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ABSTRACT To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach
to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly.
Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map
anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a
gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin
and target of a transposition. Using ultra-low-coverage (0.33) population sequence data from 488 recombinant inbred Arabidopsis
thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many
structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain
reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection
by the fungus Albugo laibachii, isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies
differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within
structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural
variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-
coverage, and is particularly suited to mapping transpositions.

KEYWORDS structural variation; Arabidopsis; quantitative trait locus; heritability; low-coverage sequencing

WHILE genome resequencing can readily determine var-
iations such as Single Nucleotide Polymorphisms

(SNPs) and small indels, it remains challenging to identify
structural variants (SVs) and rearrangements, despite im-
provement in algorithms for calling SVs. The current gold
standard for determining SVs between individuals is by de
novo assembly (Simpson and Pop 2015). This requires

high-coverage paired-end sequence over a range of insert
sizes, together with long-range information such as from
long-read technologies (Chaisson and Tesler 2012; Jain
et al. 2015) for scaffolding. The high cost and low throughput
of de novo assembly limit its use, and leaves open two impor-
tant questions. First, whether an SV is identified in an indi-
vidual frequently enough to contribute to phenotypic
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heritability in a population. Second, whether an SV repre-
sents a local rearrangement, such as a deletion, inversion or
tandem copy-number variant (CNV), or is long-range, such as
a transposition (Cao et al. 2011; Mills et al. 2011).

SVs are frequently revealed by the anomalous alignment of
short-reads to the reference genome. Specific anomaly signa-
tures characterize different types of SVs (Table 1). Thus,
same-strand pairs indicate inversion, high read coverage du-
plications, abnormal insert sizes, and unpaired reads indels
(Figure 1). These anomalies arise, often in combination, be-
cause the reads have been aligned to the wrong genome—the
anomalies disappear if instead the reads are aligned to the
true genome. This idea is used by algorithms such as GATK
(McKenna et al. 2010) and Platypus (Rimmer et al. 2014)
that identify small indels by local realignment, and in
whole-genome reassembly by iterative realignment (Gan
et al. 2011).

Many SV-calling algorithms utilize read-anomaly signa-
tures to identify SVs segregating in individuals sequenced at
high coverage (Chen et al. 2009; Manske and Kwiatkowski
2009; Ye et al. 2009; Simpson et al. 2010; Rausch et al. 2012;
Sindi et al. 2012; Layer et al. 2014; Kronenberg et al. 2015).
They focus on short-range SVs because of the difficulties in
distinguishing long-range rearrangements from read mapping
errors. They also work best when calling SVs in individuals
sequenced at intermediate to high coverage; for example,
LUMPY (Layer et al. 2014) and WHAM (Kronenberg et al.
2015) are most sensitive at coverage.103. In other applica-
tions, e.g., cancer resequencing, typical coverage is even
higher, at 303 or above.

Further challenges arise when calling SVs in large samples
of population sequence data, for the purpose of testing genetic
association. Population sequencing provides an alternative to
genotyping by SNP arrays, simultaneously providing both
haplotype reference panels for imputation (Durbin et al.
2010), and cohorts for disease mapping (Cai et al. 2015;
Nicod et al. 2016). As the sample size increases, the coverage
of each individual may be reduced without affecting imputa-
tion accuracy (Davies et al. 2016). Although the information
present in each sample is then sparse, and therefore it would
be difficult to call SVs (and even SNPs) on an individual basis,
by pooling information across samples it might be possible to
determine common SVs analogously to the way SNPs are
imputed.

In addition to simple indels, inversions, and transpositions,
where a segment with well-defined breakpoints is af-
fected, many SVs are composites of multiple events (Yalcin
et al. 2011), often driven by transposons and other mobile

elements. These complex SVs resist simple classification, and
the precise sequence of mutations that occurred may be un-
recoverable. While current algorithms for calling SVs in sim-
ulated high-coverage human data can identify simple SVs
with sensitivities of �90% depending on the type of SV
(Kronenberg et al. 2015), they are less accurate when applied
to real data, and their performance on complex SVs is
unreported.

Despite this, there may still be strong evidence from read-
mapping anomalies that an SV of some sort segregates at a
locus. Furthermore, if the intensity of its anomaly signature
can be used as a proxy for the purposes of testing genetic
association, then one need not call the SV precisely. It then
follows that information encoded by these anomalies across
the genome could be used to compute relationships between
individuals based on their structural profiles alone, and hence
to estimate the heritability attributable to structural variation
directly.

Here, we show how low-coverage population sequencing
provides new ways for mapping SVs and estimating herita-
bility, complementing the sequencing of fewer individuals at
high coverage. As an illustration, we investigate the architec-
ture and phenotypic impact of structural variation in Arabi-
dopsis thaliana. Among natural accessions of Arabidopsis,
structural variation is plentiful (Cao et al. 2011). The extent
of rDNA repeats (Hu et al. 2011) and mobile transposable
elements (Quadrana et al. 2016) vary between accessions,
and variation in the overall amounts of both classes of re-
petitive sequence elements are complex traits, partially under
genetic control. In this study we investigate all types of struc-
tural variation in Arabidopsis, including those not mediated
by mobile elements. We show that long-range transpositions
are common, and that structural variation has a significant
impact on particular quantitative trait loci (QTL) and on trait
heritability, distinct from that explained by other types of se-
quence variation.

Materials and Methods

DNA extraction and sequencing

Multiparent Advanced Generation Inter-Cross (MAGIC) lines
were grown at Bath (laboratory of P.K.) orOxford (laboratory
of N.P.H.) in greenhouses or growth chambers, respectively.
Leaves were harvested for DNA extraction. DNA isolation was
performed at the John Innes Centre, in 96-well plates using
theDNeasy96PlantKit andDNeasy96Protocol (http://www.
quiagen.com). Sequencing was performed by the Oxford Ge-
nomics Centre.

Genomic DNA library construction and multiplexing

Samples were quantified using the Quant-iT PicoGreen
dsDNA Kits (Invitrogen, Carslbad, CA) and a Genios plate
scanner (Tecan, Männedorf, Switzerland) according to man-
ufacturer specifications. Sample integrity was assessed using
1% agarose gel. DNA (�300 ng) was fragmented using a
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Covaris S2 system with the following settings: Intensity: 5,
Duty Cycle: 20, Cycles per Burst: 200, Time: 60 sec. Distri-
bution of fragments after shearing was determined using a
Tapestation D1200 system (Agilent/Lab901, Santa Clara,
CA). DNA Libraries were constructed using the NEBNext
DNA Sample PrepMaster Mix Set 1 Kit (New England Biolabs,
Beverly, MA), with minor modifications, and a custom auto-
mated protocol on a Biomek FX (Beckman, Fullerton, CA).
Ligation of adapters was performed using Illumina Adapters
(Multiplexing Sample Preparation Oligonucleotide Kit). Li-
gated libraries were size selected using Ampure magnetic
beads (Agencourt, Beckman, Fullerton, CA). Each library
was PCR enriched with 25 mM each of the following custom
primers:

Multiplex PCR primer 1.0

59-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCT-39

Index primer

59-CAAGCAGAAGACGGCATACGAGAT[INDEX]CAGTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCT-39

Indexes used were 8 bp long. Enrichment and adapter
extension of each preparation was obtained using 5 ml of
size-selected library in a 50 ml PCR reaction. After 10 cycles
of amplification (cycling conditions as per Illumina recom-
mendations), the reactions were purified with Ampure beads
(Agencourt/Beckman). The final size distribution was deter-
mined using a Tapestation 1DK system (Agilent/Lab901).
The concentrations used to generate the multiplex pool
were determined by Picogreen. The library resulting from
the pooling was quantified using the Agilent qPCR Library
Quantification Kit and a MX3005P instrument (Agilent)

before sequencing on an Illumina GAIIx as 50 or 100 bp
paired-end reads. All steps for library construction, including
the setup of the PCR reaction were performed on a Biomek FX
(Beckman). Post PCR cleanup was carried out on a Biomek
NXp (Beckman) whereas a Biomek 3000 (Beckman) was
used to generate the pools of 96 indexed libraries.

