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Abstract

This paper investigates scalar perturbations in the top-down supersymmetric Janus

solutions dual to conformal interfaces in the D1/D5 CFT, finding analytic closed-form

solutions. We obtain an explicit representation of the bulk-to-bulk propagator and

extract the two-point correlation function of the dual operator with itself, whose form

is not fixed by symmetry alone. We give an expression involving the sum of conformal

blocks associated with the bulk-defect operator product expansion and briefly discuss

finite-temperature extensions. To our knowledge, this is the first two-point function

computation for a fully-backreacted, top-down holographic defect.ar
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1 Introduction

The structure of conformal field theories (CFTs) can be enriched by introducing boundary
conditions which break part of the conformal symmetry. A simple way to do so is to add
a codimension-one planar boundary or interface which preserves a SO(d, 1) subgroup of the
SO(d + 1, 1) conformal group. Such extended objects are ubiquitous in string theory and
condensed matter physics and are referred to as conformal defects.

In the presence of defects, conformal symmetry poses less stringent constraints on the
structure of the correlation functions. The two-point function is no longer completely fixed by
symmetry. Rather, it is an arbitrary function of an invariant cross-ratio. The implications of
conformal invariance in the presence of defects have been studied extensively [1, 2, 3, 4], most
recently in the context of quantum information theory, where a proof of the g-theorem for
boundary CFTs in 1 + 1 dimensions has been obtained together with its higher-dimensional
analogs [5, 6, 7].

In the context of the AdSd+1/CFTd correspondence, the simplest holographic realizations
of defects are obtained by adding AdSd probe branes into the AdSd+1 bulk geometry [8, 9]
or by introducing an additional boundary in the bulk supergravity solution [10, 11, 12]. In
such setups, one can successfully model many features of condensed matter systems such as
the Kondo model [13, 14, 15, 16, 17].

Obtaining backreacted analytic solutions dual to defects is a considerably more involved
enterprise. A non-supersymmetric “Janus” solution dual to an interface in a four-dimensional
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bulk CFT was first constructed in ref. [18]. This solution has a geometry obtained by
foliating the spacetime with AdS4 slices and gives a non-singular dilatonic deformation of
the AdS5 × S5 vacuum of type IIB supergravity in which the dilaton smoothly interpolates
between two different asymptotic values (the two “faces” of Janus). It is interpreted as the
holographic dual of two four-dimensional CFTs with different coupling constants which are
glued together along a codimension-one interface [19].

Over the years, the Janus solution has produced a variegated offspring. Supersymmetric
extensions that possess asymptotic regions where the geometry is locally AdS5 × S5 were
first obtained in refs. [20, 21, 22] and further studied in [23, 24, 25]. The corresponding
solutions in N = 2 gauged supergravity in five dimensions and their embedding in N = 8,
five-dimensional gauged supergravity were discussed in [26, 27]. Gaiotto and Witten subse-
quently classified the intersecting-brane configurations corresponding to the supersymmetric
Janus solutions and extended the solutions to nonzero theta angle [28, 29]. Later work
also uncovered Janus solutions in M-theory [30, 31, 32] and attained a classification relying
on superconformal algebras [33]. Non-supersymmetric solutions with asymptotic locally-
AdS3 × S3 geometries were constructed in ref. [34]. The supersymmetric AdS3 × S3 Janus
solutions which we will utilize in this paper were first obtained in ref. [35] and further
studied in refs. [36, 37, 38] together with large classes of string-junction solutions which
possess more than two asymptotic regions. The solutions obtained in [35] have geometries
given by a AdS2 × S2 ×M4 fibration over a two-dimensional base space, where M4 is ei-
ther the four-torus or a K3 manifold, and, in the simplest cases, are holographic duals to
interfaces in the D1/D5 CFT. Analogous solutions in Roman’s type 4b six-dimensional su-
pergravity were constructed in refs. [39, 40, 41]. Finally, the literature has discussed various
finite-temperature versions of Janus solutions either numerically [42] or analytically [43].

The advantage of top-down constructions is that often the dual (deformed) field theory
is known explicitly. The drawback is that these supergravity solutions are considerably more
complicated than their artificial bottom-up relatives. In particular, most holographic compu-
tations conducted to date with top-down solutions have focused on boundary or entanglement
entropy [34, 36, 44, 45, 46, 47], for which there exist a simple holographic prescription due to
Ryu and Takayanagi [48] (see also [49, 50, 51] for non-supersymmetric examples). It seems
particularly difficult to extract any correlation function whose form is not completely fixed
by the residual defect conformal symmetry.

In this paper, we take a concrete step towards the computation of more general holo-
graphic observables in Janus backgrounds, and study one particular family of top-down
defects for which we are able to perform explicitly a number of analytic computations. We
identify a particular field which decouples from other fields, solve the linearized field equa-
tions, construct the bulk-to-bulk propagator and obtain the two-point correlator, which a
priori is an arbitrary function of the conformal crossratio. To our knowledge, this is the first
computation of this kind for a fully-backreacted, top-down holographic defect.

One interesting feature of our holographic calculation is that the final result for the two-
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point function is explicitly expressed in terms of the conformal blocks associated with the
boundary operator product expansion (BOPE). As we review in the next section, there are
two kinds of operator product expansions (OPEs) in the presence of a defect. One is the
usual OPE, which can be used when two operators are close to each other but stay away from
the defect. The second kind of OPE, the BOPE, is relevant when an operator is brought
close to the defect but is separated from the other insertions. It is the latter BOPE which is
made explicit in our holographic computation. Of course, writing a two-point function as a
sum of conformal blocks is not automatically consistent. As a non-trivial check of our final
result, we have partially resummed the BOPE conformal blocks and reproduced the identity
contribution in the crossed channel, i.e. the identity contribution to the ordinary OPE.

This paper is organized as follows. In the next section, we collect some relevant facts
about defect CFTs. In section 3, we discuss the background supergravity solution and scalar
perturbations. In section 4, we solve the linearized field equations for the decoupled scalar
field. Finally, in section 5, we construct the bulk-to-bulk propagator from the linear modes
and compute the two-point correlation function of the dual operator.

2 Basic facts about defect CFTs

Here we review the basic facts about codimension-one defects. For a more detailed field-
theory discussion we refer to [2, 3].

For definiteness, we consider an Euclidean CFT on Rd. A conformal defect of codimension
one preserves SO(d, 1) defect conformal symmetry. The coordinates along the defect are
labelled as xa with a = 1, . . . , d− 1, whereas those in the bulk are labelled as xµ = (xa, x⊥).

