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A commentary on

FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

by Devanna, P., Middelbeek, J., and Vernes, S. C. (2014). Front. Cell. Neurosci. 8:305. doi: 10.3389/
fncel.2014.00305

FOXP2 was the first identified monogenic cause of a speech disorder (for review see Graham
et al., 2015). However, it remains to be answered how it affects the development of speech related
neuronal circuits and what the relevant molecular pathways may be. Devanna et al. (2014) reported
a direct interaction between FOXP2 and Retinoic Acid (RA), an important signaling molecule in
brain development and neuronal differentiation, in a cell model. What could this finding mean for
our understanding of a language-ready brain?

Mounting evidence from diverse fields such as linguistics, genetics, brain development, and
cellular neurophysiology suggests that the brain’s motor circuitry might be the key to the
conundrum of language disorders. Human patients with FOXP2mutations show prominent motor
learning deficits at the root of their developmental verbal dyspraxia diagnosis, which is reflected
in mouse models of Foxp2 loss (for review see Deriziotis and Fisher, 2013; Graham et al., 2015).
Interestingly, in mice with dysregulated RA signaling, similar motor learning impairments have
been found (for review see Duester, 2013). Retinoic acid has several prominent roles in brain
development and function, for example as a diffusible signaling molecule that changes gene
expression via nuclear retinoic acid receptors (RARs, RORs, and RXRs; for review see Maden,
2007).

Devanna et al. (2014) demonstrated a direct interaction between FOXP2 and RA signaling in
a human neuroblastoma cell line (SH-S5Y5), in which RA exposure initiates differentiation into
a dopaminergic-neuron like state (Korecka et al., 2013). When the researchers compared FOXP2
overexpression to RA treatment they found an interesting convergence: In both cases, the cells
differentiated from their previously proliferative state into a more neuron-like state and showed
elevated expression of RA signaling-related genes, specifically the receptor RARß.

A recent review of the same group (van Rhijn and Vernes, 2015) suggests that the motor-
learning deficits found in carriers of FoxP2mutationsmight bemediated by defects in RA signaling,
also in humans. Interestingly, FoxP2 and RA signaling have also been found (separately) to be
involved in vocal production learning in a songbird model (Denisenko-Nehrbass et al., 2000; Olson
et al., 2011; Roeske et al., 2014; Wohlgemuth et al., 2014). Even though direct evidence of synergies
between FoxP2 and RA signaling is still lacking beyond cell models, the hypothesis that they are
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parts of the same regulatory network (e.g. Benítez-Burraco and
Boeckx, 2014; van Rhijn and Vernes, 2015) would fit well with
a number of findings, some of which we will address in the
following commentary.

STRIATAL DEVELOPMENT: DO FoxP2 AND
RA CONVERGE ON SPECIFIC CELL
TYPES?

The canonical cortico-basal-ganglia-thalamic motor circuit
is thought to be crucial for the motor aspects of vocal
production. Interestingly, in this canonical circuit FoxP2
(refers to the gene across vertebrate species) and RA receptor
expression overlap in several regions (Figures 1A,B). An
especially illustrative region in this regard is the striatum, a
hub of the motor circuitry that is known to be involved in
motor sequencing in mammals (Kravitz and Kreitzer, 2012;
Friend and Kravitz, 2014) and also in vocal production learning
in songbirds (Bolhuis et al., 2010; Scharff and Petri, 2011).
Available data indicates both FoxP2 expression and RA in the
development and function of the striatum (van Rhijn and Vernes,
2015).

In the developing rodent striatum, two layers of progenitor
cells in the ventricular and subventricular zone (SVZ) generate
the medium spiny neurons (MSNs), the main cell type of the
striatum (Figure 1B). Early during striatal development, a mixed
population of progenitor cells in the SVZ starts producing RA,
concomitant with the start of FoxP2 and RARß expression in the
same region (Li et al., 2000; Ferland et al., 2003; Molotkova et al.,
2007; Liao et al., 2008; Garcia-Calero et al., 2015). In general, RA
signaling is involved very early in the spatial patterning of the

FIGURE 1 | Canonical cortico-basal-ganglia-thalamic circuit of the motor system (A) Sagittal view of the mouse motor system with excitatory (black) and

inhibitory projections (red) connections. (B) Functional model (based on Morita 2014) of the motor sequencing circuitry with FoxP2 and RARb expression. IT,

Intratelencephalic neurons of the cortical layer V; PT, Pyramidal tract “motor neurons” of layer Vb; Drd1/Drd2, Striatal dopamine-receptor 1/2 expressing MSNs; GPe,

Globus Pallidus External; STN, Subthalamic nucleus; SNr, Substantia nigra, pars reticulata.

brain, starting with the formation of the telencephalic vesicle;
however the precise extent has been controversially discussed
(Siegenthaler et al., 2009; Chatzi et al., 2011, 2013; Duester, 2013).
More importantly for motor circuit development, RA signaling
is involved in the patterning of the striatum and striatonigral
projections (Rataj-Baniowska et al., 2015) as well as migration of
interneurons from the Ganglionic Eminences (that also produce
MSNs) to the cortex (Crandall et al., 2011).