Processing sequence reads and SNP calling

The Illumina reads were mapped to the A. thaliana reference
(TAIR10) using Stampy v1.0.20 (Li and Durbin 2010; Lunter
and Goodson 2011). Alignments were stored in a separate
BAM file for each MAGIC line. Previous sequencing for the
18 MAGIC line progenitors had produced a catalog of
3,316,270 segregating SNPs (Gan et al. 2011). We ran GATK
v2.6 (McKenna et al. 2010) on the segregating SNPs to call
variants for the 19 founders, setting the following read filters:
Allele Balance, BaseQualityRankSumTest, ClippingRankSumTest,
Coverage, DepthPerAlleleBySample, FisherStrand, GCContent,
HaplotypeScore, LowMQ, MappingQualityRankSumTest,
MappingQualityZero, MappingQualityZeroBySample,
RMSMappingQuality, and ReadPosRankSumTest. We fil-
tered out SNPs that were triallelic, within annotated trans-
posons, or heterozygous for any founders.

Definition of structural variant traits

We divided the TAIR10 reference genome into 11,915 abut-
ting 10 kb segments. Within each segment, we computed
six measures of anomalously mapped reads that are signa-
tures of SVs. Let R be the set of all reads mapped to a
genome of length L;r is the number of reads in R; and rl
the number of reads mapped to a segment l of length
10 kb. The read anomaly measures computed in each seg-
ment are:

1. High read coverage: rhc ¼ rl 2 1:5E½rl�; where
E½rl� ¼ ðr3 lÞ=L is the expected read coverage of the
segment

2. Unpaired reads: ru number of reads mapping to the seg-
ment whose pair is not mapped

3. Pairs on the same strand: rs number of reads with pair on
the same strand

4. Reads with large insert size: ris number of read pairs with
insert size outside the rangems6IQRs, ormapped to different
chromosomes,ms; IQRs being the median and interquartile
range of insert sizes of all the reads in the sample.

5. Unpaired reads or with large insert size: rui ¼ ru þ ri
6. Improperly paired reads: ruis ¼ ru þ ri þ rs

The last two traits are combination of others—certain SV
types can cause multiple anomaly signatures, so merging
them may increase power. Each type of read pair anomaly
was measured in each of the 11,915 10 kb segments, deter-
mining 71,490 traits in total.

Genome scans

We treated the SV traits like a gene expression eQTL study,
performing a genome scan for each one. Association was

Table 1 MAGIC SV-QTL classified by read pair anomaly type and
QTL type, after removing duplicates

SV-QTL Unique Cis Trans

Trait type
IP 1,997 833 1617 380
ER 184 165 112 72
LIS 2,051 585 1677 374
SS 1,950 1887 1358 592
U 2,060 1998 1530 530
U+LIS 2,033 431 1661 372
Total 10,275 5899 7955 2320

SV type
Duplication 175 109 66
Indel 3,035 3035 0
Inversion 1,976 1373 603
Other 1,316 381 935
Total 6,502 4898 1604

SV-QTL: total number of QTL detected using each anomaly type. If the same QTL is
detected by multiple anomalies then it is counted multiple times in this column).
Unique: number of QTL detected after counting duplicates only once. cis: number
of cis SV-QTL (source and sink within 2 Mb from each other), trans: number of trans
SV-QTLS. Note that the total number of SV-QTL is 10,275, of which 6502 are
distinct after removing overlapping events, and 5899 unique to a single anomaly
type. IP, improperly paired; ER, excess reads; LIS, large insert size; SS, same strand;
U, unmapped; U_LIS, unmapped or large insert size.
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tested by fitting SV trait vectors to the imputed ancestral
haplotype at each locus in the 488 genome mosaics. In
combination, the mosaics partitioned the genome into
16,700 haplotype blocks, with the ancestral haplotype of all
lines unchanged in each one. Let yAi be the number of anom-
alous reads of a certain type at source segment A in line i: At
every haplotype block p we fitted the linear model:

yΑi ¼ mA þ
X
s2S

XpiðsÞbApðsÞ þ ei

mA is the average trait value at A; XpiðsÞ is a binary indicator of
whether line i carries haplotype s at p; bApðsÞ is the effect of
founder haplotype s and ei the error. Founder effects bApðsÞ
were estimated by ANOVA to test the null hypothesis of no
SV-QTL:H0ðpÞ : bApðsÞ ¼ 0 "s; returning the P-value pAp for
each block p: Let lA ¼ maxp½2log10ðpApÞ� be the genome
wide maximum logP for the scan.

To determine genome-wide statistical significance, con-
trolling for the number of tests and for associations driven by
outliers or any non-normality in the SV-traits, we performed
100 permutations TA of each trait vector yΑi, and repeated the
genome scan for each one. The distribution of the 100 ge-
nome-wide maxima of each of the permutations was used to
determine the significance of the observed logPs of the

original SV-trait. We fitted a parametric generalized extreme
value distribution to the permuted maxima (Dudbridge and
Koeleman 2004), using the EVD R package to estimate a
genome wide corrected logP:

gA ¼ 2 log

8<
:12 exp

"
1þ ŝA

 
lA2âA

b̂A

!2ð1=ŝAÞ#9=
;;

where âA; b̂A; and ŝA are the MLEs of aA; bA; and sA; respec-
tively. This procedure was performed separately for each
SV-trait. Study-wide SV-QTL were selected at FDR, 1022;

corresponding to gA , 1023:

Prediction of SV allele frequency

We predicted which founder haplotypes carried a given SV,
reasoning they have more anomalous reads compared to
those without the SV. For each SV-QTL the founders’ con-
tributions were arranged as a 193 19 table, Tij, containing
the read anomaly count (of a certain type) at the source
for all lines carrying haplotype i at the sink and haplotype
j at the source. A founder was classified as carrying the
SV if its corresponding row was generally higher than the
rest of the table (for cis SV-QTL, the matrix is almost
diagonal).

Figure 1 Effects of a transposition on
short-read mapping. Chromosomes are
horizontal bars and read pairs are pairs
of horizontal lines linked by curves. Up-
per panel: a population ancestor corre-
sponding to the reference genome (left)
undergoing a transposition (right), in
which a segment s at source locus L with
haplotype context a is copied to s9 at
recipient sink locus M with haplotype
context b: Lower panel: all four possible
combinations (A–D) of source L and sink
M haplotype in descendants. On left are
shown the alignment of reads to the
true haplotypes, where there are no
read-mapping anomalies. On right are
shown the read-mapping anomalies
that arise, depending on the true haplo-
type backgrounds at source and sink,
upon alignment to the reference genome.
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The contribution of founder i is defined as ri ¼
P

jtij: We
reordered the founders such that r1 . . . . . r19:We reasoned
that, if the SV is biallelic with k 2 f1 . . . 18g founders carrying
the SV, then

Pk
j¼1rj would be much larger than expected

compared to the null hypothesis of no SV, when
r1 � . . . � r19: The z-score for k is,

zk ¼
Pk

j¼1rj 2E½rk�
sðrkÞ

;

where E½rk� and sðrkÞ are estimated by 1000 permuta-
tions of T; denoted as Rzk: We choose k to maximize zk:
We declare k to be significant—and that there is a parti-
tioning of the founders into two groups at the SV—if ,1%
of permutations generate a value of zk exceeding that
observed.

Validation of SVs by paired-end data

We used high and low coverage paired-end reads from the
19 founders (Gan et al. 2011), and from the MAGIC lines,
respectively, to search for enrichment of read pairs linking the
source and sink. First, for the high-coverage analysis of the
founders, we restricted attention to the 2391 SV-QTL in
which we had predictedwhich founders carried the SV. Using
this partitioning, we used Fisher’s exact test to compare the
numbers of anomalous read pairs (with one read mapped to
the source and the other within a variably sized window of
W 2 f5; 20; 30; 40; 50; 100; 150; 200; and 400g kb from the
sink) in the founders predicted to carry the SV to the other
founders. Second, in the low coverage MAGIC data, we per-
formed the same test comparing the 100 lines with the high-
est read anomaly trait value to the rest of the population.