In the presence of a defect, one distinguishes between bulk and defect excitations. The
defect does not affect the fusion of primary operators away from the defect (the so-called
bulk operators). Thus we have the usual bulk OPE channel

O(x1)O(x2) =
∑
k

c12k

(x2
12)(∆1+∆2−∆k+J)/2

C(J)(x12, ∂2)µ1...µJO
µ1...µJ
k (x2), (2.1)

where C(J) are some known differential operators.
Any bulk operator O can be restricted to a defect. In general, the defect possesses its

own local excitations as well. We will refer to both kinds of operators as the defect operators
Ôi. When a bulk operator is brought close to the defect, it becomes indistinguishable from
a defect operator. This is captured by the bulk-to-defect OPE (also referred to as BOPE),

O(x) =
∑
Ô

bOÔ
|x⊥|∆−∆̂

CÔ(|x⊥|2∂2
‖)Ô(xa), (2.2)

with some differential operators CÔ. Here ∂‖ is the derivative operator along the defect (in
the xa directions).
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A trivial example of a BOPE is obtained in the case in which there is no actual defect.
In this case, (2.2) reduces essentially to a Taylor expansion.1

In the presence of a conformal defect, the one-point correlation function of a bulk operator
and the two-point correlator of a bulk and a defect operator are fixed by the unbroken defect
conformal symmetry to be

〈O(x)〉 =
aO
|x⊥|∆

, 〈O(x)Ô(0)〉 =
bOÔ|x⊥|∆̂−∆

|xµ|2∆̂
, (2.3)

with some constants aO and bOÔ, which in principle can be different on the two sides of the
defect.

The two-point function of bulk operators is not fixed by symmetry alone and in general
depends on one invariant crossratio ξ,

〈O(x1)O(x2)〉 =
1

|x1⊥|∆1|x2⊥|∆2
f(ξ), ξ =

(xa1 − xa2)2 + (x1⊥ − x2⊥)2

4x1⊥x2⊥
. (2.4)

There are two interesting limits to consider. First, when ξ → 0, the two insertions approach
each other but stay away from the defect. This limit is governed by the bulk OPE of the
CFT without the defect. We will focus on another limit, ξ → ∞, i.e. when both insertions
are close to the defect but remain apart from each other. This limit is governed by the
BOPE:

〈O1(x1)O2(x2)〉 ∼
∑
Ô

bO1ÔbO2Ô

|x1⊥|∆1−∆̂|x2⊥|∆2−∆̂
CÔ(|x1⊥|2∂2

1‖)CÔ(|x2⊥|2∂2
2‖)〈Ô(xa1)Ô(xa2)〉. (2.5)

Thus, we see that every Ô (primary or descendant) which appears in the BOPE of both O1

and O2 with the defect contributes to f(ξ) as

f(ξ) ∼
∑
Ô

bO1ÔbO2Ô

(4

ξ

)∆̂

. (2.6)

Therefore, from the ξ →∞ limit, we can read off the dimensions of operators Ô appearing
in the BOPE of both O1 and O2. This provides very nontrivial information about the defect.

The contribution of descendants to (2.5) can be resummed by solving the Casimir equa-
tion (as for bulk conformal blocks). The result was obtained in [2] (see also [53, 3]) and
reads

f(∆̂, ξ) = b2
OÔ

1

ξ∆̂
2F1

(
∆̂, ∆̂ + 1− d/2; 2∆̂ + 2− d;−1

ξ

)
(2.7)

1With a caveat that the operators Ôn = ∂nx⊥
O(x)|x⊥=0 have to be diagonalized by adding terms of the

form ci∂
n−2i
x⊥

(∂a∂
a)iO(x)|x⊥=0. See [52] for a detailed discussion.
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for identical scalar operators. For later reference, we note that in two dimensions the hyper-
geometric function reduces to the Legendre function of the second kind [54]

2F1

(
∆̂, ∆̂ + 1− d/2; 2∆̂ + 2− d;−1

ξ

)
d=2
=

22∆̂

√
π

Γ[∆̂ + 1/2]

Γ[∆̂]
ξ∆̂Q∆̂−1(2ξ + 1). (2.8)

3 Supergravity solution

We now review the supersymmetric Janus solutions constructed in [35]. The starting point
is type IIB supergravity compactified on the four-torus T 4 or on the K3 manifold. In this
paper, we will focus on the simpler case in which the compactification manifold is a four torus.
We consider solutions with asymptotic geometries which are locally AdS3 × S3 × T 4. Their
holographic duals are marginal deformations of the two-dimensional N = (4, 4) SCFT which
arises as the IR fixed-point of the worldvolume theory of the D1/D5 system [55, 56, 57] (see
ref. [58] for a review). This CFT can be described more explicitly as the two-dimensional
sigma-model with the symmetric-orbifold target-space (T 4)QD1QD5/SQD1QD5

. The sigma-
model is associated to the free Lagrangian

S =
1

2

∫
∂xiA∂̄x

i
A − ψiA(z)∂̄ψiA(z)− ψ̃iA(z̄)∂ψ̃iA(z̄) , (3.9)

where the index i = 1, . . . , 4 runs over the coordinates of the four-torus and the symmetric
group acts by permuting the indices A of the QD1QD5 copies of the four-torus.

The particular Janus solutions under consideration are supported by the three- and five-
form fluxes and are dual to conformal interfaces obtained by marginally deforming the above
CFT. In the supergravity solutions, the six-dimensional dilaton and a linear combination of
the axion with the four-form potential interpolate smoothly between two different asymp-
totic values on opposite sides of the interface. The six-dimensional dilaton is dual to the
volume of the four-torus of the CFT, while the axion/four-form potential linear combination
corresponds to the source for the orbifold Z2 twist operator. In the CFT marginal deforma-
tion dual to the Janus solution, these operators have a step-function profile jumping across
the interface.

The ten-dimensional metric for the supersymmetric Janus solution is written as

ds2
10 = f 2

1,10ds
2
AdS2

+ f 2
2,10ds

2
S2 + ρ2

10dwdw̄ + f 2
3,10ds

2
T 4 , (3.10)

where the metric factors f1,10, f2,10, f3,10 and ρ10 depend on the coordinates w, w̄ of a two-
dimensional Riemann surface Σ with boundary. The fields and metric factors have expres-
sions in terms of two harmonic functions, H and K, and two meromorphic functions, A and
B. The harmonic functions H,K,A + Ā and B + B̄ all obey vanishing Dirichlet boundary
conditions on the boundary ∂Σ.
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Global regularity requires that the harmonic functions have isolated singular points on the
boundary of Σ and imposes conditions on zeros and singularities of the relevant functions. In
particular, the singular points of H correspond to asymptotic regions in which the geometry
is locally AdS3 × S3. Aside from the Janus solutions that are the main focus of the present
paper, string-junction solutions with more than two asymptotic regions have been studied
in refs. [35, 36] and found to be dual to CFTs defined on star graphs.