Within striatal MSNs, mouse studies imply an interesting
convergence of FoxP2 and RA signaling onto a single cell
population, namely D1R-MSNs (“direct pathway” neurons) of
the dorsolateral striatum (Figure 1B). In mice lacking RARß,
the progenitor population prematurely differentiates, specifically
reducing the final cell numbers of D1R-MSNs (Rataj-Baniowska
et al., 2015). Interestingly, RARβ was also one of the key RA
receptors found to be affected in the human neuroblastoma cell
study of Devanna et al. (2014). In mice lacking RARß, levels of
the D1R-linked signal transduction protein Darpp-32 are greatly
reduced (Liao et al., 2008). This is of interest not only because
D1R-MSNs preferentially express FoxP2, but also because FoxP2
mutant mouse embryos likewise show strongly reduced Darpp-
32 expression levels (Vernes et al., 2011, see supplementary
material). One may therefore hypothesize that FoxP2 and
RA signaling pathways converge in the development of the
D1R-MSNs cell class in the dorsolateral striatum (Figure 1B),
impacting the motor circuit’s “direct pathway”.

If these hypotheses are applied to a computational model
of motor sequencing (Morita et al., 2012; Morita, 2014),
several possible consequences emerge. On the circuit-function
level, FoxP2 and RA disruptions would impair D1R-MSNs
function, and hence the “go” signal in motor control (Sippy
et al., 2015, Figure 1B). Furthermore, FoxP2 mutations may
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affect inhibitory feedback to the striatum via a functionally
defined population projecting from the Globus Pallidus Externa
back to the striatum (Abdi et al., 2015; Dodson et al., 2015;
Mallet et al., 2016), leading to additional defects in the “stop”
motor control. Interestingly, a recent study found Foxp2 to
regulate the development of the projection patterns of thalamic
nuclei, another key integrative part of the motor circuitry
(Ebisu et al., 2016).

DOWNSTREAM BEHAVIORAL EFFECTS:
DO SIMILAR PHENOTYPES IMPLY
CONVERGENT MECHANISMS?

In mice, Foxp2 loss impairs vocalizations after birth (e.g.
Castellucci et al., 2016; Chen et al., 2016). However, mouse
vocalizations are thought to lack a learning component, a key
factor in human speech (see French and Fisher, 2014 for a
review). In male zebra finches, a vocalization learning model,
FoxP2 is expressed throughout the song system (Haesler et al.,
2004, 2007; Scharff and Petri, 2011; Mendoza et al., 2015).
Expression is especially high in the song-learning related area
X of the striatum at the time when songs are acquired (Haesler
et al., 2004; Thompson et al., 2013), and FoxP2 knockdown
during this period disrupts social modulation of song variability
(Murugan et al., 2013). Similar to the mouse striatal network,
FoxP2 knockdown in the juvenile zebra finch leads to specific
reductions of D1R and Darpp-32 expression in the dorsolateral
striatum, specifically in area X (Denisenko-Nehrbass et al., 2000;
Haesler et al., 2004, 2007; Olson et al., 2011; Murugan et al.,

2013; Roeske et al., 2014). It should be noted that in the
songbird striatum, D1R and D2R expression in MSNs overlap
to a greater degree than in the mouse (Kubikova et al., 2010).
Furthermore, striatal RA signaling plays an important role in the
maintenance of birdsong: RA-producing enzymes are located in
projection axons to area X, where the MSN-like neurons in turn
express RA receptors. Functionally, RA may be important for
balancing the input to area X neurons from vocal motor pathway
(stereotyped song) versus anterior forebrain pathway (variable
song) vocalization centers (Roeske et al., 2014; Wohlgemuth
et al., 2014).

FoxP2 AND RA: SYNERGY IN A LARGER
REGULATORY NETWORK FOR NEURONAL
CONNECTIVITY?

On the molecular level, the gene networks regulated by FoxP2
and RA signaling might overlap in specific parts of the motor
circuitry. It is important to separate developmental effects from
on-line functional effects: Developmental defects might lead to
an impaired network setup (e.g. a smaller and miswired MSN
population), while functional effects might impair the learning
and function even of healthy networks (e.g. failure to balance
synaptic inputs to MSNs). Furthermore, it should be noted that
both FoxP2 and RA are broad regulators of large gene networks,
also outside the motor circuitry.

In this context, a recent study is of particular interest: Chen
et al. (2016) found that Foxp2 loss was associated with defects in
dendritic spine formation in striatal neurons via de-repression of
the autism risk gene Mef2C, leading to defects in corticostriatal
connectivity. Research in a different murine cell model suggests
that RA treatment indirectly interacts with Mef2C to specify a
neuronal fate, via the transcription factor Sp1 (Elmi et al., 2007).
It would therefore be highly interesting to see whether Foxp2, RA,
Mef2C, and Sp1 are all part of the same regulatory network and
influence the development of MSN connectivity.

Thus, with their finding of synergies between FOXP2 and RA
in a cell model Devanna et al. (2014) made an important first
step. Other studies provide indirect evidence that FoxP2 and RA
signaling genes could be part of the same regulatory network
and co-influence development and function of the speech-motor
control circuits, especially the striatum. However, a direct proof
beyond cell models is still lacking. Hence future studies in
adequate animal models will have to confirm this synergy on
the neuronal circuit level, also considering the more extensive
regulatory molecular network affecting the development and
functioning of speech-motor control circuits.
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