Validation by de novo contigs

We used BLAT (Kent 2002) to align 5,524,143 short de novo
assembly contigs (lengths 50–1000 bp) of the 18 nonrefer-
ence founders to TAIR10 to identify contigs split between the
source and sink (where disjoint pieces aligned to each), or
shared (where a common piece aligned to both). We ex-
cluded genomic regions with annotated repeats or transpo-
sons, and alignments that mapped to over five genomic loci.
We randomized the SV-QTL by circular genome permutation
(Cabrera et al. 2012) to determine whether such split
and shared contig alignments are overrepresented near
SV-QTL. For SV-QTL i; if uðiÞ; vðiÞ are the original position
of the source and sink, respectively, then a permuted
SV-QTL ukðiÞ; vkðiÞ is defined as uk ¼ ðuðiÞ þ ukÞ mod L;
vk ¼ ðvðiÞ þ ukÞ mod L; where uk � Unifð0; LÞ: We required
ukðiÞ; vkðiÞ to be on the same chromosome for cis
SV-QTL. We then computed one-sided permutation P-values
psplit;pshared:

Validation by PCR

Wedesigned PCR primers for 77 breakpoints from 44 SV-QTL
predicted from de novo contigs. We conducted 96 type I ex-
periments (one for each of the 77 breakpoints) that used

primers corresponding to remote or inverted sink loci, so
PCR should produce a product in only in SV genomes and
not in the reference. We also performed 19 type II control
experiments that should produce a PCR product in the refer-
ence, but not in SV genomes.

We designed 20–30 bp primer oligos based on the refer-
ence (TAIR10), using Primer3 (Rozen and Skaletsky 2000),
after masking out repeats, transposons, and known polymor-
phisms. SVs tend to be near such sequence features, so we
relaxed the default Primer3 criteria to detect oligos, and re-
quired: (i) Maximum allowed product 1.5 kb, (ii) Annealing
temperature 10–90�, (iii) GC-content 10–90%, and (iv) Self-
complementarity 8 bp. Primer specificity was tested by BLAT
(Kent 2002).

Association with physiological phenotypes

For each of the six read anomaly categories, we computed
Pearson correlations and corresponding P-values between
nine physiological phenotypes, and the 11,915 SV-traits.
We selected significant correlations with logP . 4 (so we
expect about one false positive result per scan). After filtering
correlations driven by outliers (i.e., in which removal of the
three most extreme samples reduced the correlation below
the significance threshold), we found 549 SV-traits associ-
ated with 40 phenotypes. Each physiological phenotype
had, on average, 1.56 associated SV traits of the same anom-
aly type.

The effect of SVs on each phenotype was measured by a
heritability-likemeasure, h2SV; estimated by linearmodels. Let
y be the vector of phenotypic values for a physiological phe-
notype with k correlated SV traits (of the same type):
X1; . . . ;Xk; represented by the matrix X: The phenotype is
modeled as:

y ¼ Xaþ e:

The k parameters a were estimated using the R function
glm(). We also computed the individual effect sizes of
SV-traits, by fitting simple linear regression models. We
mapped QTL for the phenotype residuals after regressing
all/each associated SV traits of the same type, and compared
them to the phenotype QTL.

Published phenotypes

Weused flowering time and rosette diameter data fromafield
experiment (Springate and Kover 2014), as well as pheno-
types described previously in Kover et al. (2009).

Phenotyping resistance

Three replicates of each MAGIC line were grown at the
University of Bath in 2.5-inch plastic pots. Plants were mon-
itored daily, and germination and bolting day recorded. After
plants senesced, the inflorescenceheight and the totalnumber
of branchesweremeasured. In a separate experiment,MAGIC
lineswere grown in growth chambers in P24 plastic trays ,and
sprayed with A. laibachii race Nc14 (Thines et al. 2009) when
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plants were 21 days old. Nc14 zoospores were suspended in
water at a concentration of 105 spores/ml and incubated on
ice for 30 min. The spore suspension was then sprayed on
plants using a spray gun, and plants were incubated in a
coldroom in the dark overnight. Infected plants were kept
in a growth chamber under 10-hr light and 14-hr dark cycles
with a 20� day and 16� night temperature (Kemen et al.
2011). Resistance was defined as absence of pustules on
the leaves at 7 days after inoculation. To minimize errors
in scoring, resistant plants were monitored up to 14 days
after inoculation. The experiment was reproduced twice.

Collection of RNA

We obtained seeds of MAGIC lines from the Nottingham Arab-
idopsis Stock Centre (NASC) and grew 209 lines at 20� in
Percival environmental chambers (Perry, IA), in the laboratory
of R.M.C., Salt Lake City. We prepared total RNA from pools of
20 aerial rosettes from seedlings at the fourth true leaf stage
(Gan et al. 2011). RNAseq library construction and sequencing
was performed at theOxfordGenomics Centre (Oxford, UK) to
produce 2 3 100 bp reads using the Illumina nonstrand spe-
cific method. Per Illumina HiSeq lane, samples were barcoded
and run in 13-plexes to give �14 million reads per sample.

Alignment of RNAseq reads and
expression quantification

All libraries were aligned to the TAIR10 reference gene set
augmented by any novel genes reported in Gan et al. (2011)
using PALMapper v0.6 (Jean et al. 2010), following a varia-
tion-aware alignment approach. Genome variants collected
from the 19 founder strains, as well as variants reported for a
diverse natural population (Long et al. 2013) were integrated
and provided to the aligner as known variants to prevent
reference biases in RNAseq read mapping (Gan et al.
2011). To facilitate accurate alignments, we provided splice
junctions in the founder strains (Gan et al. 2011) and from
the TAIR10 genome annotation. The full alignment parame-
ter set for PALMapper was: -M 3 -G 0 -E 3 -l 12 -L 14 -K 12 -C
14 -I 5000 -NI 1 -SA 5 -UA 50 -CT 50 -JA 15 -JI 1 -z 10 -S -seed-
hit-truncate-threshold 100 -report-map-read -report-spliced-
read -report-map-region -report-splice-sites 0.9 -filter-max-
mismatches 0 -filter-max-gaps 0 -filter-splice-region 5 -min-
spliced-segment-len 1 -qpalma-use-map-max-len 10 -f bam
-qpalma-prb-offset-fix -junction-remapping ,junction_file.
-score-annotated-splice-sites,junction_file. -max-dp-deletions
2 -use-variants-editop-filter -use-variants ,variant_file. -filter-
variants-minuse 1 -merge-variant-source-ids -use-iupac-snp-
variants -filter-variants-map-window 20 -iupac-genome
-filter-variants-maxlen 100 -index-precache

Gene expression quantification

We used a custom python script that counted the number
of reads overlapping with at least one exonic position of
an annotated gene feature. For each read, only the best
alignment was considered for counting, and we excluded
alignments if the alignment (i) overlapped an annotated

intron, (ii) was entirely in a region where two or more
annotated genes overlap, or (iii) did not start at a position
inside an exon in all annotated isoforms. For each gene
feature, the number of reads passing these filters was used
as the expression count.

Effects of SVs on gene expression

Weconsidered only SVswith accurate breakpoints (see section
Validation by de novo contigs). A total of 119 TAIR10 genes
spanned SV breakpoints (i.e., were disrupted by SVs), and
6909 were inside them (transposed, inverted, or duplicated).
Genes were divided into three categories: disrupted by break-
points, within SV-regions, and outside SVs, and comparedwith
respect to mean and variance using t-tests. We also computed
the correlation of these genes with their local read anomaly
values (for the six read anomaly types), i.e., with the 10 kb
source region that contains the gene, and compared the mean
and variance (by a t-test and an F-test, respectively) of the
Pearson correlation coefficients across categories.