The ten dimensional solutions solve the field equations

∇µPµ − 2iQµPµ +
1

24
GµνρG

µνρ = 0 , (3.11)

∇ρGµνρ − iQρGµνρ − P ρḠµνρ +
2

3
iF(5)µνρσλG

ρσλ = 0 , (3.12)

R ν
µ − PµP̄ ν − P̄µP ν − 1

6
(F 2

(5))
ν
µ −

1

8
(GµρσḠ

νρσ + ḠµρσG
νρσ) +

1

48
δνµGρσλḠ

ρσλ = 0, (3.13)

together with the Bianchi identities

dP − 2iQ ∧ P = 0 , (3.14)

dQ+ iP ∧ P̄ = 0 , (3.15)

dG− iQ ∧G+ P ∧ Ḡ = 0 , (3.16)

dF(5) −
i

8
G ∧ Ḡ = 0 , (3.17)

and the self-duality condition for the five-form field strength F(5). In the above expressions,
P and Q are a composite one-form field strength and connection which can be expressed in
terms of the axion χ and dilaton φ as

P =
1

2

(
dφ+ ieφdχ

)
, Q = −1

2
eφdχ . (3.18)

Similarly, the complex three-form field strength G is given in terms of the R-R and NS-NS
field strengths F(3) and H(3) as

G = e−φ/2H(3) + ieφ/2
(
F(3) − χH(3)

)
. (3.19)

A key feature of the Janus solutions is that the three-form and five-form fluxes are related
to the volume forms of the unit S2, AdS2 and T 4 fibres ω̂S2 , ω̂AdS2 and ω̂T 4 as

F(3) = dc(1) ∧ ω̂AdS2 + dc(2) ∧ ω̂S2 , (3.20)

H(3) = db(1) ∧ ω̂AdS2 + db(2) ∧ ω̂S2 , (3.21)

F(5) = dCK ∧ ω̂AdS2 ∧ ω̂S2 + dC̃K ∧ ω̂T 4 , (3.22)
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AdS2 S2 Σ T 4

t z θ φ x y u1 u2 u3 u4

P,Q
X

X

H(3), F(3)

X X X
X X X

X X X
X X X

F(5)

X X X X X
X X X X X

X X X X X
X X X X X

Table 1: List of nonzero components of the five- and three-form fluxes and of the axion-dilaton
composite field strength and connection for general ten-dimensional Janus and string-junction so-
lutions.

where expressions for the scalar potentials c(1,2), b(1,2), CK and C̃K in terms of the rele-
vant harmonic functions are given in ref. [35]. Note that this structure is dictated by
the SO(2, 1) × SO(3) symmetry imposed in constructing the solutions. For the reader’s
convenience, non-zero components of the various tensor fields are listed in table 1.

It is convenient to reduce the solutions to six dimensions and write the metric in the
Einstein frame as

ds2
6 = f 2

1ds
2
AdS2

+ f 2
2ds

2
S2 + ρ2dzdz̄ , (3.23)

where f 2
1 = f 2

1,10f
2
3,10, f 2

2 = f 2
2,10f

2
3,10 and ρ2 = ρ2

10f
2
3,10. Note that large classes of Janus and

string-junction solutions have also been obtained directly in six-dimensional supergravity in
refs. [39, 40, 41]. Here we started with simple ten-dimensional solutions and reduced them to
six dimensions to better illustrate the top-down origin of our scalar deformations. A useful
identity involving the metric factors,

f 2
1 f

2
2 = H2 , (3.24)

permits us to write the square root of the determinant of the metric as

√
−g = ρ2H2 . (3.25)

We shall now focus on the simplest solutions which have two asymptotic AdS3 × S3

regions, a simply-connected Riemann surface, and are supported only by R-R charges (see
ref. [36] for a discussion of the Page charges associated to our solutions). We take the
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Figure 1: Structure of the Janus solutions on the x-y plane and x-z plane. The Riemann surface
Σ is the infinite strip. For a solution supported only by RR fluxes, the functions A,B and K have
singularities on both boundaries at x = 0. The spacetime boundary B is reached for x→ ±∞ and
for z → 0 on the AdS slice. The latter limit corresponds to the location of the defect D.

infinite strip with coordinates x, y as the Riemann surface Σ. Figure 1 displays the pole
configuration for the solutions of interest in the x-y plane, as well as a sketch of the x-z
plane which illustrates the position of the defect in our coordinates. The two asymptotically
AdS3 regions are approached as x→ ±∞. Nontrivial Janus solutions are parameterized by
two parameters, ψ and θ, associated to the jump in the dilaton and axion respectively. The
undeformed case is obtained by θ = 0 = ψ. A plot of the ten-dimensional dilaton for the
solution with nonzero ψ can be found in figure 2.

The following simple expressions for the harmonic function H and the ratios of metric
factors [35, 38],

H = 2L̂ coshx sin y ,
ρ2

f 2
1

=
κ2

cosh2 x
,

ρ2

f 2
2

=
1

sin2 y
+
κ2 − 1

cosh2 x
, (3.26)

will be useful in the remainder of the paper. We have introduced the interface parameter
κ = coshψ cosh θ and denoted with x, y real and imaginary part of the complex coordinate
of Σ.

So far, we have discussed zero-temperature solutions. However, as explained in ref. [43],
a black-hole solution can be obtained by replacing the AdS2 fibre with the “black -hole slice”
metric

ds2
AdS2

7→ ds2
BH = −1− r2

r2
(2πT )2dt2 +

dr2

r2(1− r2)
, 0 ≤ r ≤ 1 , (3.27)

where we have introduced the explicit temperature dependence as T and we have employed
the coordinate transformation ρ = 1/r as compared to ref. [43]. For these solutions, the
interface is located at r = 0 and the horizon at r = 1. In the absence of an interface, the
Fefferman-Graham coordinate expansion close to the boundary reproduces the one of the
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Figure 2: Dilaton profile for the supersymmetric Janus solution with ψ = 1, θ = 0 in the x − y
plane (left) and sketch of the finite-temperature solution (right). The black-hole horizon H is
located at r = 1, the defect D is located at r = 0.

BTZ black hole order by order in the radial parameter. Black-hole solutions obtained with
this technique are dual to finite-temperature CFTs defined on the real line times the thermal
circle.2 The structure of the solution on the r − x plane can be found in figure 2.

We are now ready to discuss the ten-dimensional origin of the probe scalars obeying the
massless Klein-Gordon equation which we will solve in the next section. Given the general
structure of our interface solutions, we consider simple deformations of the supersymmetric
Janus geometry which leave invariant the volume forms of the fibres.

The simplest of such deformations affects only the components of the metric along the
T 4 fibre and has the form

gij = f 2
3,10exp(taijΦ

a) = f 2
3,10

(
δij + Φataij + . . .

)
, (ta)ii = 0 , i, j = 6, 7, 8, 9 , (3.28)

where taij (a = 1, . . . , 9) are constant symmetric-traceless tensors along the compact T 4

directions.
A deformation of this form leaves the three-form and five-form fields invariant, as well as

the axion and dilaton. Inspecting the equations of motion (3.11)-(3.13), it is immediate to
verify that the only non-trivial equation is (3.13), which reduces to the equation for a free

2 We would like to emphasize that additional global identifications, analogous to the ones arising for the
BTZ black-hole solution in Poincaré coordinates, are required to reproduce the global structure of a solution
dual to a finite-temperature CFT defined on a two-torus.
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scalar,3

R ν
µ = 0 ⇒ ∇2Φa = 0 . (3.29)

Alternatively, one can consider the Φa dependence of the action,

S[Φ] =

∫
d4x
√
g
(
− ∂µΦa∂µΦa

)
. (3.30)

In the remainder of the paper, we will study the equation of motion for these free scalars
in the Janus geometry and, in particular, find that it is separable, allowing for an explicit
analytic solution. As mentioned before, one of the advantages of the top-down approach is
that the dual N = (4, 4) SCFT is known explicitly. In particular, its operators are classified
using the N = (4, 4) superconformal algebra and are labelled by their representation of the
SO(4)I symmetry acting on the coordinates of the four-torus. Hence, the operator dual to
our scalar deformation is identified as

O{ij} = ∂x
{i
A ∂̄x

j}
A = ∂xiA∂̄x

j
A + ∂xjA∂̄x

i
A −

1

4
δij∂xkA∂̄x

k
A .

