
neoclassical background is investigated through a scan in
collisionality for the standard case described Table I. The
characteristic collisionality dependence in 1−KI is then
shown for different numbers of Laguerre polynomials in
Fig 16.

To perform these simulations, the same number of
polynomials are used in NEO (5), and a limited num-
ber are then read in GKW to reconstruct the distribu-
tion function. Going from one to two Laguerre poly-
nomials leads to a quantitative change in the turbulent
roto-diffusion at all collisionalities. Further increasing
the numbers of Laguerre polynomials up to 5 does not
change noticeably the results (for these parameters). The
linear trend with 1 −KI is recovered for any number of
polynomials.
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FIG. 16: Roto-diffusion calculated for a carbon trace species versus
1 − KI with different numbers of Laguerre polynomials used in
GKW. The analytical expression 29 is also shown.

The numerically accurate neoclassical distribution
functions can also be directly compared to reconstructed
distribution functions in velocity space using either one
or two Laguerre polynomials, that is, using Eq. (5) with
the parallel flows computed from NEO.

In Fig 17 two perturbed distribution functions are ex-
tracted from NEO (reconstructed from 5 Laguerre poly-
nomials and 17 Legendre polynomials) at low collisional-
ity (ν1 = νiia/vth,i = 2.4×10−5) and higher collisionality
(ν2 = νiia/vth,i = 2.4 × 10−2). It is seen that the low
collisionality case Fig 17(a) presents shapes at higher en-
ergy structures in the velocity space (v‖, v⊥) than the
high collisionality case Fig 17(b).

A distribution function is reconstructed using two (c)
and one (d) Laguerre polynomials respectively. It is
shown that the qualitative picture in the velocity space
of the numerically accurate distribution functions can be
recovered using at least 2 Laguerre polynomials at low
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collisionality and one at high collisionality.
To summarise, the qualitative shape in velocity space

of the neoclassical distribution function Fneo is well re-
covered at high collisionalities with one Laguerre poly-
nomials whereas 2 Laguerre polynomials are necessary
at low collisionalities. Furthermore going from one to

two Laguerre polynomials changes quantitatively the in-
duced roto-diffusion in the whole range of collisionalities
but keeps the linear trend with 1 − KI thus justifying
to some extent the qualitative comparisons between the
fluid model (retaining only one polynomial) and the nu-
merical simulations performed in this paper.

[1] M. R. Wade, W. A. Houlberg, and L. R. Baylor, Physical
Review Letters 84, 282 (2000)

[2] F. J. Casson et al, Nuclear Fusion 53, 063026 (2013)
[3] C. Angioni et al, Nuclar Fusion 54, 083028 (2014)
[4] F. J. Casson et al, Plasma Physics and Controlled Fusion

57, 014031 (2015)
[5] A. Skyman, L. Fazendeiro, D. Tegnered, H. Nordman,

J. Anderson and P. Strand, Nuclear Fusion 54, 013009
(2013)

[6] H. Nordman, A. Skyman, P. Strand, C. Giroud, F. Jenko,
F. Merz, V. Naulin, T. Tala, and the JET-EFDA Con-
tributors, Plasma Physics and Controlled Fusion 53,
105005 (2011)

[7] D. R. Mikkelsen et al, Physics of Plasmas 21, 082302
(2014)

[8] S. Sudo, Plasma Physics and Controlled Fusion 58,
043001 (2016)

[9] G. Dif-Pradalier, V. Grandgirard, Y. Sarazin et al, Phys-
ical Review Letters 103, 065002 (2009)

[10] M. Oberparleiter, F. Jenko, D. Told, H. Doerk and T.
Görler, Physics of Plasmas 23, 042509 (2016)

[11] Y. Idomura, Physics of Plasmas 21, 022517 (2014)
[12] F. I. Parra and M. Barnes, Plasma Physics and Con-

trolled Fusion 57, 045002 (2015)
[13] M. Barnes, F. I. Parra, J. P. Lee, E. A. Belli, M. F. F.