Heritability

We computed genetic relationship matrices K between
MAGIC lines three ways:

Identity by descent (haplotype-based) KH: Each MAGIC
chromosome is a mosaic of the 19 founders, which we used
to determine identity by descent (IBD). AcrossNMAGIC lines,
we identified the union of all mosaic breakpoints, and then
segmented the genome of each MAGIC line according to
these breakpoints. Thus, by construction, the founder haplo-
type for each line is constant within each segment. The foun-
der haplotype in segment L in line i is represented by an
indicator matrix HiLf ; which is 1 if the founder is f and 0
otherwise. Then fijL ¼

P
fHiLfHjLf indicates whether lines

i; j are IBD at L; and ifwLis the fraction of the genome covered
by L; then the fraction of the genome IBD for lines i; j is

dij ¼
X

L
wL fijL:

This matrix is then standardized to take the form of a genetic
relationship matrix. Let PL be the probability that, given the
observed population-wide founder haplotype fractions at L;
two randomly sampled lines are IBD, i.e.,

PL ¼
2
P

i, j fijL
NðN21Þ :

Define Eij ¼
P

LwLð fijL 2 PLÞ; s2
i ¼ Eii; and hence standardize

the IBD matrix KH as

KHij ¼
P

LwL fijL
sisj

;

which has main diagonal 1, and off diagonal elements in the
range ½21; 1�: Note that, in a small fraction of cases, dij ¼ 0;
and the corresponding values of KHij all take the
same minimum (the horizontal line of points in Figure 8C).
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Identity by state (SNP-based) KS: SNPs were imputed in the
MAGIC lines by using the haplotype mosaics and the filtered
set of M ¼ 1:2 million SNP variants in the 19 founders. If
Sip 2 f0; 1g encodes the homozygous SNP genotype in indi-
vidual i and SNP p; and, if pp is the allele frequency at p; then
the normalized genotype is

Tip ¼
Sip 2ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mpp
�
12pp

�q ;

since the MAGIC lines are almost fully inbred the normaliza-
tion differs slightly from an outbred population under Hardy-
Weinberg equilibrium. The SNP-based GRM is the positive
semi-definite matrix KSNP; with elements KSNPij ¼

P
pTipTjp;

or KSNP ¼ TT9.

Read Anomalies KSV: We constructed read-anomaly GRMs
by analogy to SNP-based GRMs. Let XiLbe the read anomaly
trait for individual i at locus L: Let aL ¼

P
iXiL=N and

t2L ¼PiX
2
iL=N2a2

i be the sample means and variances. De-
fine the standardized trait matrix W with elements

WiL ¼ ðXiL 2aLÞ
tL

ffiffiffiffiffi
M

p ;

where M is the number of loci. The relationship between in-
dividuals i; j is KSVij ¼

P
LWiLWjL; i.e., KSV ¼ WW9. We com-

puted a matrix for each of the six measures of read anomaly.
The choice of contributing loci was varied as described in the
Results. In addition, we ignored loci with no anomaly variation,
or where only a small fraction (,3%) of individuals varied.

For a phenotype y measured in the MAGIC lines, and
a given K matrix, the variance matrix is represented
by the mixed model Vðs2

g;s
2
eÞ ¼ Ks2

g þ Is2
e ; where I is

the identity matrix, and s2
g ;s

2
e are the genetic and

environmental components of variance and the pheno-
typic heritability is h2 ¼ s2

g=ðs2
g þ s2

eÞ: We estimated heri-
tability by minimizing the negative log-likelihood
22logLðs2

g ;s
2
e Þ ¼ yTVðs2

g ;s
2
e Þ21y þ log

��Vðs2
g ;s

2
e Þ
��with re-

spect to s2
g ;s

2
e ; using purpose-written R code based on the

eigen-decomposition in (Kang et al. 2008a).

Data availability

Source codes and supporting data are available from http://
mtweb.cs.ucl.ac.uk/mus/www/19genomes/magic.html.
MAGIC Genomic short read sequence data are available from
ENA under study accession PRJEB19252. MAGIC RNAseq
data are available fromGEO under series number GSE94107.

Results

Structural variants as quantitative traits

We combined ideas from signature-based SV identification
and quantitative genetics to analyze structural variation in a
population. The following scenario motivates our reasoning:

suppose an SV arose in a certain population ancestor,a, trans-
posing a genomic segment, s, originating at a “source” locus,
L, and targeting to a “sink” locus, M. Source and sink can be
coincident or unlinked, but, for the moment, suppose they
are unlinked. If the event is transposon-mediated, then the
segment s is duplicated to s9 at M, and possibly altered, leav-
ing the original s at L. Among the descendent population,
random chromosomal assortment and recombination en-
sures there will be a mix of individuals carrying the segment
at neither, one, or both loci.

Among the descendants, one individual is sequenced,
and chosen as the reference genome. Depending on the
choice of reference individual, and the mechanism of trans-
position, the reference might carry zero or one copies of s at
the source, and of s9 at the sink. Assume the reference has
one copy of s, and zero copies of s9. In a population sample,
only individuals that inherited the haplotype descended
from a at the sink carry the transposed segment, regardless
of their haplotype at the source. The sample is sequenced
with short-reads, and the reads are mapped to the refer-
ence genome. Individuals carrying the transposition s9 at
the sink will have reads spanning the breakpoint that split
between source and sink. Hence, read mapping anomalies
apparently originating at the source will be enriched in
those individuals carrying the sink haplotype a; genotypes
that tag a at the sink will be associated with anomalies at
the source.

If, on the other hand, the reference contains both s at the
source and s9 at the sink, then those individuals that did not
inherit the haplotype a at the sink will appear to carry a de-
letion there. Reads with anomalously large insert sizes will
map to the sink, and will be associated with genotypes tag-
ging the haplotype a at the sink—the generative role played
by the source will be invisible.

Similarly, by considering other situations—for example,
tandem duplications—where the source and sink are co-
incident in a population, we would expect to encounter a
mix of short-range cis and long-range trans associations
between various classes of read-mapping anomalies and
genotypes, depending on the history of each structural
variant.

To apply these ideas in practice, we count the numbers of
anomalous reads mapping to each source L in a population
sample, treat it as a quantitative trait, and identify genetic
loci whose genotypes correlate with variation in the SV-trait.
This defines an SV-QTL associating TLi; the number of anom-
alous reads mapping to locus L in individual i, and the hap-
lotype HMi at sink locus M in individual i (Figure 1 and
Materials and Methods). cis SV-QTL are where the source
and sink overlap and indicate local structural variants such
as CNVs, deletions and inversions; trans SV-QTL indicate
transpositions (insertional translocations) or larger scale re-
arrangements. In this way, we may determine whether an SV
is in trans, its originating haplotype, which individuals now
carry it (SupplementalMaterial, Figure S1), and its frequency
(Figure S2).
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Structural variation in Arabidopsis

Weused our strategy tomapSVs in the120 Mbgenomeof the
plant A. thaliana. We sequenced 488 of the Arabidopsis
MAGIC recombinant inbred lines (Kover et al. 2009) at
�0.33 coverage using 51 bp paired-end Illumina reads.
The MAGIC lines descend from 19 ancestral founder acces-
sions that have been previously sequenced at high coverage
(Gan et al. 2011) (Table S1), such that each MAGIC chromo-
some is a mosaic of the 19 founder haplotypes. Consequently,
we expect most SVs segregating in MAGIC to also segregate
in the founders, thereby providing a means of verifying any
SVs we detect. The choice of MAGIC lines rather than
natural accessions means that the confounding effects of
population structure, and of selection, are largely absent
from the population. Very rare alleles with frequency below
1/19 = 4.5% are uncommon, increasing the power to de-
tect QTL. However, MAGIC QTL mapping resolution is also
poorer, at �200 kb, compared to �10 kb in natural
accessions.