The reader might wonder if considering deformations leaving the fibres’ volume forms
invariant might lead to other simple perturbations. In particular, a potentially interesting
deformation involves the metric on the AdS2 slice,

gµν = ḡµν + hµν , hµν ḡ
µν = 0 , µ, ν = 0, 1 , (3.31)

and leaves all other fields invariant. Repeating the argument above, we obtain

R ν
µ

∣∣
O(h)

= 0 ⇒ ∇2hµν −∇µ∇ρhνρ −∇ν∇ρhµρ + 2R̄ρ σ
µ νhρσ = 0 , (3.32)

where R̄ρ σ
µ ν is the Riemann tensor of the background geometry. These are three differential

equations in two functions htt and htz and force a trivial dependence on the t, z coordinates
for htt and htz. Hence, to have non-trivial solutions, one needs to turn on the trace part
of the AdS2 metric perturbation. While deformations of this sort are very interesting, their
treatment is considerably more involved and will be deferred to future work.

4 Solving the massless Klein-Gordon equation

From now on, we drop the index parametrizing different deformations on the torus and work
with the single scalar Φ. The massless Klein-Gordon equation (3.29) for the Janus geometry
with two AdS3 asymptotic regions can then be written as

1√
−g

∂µ(
√
−ggµν∂νΦ) =

1

ρ2

{
∂a(H

2∂a)

H2
+
ρ2

f 2
1

∇2
AdS2

+
ρ2

f 2
2

∇2
S2

}
Φ = 0, a = x, y (4.33)

3To obtain the equation for the free scalar (3.29), it is simpler to consider the field equations with mixed
indices.
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where ∇2
S2 is the Laplacian on the unit two-sphere and ∇2

AdS2
is the Laplacian on the unit

AdS2 slice,

∇2
AdS2

= z2
(
∂2
z − ∂2

t

)
. (4.34)

In case of the black-hole solution, we replace

∇2
AdS2

7→ ∇2
BH = r2

(
∂r(1− r2)∂r −

1

(2πT )2

∂2
t

1− r2

)
. (4.35)

For the massless scalar field, the Klein-Gordon equation is separable. In this section we will
present the solution.

First, we note that the differential equations on the two-dimensional slices,

∇2
AdS2

f = ν(ν + 1)f , ∇2
BHf = ν(ν + 1)f , (4.36)

admit solutions in terms of Bessel and associated Legendre functions,

AdS : f(z, t) = C1

√
zJν+ 1

2
(ωz)e±iωt + C2

√
zYν+ 1

2
(ωz)e±iωt , (4.37)

BH : f(r, t) = C1P
iω

2πT
ν

(1

r

)
e±iωt + C2Q

iω
2πT
ν

(1

r

)
. (4.38)

In the Euclidean signature, the Bessel functions Jν+1/2 and Yν+1/2 should be replaced by the
modified Bessel functions Kν+1/2 and Iν+1/2.

The effective mass on the AdS2 slice is related to the dimension of the defect operator
simply by ν = ∆̂ − 1. We will later fix the possible values of ν by imposing the absence
of sources on the boundary. This will result in a discrete tower of possible masses on the
AdS2 slice and determine the dimensions of the operators appearing in the BOPE of the dual
operator with the defect. To extract the BOPE coefficients themselves, we need to compute
the two-point correlation function of bulk operators.

The Laplace operator on the two-sphere has the usual spherical harmonics as its eigen-
functions. Thus the probe scalar can be expanded as

AdS : Φ =
∑(

Φ
(1)
νωlm(x, y)

√
zJν+ 1

2
(ωz) + Φ

(2)
νωlm(x, y)

√
zYν+ 1

2
(ωz)

)
e±iωtYlm(θ, φ), (4.39)

BH : Φ =
∑(

Φ
(1)
νωlm(x, y)P

iω
2πT
ν

(1

r

)
+ Φ

(2)
νωlm(x, y)Q

iω
2πT
ν

(1

r

))
e±iωtYlm(θ, φ), (4.40)

where the spherical harmonics satisfy ∇2
S2Ylm(θ, φ) = −l(l + 1)Ylm(θ, φ). In both cases, the

Klein-Gordon equation becomes{
∂a(H

2∂a)

H2
+ ν(ν + 1)

ρ2

f 2
1

− l(l + 1)
ρ2

f 2
2

}
Φ

(i)
νωlm = 0 , (4.41)
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or using (3.26){
∂x cosh2 x ∂x + α(α + 1)

cosh2 x
+
∂y sin2(y) ∂y − l(l + 1)

sin2(y)

}
Φ

(i)
νωlm = 0, i = 1, 2 , (4.42)

where the constant α is determined in terms of l and ν by

α(α + 1) = l(l + 1) + κ2
(
ν(ν + 1)− l(l + 1)

)
. (4.43)

Equation (4.42) is separable. Moreover, the y-dependent part combines with the Laplacian
on the S2 slice to give the Laplacian on the three-sphere, with eigenvalues −k(k + 2).4

To get a better intuition, it is useful to represent the field equation in the form

�3dΦl,k =
( l(l + 1)

cosh2 x
(κ2 − 1) + k(k + 2)

)
Φl,k = M2

3d(x)Φl,k, (4.44)

where �3d is the Laplacian on the three-dimensional asymptotically locally-AdS3 space with
the metric

ds2
3d = dx2 +

cosh2 x

κ2
ds2

AdS2
= dx2 +

cosh2 x

κ2

dz2 − dt2

z2
. (4.45)

Thus the presence of the defect does not just modify the AdS3 metric, but also introduces a
position-dependent mass, M2

3d(x). Without the defect, the dimension of the dual operator is
simply ∆ = k+ 2. In the presence of the defect, this operator gets decomposed into a tower
of operators with dimensions ∆̂n = ν(n) + 1, the precise form of which we will deduce later.
Importantly, the dimensions of the members of this tower are not related in a simple way to
the dimension of the original operator, in contrast to the case in which the defect is absent.
This is a characteristic feature of the BOPE. In the process of bringing an operator close to
the defect, divergences can appear and regularization is required as in the case of composite
operators.