Nave, and A. E. White, Physical Review Letters 111,
055005 (2013)

[14] J. P. Lee, M. Barnes, F. I. Parra, E. Belli, and J. Candy,
Plasma Physics and Controlled Fusion 57, 125006 (2015)

[15] J. P. Lee, F. I. Parra and M. Barnes, Nuclear Fusion 54,
022002 (2014)

[16] W. A. Hornsby et al, On the effect of neoclassical flows on
intrinsic momentum in ASDEX Upgrade Ohmic L-mode
plasmas, submitted to Nuclear Fusion (2016)

[17] Y. Camenen, A. G. Peeters, C. Angioni, F. J. Casson,
W. A Hornsby, A. P. Snodin, and D. Strintzi, Physics of
Plasmas 16, 012503 (2009)

[18] C. Angioni, Y. Camenen, F. J. Casson, E. Fable, R. M.
McDermott, A. G. Peeters, and J. E. Rice, Nuclar Fusion

52, 114003 (2012)
[19] E. A. Belli and J. Candy, Plasma Physics and Controlled

Fusion 51, 075018 (2009)
[20] E. A. Belli and J. Candy, Plasma Physics and Controlled

Fusion 54, 015015 (2012)
[21] F. L. Hinton and S. K. Wong, Physics of Fluids 28, 3082

(1985);
[22] A. G. Peeters, Y. Camenen, F. J. Casson, W. A. Hornsby,

A. P. Snodin, D. Strintzi, G. Szepezi, Computer Physics
Communications 180, 2650 (2009)

[23] P. Helander and D. J. Sigmar, Collisional Transport in
Magnetized Plasmas (Cambridge University Press, 2001)

[24] Y. B. Kim, P. H. Diamond, and R. J. Groebner, Physics
of Fluids B 3, 2050 (1991)

[25] S. Nishimura, H. Sugama, H. Maaßberg, C. D. Beidler,
S. Murakami, Y. Nakamura, and S. Hirooka, Physics of
Plasmas 17, 082510 (2010)

[26] S. P. Hirshman and D. J. Sigmar, Nuclear Fusion 21,
1079 (1981)

[27] E. A. Belli and J. Candy, Plasma Physics and Controlled
Fusion 50, 095010 (2008)

[28] A. G. Peeters, D. Strintzi, Y. Camenen, C. Angioni, F. J.
Casson, W. A. Hornsby, A. P. Snodin, Physics of Plasmas
16, 042310 (2009)

[29] Y. Camenen, F. J. Casson, P. Manas, and A. G. Peeters,
Physics of Plasmas 23, 022507 (2016)

[30] A. M. Dimits, Physics of Plasmas 7, 969 (2000)
[31] R. L. Miller, M. S. Chu, J. M. Greene, Y. R. Lin-Liu and

R. E. Waltz, Physics of Plasmas 5, 973 (1998)
[32] C. Angioni, R. Dux, E. Fable, A. G. Peeters and the

ASDEX Upgrade Team, Plasma Physics and Controlled
Fusion 49, 2027 (2007)

[33] C. Angioni, E. Fable, M. Greenwald, M. Maslov, A. G.
Peeters, H. Takenaga, and H. Weisen, Plasma Physics
and Controlled Fusion 51, 124017 (2009)

[34] C. Angioni, and A. G. Peeters, Physical Review Letters
96, 095003 (2006)



16

(a) ν
1

-2 0 2
v

//

0.5

1

1.5

2

2.5

3

3.5

4

v ⊥

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(b) ν
2

-2 0 2
v

//

0.5

1

1.5

2

2.5

3

3.5

4

v ⊥

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(c)
ν

1

-2 0 2
v

//

0.5

1

1.5

2

2.5

3

3.5

4

v ⊥

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(d)
ν

2

-2 0 2
v

//

0.5

1

1.5

2

2.5

3

3.5

4

v ⊥

-0.15

-0.1

-0.05

0

0.05

0.1

FIG. 17: First order distribution functions extracted from NEO at ν1 = νiia/vth,i = 2.4× 10−5 (a,c) and= ν2 = νiia/vth,i = 2.4× 10−2

(b,d) compared to reconstructed distribution functions using two and one Laguerre polynomials (c, d respectively) in velocity space v‖, v⊥.


	Introduction
	Neoclassical background correction to the gyrokinetic equation
	Analytical first order neoclassical distribution function
	Gyrokinetic equation and neoclassical background correction

	Impact of the neoclassical background on impurity and momentum transport: fluid model
	Fluid equations
	Turbulent fluxes

	Gyrokinetic simulations and neoclassical background correction
	Parametric dependencies
	Impact of second derivatives and mode frequencies

	Conclusions
	Acknowledgments
	Appendix A: Impact of the numbers of Laguerre polynomials
	References