We mapped the reads to the TAIR10 reference using
Stampy (Li and Durbin 2010; Lunter and Goodson 2011),
and inferred the mosaic of each line using a hidden Markov
model (HMM) implemented in the software “reconstruction”
available from http://mtweb.cs.ucl.ac.uk/mus/www/
19genomes/magic.html. The algorithm uses as input SNP
calls for each MAGIC genome, and 1.2 M biallelic variants
segregating in the 19 founders (excluding loci tagged aswithin
transposons, and those sites called as heterozygous or multi-
allelic in the founders) (Gan et al. 2011), and finds the most
likely sequence of haplotype assignments for each chromo-
some. Because the lines were called at low coverage, most
SNP sites were not covered by reads in any given line; conse-
quently we called on average 301k SNPs per line (using GATK;
McKenna et al. 2010) (i.e., a randomly sampled of �25% of
the 1.2 M sites). However, these data are sufficient for the
HMM to determine the founder mosaic accurately; we esti-
mated by simulation that mosaic breakpoints (which corre-
spond to recombination events) were mapped to within
�2 kb (data not shown).

Using this procedure, we reconstructed each MAGIC ge-
nome into�34 haplotype blocks, on average, with mean size
3.48 Mb, representing contributions from �11 founder hap-
lotypes (Table S2). We imputed the full variant catalog into
each line. Comparison of imputed SNPswith 782 GoldenGate
SNP genotypes measured in 370 of the MAGIC lines (Kover
et al. 2009) showed 98% concordance.

Tomap SVs, we divided the reference genome into 11,915
abutting source loci, each 10 kb wide, and computed six
measures of anomalous read mapping in each locus
(6 3 11,915 = 71,490 SV trait vectors) (Materials and
Methods, Table 1). Four of these measures address different
types of anomalous read mapping, diagnostic of specific
anomalies, namely high read coverage for duplications,
strandedness of reads for inversions, anomalously large in-
sert size for translocations, and unpaired reads for deletions.

The remaining twomeasures are linear combinations of other
measures.

Genetic association between each of the SV-trait vectors
and the local haplotype space was determined using a one-
wayANOVA.We chose to determine association at the level of
haplotypes rather than SNPs for two reasons. First, the foun-
der haplotype space in the MAGIC lines is well-defined, and
measuring association with haplotypes can capture relation-
ships invisible at the levelofSNPs.Second, the setofhaplotype
tests—defined by the union of all the breakpoints across the
lines, comprising 16,700 haplotype blocks, such that the an-
cestral haplotype of all lines is unchanged within each
block—means �753 fewer tests are performed, thereby
speeding up the procedure (Materials and Methods). To de-
termine genome-wide significance thresholds for SV-QTL, we
performed 100 phenotype permutations for each trait, and
then fitted extreme value distributions (evd) to the genome-
wide maxima of the permutations (Dudbridge and Koeleman
2004) (Materials and Methods).

At this 1% FDR (evd P , 0.001), we mapped 10,275
SV-QTL in total. Table S3 shows mapped QTL per read anom-
aly category; 3773 SV-QTL had coincident sources and sinks,
probably corresponding to the same SV, and were merged,
leaving 6502 SV-QTL, tabulated in Table S4. Of these,
1604 (25%) were trans, defined as mapping .2 Mb from
the source. Overall, 4073/11,915 (34.2%) source loci har-
bored structural variants. While we have greater power to
detect larger SVs, 2379 overlapped annotated indels ,2 kb
(Gan et al. 2011).

The likelihood that a structural trait vector has an SV-QTL
increases with its variance (Figure 2). SV-QTL are enriched
around centromeres, as expected. Away from the centro-
meres, Figure 2 also shows that bins with variable SV traits
are isolated, rather than in clusters. Figure 3A shows the
genome-wide distribution of SV-QTL segregating in one
MAGIC founder, Ler-0. Figure 3 and Table S3 show that trans
SV-QTL link all five chromosomes.

In 319 SVs, we were able to pinpoint both breakpoints
exactly (see Validation)Mean SV size was 53 kb in these SVs,
and the largest was 189 kb. Thus, many of the SVs we dis-
covered are too large to be due to insertions of small trans-
posable elements. This probably reflects our lack of power to
detect very small events, but also emphasizes that not all SVs
are driven by mobile elements.

Validation

Genome-wide confirmation of SVs using short-read sequence
is challenging because SV breakpoints often associate with
transposons and repeats that hinder read-mapping and reas-
sembly. However, among our SV-QTL are several known
rearrangements. These include trans SV-QTL linking a cluster
of rDNA repeats at �14.2 Mb on chromosome 3, to clusters
at the ends of chromosome 2. Polymorphisms in these clus-
ters are implicated in massive genome size variations among
Arabidopsis accessions (Long et al. 2013; Rabanal et al.
2016). We also identified the known knob inversion on

1432 M. Imprialou et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192823/-/DC1/TableS1.docx
http://mtweb.cs.ucl.ac.uk/mus/www/19genomes/magic.html
http://mtweb.cs.ucl.ac.uk/mus/www/19genomes/magic.html
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192823/-/DC1/TableS2.txt
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192823/-/DC1/TableS3.xlsx
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192823/-/DC1/TableS4.txt
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192823/-/DC1/TableS3.xlsx


chromosome 4 as reciprocal transpositions linking 1.61 and
2.65 Mb (Fransz et al. 2000), and a 93 kb inverted trans-
position identified previously in a cross between Ler-0 and
Col-0 (Wijnker et al. 2013), and found it was present in
12 MAGIC founders.

To validate further SVs, we compared our SV calls for
the founder accession Ler-0 against two Ler-0 contigs
(chr3:16.65–17.02 Mb, chr5:25.06–25.23 Mb) that were
independently resequenced and manually reassembled (Lai

et al. 2011), thereby constituting a gold standard for compar-
ison. The chromosome 3 contig (Figure 4) is enriched in SVs
(83 indels, 31 . 100 bp), consistent with our analysis:
42 SV-QTL sources (36 cis and six trans) are in this region,
and four trans SV-QTL map into it. As would be expected, the
sources of these SV-QTL are within gaps in the contig. Fur-
thermore, alignment revealed two long-range SVs within the
contig (a transposition and a duplication that align to chro-
mosomes 4 and 2, respectively), which coincide with the

Figure 2 Genome-wide distribution of the variance for the trait “improperly paired reads,” computed in 10-kb windows. The x-axis shows genomic
position and the y-axis the variance of each trait vector scaled by its mean. Each vertical line corresponds to a window; those with SV-QTL are blue (cis)
and red (trans). The centromeres are marked by brown horizontal bars.

Structural Variation in Arabidopsis 1433



source and sink of two trans SV-QTL mapped within the con-
tig. Similarly, in the chromosome 5 contig, six cis SV-QTL
correspond to deletions (Figure S3).

We also analyzed an independent de novo assembly of
Ler-0 built from long PAC-BIO reads, GenBank accession
GCA_000835945.1 (Berlin et al. 2015) to validate our trans
SV predictions. This assembly was constructed algorithmi-
cally without manual revisions, and so is not guaranteed to
be correct. Further, the Ler-0 individual sequenced in the
PAC-BIO assembly was different from the individual that
founded the MAGIC population, and therefore might carry
private structural variations. Nonetheless, we expect it to
be more accurate and contiguous than a Ler-0 assembly
built from short Illumina reads alone. We took those
3080 Illumina paired-end reads for Ler-0 from Gan et al.
(2011) that carried large insert size mapping anomalies
when mapped to TAIR10, and that mapped to the sources
of our predicted Ler-0 trans SV-QTL, and then mapped
them to the PAC-BIO assembly using BWA (Li and Durbin
2010). These Illumina reads are from an individual grown
from the same batch of seeds used to found the MAGIC
population in �2007, and should therefore share the same
structural variants. Read anomalies with correct SV predic-
tions should map contiguously to the PAC-BIO assembly, if
the latter assembly accurately portrays the Ler-0 genome.
We found 2460 (80%) of these formerly split Illumina read
pairs now mapped contiguously, defined as both members
of a read-pair mapping to the PAC-BIO assembly with an
insert size below 600 bp.