After solving the AdS2 and S3 parts of the problem, we are left with a single ordinary
differential equation,

∂x cosh2 x ∂x + α(α + 1)

cosh2 x
χ

(i)
ωνklm(x) = k(k + 2)χ

(i)
ωνklm(x), i = 1, 2 , (4.46)

which is solved by

χ
(i)
ωνklm(x) =

c3P
k+1
α (tanhx) + c4Q

k+1
α (tanhx)

coshx
. (4.47)

4We introduce Yklm(y, θ, φ), which satisfies ∇2
S2Yklm = −l(l+1)Yklm and [∂y(sin2(y) ∂y)−l(l+1)]Yklm =

−k(k + 2) sin2(y)Yklm.
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To summarize, there are eight classes of solutions for the probe scalar in the Janus back-
ground. For the AdS slicing we have:

AdS : Φ
(1)
ωνklm =

√
z ω−(ν+ 1

2
)

coshx
P k+1
α

(
tanhx

)
Jν+ 1

2

(
ωz
)
e±iωtYklm

(
y, θ, φ

)
,

Φ
(2)
ωνklm =

√
z ω(ν+ 3

2
)

coshx
P k+1
α

(
tanhx

)
Yν+ 1

2

(
ωz
)
e±iωtYklm

(
y, θ, φ

)
,

Φ
(3)
ωνklm =

√
z ω−(ν+ 1

2
)

coshx
Qk+1
α

(
tanhx

)
Jν+ 1

2

(
ωz
)
e±iωtYklm

(
y, θ, φ

)
,

Φ
(4)
ωνklm =

√
z ω(ν+ 3

2
)

coshx
Qk+1
α

(
tanhx

)
Yν+ 1

2

(
ωz
)
e±iωtYklm

(
y, θ, φ

)
, (4.48)

where Yklm are the three-sphere spherical harmonics and ω ≥ 0. The factors of ω have been
included so that the limit ω → 0 can be taken smoothly. For the black-hole solutions we
have

BH : Φ
(1)
ωνklm =

1

coshx
P k+1
α

(
tanhx

)
P

iω
2πT
ν

(1

r

)
e±iωtYklm

(
y, θ, φ

)
,

Φ
(2)
ωνklm =

1

coshx
P k+1
α

(
tanhx

)
Q

iω
2πT
ν

(1

r

)
e±iωtYklm

(
y, θ, φ

)
,

Φ
(3)
ωνklm =

1

coshx
Qk+1
α

(
tanhx

)
P

iω
2πT
ν

(1

r

)
e±iωtYklm

(
y, θ, φ

)
,

Φ
(4)
ωνklm =

1

coshx
Qk+1
α

(
tanhx

)
Q

iω
2πT
ν

(1

r

)
e±iωtYklm

(
y, θ, φ

)
. (4.49)

Note that at this stage the parameters k, l,m are quantized. The general solution is obtained
by superimposing these modes.

The defect modes correspond to those solutions which vanish at the boundary away from
the defect, i.e. when x→ ±∞. Using simple properties of Legendre functions, we find that
this requirement is satisfied only if α = k + 1 + n for a non-negative integer n. Note that
(4.43) tells us what discrete values the ν parameter can take,

ν(n) =
{1

4
+

(k + n+ 1)(k + n+ 2)

κ2
+ l(l + 1)

(
1− 1

κ2

)} 1
2 − 1

2
, (4.50)

where we have taken the positive solution to (4.43).
From (4.36) we know that the effective mass on the AdS2 slice is m2 = ν(ν+1) = ∆̂n(∆̂n−

1). Thus, for the defect modes, we obtain the conformal dimension of the corresponding
fields:

m2
l,n = ∆̂n(∆̂n − 1) = l(l + 1) +

1

κ2

[
(k + n+ 2)(k + n+ 1)− l(l + 1)

]
, (4.51)
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where n = 0, 1, 2, 3, ... is an integer and we have set α = k + 1 + n. Note that the massless
AdS2 scalar cannot appear in the spectrum.

As a simple check, consider the pure AdS3 scenario, i.e. assume that the dilaton and
axion do not jump across the defect (κ = 1). Then for k = 0, we have

m2
n = (n+ 2)(n+ 1), ⇒ ∆̂n = n+ 2 (4.52)

The higher values of n then give the dimension of the higher-order operators appearing in
the expansion.5 For higher values of k, we have ∆n = k + 2 + n, in agreement with the fact
that the AdS3 mass is given by m2

AdS3
= k(k + 2).

5 Bulk-to-bulk propagator and two-point correlation

function

In this section, we use the linearized modes to construct the bulk-to-bulk propagator satis-
fying vanishing boundary conditions at the boundary of the spacetime and infalling bound-
ary conditions at the Poincaré horizon. The latter choice is appropriate for the retarded
holographic propagator. In Euclidean signature, it is sufficient to impose regularity in the
spacetime’s interior. The propagator can be constructed as a summation over modes which
satisfy prescribed boundary conditions. The modes which vanish at the boundary (away
from the defect) must necessarily have α ∈ N. This gives the quantization condition for the
masses on the AdS2 slice and hence the dimensions of operators appearing in the BOPE of
the dual operator with the defect.

In what follows, we will effectively ignore the S3 part of the geometry and construct
propagators directly for the equation (4.44).

5.1 Bulk-to-bulk propagator

As we will show shortly, the bulk-to-bulk propagator is given explicitly by

G∆ =
1

2π

∞∫
0

dωe−iω(t−t′)
∞∑
n=0

(n+ ∆− 1/2)n!

(n+ 2∆− 2)!
G̃ν+1/2[z, z′]

×
P∆−1
n+∆−1(tanhx)

coshx

P∆−1
n+∆−1(tanhx′)

coshx′
+ c.c., (5.53)

5Consider the expansion O(x⊥) =
∑∞
n=1O(n)xn−1

⊥ . The dimension of O(0) would be the same dimension
as O, which is two for a marginal operator. The dimension of the higher order terms is then [O(n)] = ∆n =
n+ 1.
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where

G̃ν [z, z
′] =

1

W [
√
zH

(1)
ν (|ω|z),

√
zJν(|ω|z)]

∣∣∣
z=z′

[
θ(z − z′)

√
zH(1)

ν (|ω|z)
√
z′Jν(|ω|z′)+

θ(z′ − z)
√
zJν(|ω|z)

√
z′H(1)

ν (|ω|z′)
]

(5.54)

is the propagator in the z direction which satisfies the equation(
z2∂2

z + ω2z2 − ν(ν + 1)
)
G̃ν+1/2[z, z′] = z2δ(z − z′), (5.55)

vanishes as z approaches zero and satisfies infalling boundary conditions at the horizon of
the AdS2 slice, i.e. as z goes to infinity. W [

√
zH

(1)
ν (|ω|z),

√
zJν(|ω|z)] denotes the Wronskian

of the two functions, which, for the case at hand, is equal to −2i/π. The Green’s function
is a continuous function with discontinuous first derivative at z = z′.6 Note that the choice
of the Hankel function of the first kind is determined by requiring the Green’s function to
satisfy ingoing boundary conditions at the horizon, while the choice of the Bessel function
of the first kind Jν(|ω|z)] is determined by requiring the bulk-to-bulk propagator to vanish
at the boundary of the AdS2 slice. The quantization of α = n + ∆ − 1 = n + k + 1 is
determined by requiring the bulk-to-bulk propagator to vanish as x → ±∞. This means
that the bulk-to-bulk propagator is decomposable in terms of the defect modes.

