date: 2017-02-20T08:02:16Z pdf:PDFVersion: 1.5 pdf:docinfo:title: Modulation of GLO1 Expression Affects Malignant Properties of Cells xmp:CreatorTool: LaTeX with hyperref package access_permission:can_print_degraded: true subject: The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. dc:format: application/pdf; version=1.5 pdf:docinfo:creator_tool: LaTeX with hyperref package access_permission:fill_in_form: true pdf:encrypted: false dc:title: Modulation of GLO1 Expression Affects Malignant Properties of Cells modified: 2017-02-20T08:02:16Z cp:subject: The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. pdf:docinfo:subject: The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. pdf:docinfo:creator: Antje Hutschenreuther, Marina Bigl, Nasr Y. A. Hemdan, Tewodros Debebe, Frank Gaunitz and Gerd Birkenmeier PTEX.Fullbanner: This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014/W32TeX) kpathsea version 6.2.0 meta:author: Antje Hutschenreuther, Marina Bigl, Nasr Y. A. Hemdan, Tewodros Debebe, Frank Gaunitz and Gerd Birkenmeier trapped: False meta:creation-date: 2016-12-19T06:38:53Z created: 2016-12-19T06:38:53Z access_permission:extract_for_accessibility: true Creation-Date: 2016-12-19T06:38:53Z Author: Antje Hutschenreuther, Marina Bigl, Nasr Y. A. Hemdan, Tewodros Debebe, Frank Gaunitz and Gerd Birkenmeier producer: pdfTeX-1.40.15 pdf:docinfo:producer: pdfTeX-1.40.15 pdf:unmappedUnicodeCharsPerPage: 0 dc:description: The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. Keywords: glyoxalase 1; MCF-7 cells; HEK 293 cell; aerobic glycolysis; malignant transformation; methylglyoxal access_permission:modify_annotations: true dc:creator: Antje Hutschenreuther, Marina Bigl, Nasr Y. A. Hemdan, Tewodros Debebe, Frank Gaunitz and Gerd Birkenmeier description: The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. dcterms:created: 2016-12-19T06:38:53Z Last-Modified: 2017-02-20T08:02:16Z dcterms:modified: 2017-02-20T08:02:16Z title: Modulation of GLO1 Expression Affects Malignant Properties of Cells xmpMM:DocumentID: uuid:efa05770-5178-468b-ac43-ca586e0a12db Last-Save-Date: 2017-02-20T08:02:16Z pdf:docinfo:keywords: glyoxalase 1; MCF-7 cells; HEK 293 cell; aerobic glycolysis; malignant transformation; methylglyoxal pdf:docinfo:modified: 2017-02-20T08:02:16Z meta:save-date: 2017-02-20T08:02:16Z pdf:docinfo:custom:PTEX.Fullbanner: This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014/W32TeX) kpathsea version 6.2.0 Content-Type: application/pdf X-Parsed-By: org.apache.tika.parser.DefaultParser creator: Antje Hutschenreuther, Marina Bigl, Nasr Y. A. Hemdan, Tewodros Debebe, Frank Gaunitz and Gerd Birkenmeier dc:subject: glyoxalase 1; MCF-7 cells; HEK 293 cell; aerobic glycolysis; malignant transformation; methylglyoxal access_permission:assemble_document: true xmpTPg:NPages: 16 pdf:charsPerPage: 3205 access_permission:extract_content: true access_permission:can_print: true pdf:docinfo:trapped: False meta:keyword: glyoxalase 1; MCF-7 cells; HEK 293 cell; aerobic glycolysis; malignant transformation; methylglyoxal access_permission:can_modify: true pdf:docinfo:created: 2016-12-19T06:38:53Z