With the exception of these manually assembled Ler-0
contigs, and the provisional Ler-0 PAC-BIO assembly, the
MAGIC founders are not contiguously reassembled into a
genome-wide gold standard reference panel. Nevertheless,
they provide information to test our predictions: at each
SV-QTL, we predicted which founder haplotypes carried SVs
at the origination of the population, under the assumption
the SV was biallelic. Using the low coverage data for the
488 MAGIC lines, at each SV-QTL, we then predicted which
founders carried the SV allele, based on correspondence
between their SV-trait value and predicted founder allele,
using the fact that SV haplotypes have elevated anomalous
reads. We did this confidently at 2391 SVs where the foun-
ders partitioned into two groups, the remainder having
complex multi-allelic SV predictions (Materials and Meth-
ods). Examples of founder partitions for cis and trans
SV-QTL are shown in Figure S1.

We then examined the independently collected high-
coverage reads in each of the 19 MAGIC founders (Gan
et al. 2011) for read-mapping signatures that supported the
predicted grouping of founders at each SV. We counted the
read pairs linking source and sink at each of the 2391 SVs in
the 19 high coverage founders. At 1585/2391 (66.3%, FDR
7.5%) SVs, we observed significant differences in anomalies
between the predicted groupings of founders (Figure S4,
which also shows that the majority of SVs were mapped
within 50 kb). In the founders, the mean SV allele frequency
was 6/19 = 31%. Only 387 (12%) were private to a single
founder (Figure S2), in contrast to the fraction of SNPs (45%)

Figure 3 Structural variants segregating in the accession
Ler-0. The gray directed lines show SV-QTL, with the ar-
rows pointing toward the sink locus. Red and blue links
indicate 37 trans and 30 cis SV-QTL, confirmed by de novo
contigs. The black links show 16 SVs confirmed by PCR
(seven cis, nine trans). Double arrows in links indicate in-
versions. The dots in the red and blue tracks mark the
sources (trans and cis, respectively) of all SVs associated
with the Ler-0 haplotype.
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that are private to a single founder (Gan et al. 2011). This
may reflect our lack of power to detect private SVs.

Independent analysis of low-coverage reads from the
488 MAGIC genomes (Materials and Methods) supported
1228/2391 (51.3%, most also supported by the founder ge-
nomes) and 1631/4111 (39.7%) of those remaining SVs
without founder predictions. In total, 2965/6502 (45.6%)
SVs were supported by either method.

Breakpoint prediction and confirmation

To estimate SV sizes and identify SV breakpoints to test by
PCR, we next de novo assembled the high-coverage sequence
data for the MAGIC founders into high-quality short contigs,
each up to a few kilobases long. We aligned these contigs to
the reference to find alignments split between sources and
sinks. We found 2619 contigs with alignments split into dis-
joint pieces across 420 QTL sources and sinks, suggesting a
cut-and-paste mechanism (Materials and Methods, and Table
S4). Of these, at 319 SV-QTL both breakpoints were identi-
fied. We found 460,656 (8.3%) shared contigs whose align-
ments overlapped between source and sink regions.

We designed PCR primers at 77 breakpoints from 45 pre-
dicted SVs (both breakpoints in seven SVs, and one in each of
the remaining 38). In 30 (66.6%) SVs, 46 type 1 experiments
(designed to amplify in the presence of the predicted SV but
not the reference,Materials and Methods), at least one break-
point was confirmed, i.e., there was at least one type 1 exper-
iment that amplified in founders predicted to carry the SV,
while not producing a product in the reference, as expected.
In a further seven SV-QTL (15.6%) (15 type 1 experiments)
the founders carrying an SV-QTL were amplified, but, unex-
pectedly, the reference genome was also amplified. This sug-
gests the presence of duplicated sequence nearby, causing
unexpected binding of one of the primers. It might also in-
dicate errors in the reference assembly. In 10/15 cases, we
observed duplications (multiple PCR bands) in.2 founders.
However, in all 15 cases at least three founder genomes am-
plified differently from the reference, indicating that the lo-
cus is structurally variant, but not exactly as predicted. The
remaining 16 type 1 experiments failed to amplify in any
founder. Of the 19 type 2 experiments (designed to amplify

in the presence of the reference but not the SV), 16 amplified
as expected, two were ambiguous, and one failed.

Overall, we confirmed at least 30 (66.6%) SVs at either or
both breakpoints, and, at a further 7 (15.6%), we found
evidence of structural variation. Among the total of 37 SVs
supportedbyPCR,weconfirmed61(79%)breakpoints. There
were 14 cis (six inversions, seven transpositions, and one
indel) and 23 trans (13 with inversions) SV-QTL (Table
S5). Consistent with our difficulties in predicting biallelic
founder alleles, in 11 SVs, the breakpoints were polymorphic
among the founders carrying the SV, and, in five transposi-
tions, the orientation of the SV differed between founders.

Effects of SVs on phenotypic QTL and gene expression

We next investigated associations between SVs and
nine physiological phenotypes, either previously published
(Kover et al. 2009; Springate andKover 2014), orfirst reported
in this study (Table S6). We found 16 distinct SV-QTL (eight
in trans, Table S7) that overlap physiological QTL. In some
cases, regressing the SV-trait from the physiological trait ab-
lated the physiological QTL, consistent with, albeit not prov-
ing, that the SV is causal. This is illustrated by a QTL for
germination time (Kover et al. 2009) on chromosome 3,
which is ablated by a cis SV-QTL for unpaired reads at
�15,936,650–15,951,640 bp (Figure 5, A and B). Our anal-
ysis predicts seven founders carry a deletion at this locus,
which was confirmed by the independent founder sequences
(Figure 5C), revealing a 15 kb deletion containing three
genes, AT3G44240 (Polynucleotidyl transferase, ribonucle-
ase H-like superfamily protein), AT3G44245 (pseudogene
of cytochrome P450, family 71, subfamily B, polypeptide
21), and CYP71B38 (AT3G44250, cytochrome P450, family
71, subfamily B, polypeptide 38). Other SVs segregate
nearby, but with allelic patterns inconsistent with the trait,
and therefore unlikely to be causal. It is probable that the
deletion contains the causal variant(s). The deleted genes
are not known to affect germination, although a mutant of
another polynucleotidyl transferase, AHG2 (AT1G55870)
does (Nishimura et al. 2009).

We found similar effects on the chromosome 4 QTL for
resistance to the fungal pathogen A. laibachii, isolate Nc14

Figure 4 Alignment of a manually assembled contig from Ler-0, chr3:16.65–17.02 Mb to the reference annotated with SV-QTL. Thick black lines show
alignments to reference genome. Blue arrows show the sources of cis SV-QTL; stacked arrows mean multiple read anomaly traits had SV-QTL. Red
arrows display trans QTL with arrows starting from the source, and pointing toward the sink. Gaps in the contig alignment indicate loci where Ler-0 did
not align to the reference, with the exception of two transposed segments that mapped to chromosomes 2 and 4 at positions concordant with the
sources of two trans SV-QTL (circled).
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(Thines et al. 2009) (Figure 6 and Table S7). Variation in the
number of unpaired reads at 9.50–9.51 Mb explains 18.3%
of the variance in resistance, and is adjacent to a cluster
of leucine-rich repeat genes, and the genes RPP4 (Van Der
Biezen et al. 2002), BAL (Yi and Richards 2009), and RPP5.
This locus is rearranged in some Arabidopsis accessions, and
is known to affect disease resistance (Yi and Richards 2009);
Figure 6 confirms the founder genomes have complex, poly-
morphic, SVs in this region. Since the resistance QTL is not
completely ablated by the SV traits associated with it, addi-
tional nonstructural variants likely contribute to it.