Let us show by explicit computation that (5.53) indeed gives the propagator. Acting
with the three-dimensional Laplacian on G∆, we note that the non-vanishing contribution
comes from the step-function in the z direction. Explicitly,

(
�3d −M2

3d

)
G∆ =

1

2π

∞∫
−∞

dωe−iω(t−t′)
[

κ2

cosh2 x
z2δ(z − z′)

]
∞∑
n=0

(n+ ∆− 1/2)n!

(n+ 2∆− 2)!

P∆−1
n+∆−1(tanhx)

coshx

P∆−1
n+∆−1(tanhx′)

coshx′
. (5.56)

Next, we use the completeness relation for the associated Legendre polynomials

coshx coshx′δ(x− x′) =
∞∑
n=0

(n+ ∆− 1/2)n!

(n+ 2∆− 2)!
P∆−1
n+∆−1(tanhx)P∆−1

n+∆−1(tanhx′) (5.57)

and obtain (
�3d −M2

3d

)
G∆ =

1√
|g3d|

δ(t− t′)δ(x− x′)δ(z − z′) , (5.58)

6To obtain the result in Euclidean signature we continue ω2 → −ω2. Hankel function Hν gets replaced
by Kν (up to a simple prefactor) which is regular as z →∞ and Jν gets replaced by Iν . The Wronskian is
then W [

√
zKν(|ω|z),

√
zIν(|ω|z)] = 1.
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with
√
|g3d| = cosh2 x/(κ2z2). Thus, we see that the bulk-to-bulk propagator can be indeed

represented as a sum of the modes derived before.
The Euclidean version is

GE,∆ =
1

2π

∞∫
−∞

dωe−iω(t−t′)
∞∑
n=0

(n+ ∆− 1/2)n!

(n+ 2∆− 2)!

G̃E,ν+1/2[z, z′]
P∆−1
n+∆−1(tanhx)

coshx

P∆−1
n+∆−1(tanhx′)

coshx′
, (5.59)

with

G̃E,ν [z, z
′] =

1

W [
√
zKν(|ω|z),

√
zIν(|ω|z)]

∣∣∣
z=z′

[
θ(z − z′)

√
zKν(|ω|z)

√
z′Iν(|ω|z′)+

θ(z′ − z)
√
zIν(|ω|z)

√
z′Kν(|ω|z′)

]
. (5.60)

In this case, we have W [
√
zKν(|ω|z),

√
zIν(|ω|z)] = 1. The continuation back to Minkowski

signature is achieved by replacing Jν → Iν and Kν → H
(2)
ν for ω < 0 and Kν → H

(1)
ν for

ω > 0.
Finally, for the finite-temperature case, we can proceed along the same lines and obtain

the expression

G̃E,T,ν [z, z
′] =

1

W [Q
ω

2πT
ν

(
1
r

)
, P

ω
2πT
ν

(
1
r

)
]
∣∣∣
r=r′

[
θ(r − r′)Q

ω
2πT
ν

(1

r

)
P

ω
2πT
ν

( 1

r′

)
+ θ(r′ − r)P

ω
2πT
ν

(1

r

)
Q

ω
2πT
ν

( 1

r′

)]
. (5.61)

This propagator is regular at the black-hole horizon at r = 1 and is appropriate for the
holographic dual of a CFT defined on the real line times the thermal circle. Note that the
boundary conditions need to be modified if we introduce additional global identifications in
the black-hole geometry.

5.2 Bulk-to-boundary propagator

The bulk-to-boundary propagator K∆(x0, ~x, ~x
′) can be obtained by taking the limit [59, 60]

K(z, t, x; t′, x′⊥) = lim
u′→0

(2∆− 2)

(u′)∆
G∆(z, t, x;u′, t′, x′⊥), (5.62)

where the u′ coordinate denotes the radial coordinate in the Poincaré patch of AdS3. For
the AdS-slicing coordinates we are employing, the Fefferman-Graham expansion needs to

16



be computed separately on both sides of the defect (regions I and II in figure 1). The
leading-order terms are:

region I : x′ ∼ − ln(2u′/κ|x′⊥|) , z′ ∼ −x′⊥ , (5.63)

region II : x′ ∼ + ln(2u′/κ|x′⊥|) , z′ ∼ +x′⊥ . (5.64)

To compute the limit, we use that [54]

P∆−1
n+∆−1(tanhx′) ∼ (−1)∆−12−

∆−1
2 Γ(n+ 2∆− 1)(1− tanhx′)

∆−1
2

(∆− 1)!Γ(n+ 1)
, as x′ →∞. (5.65)

The other side of the defect is approached as x′ → −∞, this would introduce a (−1)n

prefactor. For now we postpone this issue until later. A short computation gives

G∆ ∼
1

(∆− 2)!

(
− 1

2

)∆−1 1

2(∆− 1)π

∞∫
−∞

dωe−iω(t−t′)×

∞∑
n=0

(n+ ∆− 1/2)G̃ν+1/2[z, z′]
1

(coshx′)∆

P∆−1
n+∆−1(tanhx)

coshx
as x′ →∞, (5.66)

so that the bulk-to-boundary propagator can be read off:

K∆(z, t, x; t′, x′⊥) =
1

(∆− 2)!

(
− 1

2

)∆−1 1

π

1

κ∆

∞∫
−∞

dωe−iω(t−t′)×

×
∞∑
n=0

(n+ ∆− 1/2)G̃ν+1/2[z, |x′⊥|]
1

|x′⊥|∆
P∆−1
n+∆−1(tanhx)

coshx
, (5.67)

In appendix A, we show that this reduces to the well-known pure-AdS bulk-to-boundary
propagator when the defect is switched off (in which case κ = 1 and ν = n+ ∆− 1).

The correlation functions in (defect) CFTs are typically presented in position space. So
we would like to perform the inverse Fourier transform of (5.67). To this end, we note the
Gegenbauer’s formula [61]

H
(1)
ν+m(ωz)

(ωz)ν
Jν+m(ωx′⊥)

(ωx′⊥)ν
=

2ν−1m!Γ(ν)

πΓ(2ν +m)

∫ π

0

H
(1)
ν+m(|ω|

√
z2 + x

′2
⊥ − 2zx′⊥ cos θ)

ων(z2 + x
′2
⊥ − 2zx′⊥ cos θ)ν/2

Cν
m(cos θ) sin2νθdθ, (5.68)

where Cν
m(cos θ) denotes the Gegenbauer function. For the computation in Euclidean sig-

nature the same formula holds if we exchange Jν+m by Iν+m and Hν+m by Kν+m on the
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both sides of the equation. Using this relation (with m = 0) in (5.67) and Fourier trans-
forming back, we are left with an integral over θ which can be expressed in terms of the
hypergeometric function. Using [54]

2F1

(
ν + 1, ν + 1, 2ν + 2,

2

1− z

)
= 2ν+1 Γ[ν + 3/2]√

πΓ[ν + 1]
(z − 1)ν+1Qν(z), (5.69)

we are left with a sum

K∆ =
(
− 1

2

)∆−1 1

πκ∆Γ(∆− 1)

1

|x′⊥|∆
∞∑
n=0

(n+ ∆− 1/2)Qν

(z2 + x
′2
⊥ + (t− t′)2

2zx′⊥

)P∆−1
n+∆−1(tanhx)

coshx
. (5.70)

For the undeformed case, ν = n+ ∆− 1, and we use the identity ([62], see also [63])

(z − cos(φ))−k−1/2 =
2k+1/2

π1/2

Γ(k)

Γ(k + 1/2)

∞∑
n=0

(k + n)Ck
n(cos(φ))Qn+k−1/2(z), Re k > −1

2

(5.71)
to check that the position-space propagator (A.85) is indeed reproduced. For the deformed
case, the sum cannot be evaluated in closed form. As we will see later, each term in the sum
corresponds to the expected contribution of a descendant of the dual operator O.

5.3 Correlation functions

The bulk field Φ is dual to an operator O in the dual CFT. Solving the field equation on
an asymptotically locally-AdS background near the boundary, one obtains the asymptotic
solution

Φ = e(∆−d)r
(
φ(0) + . . .+ e(d−2∆)rφ(2∆−d) + . . .

)
. (5.72)

The expectation value 〈O〉 in the presence of the source φ(0) is given by

〈O〉φ(0)
= (d− 2∆)φ(2∆−d)[φ(0)] + local (scheme-dependent) terms. (5.73)

At the same time, the bulk solution with prescribed source φ(0) can be obtained with the
help of the bulk-to-boundary propagator as

Φ(x) =

∫
ddyK∆(x, y)φ(0)(y). (5.74)

Since we know the bulk-to-boundary propagator for the defect geometries, we can directly
use the last formula to extract the two-point function by extracting the corresponding term
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Figure 3: Plot of 〈O(x, 0)O(1, 0)〉 for κ = 1, 2, 4 and ∆ = 2 (left) and plot of 〈O(x, y)O(1, 0)〉 for
κ = 2 and ∆ = 2 (right).

in the near-boundary expansion and differentiating the one-point function with respect to
the source. After performing these steps, we obtain the final result:

〈O(x⊥, t)O(x′⊥, t
′)〉 =

23−2∆

πκ2∆[Γ(∆− 1)]2
1

|x⊥x′⊥|∆
×

×
∞∑
n=0

sign(ξ)n(n+ ∆− 1/2)
Γ(n+ 2∆− 1)

Γ(n+ 1)
Qν(|2ξ + 1|), (5.75)

where ξ was defined in (2.4) and the above formula applies regardless of whether the insertions
are on the same side of the defect (ξ > 0) or not (ξ < 0). (5.75) has exactly the functional
dependence (2.7) obtained in [2]. We recognize each term in the sum as a contribution from
a particular descendant Ôn = ∂nx⊥Ô. Plots can be found in figure 3. We see in particular
that the singularity when the two insertions are brought close to each other is not sensitive
to the deformation parameter. In the presence of the defect, the correlator is also singular
as one of the operators approaches the defect. Finally, there is a “screening” effect when the
operators are placed on opposite sides of the defect, i.e. the correlator decays to zero quickly
behind the defect.

Moreover, now we can read off the BOPE coefficient as

b2
OÔn

= 22(∆−∆̂n) Γ(∆̂n)

Γ(∆̂n + 1/2)

23−2∆

√
π[Γ(∆− 1)]2

1

κ2∆
(n+ ∆− 1/2)

Γ(n+ 2∆− 1)

Γ(n+ 1)
. (5.76)

The formula (5.75) is the main result of this section. We already know that it does reduce
to the usual CFT result when the defect goes away. Moreover the final result appears in a
form which makes the BOPE block decomposition explicit. There is one more check we can
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perform. Let’s consider the case in which the operator insertions are situated far away from
the defect but close to each other. This corresponds to the limit ξ → 0. In this limit we
expect to find the decomposition of the two-point correlation functions in terms of the usual
OPE, i.e. we should find the singularities of the form 1/ξ∆. Notice that each term in (5.75)
diverges only logarithmically as ξ → 0. Thus, to obtain the scaling behavior, we need to
resum infinitely many terms in (5.75). To achieve this, we can use asymptotic expressions
for large n.

At large n (n� κ) we can approximate ν ∼ n/κ. The asymptotic expansion of the Leg-
endre function at large n is directly obtainable from the hypergeometric series representation

Qν(z) =

√
π

2

Γ[ν + 1]

Γ[ν + 3/2]

[z − (z2 − 1)1/2]ν+1/2

(z2 − 1)1/4 2F1

(1

2
,
1

2
; ν +

3

2
;

√
z2 − 1− z
2
√
z2 − 1

)
. (5.77)

Using this and Stirling’s approximation for Γ-functions we can perform a sum in (5.75) from
some large N to infinity. In the following, we will ignore numerical prefactors (except for the
dependence on the deformation parameter κ) since we are after scaling behavior only. The
computation goes as follows:

∞∑
n=N

(n+ ∆− 1/2)
Γ(n+ 2∆− 1)

Γ(n+ 1)
Qν

(
2ξ + 1

)
∼ κ1/2

( 1

ξ1/4
+O(ξ1/4)

) ∞∑
n=N

n2∆−5/2
(

1 +O
( 1

n

))
ζn/κ

×
(

1− κ

4n

ζ

4
√
ξ(ξ + 1)

+O
( 1

n2

))
, (5.78)

where we defined ζ = 2ξ + 1 − 2
√
ξ(ξ + 1) ∼ 1 − 2

√
ξ. The leading contribution can be

resummed to give7

κ1/2

ξ1/4

∞∑
n=N

n2∆−5/2ζn/κ =
κ1/2

ξ1/4
ζN/κΦ[ζ1/κ,

3

2
− 2∆, N ], (5.79)

where

Φ[z, s, v] =
∞∑
n=0

zn

(v + n)s
(5.80)

7Alternatively one could approximate the sum by an integral, which in turn can be evaluated in terms
of the exponential integral function. However the sum under consideration does reduce to a well-studied
special function.
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is the so-called Lerch transcendent [54]. The asymptotic behavior of the Lerch transcendent
as ζ → 1 can be deduced from [54]

Φ[z, s, v] ∼ Γ[1− s]
(1− z)1−s . (5.81)

Plugging this into the (5.79) gives

κ1/2

ξ1/4

1

(1− ζ1/κ)2∆−1/2
∼ κ2∆

22∆−1/2

1

ξ∆
, (5.82)

which is exactly the identity contribution to the OPE in the bulk CFT!
It is easy to see from (5.75) that there are no more contributions at the leading order.

In principle, one can now proceed systematically and discover additional contributions with
subleading scaling behavior. These should be there since the one-point functions are in
general non-zero in the presence of the defect. However, this procedure becomes prohibitively
difficult even at the next order (1/ξ∆−1/2). One reason is that in the expansion of the
hypergeometric function there are infinitely-many terms contributing at each order.