Importantly, Figure 5B and Figure 6B show that correla-
tions between SV traits and phenotypes are tightly localized,
generally within the width of a single SV trait window, in
contrast with wider linkage disequilibrium decay seen in
QTL genetic mapping (Figure 5A). Therefore, correlations
between SV traits and physiological traits pinpoint causal
variants within physiological QTL that are otherwise too
broad to localize [mapping resolution in MAGIC is �200 kb
(Kover et al. 2009)].

Wealso corroborated studies (Yalcin et al.2011;Quadrana
et al. 2016) showing SVs associate with gene dysregulation,

Figure 5 Effects of SVs on germination time. (A) Genome scans over chromosome 3 (x-axis: genomic position, y-axis: logP of association).
Orange: association of local haplotype with germination time (days), peaking at 15.93 Mb. Green: association of local haplotype with the SV
trait unpaired reads at the source locus 15.94–15.95 Mb (indicated by the vertical red line), explaining 8.13% of the variance in germination
time, with an SV-QTL mapped at the same position as the germination QTL. Purple: residuals of germination time after regressing out the SV
trait, ablating the QTL. (B) Chromosome-wide Pearson correlations between germination time and the numbers of unpaired reads measured at
each 10 kb source locus (x-axis: genomic position, y-axis: 2log10 P-value of test that the correlation is zero). Three source loci correlate
strongly with germination (logP . 4), all with cis SV-QTL (blue diamonds). (C) Structural variation in the MAGIC founders. Shown is the read
coverage in 18 accessions (labeled on y-axis),covering �30 kb surrounding �15.94 Mb (x-axis). Dark shades indicate high coverage, light
shades low coverage. The 10 kb intervals used to define source loci are delineated by vertical blue lines. The source locus giving rise to
the SV-QTL in (A), (B) is marked with a pink double-arrow. Those founder accessions predicted to carry the reference allele (No-0, Ct-1, Mt-0,
Wil-2, Ler-0, Tsu-0, Rsch-4, Kn-0, Zu-0, Hi-0, and Ws-0) are in green, those predicted to carry the SV are in gray. Genes are annotated in
orange.
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even when the gene sequence is undisturbed. Within those
SVs with mapped breakpoints, 119 genes spanned the break-
points, 6909 lay inside the SVs (Table S8), and 21,747 out-
side. Using RNA-seq from 200 MAGIC aerial seedlings,
scaled expression variance increased among genes span-
ning breakpoints (t-test: P, 93 1023) and within SVs
(P, 13 10213) (Figure 7A). Similarly, more lines exhibited
silenced transcripts for genes spanning breakpoints (t-test
P,1:23 1022), or within SVs (P, 2310252) (Figure 7B).
Expression within SVs was more correlated with local SV
traits than outside SVs (F-test P, 2:13 1026) (Figure 7C).

Effects of SV-traits on heritability

Finally, we treated the SV traits as if they were quantitative,
noisy genotypes, to compute pairwise correlations between
MAGIC lines, as weighted correlations of their SV traits
(Materials andMethods). We constructed SV genetic relation-
ship matrices (GRMs) KSV; which we used to compute the
SV-heritability h2SV of each of the physiological traits mapped
above by analogy with the mixed models used for estimating
SNP-based heritability (Kang et al. 2008a). This idea resem-
bles the use of gene expression data to model intersample
relationships (Kang et al. 2008b). We also compared these

Figure 6 Effects of SVs on resistance to Albugo laibachii infection, (A) Genome scans on chromosome 4. Orange: Association with resistance. The peak
of association for is at 9.50 Mb. Green: Association with SV-trait improperly paired reads at source 9.50–9.51. Purple: Resistance after two SV traits
have been regressed out measuring improperly paired reads [sources chr4, 9.50–9.51 Mb (green line) and chr4, 10.44–10.45 Mb (not shown), both
marked with blue diamonds in (B)] that together explain 24.7% of the phenotypic variance. (B) logP of association between SV traits for improperly
paired reads and the resistance trait. There is a cluster of associated traits near 9.50 Mb, in addition to the more weakly associated trait at 10.44–
10.45 Mb. (C) Structural variation in high-coverage sequence in the MAGIC founders �9.50 Mb. Shown is the number of improperly paired reads
(dark: high values, light: low values) in 18 accessions (labeled on y-axis), between 9.37 and 9.63 Mb (x-axis). The 10 kb intervals used to define source
loci are delineated by vertical blue lines. There is a region of complex structural variation spanning�9.48–9.55 Mb, with considerable variation between
the founder accessions. Genes are marked by orange arrows, and selected genes, some implicated in disease resistance at this locus, are labeled.
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SV-heritabilities with those obtained from “classical” haplo-
type KH or SNP-based KSNP GRMs (Table 2). KH was com-
puted from the identity between haplotype mosaics (i.e.,
IBD), while KSNP and KSV were computed from the correla-
tions of 1.2 M imputed SNPs or 12k SV-traits, respectively
(Materials and Methods). We also computed SV heritability
when only the most variable 50 or 25% of SV-traits were
included, to test if heritability was concentrated at the most
structurally variable loci.

As expected, SNP-based heritabilityh2SNP resembles haplotype-
based heritability h2H for all phenotypes tested. However, the her-

itability h2SV captured by the six measures of SV anomaly is more
variable, sometimes being close to zero, but sometimes exceeding
classical heritability considerably (Table 2). The SE of h2SV was
typically about twice that ofh2SNP orh

2
H; (�0.1 compared to 0.05),

presumably reflecting greater uncertainty in SV-traits. Therefore
the larger h2SV estimates should be treatedwith caution. Nonethe-
less, for phenotypes such as time to germination or bolting, the
SEs of all estimates are�0.05, and it is possible to compare them.
Figure 8, A and B illustrates likelihood curves for the times to
germination (A) and bolting (B), for SNP, haplotype and large
insert-size anomalies. Visualizing the entire curves gives a

Figure 7 Variation of expression in 200 MAGIC leaf transcriptomes, in genes spanning SV breakpoints, within SVs or outside SVs. (A) Boxplots of
transcript variance (scaled by the mean). (B) Boxplots of the fractions of silenced genes (C) Distributions of the Pearson correlations between gene
expression and number of improperly-paired reads in the locus containing the gene (red: spanning breakpoints, green: within SVs, blue: outside SVs).

Table 2 Estimates of heritability

Phenotype h2
H h2

SNP

h2
SV

IP LIS SS U U + LIS

Resistance (resistance to
A. laibachii)

0.000 (0.139) 0.258 (0.085) 0.490 (0.335) 0.511 (0.307) 0.000 (NA) 0.673 (0.504) 0.503 (0.314)

RosetteLeafNumber.LongDay
(number of leaves in a rosette for
plants grown under long daylight

0.228 (0.081) 0.322 (0.076) 0.463 (0.148) 0.456 (0.146) 1.000 (NA) 1.000 (0.377) 0.447 (0.146)

RosetteLeafNumber.ShortDay
(number of leaves in a rosette for
plants grown under short
daylight)

0.038 (0.060) 0.047 (0.062) 0.000 (NA) 0.000 (NA) 0.000 (NA) 0.000 (NA) 0.000 (NA)

Bolting.Bath (bolting time in a
greenhouse)

0.426 (0.064) 0.476 (0.048) 0.783 (0.093) 0.783 (0.093) 0.952 (0.047) 0.989 (0.025) 0.785 (0.092)

Days.to.germ. (germination time) 0.220 (0.068) 0.149 (0.063) 0.385 (0.116) 0.357 (0.113) 0.598 (0.165) 0.835 (0.146) 0.365 (0.114)
FieldFT.pl (flowering time in the

field)
0.000 (0.068) 0.095 (0.076) 0.000 (0.179) 0.000 (0.130) 0.000 (0.913) 0.000 (NA) 0.000 (0.145)

FieldRD.pl (rosette diameter
plasticity)