6 Discussion

In the present paper, we have studied a particular family of top-down supersymmetric Janus
solutions which asymptote to AdS3 × S3 and are dual to two-dimensional defect conformal
field theories. We have identified a scalar perturbation in the bulk which decouples at
the leading order and solved the linearized field equation. Taking advantage of the simple
structure of the background solution, we managed to construct explicitly the bulk-to-bulk
propagator and to extract the two-point correlation function. The functional form of this
correlator is not fixed by the symmetry alone. Rather, it involves an arbitrary function
of an invariant cross-ratio. The final expression for the two-point correlation function is
represented as a sum over boundary conformal blocks and makes manifest the data present
in the OPE of the operator with the defect (dimensions and OPE coefficients). Finally, we
have partially checked that our final result is crossing symmetric.

There are several directions one can now pursue. The theory which is holographically dual
to the Janus solution under consideration is known in detail. Moreover, we have identified the
microscopic description of the dual operator in the dual field theory. Hence, it is in principle
possible to compute the same correlation function in the field theory at weak coupling.

Our analysis of the linearized fluctuations around the supergravity solution was not com-
pletely systematic. In particular, there is certainly room for other fluctuations to decouple
at the leading order. One possibility would be to consider fluctuations of the B-field with
the indices along the four-torus. Additionally, it would be natural to consider perturba-
tions around the background solution that involve more than one field. Indeed, treating
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perturbations of this sort is required for computing holographically correlators involving the
energy-momentum tensor or other conserved currents.

Furthermore, it would be natural to attempt extending our results to Janus solutions in
higher dimension and with more asymptotic regions. Perturbations around the supersym-
metric AdS5 × S5 Janus solutions have been studied in [64], where particular modes that
obey separable differential equations were identified. However, these equations are not of the
hypergeometric type (they are known in the literature as Heun’s equations) and in general
their solutions can be studied only numerically. In case of solutions with more than two
asymptotic regions, the differential equations would not be separable even in the asymptot-
ically AdS3 × S3 case.

Finally, further investigating finite-temperature solutions would be a particularly promis-
ing direction. Since we managed to solve for the linearized modes at finite temperature, one
can proceed to compute quasi-normal modes and/or correlation functions, which are hard
to compute even at weak coupling. It is not clear to us if this can be done as explicitly as
for the zero-temperature case, but it is certainly possible to find solutions at least numer-
ically. However, in order to proceed in this direction, a better understanding of the global
properties of the finite-temperature solutions is required.
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A Bulk-to-boundary propagator in pure anti-de Sitter

It might be useful to demonstrate how the well-known bulk-to-boundary propagator in pure
AdS can be represented using our defect modes. To do that we start with the expression

φ(x0, ~x) =

∫
dd~x′K∆(x0, ~x, ~x

′)φ0(~x′), (A.83)

where the bulk-to-boundary propagator in Poincaré coordinates is8

K∆(x0, ~x, ~x
′) = C

x∆
0

(x2
0 + (~x− ~x′)2)∆

, C = π−d/2
Γ(∆)

Γ(∆− d/2)
. (A.85)

8Recall that the propagator is normalized in such a way that

lim
x0→0

x∆−2
0 K∆(x0, ~x, ~x

′) = δ(~x− ~x′). (A.84)
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Here φ0(~x′) represents the source on the boundary of AdS. Next we decompose boundary
directions as ~x = (x⊥, ~y) and similarly for the location of the source ~x′ and go to hyperbolic
slicing by defining new coordinates z and x by

x0 =
z

coshx
, x⊥ = z tanhx. (A.86)

Now we Fourier-transform along the directions of the defect to obtain (in Euclidean
signature)9

K∆(x0, ~x, ~x
′) =

2√
πΓ(∆− d/2)

z∆

cosh∆ x

1

(2π)d−1

∫
dd−1k e−i

~k·(~y−~y′)
(k2

2

)∆+ 1−d
2
K∆+ 1−d

2
(kw)

(kω)∆+ 1−d
2

,

(A.88)
where

w =
√
z2 − 2z tanhxx′⊥ + x′2⊥, (A.89)

and Kν denotes the modified Bessel function. Now we use the Gegenbauer’s addition theorem
for Bessel functions which says [61]

Kν(kw)

(kw)ν
= 2νΓ(ν)

∞∑
n=0

(ν + n)
Kν+n(kz)

(kz)ν
Iν+n(kx′⊥)

(kx′⊥)ν
C∆−1/2
n (tanhx) (A.90)

for z > |x′⊥|. Whereas for z < |x′⊥| the arguments of the Bessel functions should be ex-
changed. In Lorentzian signature we would need [61]

Hν(kw)

(kw)ν
= 2νΓ(ν)

∞∑
n=0

(ν + n)
Hν+n(kz)

(kz)ν
Jν+n(kx′⊥)

(kx′⊥)ν
C∆−1/2
n (tanhx). (A.91)

Thus the bulk-to-boundary propagator in pure AdS can be expressed as

K∆(x0, ~x, ~x
′) =

2√
π

Γ(∆− d/2 + 1/2)

Γ(∆− d/2)

z∆

cosh∆ x

1

(2π)d−1

∫
dd−1k e−i

~k·(~y−~y′)k2∆+1−d×

∞∑
n=0

(∆ +
1− d

2
+ n)

[
θ(z − x′⊥)

K∆+ 1−d
2

+n(kz)

(kz)∆+ 1−d
2

I∆+ 1−d
2

+n(kx′⊥)

(kx′⊥)∆+ 1−d
2

+

+ θ(x′⊥ − z)
I∆+ 1−d

2
+n(kz)

(kz)∆+ 1−d
2

K∆+ 1−d
2

+n(kx′⊥)

(kx′⊥)∆+ 1−d
2

]
C

∆+ 1−d
2

n (tanhx).

9To evaluate this multi-dimensional Fourier transform we note that for a spherically symmetric function
f(~y) = f(|~y|) the Fourier transform is related to the so-called Hankel transform through∫

dnke−i
~k·~yf(~y) = (2π)n/2k1−n/2

∫ ∞
0

rn/2f(r)Jn
2−1(kr)dr. (A.87)
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Finally notice that for integer ∆− d/2 the Gegenbauer function is related to the associated
Legendre functions by [54]

C∆−1/2
n (tanhx) =

Γ(∆)

Γ(2∆− 1)
(−2 coshx)∆−1P∆−1

n+∆−1(tanhx). (A.92)

(For non-integer ∆ there is also Q∆−1
n+∆−1(tanhx) appearing in the final equality). Thus we

see that the bulk-to-boundary propagator can be expressed using the defect modes derived
before.

Let us now specialise to d = 2 and integer ∆, so that ~y becomes just t and ~k reduces to
ω. We get

K∆(x0, ~x, ~x
′) =

(
− 1

2

)∆−1 1

Γ(∆− 1)

1

π

∫ ∞
−∞

dωe−iω(t−t′)× (A.93)

×
∞∑
n=0

(n+ ∆− 1/2)G̃Eucl
n+∆−1/2[z, x′⊥]

1

x′∆⊥

P∆−1
n+∆−1(tanhx)

coshx
,

where G̃Eucl
n+∆−1/2[z, x′⊥] is obtained from (5.55) by analytically continuing ω2 → −ω2 which

effectively replaces Bessel functions according to Jν → Iν and Hν → Kν (Kν(|ω|z) is regular
at large z). (A.93) indeed coincides with the pure AdS limit of (5.67).
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