0.000 (NA) 0.000 (0.063) 0.000 (0.085) 0.000 (0.084) 0.000 (0.239) 0.166 (0.220) 0.000 (0.085)

Leaves.day.28.given.days.to.germ
(residuals for number of leaves at
day 28 regressed on germination)

0.193 (0.081) 0.299 (0.066) 0.391 (0.146) 0.362 (0.140) 0.836 (0.189) 0.675 (0.272) 0.366 (0.142)

ttl_branch.BATH (total number of
branches of plants)

0.106 (0.048) 0.196 (0.054) 0.276 (0.104) 0.275 (0.100) 0.419 (0.193) 0.616 (0.214) 0.279 (0.102)

h2
H is haplotype-based heritability. h2

SNP is SNP-based heritability. h2
SV is the heritability estimated from structural variant anomaly traits. Numbers in brackets are the standard

errors (SEs) of the heritability estimates above. Heritability for excess reads are not reported because the fraction of bins in any individual containing nonzero entries was too
small. IP, Improperly-paired; LIS, Large Insert Size; SS, Same Strand; U, Unpaired; U + LIS, Unpaired or Large Insert Size.
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better sense of the uncertainty of the maximum likelihood
estimates at the curves’minima (the SEs in Table 2 are asymp-
totic estimates based on the curvature at theseminima). Figure
8B shows that, for bolting time, the heritability attributable to
all largeisize SV-traits, h2largeisize; is close to 80%, compared to
40–50% for haplotype or SNP-based estimates. As the fraction
of SV traits is reduced by progressively removing those traits
with lower variance, h2largeisize reduces to that of SNPs or hap-
lotypes. This suggests that there is genome-wide structural
variation that is not tagged by standard genetic variation,
and which has important effects on specific phenotypes. These
effects are not universal, as Figure 8A shows for germination
time, where heritability is similar for all GRMs.

The independence of the heritability estimates is borne out
by low correlations between the corresponding elements of
SNPandSV-basedGRMs,which range�0.3depending on the
anomaly type (Figure 8D shows the relationship between
GRMs computed from SNPs vs. large insert size anomalies),
compared to the correlation of 0.93 between SNP and hap-
lotype based GRMs (Figure 8C).

Discussion

We have combined analysis of the read-mapping signatures
commonly used to detect SVs in individuals sequenced at high
coverage, with association mapping in populations (Durkin
et al. 2012). Related ideas based on linkage disequilibrium
have been used for mapping unlocalized contigs into refer-
ence assemblies (Genovese et al. 2013). In doing so, we have

generated a partial catalog of SVs in Arabidopsis, although
our purpose is not to call SVs systematically, a task that re-
mains challenging with short reads. Rather, we have shown
how the impact of SVs can be assayed without necessarily
calling them, or mapping their breakpoints.

In this way, we can distinguish transpositions from local
SVs, and determine the approximate locations of transposi-
tions. The privileged role of the reference genome in the
analysis means that some transpositions appear as deletions,
so we probably have underestimated their true frequency.
Nevertheless, a quarter of the SVs we detected are transpo-
sitions. Given the large numbers of transposable elements in
Arabidopsis [.11,000 from .300 families are annotated in
the reference (Quadrana et al. 2016)], this is unsurprising.
However, many of the SVs we mapped are too large, covering
tens of kilobases, to be single transposon-mediated events.

In theminorityof caseswherewecoulddelineatebreakpoints
exactly, we often found SVs are complex combinations of differ-
ent SV types. More often, breakpoints are not simple cut-and-
paste transformations of the reference genome, as illustrated in
Figure 6C. Indeed, it is frequently impossible to determine pre-
cisely the changes that led tomany observed structural variants.

Because we used ultra-low-coverage 0.33 sequence data,
we divided the Arabidopsis genome into 10 kb bins when
counting read-mapping anomalies. With higher coverage
and a larger sample size, it would be possible to use a larger
number of narrower bins, thereby improving resolution. The
release of .3000 rice genomes sequenced at �143 (Li et al.
2014), and .1000 Arabidopsis accessions sequenced at over

Figure 8 (A, B) log-likelihood curves for
two phenotypes Days.to.germ and Bolt-
ing.Bath (both with large insert size
anomalies), illustrating contrasting be-
havior of heritability estimates based
on structural variants, SNPs, and haplo-
types. Log-likelihood curves as functions
of heritability are plotted for the GRMs
estimated from SNPs, haplotypes, and var-
ious fractions of anomalies. The maximum
likelihood estimates of each heritability
measure correspond to the minima of
the corresponding curves, and are marked
with dots. (C, D) Scatter plots comparing
the off-diagonal elements of genetic rela-
tionship matrices. (C) KSNP vs. KH; (D) KSNP

vs. Klargeisize:
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�203 (Alonso-Blanco et al. 2016) means that there are now
large collections of inbred plant genomes available for anal-
ysis. Both of these sets are worldwide surveys of germplasm,
in which we expect SVs to contribute significantly to, and be
confounded with, their extensive population structure, in
contrast to the MAGIC population used here. Disentangling
these effects will be a challenging but important task.

Similarly, extending this methodology to outbred individu-
als, either descended from inbred strains [such as the mouse
diversity outcross, DO (Svenson et al. 2012)], or natural pop-
ulations, such as humans, requires modification. Heterozygous
loci may carry different SVs with different SV-QTL. It is likely
that a population with a limited haplotype space, like the DO,
will be less challenging to map than will natural populations
containing many low-frequency SVs associated with mobile
elements. Large populations of sequenced humans are now
available (Cai et al. 2015), making such investigations possible.

MappingSVs as traits in a populationbrings new insights to
theproblemofQTLanalysis. First, anSV trait insideaQTLmay
entirely explain the genetic effect at the QTL, and hence
provide support for being the causal variant (e.g., Figure 5).
Second, SV traits are much more tightly localized than are
QTL: there is little or no correlation between neighboring SV
traits, so there are no effects of linkage disequilibrium. Our
analysis also shows that expression of genes is often dysregu-
lated or even silenced within large SVs, suggesting that an SV
causes multiple regulatory and phenotypic effects.

Finally, even in a population likeArabidopsisMAGICwhere
the local haplotype space is known, structural variation has
an impact on heritability that cannot be explained by stan-
dard genetic variation. This is unexpected given the breeding
history and genetic architecture of the MAGIC lines, for, if an
SV segregated among the founders of the MAGIC lines, then
it should be tagged by the local haplotype context, and there-
fore contribute to both h2H and h2SV:

One possible explanation is that structural variation at loci
rich in mobile elements accumulates independently within
each lineage, leading to SVs that are private to each MAGIC
line but tend to occur at the same loci, thereby creating similar
phenotypic effects. Supporting this, in our analysis, the
SV-relationshipmatrix is calculatedempirically,without regard
to theancestry of theMAGIC lines, being solelya functionof the
correlations of read-mapping anomalies. Therefore, recalling
that thehistoryof eachMAGIC line includes a private lineageof
at least five generations of selfing, were SVs to accumulate
recurrently, but independently, in different lineages, then these
could generate phenotypic associations invisible to SNP or
haplotype variation. In Arabidopsis, some mobile elements
are methylated, often in response to environmental cues,
and this methylation plays a role in the epigenetic control of
certain phenotypes (Ito and Kakutani 2014). This effect might
contribute to the heritability associated with structural varia-
tion observed here. Testing this hypothesis in Arabidopsis
MAGIC lines would require complete and precise reassembly
of each genome using long reads, annotation of mobile ele-
ments, and determination of their methylation status.

The role that recurrent, but independent, genomic re-
arrangements might play in Arabidopsis, and in other species
remains to be seen, but there is no a priori reason why it
should not drive phenotypic variation. The unstable inheri-
tance of 45S rDNA genes in Arabidopsis lends support to this
view (Rabanal et al. 2017). The approach used here may
therefore have wider application to other populations to
characterize the impact of cryptic structural variation on
phenotypes.
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